VisionLabs

MACHINES CAN SEE

VisionLabs FaceStream

Installation manual without LP launched

v.5.1.45

Contents

Glossary 4
System requirements 5
LP services and third-party applications 5
Processors e e e e 6
CPU . o e e e e e 6

GPU . e e e 6
Introduction 8
1 Before launch 9
1.1 Unpackdistribution 10

1.2 Createsymboliclink e 10

1.3 InstallDocker o 10

1.4 Install Docker COmpose o i i i e e e e e 1

1.5 Chooseloggingmethod e 12
1.5.1 Loggingtostdout 12

1.5.2 Loggingtofile 12

1.6 InstallGPU dependencies e e 13
1.6.1 Actions to launch FaceStream with GPU through Docker Compose 13

1.7 Logintoregistry L. e e e e 14

1.8 Licenseactivation 15
1.8.1 Waysto specify HASP licensesettings 15

1.8.1.1 Specify HASP license settings usingdumpfile 15

1.8.2 Ways to specify Guardant license settings, 17

1.8.21 Specify Guardant license settings using dumpfile 17

1.9 LaunchInfluxDBOSS2container i e 18
110 Launch PostgreSQL container L L 18
1.1 Prepare LUNA Configuratordatabase 19
1111 Create LUNA Configuratordatabase 19

1.11.2 Initialize LUNA Configuratordatabase 19

1.12 Launch LUNA Configuratorcontainer, 20
1103 LUNALICENSESSEIVICE o i it e e e e e e e e e e 20
1131 Specify license settings using Configurator 20

113.1.1 Specify HASP license settings 21

113.1.2 Specify Guardant license settings 21

113.2 Launch LUNALicensescontainer i 21

VisionLabs B.V.

2/42

2 Launch FaceStream

2.1 LaunchFaceStreammanually
211 Upload settings to LUNA Configurator
2111 Upload LUNA Streams settings

2.1.1.2 Upload FaceStreamsettings

2.1.2 Prepare LUNAStreamsdatabase
2.1.21 Create LUNA Streamsdatabase

2.1.2.2 Initialize LUNA Streamsdatabase

2.1.3 Launch LUNAStreamscontainer

2.1.4 Launch FaceStreamcontainer
2.1.4.1 Launch FaceStream containerusingCPU

2.1.4.2 Launch FaceStream containerusingGPU

2.2 Launch FaceStream using DockerCompose.
2.21 Launch FaceStreamcommand

3 Nextactions

4 Additional information

41 Dockercommands
410 Showcontainers
412 Copyfilestocontainer e
413 Entercontainer.
414 IMagesnames e e e
41.5 Showcontainerlogs
41.6 Deleteimage e
417 Stopcontainer e e e
41.8 Deletecontainer
4.2 Launchingkeys
421 Description of container launch parameters
4.3 Loggingtoserver e e e e e e e e e e e e e
431 Createlogsdirectory e
4.3.2 Loggingactivation

4.3.21 LUNA Streams and other LP services logging activation

4.3.2.2 FaceStream logging activation

4.3.2.3 Configurator service logging activation

4.3.3 Mounting directories with logs when starting services

4.4 Dockerlogrotation

VisionLabs B.V.

3/42

Glossary

Term

Aspect angle

Batch

Best shot
Detection

Descriptor

Event

LUNA Streams
Normalized image, warp

Portrait

Track

Tracking

VisionLabs B.V.

Meaning

Head rotation degree (in degrees) on each of the three axes
(up/down tilt relative to the horizontal axis; left/right tilt, relative to
the vertical axis; a rotation about the vertical axis).

Group of data processed simultaneously.

The frame of the video stream on which the face/body is fixed in the
optimal angle for further processing.

FaceStream entity that contains the coordinates of face or body and
the estimated value of the object that determines the best shot.

A set of unique features received from the warp. A descriptor
requires much less storage memory in comparison with the sample
and is used for comparison of faces.

LUNA PLATFORM entity, which contains information (city, user data,
track id, etc.) about one face and/or body. This information is
transferred to the LUNA PLATFORM by the FaceStream application.
For a complete list of the transferred information, see the OpenAPI
LUNA PLATFORM documentation.

Service for creating and managing streams that contain policies for
processing a video stream/video file/set of images.

Images containing a face or body and corresponding to VisionLabs
standard. Used when working with LUNA PLATFORM.

Image of face or body that has been transformed to a specific format.
The portrait has two types - “warp” (the image is transformed into
warp format), “gost” (detection is cut out from the source frame,
considering indentation).

Information about object’s position (face of a person) in a sequence
of frames. If the object leaves the frame zone, the track doesn’t
discontinue right away. For some time, the system expects the
object to return and if it does, the track continues.

Object (face) tracking function in the frame sequence.

4/42

System requirements

FaceStream is delivered in Docker containers and can be launched on CPU and GPU. Docker images of
the containers are required for the installation. Internet connection is required on the server for Docker
images download, or the images should be downloaded on any other device and moved to the server. It
is required to manually specify login and password for Docker images downloading.

FaceStream can be launched with a Docker Compose script.
The following Docker and Docker Compose versions are recommended for FaceStream launching:

« Docker: 20.10.8 (to manually launch containers)
« Docker Compose: 1.29.2 (to automatically launch containers)

FaceStream and LUNA Streams containers launch were tested on the following operating systems:
« CentOS Linux release 7.8.2003 (Core)
The following OS is used inside the FaceStream container:

« CentOS Linux release 8.3.2011

LP services and third-party applications

FaceStream requires LUNA PLATFORM components, additional databases, and the LUNA Streams service.
Basic information about this software is contained in this document.

LUNA Streams is not a component of the LUNA PLATFORM.
The following LUNA PLATFORM components are used by default with FaceStream:
+ LUNA Licenses is used to license the LUNA Streams service.

+ LUNA Configurator is used for quick access to the basic FaceStream settings and LUNA PLATFORM
service settings.

+ PostgreSQL is used as the default database for the LUNA Streams service. Itis also possible to use
an Oracle database instead of PostgreSQL.

+ InfluxDB is used for monitoring. If necessary, monitoring can be disabled.
The following database versions are recommended for use with LUNA Streams:

» PostgreSQL: 16
« Oracle: 21c

To upload settings to the LUNA Configurator service, Python version 2.x or 3.x is required.

Installation and configuration of Oracle is not described in this manual. Further in the document,
examples of launching using PostgreSQL will be given.

VisionLabs B.V. 5/42

Balancers (for example, Nginx) and other software can be used when scaling the system to provide fail-
safety. Their configuration is not described in this document.

Processors

Below are the requirements to launch FaceStream in a minimal configuration. System requirements for
the production system are calculated based on the intended system load.

CPU
The following minimum requirements are given per FaceStream instance.
For the application to work correctly, the hardware must meet the following minimum requirements:
+ 2 GHz or faster processor;
+ 4 Gb RAM or higher;
+ 10 Gb available hard disk space.
« Access to the Internet (for containers and additional software download).
Hardware requirements can be affected by several factors:
+ Number of video streams;
« Frame frequency and resolution of video streams;

+ FaceStream settings. The default settings are the most versatile. Depending on the operating
conditions of the application, using their values can affect the quality, or performance.

Hardware should be selected based on the above factors.

FaceStream can also work in the computation speedup mode due to usage of video card resources
or AVX2 instructions. CPU with AVX2 support is required. The system automatically detects available
instructions and runs best performance.

GPU

GPU calculations are supported for FaceDetV3 only. See “defaultDetectorType” parameter in the
FaceEngine configuration (“faceengine.conf”).

A minimum of 6GB or dedicated video RAM is required. 8 GB or more VRAM recommended.
Pascal, Volta, Turing architectures are supported.

Compute Capability 6.1 or higher and CUDA 11.4 are required.

VisionLabs B.V. 6/42

The recommended NVIDIA driver is r470.

Now only one video card is supported per FaceStream instance.

VisionLabs B.V. 7/42

Introduction

This document describes:

+ Launching the minimum required services to launch FaceStream (LUNA Configurator, LUNA
Licenses, PostgreSQL and InfluxDB).

Activation of the license key LUNA PLATFORM for the possibility of creating streams.

+ Manual process of launching the FaceStream application and the LUNA Streams service using
Docker.

Automatic deployment of the FaceStream application with the LUNA Streams service using Docker

Compose.
Before launching, it is necessary to explore the general information and sequence of actions.

FaceStream licensing is managed by a special parameter of the LUNA PLATFORM 5 license key, which
determines the number of streams for LUNA Streams operation. Thus, a LUNA PLATFORM 5 license is
required for FaceStream to work.

This manual provides an example of activating the LUNA PLATFORM license.

The Docker Compose scenario from this distribution is used for deploying the LUNA Streams and

FaceStream on a single server.

It is considered that launching is performed on the server with CentOS OS, where FaceStream was not
installed.

Firewall and SELinux should be manually configured on the server by the administrator. Their
configuration is not described in this document.

This document does not include a tutorial for Docker usage. Please refer to the Docker documentation
to find more information about Docker:

https://docs.docker.com
This document includes examples of FaceStream deployment in a minimal power operating for

demonstration purposes and cannot be used for the production system.

All the provided commands should be executed using the Bash shell (when you launch commands
directly on the server) or in a program for working with network protocols (when you remotely

connect to the server), for example, Putty.

For more information on general operation and application settings, see the FaceStream administrator
manual.

VisionLabs B.V. 8/42

https://docs.docker.com

1 Before launch

Make sure you are the root user before launch!
Before launch FaceStream, you need to do the following:

Unpack the FaceStream distribution.

Create symbolic link.

Install Docker.

Install Docker Compose if you plan to start FaceStream using Docker Compose script.
Choose logging method.

Set up GPU computing if you plan to use GPU.

Login to VisionLabs registry.

Activate license key.

© ® N0 0 W o

Launch Influx OSS 2 container.

_.
e

Launch PostgreSQL container.
Create and initialize database for LUNA Configurator.

—_
N =

. Launch LUNA Configurator container.
13. Launch LUNA Licenses container.

After the steps have been performed, you can start manually or automatically launching LUNA Streams

and FaceStream.

VisionLabs B.V. 9/42

1.1 Unpack distribution

Itis recommended to move the archive to a pre-created directory for FaceStream and unpack the archive
there.

The following commands should be performed under the root user.

Create a directory for FaceStream.

mkdir -p /var/lib/fs

Move the archive to the created directory. Itis considered that the archiveis saved to the “/root” directory.

mv /root/facestream_docker_v.5.1.45.zip /var/lib/fs/

Go to the directory.

cd /var/lib/fs/

Install the unzip utility if it is not installed.

yum install unzip

Unpack the archive.

unzip facestream_docker_v.5.1.45.zip

1.2 Create symbolic link

Create a symbolic link. The link indicates that the current version of the distribution file is used to run
the software package.

1n -s facestream_docker_v.5.1.45 fs-current

1.3 Install Docker

Docker is required for launching of the FaceStream container.
The Docker installation is described in the official documentation:

https://docs.docker.com/engine/install/centos/.

VisionLabs B.V. 10/42

https://docs.docker.com/engine/install/centos/

You do not need to install Docker if you already have an installed Docker 20.10.8 on your server. Not
guaranteed to work with higher versions of Docker.

Quick installation commands are listed below.

Check the official documentation for updates if you have any problems with the installation.

Install dependencies.

yum install -y yum-utils device-mapper-persistent-data lvm2

Add repository.

yum-config-manager --add-repo https://download.docker.com/linux/centos/
docker-ce.repo

Install Docker.

yum -y install docker-ce docker-ce-cli containerd.io

Launch Docker.

systemctl start docker

systemctl enable docker

Check Docker status.

systemctl status docker

1.4 Install Docker Compose

Note. Install Docker Compose only if you are going to use the FaceStream automatic launching script.

Install Docker Compose.

curl -L "https://github.com/docker/compose/releases/download/1.29.2/docker-
compose-$(uname -s)-$(uname -m)" -o /usr/local/bin/docker-compose

VisionLabs B.V. 1n/42

chmod +x /usr/local/bin/docker-compose

1n -s /usr/local/bin/docker-compose /usr/bin/docker-compose

See the official documentation for details:

https://docs.docker.com/compose/install/

1.5 Choose logging method

There are two methods to output logs

+ Standard log output (stdout).
+ Logoutput to afile.

Log output settings for LUNA PLATFORM services and LUNA Streams service are set in section <
SERVICE_NAME>_LOGGER of LUNA Configurator service.

Log output settings for FaceStream are set in the settings Logging of section FACE_STREAM_CONFIG of
LUNA Configurator service.

If necessary, you can use both methods of displaying logs.

1.5.1 Logging to stdout

This method is used by default and requires no further action.

It is recommended to configure Docker log rotation to limit log sizes (see “Docker log rotation”).

1.5.2 Logging to file

Note. When you enable saving logs to a file, you should remember that logs occupy a certain place in the
storage, and the process of logging to a file negatively affects system performance.

To use this method, you need to perform the following additional actions:

+ Before launching the services: create directories for logs on the server.

« After launching the services: activate log recording and set the location of log storage inside LP
service containers.

+ Furing the launch of services: configure synchronization of log directories in the container with
logs on the server using the volume argument at the start of each container.

In the Docker Compose script, synchronization of directories with folders is not configured. You
need to manually add folder mounting to the docker-compose.ym1 file.

See the instructions for enabling logging to files in the “Logging to server” section.

VisionLabs B.V. 12 /42

https://docs.docker.com/compose/install/

1.6 Install GPU dependencies

Skip this section if you are not going to utilize GPU for your calculations.
You need to install NVIDIA Container Toolkit to use GPU with Docker containers.

The example of the installation is given below.

distribution=$(. /etc/os-release;echo IDVERSION_ID)

curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-
docker.repo | tee /etc/yum.repos.d/nvidia-docker.repo

yum install -y nvidia-container-toolkit

systemctl restart docker

Check the NVIDIA Container toolkit operating by running a base CUDA container (this container is not
provided in the FaceStream distribution and should be downloaded from the Internet):

docker run --rm --gpus all nvidia/cuda:11.4.3-base-centos7 nvidia-smi

See the documentation for additional information:

https://github.com/NVIDIA/nvidia-docker#centos-7x8x-docker-ce-rhel-7x8x-docker-ce-amazon-linux-
12.

Attributes extraction on the GPU is engineered for maximum throughput. The input images are
processed in batches. This reduces computation cost per image but does not provide the shortest
latency perimage.

GPU acceleration is designed for high load applications where request counts per second
consistently reach thousands. It won’t be beneficial to use GPU acceleration in non-extensively
loaded scenarios where latency matters.

1.6.1 Actions to launch FaceStream with GPU through Docker Compose

To launch FaceStream with GPU through Docker Compose, it is necessary, in addition to the above
actions, to add the deploy section in the facestream field to the docker-compose.ym1 file.

VisionLabs B.V. 13 /42

https://github.com/NVIDIA/nvidia-docker#centos-7x8x-docker-ce-rhel-7x8x-docker-ce-amazon-linux-12
https://github.com/NVIDIA/nvidia-docker#centos-7x8x-docker-ce-rhel-7x8x-docker-ce-amazon-linux-12

Before starting the FaceStream container with GPU, it is required to enable GPU for calculations in the
FaceStream settings using the “enable_gpu_processing” parameter (see the “FaceStream configuration”
section in the administrator manual).

vi /var/lib/fs/fs-current/example-docker/docker-compose.yml

facestream:
image: ${REGISTRY_ADDRESS}:${DOCKER_REGISTRY_PORT}/facestream:${FS_VER}
deploy:
resources:
reservations:
devices:
- driver: nvidia
count: all
capabilities: [gpu]
restart: always
environment:
CONFIGURATOR_HOST: ${HOST_CONFIGURATOR}
CONFIGURATOR_PORT: 5070

driver - this field specifies the driver for the reserved device(s);

count - this field specifies the number of GPU devices that should be reserved (providing the host holds
that number of GPUs);

capabilities - this field expresses both generic and driver specific capabilities. It must be set,
otherwise, an error will be returned when deploying the service.

See the documentation for additional information:

https://docs.docker.com/compose/gpu-support/#enabling-gpu-access-to-service-containers.

1.7 Login to registry

When launching containers, you should specify a link to the image required for the container launching.
This image will be downloaded from the VisionLabs registry. Before that, you should login to the registry.

Login and password can be requested from the VisionLabs representative.

Enter login <username>.

docker login dockerhub.visionlabs.ru --username <username>

After running the command, you will be prompted for a password. Enter password.

VisionLabs B.V. 14 /42

https://docs.docker.com/compose/gpu-support/#enabling-gpu-access-to-service-containers

In the docker login command, you can enter the login and password at the same time, but this
does not guarantee security because the password can be seen in the command history.

1.8 License activation

To activate/upgrade a license, follow the steps in the license activation manual included in the
distribution package.

After that, follow the steps described below.

1.8.1 Ways to specify HASP license settings

For the HASP key, you need to specify the IP address of the licensing server. It can be set in one of two

ways:

+ In the dump file “platform_settings.json” (see below). The contents of the default settings will be
overwritten by the contents of this file when the Configurator service starts.

+ In the Licenses service settings in the Configurator user interface (see section “Specify license
settings using Configurator”).

Choose the most convenient method and follow the steps described in the relevant sections.

1.8.1.1 Specify HASP license settings using dump file
Open the “platform_settings.json” file:

vi /Jvar/lib/fs/fs-current/extras/conf/configurator_configs/platform_settings
.json

Set the server IP address with your HASP key in the “server_address” field:

{
"value": {
"vendor": "hasp",
"server_address": "127.0.0.1"
}7
"description":"License vendor config",
"name" :"LICENSE_VENDOR",
"tags":[]
}’
Save the file.

VisionLabs B.V. 15/ 42

If the license is activated using the HASP key, then two parameters “vendor” and “server_address”
must be specified. If you want to change the HASP protection to Guardant, then you need to add
the “license_id” field.

VisionLabs B.V. 16 /42

1.8.2 Ways to specify Guardant license settings

For the Guardant key, you need to specify the IP address of the licensing server and the license ID. The
settings can be set in one of two ways:

+ In the dump file “platform_settings.json” (see below). The contents of the default settings will be
overwritten by the contents of this file at the launch stage of the Configurator service.

+ In the Licenses service settings in the Configurator user interface (see the section “Specify license
settings using Configurator”).

Choose the most convenient method and follow the steps described in the relevant sections.

1.8.2.1 Specify Guardant license settings using dump file
Open the file “platform_settings.json”.

vi /var/lib/fs/fs-current/extras/conf/configurator_configs/platform_settings
.json

Enter the following data:

« IP address of the server with your Guardant key in the “server_address” field.
« License ID in the format Ox<your_license_id>, obtained in the section “Save license ID” in the
license activation manual, in the “license_id” field:

{
"value": {
"vendor": "guardant",
"server_address": "127.0.0.1",
"license_id": "Ox92683BEA"
i
"description":"License vendor config",
"name" :"LICENSE_VENDOR",
"tags":[]
b
Save the file.

”» «

If the license is activated using the Guardant key, then three parameters “vendor”, “server_address”
and “license_id” must be specified. If you want to change the Guardant protection to HASP, then
you need to delete the “license_id” field.

VisionLabs B.V. 17 /42

1.9 Launch InfluxDB OSS 2 container

InfluxDB 2.0.8-alpine is required to monitor the minimum required LP services (for more information, see
the “Monitoring” section in the LUNA PLATFORM administrator manual).

Note! If you already have InfluxDB 2.0.8-alpine installed, skip this step.

Use the following command to launch InfluxDB:

docker run \

-e DOCKER_INFLUXDB_INIT_MODE=setup \

—e DOCKER_INFLUXDB_INIT_BUCKET=luna_monitoring \
-e DOCKER_INFLUXDB_INIT_USERNAME=1luna \

-e DOCKER_INFLUXDB_INIT_PASSWORD=password \

-e DOCKER_INFLUXDB_INIT_ORG=luna \

—e DOCKER_INFLUXDB_INIT_ADMIN_TOKEN=

kofqt4Pfqjn600RBtMDQqVoJLgHoxxDUmmhiAZ73IS6VmEnrqZXQhxDhad8AX9tmiJH6CjM7Y1U8p5eSEocC

-v Jetc/localtime:/etc/localtime:ro \

-v /var/lib/fs/fs-current/example-docker/influx:/var/lib/influxdb2 \
-—-restart=always \

-—-detach=true \

--network=host \

--name influxdb \

dockerhub.visionlabs.ru/luna/influxdb:2.0.8-alpine

1.10 Launch PostgreSQL container

Note. Make sure that the old PostgreSQL container is deleted.

Use the following command to launch PostgreSQL.

docker run \

--env=POSTGRES_USER=1luna \

--env=POSTGRES_PASSWORD=1luna \

--shm-size=1g \

-v /var/lib/fs/fs-current/example-docker/postgresql/data/:/var/lib/
postgresql/data/ \

-v /var/lib/fs/fs-current/example-docker/postgresql/entrypoint-initdb.d/:/
docker-entrypoint-initdb.d/ \

-v Jetc/localtime:/etc/localtime:ro \

--name=postgres \

--restart=always \

-—-detach=true \

VisionLabs B.V. 18 /42

--network=host \
dockerhub.visionlabs.ru/luna/postgis-vlmatch:16

Here:

« -v /var/lib/luna/current/example-docker/postgresql/data/:/var/lib/postgresql
/data/ - The volume command enables you to mount the “data” folder to the PostgreSQL
container. The folder on the server and the folder in the container will be synchronized. The
PostgreSQL data from the container will be saved to this directory.

+ ——network=host - If you need to change the port for PostgreSQL, you should change this string

to -p 5440:5432. Where the first port 5440 is the local port and 5432 is the port used inside the
container.

1.11 Prepare LUNA Configurator database
1.11.1 Create LUNA Configurator database

Create a database for LUNA Configurator:

docker exec -i postgres psql -U luna -c "CREATE DATABASE luna_configurator;"

Allow the user to log in to the database:

docker exec -i postgres psql -U luna —-c "GRANT ALL PRIVILEGES ON DATABASE
luna_configurator TO luna;"

1.11.2 Initialize LUNA Configurator database

Use the following command to launch to create the Configurator database tables.

docker run \

-v /etc/localtime:/etc/localtime:ro \

-v /var/lib/fs/fs-current/extras/conf/configurator_configs/
luna_configurator_postgres.conf:/srv/luna_configurator/configs/config.
conf \

-v /var/lib/fs/fs-current/extras/conf/configurator_configs/platform_settings

.json:/srv/luna_configurator/used_dumps/platform_settings.json \
--network=host \

-—rm \
-—entrypoint bash \
dockerhub.visionlabs.ru/luna/luna-configurator:v.2.1.88 \

VisionLabs B.V. 19 /42

-c "python3 ./base_scripts/db_create.py; cd /srv/luna_configurator/configs/
configs/; python3 -m configs.migrate --config /srv/luna_configurator/
configs/config.conf head; cd /srv; python3 ./base_scripts/db_create.py —-
dump-file /srv/luna_configurator/used_dumps/platform_settings.json"

Here:

« /var/1lib/fs/fs-current/extras/conf/configurator_configs/platform_settings
.json - Enables you to specify the path to the dump file with LP configurations.

« ./base_scripts/db_create.py; - Creates database structure.

« python3 -m configs.migrate head; - Performs settings migrations in Configurator DB and
sets revision for migration.

o« ——dump-file /srv/luna_configurator/used_dumps/platform_settings.json -
Updates settings in the Configurator DB with values from the provided file.

1.12 Launch LUNA Configurator container

Use the following command to launch Configurator:

docker run \

--env=PORT=5070 \

-—env=WORKER_COUNT=1 \

-—env=RELOAD_CONFIG=1 \

—-—-env=RELOAD_CONFIG_INTERVAL=10 \

-v Jetc/localtime:/etc/localtime:ro \

-v /var/lib/fs/fs-current/extras/conf/configurator_configs/
luna_configurator_postgres.conf:/srv/luna_configurator/configs/config.
conf \

-v /tmp/logs/configurator:/srv/logs \

--name=luna-configurator \

--restart=always \

-—-detach=true \

--network=host \

dockerhub.visionlabs.ru/luna/luna-configurator:v.2.1.88

1.13 LUNA Licenses service
1.13.1 Specify license settings using Configurator

Follow the steps below to set the settings for HASP-key or Guardant-key.

Note. Do not perform the steps described below if you have already specified the license settings in
the sections “Specify HASP license settings using dump file” or “Specify Guardant license settings using

VisionLabs B.V. 20/ 42

dump file”.

1.13.1.1 Specify HASP license settings
Note. Perform these actions only if the HASP key is used. See the “Specify Guardant license settings”
section if the Guardant key is used.

To set the license server address, follow these steps:
+ Go to the Configurator service interface http://<configurator_server_ip>:5070/.
+ Specify the “LICENSE_VENDOR” value in the “Setting name” field and click “Apply Filters”.
« Set the IP address of the server with your HASP key in the field “server_address”.

« Click “Save”.

If the license is activated using the HASP key, then two parameters “vendor” and “server_address”
must be specified. If you want to change the HASP protection to Guardant, then you need to add
the “license_id” field.

1.13.1.2 Specify Guardant license settings
Note. Perform these actions only if the Guardant key is used. See the “Specify HASP license settings”
section if the HASP key is used.

To set the license server address, follow these steps:
+ Go to the Configurator service interface http://<configurator_server_ip>:5070/.

Enter the value “LICENSE_VENDOR?” in the “Setting name” field and click “Apply Filters”.

Set the IP address of the server with your Guardant key in the “server_address” field.

Set the license ID in the format @x<your_1license_id>, obtained in the section “Save license ID”

in the license activation manual, in the “license_id” field.

« Click “Save”.

» «

If the license is activated using the Guardant key, then three parameters “vendor”, “server_address”
and “license_id” must be specified. If you want to change the Guardant protection to HASP, then
you need to delete the “license_id” field.

1.13.2 Launch LUNA Licenses container

Use the following command to launch the service:

VisionLabs B.V. 21/ 42

docker run \
--env=CONFIGURATOR_HOST=127.0.0.1 \
-—env=CONFIGURATOR_PORT=5070 \
--env=PORT=5120 \
--env=WORKER_COUNT=1 \
-—env=RELOAD_CONFIG=1 \
-—-env=RELOAD_CONFIG_INTERVAL=10 \

-v Jetc/localtime:/etc/localtime:ro \
-v /tmp/logs/licenses:/srv/logs \
--name=luna-licenses \
--restart=always \

--detach=true \

--network=host \
dockerhub.visionlabs.ru/luna/luna-licenses:v.0.9.13

VisionLabs B.V. 22 /42

2 Launch FaceStream

There are two ways to launch FaceStream - manual and automatic using a Docker Compose script.
Use the hyperlinks below to go to the instructions for the required launch method:

« manual way to launch FaceStream
« automatic way to launch FaceStream

VisionLabs B.V. 23 /42

2.1 Launch FaceStream manually

Note. Perform these actions only if you are going to launch FaceStream manually. If you are going to
launch FaceStream using the Docker Compose script, go to “Launch FaceStream using Docker Compose”.

2.1.1 Upload settings to LUNA Configurator

The main settings of LUNA Streams and FaceStream should be set in the Configurator service after its
launch. The exception is the FaceEngine settings, which are set in the configuration file “faceengine.conf”
and transferred during the launch of the FaceStream container.

If necessary, you can use configuration files instead of the Configurator service settings and transfer
them during container launching (for more information, see the “Use FaceStream with configuration files”
section of the administrator manual).

FaceStream and LUNA Streams settings are uploaded into the Configurator in different ways.

2.1.1.1 Upload LUNA Streams settings
To upload LUNA Streams settings into the Configurator service, you should use the configuration
migration mechanism.

docker run \

-v /etc/localtime:/etc/localtime:ro \

-v /tmp/logs/streams:/srv/logs \

-—entrypoint=/bin/bash \

--rm \

--network=host \

dockerhub.visionlabs.ru/luna/streams-configs:v.0.8.2 \

-c "python3 -m streams_configs.migrate head --config_db_url postgres://luna:
luna@l27.0.0.1:5432/luna_configurator"

Here:

+ python3 -m streams_configs.migrate - Migration script.
o ——config_db_url postgres://luna:luna@l127.0.0.1:5432/luna_configurator - The
“luna_configurator” database address flag.

2.1.1.2 Upload FaceStream settings
FaceStream settings are located in a special file “facestream_dump.json”. To upload these settings into
the Configurator service, you should use the “load_dump.py” script.

VisionLabs B.V. 24 /42

The “load_dump.py” script requires Python version 2.x or 3.x. If version 2.x is installed, then the
script should be run using the python command. If version 3.x is installed, then the script should
be run using the python3 command.

+ Go to the directory with script and dump file:

cd /var/lib/fs/fs-current/example-docker/luna_configurator/dumps/

+ Run the script to upload FaceStream settings into the Configurator service, specifying the installed
version of Python (the command below gives an example of running the script for Python version
3.x):

python3 -m load_dump --dump-file=facestream_dump.json --luna-config=http
://127.0.0.1:5070/1

All necessary parameters will be automatically added to the Configurator service.

2.1.2 Prepare LUNA Streams database

To launch FaceStream, you need to launch the LUNA Streams service by creating and initializing a
database for it. This service is not included in the LUNA PLATFORM 5 distribution, so it should be
launched separately.

2.1.2.1 Create LUNA Streams database
Create a database for LUNA Streams:

docker exec -i postgres psql -U luna -c "CREATE DATABASE luna_streams;"

Allow the user to log in to the database:

docker exec -i postgres psql -U luna —-c "GRANT ALL PRIVILEGES ON DATABASE
luna_streams TO luna;"

Activate PostGIS:

docker exec -i postgres psql -U luna luna_streams -c "CREATE EXTENSION
postgis;"

VisionLabs B.V. 25/42

2.1.2.2 Initialize LUNA Streams database
Initialize the data in the LUNA Streams database:

docker run -v /etc/localtime:/etc/localtime:ro \

-=rm \

--network=host \

dockerhub.visionlabs.ru/luna/luna-streams:v.0.8.2 \

python3 ./base_scripts/db_create.py —-luna-config http://localhost:5070/1

2.1.3 Launch LUNA Streams container

The container is launched with the following command:

docker run \
--env=CONFIGURATOR_HOST=127.0.0.1 \
-—env=CONFIGURATOR_PORT=5070 \
--env=PORT=5160 \
--env=WORKER_COUNT=1 \
-—env=RELOAD_CONFIG=1 \
-—-env=RELOAD_CONFIG_INTERVAL=10 \

-v Jetc/localtime:/etc/localtime:ro \
-v /tmp/logs/streams:/srv/logs \
-—-name=luna-streams \
--restart=always \

--detach=true \

--network=host \
dockerhub.visionlabs.ru/luna/luna-streams:v.0.8.2

To check if the service started correctly, you can perform a GET request http://127.0.0.1:5160/
version. The response should return the LUNA Streams version v.0.8.2.

2.1.4 Launch FaceStream container

2.1.4.1 Launch FaceStream container using CPU
The container is launched as follows:

docker run \

--env=CONFIGURATOR_HOST=127.0.0.1 \

--env=CONFIGURATOR_PORT=5070 \

-v /var/lib/fs/fs-current/extras/conf/configs/faceengine.conf:/srv/
facestream/data/faceengine.conf \

VisionLabs B.V. 26 /42

-v /var/lib/fs/fs-current/extras/conf/configs/runtime.conf:/srv/facestream/
data/runtime.conf \

-v Jetc/localtime:/etc/localtime:ro \

-v /tmp/logs/facestream:/srv/logs \

--env=PORT=34569 \

--detach=true \

--restart=always \

-—-name=facestream \

--network=host \

dockerhub.visionlabs.ru/luna/facestream:v.5.1.45

For a description of the remaining parameters and launching keys, see the “Launching keys” section.

To verify that the application was launched correctly, you can perform a GET request http
://127.0.0.1:34569/version. The response should return the FaceStream v.5.1.45.

2.1.4.2 Launch FaceStream container using GPU
Note. Use this command only if you are going to use FaceStream with GPU.

Before launching FaceStream in GPU mode, additional dependencies should be installed (see “Install
GPU dependencies” section).

Before starting the FaceStream container with GPU, it is required to enable GPU for calculations in the
FaceStream settings using the “enable_gpu_processing” parameter (see the “FaceStream configuration”
section in the administrator manual).

docker run \

--env=CONFIGURATOR_HOST=127.0.0.1 \

--env=CONFIGURATOR_PORT=5070 \

-v /var/lib/fs/fs-current/extras/conf/configs/faceengine.conf:/srv/
facestream/data/faceengine.conf \

-v /var/lib/fs/fs-current/extras/conf/configs/runtime.conf:/srv/facestream/
data/runtime.conf \

-v Jetc/localtime:/etc/localtime:ro \

-v /tmp/logs/facestream:/srv/logs \

-—-env=PORT=34569 \

--gpus device=0 \

--detach=true \

-—-restart=always \

-—-name=facestream \

--network=host \

dockerhub.visionlabs.ru/luna/facestream:v.5.1.45

Here --gpus device=0 is the parameter specifies the used GPU device and enables GPU utilization. A

VisionLabs B.V. 27 /42

single GPU can be utilized per FaceStream instance. Multiple GPU utilization per instance is not available.
For a description of the remaining parameters and launching keys, see the “Launching keys” section.

To verify that the application was launched correctly, you can perform a GET request http
://127.0.0.1:34569/version. The response should return the FaceStream v.5.1.45.

VisionLabs B.V. 28 /42

2.2 Launch FaceStream using Docker Compose

The Docker Compose script:
+ Loads LUNA Streams and FaceStream settings into Configurator.
+ Creates and initializes the LUNA Streams database.
+ Launches the LUNA Streams and FaceStream.
+ Is tested using the default LUNA Streams and FaceStream configurations.
+ Isnotintended to be used for FaceStream scaling:
- Itis not used for the deployment of FaceStream services on several servers.
- Itis not used for deployment and balancing of several FaceStream services on a single service.
« Supports GPU utilization for FaceStream calculations.

« Does not provide the possibility to use external database for LUNA Streams already installed on the
server.

+ Does not perform migrations from previous FaceStream versions and updates from the previous
FaceStream build.

See the “docker-compose.yml” file and other files in the “example-docker” directory for the information
about launched services and performed actions.

You can write your scenario that deploys and configures all the required services. This document does
not include information about scenario creation or tutorial for Docker usage. Please refer to the Docker
documentation to find more information about Docker and Docker Compose:

https://docs.docker.com

2.2.1 Launch FaceStream command

Go to the Docker Compose folder:

cd /var/lib/fs/fs-current/example-docker

Make sure that FS container are not launched before executing the script. An error will occur if you
try to run a container with the same name as an existing container. If one or several LP containers
are launched, you should stop them using the docker container rm -f <container_name>
command. To stop all the containers, use docker container rm -f $(docker container
1s -aq).

VisionLabs B.V. 29 /42

https://docs.docker.com

To launch FaceStream with GPU using Docker Compose, you need to follow the stepsin “Install GPU
dependencies”.

Launch Docker Compose:

You should be logged in the VisionLabs registry (see section “Login to registry”)

./start_facestream.sh --configurator_address=127.0.0.1

--configurator_address=127.0.0.1 - LUNA Configurator service address

Check the state of launched Docker containers.

docker ps

The list of streams is available at http://127.0.0.1:34569/api/1/streams/. Viewing the
stream in the browser is available at http://127.0.0.1:34569/api/1/streams/preview/<
stream_id>.

VisionLabs B.V. 30/42

3 Next actions

To work further with FaceStream, you need to create a stream using a POST request “create stream” to
the LUNA Streams service. The stream contains policies for processing a video stream/video file/set of
images. If the stream is created with the status “pending” (by default), then the FaceStream worker will
automatically start processing the stream.

See “Interaction of FaceStream with LUNA Streams” in the administrator manual for details on
working with streams and LUNA Streams.

The list of streams to processisavailableathttp://127.0.0.1:34569/api/1/streams/. Previewing
a stream in a browser is available at http://127.0.0.1:34569/api/1/streams/preview/<

stream_id>.

VisionLabs B.V. 31/42

4 Additional information

This section provides the following additional information:

+ Useful commands for working with Docker.
+ Launching keys description.

« Actions to enable saving logs to files.

+ Configuring Docker log rotation.

VisionLabs B.V. 32/42

4.1 Docker commands
4.1.1 Show containers

To show the list of launched Docker containers use the command:

docker ps

To show all the existing Docker containers use the command:

docker ps -a

4.1.2 Copy files to container

You can transfer files into the container. Use the docker cp command to copy a file into the container.

docker cp <file_location> <container_name>:<folder_inside_container>

4.1.3 Enter container

You can enter individual containers using the following command:

docker exec -it <container_name> bash

To exit the container, use the command:

exit

4.1.4 Images names

You can see all the names of the images using the command:

docker -images

4.1.5 Show container logs

You can view the container logs with the following command:

VisionLabs B.V. 33/42

docker logs <container_name>

4.1.6 Deleteimage

If you need to delete an image:

« Run the docker -images command.

+ Find the required image, for example: dockerhub.visionlabs.ru/luna/v.5.1.45.

+ Copy the corresponding image ID from the IMAGE ID, for example, 61860d036d8c”.
« Specify it in the deletion command:

docker rmi -f 61860d036d8c

Delete all the existing images:

docker rmi -f $(docker -images -q)

4.1.7 Stop container

You can stop the container using the command:

docker stop <container_name>

Stop all the containers:

docker stop $(docker ps -a -q)

4.1.8 Delete container

If you need to delete a container:

« Runthe docker pscommand.

« Stop the container (see Stop container).

Find the required image, for example: dockerhub.visionlabs.ru/luna/v.5.1.45.

Copy the corresponding container ID from the CONTAINER ID column, for example, “23f555be8f3a”.

Specify it in the deletion command:

docker container rm -f 23f555be8f3a

VisionLabs B.V. 34/42

Delete all the containers:

docker container rm -f $(docker container 1ls -aq)

VisionLabs B.V. 35/42

4.2 Launching keys

To launch FaceStream with Configurator, the keys are set using environment variables:

« ——env= - this parameter sets the environment variables required to start the container. The

following basic values are specified:

CONFIGURATOR_HOST - Host on which the Configurator service is running. The local host is
set if the container is running on the same server where the Configurator is running.

CONFIGURATOR_PORT - Listening port for the Configurator service. By default, port 5070 is
used.

PORT - Port where FaceStream will listen.

STREAMS_ID - Tag specifies a list of stream IDs that will be requested from LUNA Streams for
processing. Other streams will be filtered. The “stream_id” parameter is given in response to
the “create stream” request.

If the value is “ ” or the “STREAMS_ID” tag is not set, then FaceStream will take all existing
“stream_id” from the queue.

If a non-existent value is set, an error about an incorrect UUID will be indicated when
launching FaceStream.

“

By default, the value equals “ .

To use the key, the “CONFIGURATOR_HOST” and “CONFIGURATOR_PORT” variables should
be specified.

STREAMS_NAME - List of streams names sets in this tag. Streams names are set using the
“name” parameter at the time of their creation (“create streams” request). Streams with these
names will be requested from LUNA Streams for processing. Other streams will be filtered.

Otherwise, the principle of operation is similar to the “STREAMS_ID” tag.

GROUPS_ID and GROUPS_NAME - Tags specify a list of group IDs or a list of group names. The
parameters “group_id” or “group_name” are set during stream creation (“create stream”
request). Streams with these parameters will be requested from LUNA Streams for processing.
Other streams will be filtered.

If the valueis “ ” or the “GROUPS_ID”/“GROUPS_NAME” tags are not set, then FaceStream will
not filter streams by groups.

If a non-existent value is set, an error about an incorrect UUID will be indicated when
launching FaceStream.

“»

By default, the value equals “ .

To use the keys, the “CONFIGURATOR_HOST” and “CONFIGURATOR_PORT” variables should
be specified.

VisionLabs B.V. 36/42

You can set multiple values for “STREAMS_NAME”, “STREAMS_ID”, “GROUPS_NAME” and
“GROUPS_ID” tags. Syntax example: ——env=STREAMS_ID="037f3196-c874-4eca-9
d7¢c-91fd8dfc9593 4caf7cf7-dd0d-4ad5-a35e-b263e742e28a"

- CONFIGS_ID=""-Tagisused tosetaLUNA Configuratortag, which relates to the FaceStream
main configurations. The same tag should be set for “TRACK_ENGINE_CONFIG” and “FACE_-
STREAM_CONFIG”,

If the value is set to “ ” then the “TRACK_ENGINE_CONFIG” and “FACE_STREAM_CONFIG”
records will be used by default. If the record by default does not exist or has an invalid JSON
syntax, the configuration file from the distribution package will be used.

“»

By default, the value equals

To use the key, the “CONFIGURATOR_HOST” and “CONFIGURATOR_PORT” variables should
be specified.

- CONFIG_RELOAD = 1 - Tag that enables checking for changes in the “FACE_STREAM_-
CONFIG” section of the LUNA Configurator service and takes the following values:

* “1”-Change tracking is enabled, if there are changes in the configuration, all FaceStream
containers will be automatically restarted.
* “0” - Change tracking is disabled.

By default, the value equals “1”.

- PULLING_TIME = 10 - Tag that sets the period for receiving new parameters from the
“FACE_STREAM_CONFIG” section of the LUNA Configurator service in the range [1...3600]
sec. Used in conjunction with the CONFIG-RELOAD tag.

By default, the value equals “10”.

« ——device=-This parameterisrequired to specify the address to the USB device. The address must
be specified in the stream source when it is created. Example: --device=/dev/video0.

See how FaceStream works with LUNA Configurator in the section “Use FaceStream with LUNA

Configurator” of the administrator manual.

4.2.1 Description of container launch parameters

Below is a description of the container launch commands:

+ docker run-Command to launch the selected image as a new container.
« —-v-Enablesyou to load the contents of the server folder into the volume of the container. This way
the content is synchronized.

VisionLabs B.V. 37/42

e -v /var/lib/fs/fs-current/extras/conf/configs/faceengine.conf:/srv/
facestream/data/faceengine.conf \ - This parameter enables you to use the FaceEngine
settings from the configuration file “faceengine.conf”.

« -v /var/lib/fs/fs-current/extras/conf/configs/runtime.conf:/srv/facestream
/data/runtime.conf \ - This parameter enables you to mount the runtime configuration file
into the FaceStream container. Before changing the default settings, you need to consult with
VisionLabs specialists.

+ ——network=host - This parameter specifies that there is no network simulation and a server
network is used. If you need to change the port for third-party containers, replace this line with
-p 5440:5432. Here, the first port 5440 is the local port, and 5432 is the port used in the
container.

+ /etc/localtime:/etc/localtime:ro - Sets the current time zone used by the container
system.

« ——name=facestream - This parameter specifies the name of the container to be launched. The
name must be unique. If a container with the same name already exists, an error will occur.

« ——restart=always - This parameter defines the restart policy. Daemon always restarts the
container regardless of the completion code.

+ —-detach=true - Running the container in the background.

VisionLabs B.V. 38/42

4.3 Logging to server

To enable saving logs to the server, you should:

+ Create directories for logs on the server.

+ Activate log recording and set the location of log storage inside containers.

+ Configure synchronization of log directories in the container with logs on the server using the
volume argument at the start of each container.

In the Docker Compose script, synchronization of directories with folders is not configured. You
need to manually add folder mounting to the docker-compose.yml file.

4.3.1 Create logs directory

Below are examples of commands for creating directories for saving logs and assigning rights to them for
LUNA Streams and FaceStream.

mkdir -p /tmp/logs/configurator /tmp/logs/licenses /tmp/logs/facestream /tmp
/logs/streams

chown -R 1001:0 /tmp/logs/configurator /tmp/logs/licenses /tmp/logs/
facestream /tmp/logs/streams

4.3.2 Logging activation

4.3.2.1 LUNA Streams and other LP services logging activation
To enable logging to file, you need to set the log_to_file and folder_with_logs settings in the <
SERVICE_NAME>_LOGGER section of the settings for each service.

Go to the Configurator service interface (127.0.0.1:5070) and set the logs path in the container in the
folder_with_logs parameter for all services whose logs need to be saved. For example, you can use
the path /srv/logs.

Set the log_to_f1ile option to true to enable logging to file.

4.3.2.2 FaceStream logging activation
Toenableloggingtofile, you need tosetthevalue ofthe logging > modesettinginthe FACE_STREAM_CONFIG
section to 12f (output logs only to file) or ‘12b’ (output logs both to file and to console).

Go to the Configurator service interface (127.0.0.1:5070) and specify the required setting value. The
location path of logs in the FaceStream container cannot be changed. It is necessary to specify the path
/srv/logs when mounting.

VisionLabs B.V. 39/42

By default, only system warnings are displayed in the FaceStream logs. By setting the “severity”
parameter, you can enable error output (see the parameter description in the administrator
manual).

4.3.2.3 Configurator service logging activation
The Configurator service settings are not located in the Configurator user interface, they are located in
the following file:

/var/1lib/luna/current/example-docker/luna_configurator/configs/
luna_configurator_postgres.conf

You should change the logging parameters in this file before starting the Configurator service or restart it
after making changes.

Set the path to the logs location in the container in the FOLDER_WITH_LOGS = ./ parameter of the file.
For example, FOLDER_WITH_LOGS = /srv/logs.

Set the log_to_f1ile option to true to enable logging to a file.

4.3.3 Mounting directories with logs when starting services

The log directory is mounted with the following argument when starting the container:

-v <server_logs_folder>:<container_logs_folder> \

Where <server_logs_folder> is the directory created in the create logs directory step, and
<container_logs_folder> isthe directory created in the activate logging step.

Example of command to launch the FaceStream with mounting a directory with logs:

docker run \

--env=CONFIGURATOR_HOST=127.0.0.1 \

-—-env=CONFIGURATOR_PORT=5070 \

-v /var/lib/fs/fs-current/extras/conf/configs/faceengine.conf:/srv/
facestream/data/faceengine.conf \

-v /var/lib/fs/fs-current/extras/conf/configs/runtime.conf:/srv/facestream/
data/runtime.conf \

-v Jetc/localtime:/etc/localtime:ro \

-v /tmp/logs/facestream:/srv/logs \

--env=PORT=34569 \

-—-detach=true \

--restart=always \

VisionLabs B.V. 40/ 42

-—-name=facestream \
--network=host \
dockerhub.visionlabs.ru/luna/facestream:v.5.1.45

Examples of manual container launch commands contain these arguments.

VisionLabs B.V. 41/42

4.4 Docker log rotation

To limit the size of logs generated by Docker, you can set up automatic log rotation. To do this, add the
following data to the /etc/docker/daemon. json file

{
"log-driver": "json-file",
"log-opts": {
"max-size": "106m",
"max-file": "5"
}
}

This will allow Docker to store up to 5 log files per container, with each file being limited to 100MB.

After changing the file, you need to restart Docker:

systemctl reload docker

The above changes are the default for any newly created container, they do not apply to already created
containers.

VisionLabs B.V. 42 /42

	Glossary
	System requirements
	LP services and third-party applications
	Processors
	CPU
	GPU

	Introduction
	Before launch
	Unpack distribution
	Create symbolic link
	Install Docker
	Install Docker Compose
	Choose logging method
	Logging to stdout
	Logging to file

	Install GPU dependencies
	Actions to launch FaceStream with GPU through Docker Compose

	Login to registry
	License activation
	Ways to specify HASP license settings
	Specify HASP license settings using dump file

	Ways to specify Guardant license settings
	Specify Guardant license settings using dump file

	Launch InfluxDB OSS 2 container
	Launch PostgreSQL container
	Prepare LUNA Configurator database
	Create LUNA Configurator database
	Initialize LUNA Configurator database

	Launch LUNA Configurator container
	LUNA Licenses service
	Specify license settings using Configurator
	Specify HASP license settings
	Specify Guardant license settings

	Launch LUNA Licenses container

	Launch FaceStream
	Launch FaceStream manually
	Upload settings to LUNA Configurator
	Upload LUNA Streams settings
	Upload FaceStream settings

	Prepare LUNA Streams database
	Create LUNA Streams database
	Initialize LUNA Streams database

	Launch LUNA Streams container
	Launch FaceStream container
	Launch FaceStream container using CPU
	Launch FaceStream container using GPU

	Launch FaceStream using Docker Compose
	Launch FaceStream command

	Next actions
	Additional information
	Docker commands
	Show containers
	Copy files to container
	Enter container
	Images names
	Show container logs
	Delete image
	Stop container
	Delete container

	Launching keys
	Description of container launch parameters

	Logging to server
	Create logs directory
	Logging activation
	LUNA Streams and other LP services logging activation
	FaceStream logging activation
	Configurator service logging activation

	Mounting directories with logs when starting services

	Docker log rotation

