Skip to content

Classifiers#

The attributes of vehicles or license plates (LPs) are determined by classifiers. This section describes the available classifiers in the CARS API and their fields.

Vehicle classifiers#

This section describes the available vehicle classifiers in the CARS API and their fields.

«car_brand_model_v2»#

This classifier recognizes the vehicle brand and model. The response includes the brand and model names in Latin characters, along with the recognition accuracy score (Table 4).

The «car_brand_model_v2» classifier supports the recognition of over 160 brands and more than 1700 models.

The complete list of supported brands and models is provided in Appendix 4, Table 1.

Vehicle brand and model recognition in the system is based on the vehicle's body appearance. When using the «car_brand_model_v2» classifier, vehicles of different brands and models but with similar body appearances are classified into one brand and model (group), which is the most frequently encountered in Russia. For example, ZAZ Sens, ZAZ Lanos, ZAZ Chance, Daewoo Sens, Daewoo Lanos, Chevrolet Lanos, and ZAZ Lanos Furgon have similar appearances and are grouped together, and CARS API identifies these models as Chevrolet Lanos. Therefore, when an image of any of these vehicles is sent, the «Brand» and «Model» fields will display «Chevrolet» and «Lanos» respectively.

The complete list of related brand and model groupings is provided in Appendix 4, Table 2.

An example of an input image is shown in Figure 3.

Example input image for «car_brand_model_v2» classifier
Example input image for «car_brand_model_v2» classifier

Response example:

{
    "brand": "Skoda",
    "classifier": "car_brand_model_v2",
    "execution_time": 84,
    "model": "Kodiaq",
    "score": 0.9844
}

Table 4. Description of the fields in the «car_brand_model_v2» classifier

Field name Type Description Possible values
brand string Vehicle brand Skoda
classifier string Name of classifier car_brand_model_v2
execution_time int Execution time in milliseconds 0…1000
model string Vehicle model Kodiaq
score float Assessment of accuracy recognition of vehicle brand and model 0.0000…1.0000

«detailed_vehicle_color»#

The classifier recognizes the color type and color of the vehicle. The response includes the color type, the vehicle color name in English, and the confidence score for recognition (Table 5).

The classifier supports recognition of 12 colors and 4 types of color schemes. The model classifies the vehicle's color scheme into 4 categories: monochrome, multicolor, with stickers/decals/paintings, or with color graphics.

An example of an input image is shown in Figure 4.

Example input image for «detailed_vehicle_color» classifier
Example input image for «detailed_vehicle_color» classifier

Response example:

{
    "classifier": "detailed_vehicle_color",
    "execution_time": 20,
    "color_type": "pics",
    "color_type_score": 0.69997,
    "colors": [
        {
            "vehicle_color": "white",
            "vehicle_color_score": 0.9986
        }
    ],
    "execution_time": 87
}

Table 5. Description of the fields in the «detailed_vehicle_color» classifier

Field name Type Description Possible values
classifier string Name of classifier detailed_vehicle_color
execution_time int Execution time in milliseconds 0…1000
color_type string Vehicle color scheme type mono - monochrome;
multi - multicolor;
colorgraph - with stickers/decals/paintings;
pics - with color graphics
color_type_score float Confidence score for the color scheme recognition 0.0000…1.0000
colors Array containing information about the vehicle color and the color recognition score vehicle_color, vehicle_color_score
vehicle_color string Vehicle color red, orange, yellow, green, light_blue, blue, purple_or_pink, black, white, brown, grey_or_silver, beige
vehicle_color_score float Confidence score for the vehicle color recognition 0.0000…1.0000
execution_time int Execution time in milliseconds 0…1000

«vehicle_type»#

This classifier recognizes the type of vehicle. It returns the vehicle type and recognition accuracy score in the response (Table 7).

Vehicle classification is carried out according to GOST R 52051-2003 «Motor vehicles and trailers. Classification and definitions.» The description of each vehicle type is presented in Table 6.

Table 6. Supported vehicle types

Vehicle type Description Standard type Example
A_light Vehicles that do not require a special driving license - Bicycles, mopeds, gyroscooters, scooters, electric scooters, etc.
А_heavy Motorized vehicles that require a special driving license L1 – L7 Motorcycles, tricycles, quad bikes, etc.
B_light Passenger vehicles used for transporting passengers, with no more than eight seats (excluding the driver) M1 Sedans, SUVs, minivans, microbuses, etc., including pickups with enclosed cargo beds.
B_heavy Passenger vehicles used for transporting goods N1 Pickups without an enclosed cargo bed, trucks weighing less than 3.5 tons, motorhomes.
C_light Trucks with a maximum weight of 3.5 to 12 tons N2 Trucks except semi-trailers trucks
C_heavy Trucks with a maximum weight of 3.5 to 12 tons N3 Trucks except semi-trailers trucks
D_light Passenger vehicles that have more than eight seats (excluding the driver) with a maximum weight of up to 5 tons M2 Buses
D_heavy Passenger vehicles that have more than eight seats (excluding the driver) with a maximum weight of more than 5 tons M3 Buses and trolleybuses, excluding articulated ones
D_long D_heavy with one or more articulated sections M3 Articulated buses and trolleybuses
E_light Trucks with a maximum weight of more than 3.5 tons N2, N3 Trucks without trailers
E_heavy Trucks with a maximum weight of more than 3.5 tons and a trailer weight of more than 0.75 tons Vehicle: N2, N3 Articulated trucks with semi-trailers and road trains
Trailer: O2 – O4
P_light Trailers with a maximum weight of no more than 0.75 tons O1, O2 Trailers used by passenger vehicles
P_heavy Trailers with a maximum weight of more than 0.75 tons O2 – O4 Trailers used by cargo vehicles
Other Other vehicles T, G, and without category Agricultural machinery, off-road vehicles, trams, etc.

An example of an input image is shown in Figure 5.

Example input image for «vehicle_type» classifier
Example input image for «vehicle_type» classifier

Response example:

{
    "classifier": "vehicle_type",
    "execution_time": 20,
    "ts_type_ai": "E_light",
    "ts_type_ai_score": 0.9997
}

Table 7. Description of the fields in the «vehicle_type» classifier

Field name Type Description Possible values
classifier string Name of classifier vehicle_type
execution_time int Execution time in milliseconds 0…1000
ts_type_ai string Vehicle type А_light, А_heavy, В_light, B_heavy, С_light, С_heavy, D_light, D_heavy, D_long, E_light, E_heavy, P_light, P_heavy, Other
ts_type_ai_score float Assessment of the accuracy of determining the vehicle type 0.0000…1.0000

«vehicle_position_v1»#

The classifier recognizes the position of a vehicle in the image by returning the coordinates of key points (leftFront: front left corner, leftRear: rear left corner, rightFront: front right corner, rightRear: rear right corner).

An example of an input image is shown in Figure 6.

Example input image for «vehicle_position_v1» classifier
Example input image for «vehicle_position_v1» classifier

Example response:

{
  "classifier": "vehicle_position_v1",
  "execution_time": 20,
  "leftFront": {
    "x": 13.9383,
    "y": 291.3493
  },
  "leftRear": {
    "x": 344.9959,
    "y": 472.0356
  },
  "rightFront": {
    "x": 174.0835,
    "y": 260.4908
  },
  "rightRear": {
    "x": 565.8995,
    "y": 442.9853
  }
}

Table 8. Description of the «vehicle_position_v1» classifier fields

Field Type Description Possible values
classifier string Name of classifier vehicle_position_v1
execution_time int Execution time in milliseconds 0…1000
leftFront object Coordinates of the front left corner {x: float, y: float}
leftRear object Coordinates of the rear left corner {x: float, y: float}
rightFront object Coordinates of the front right corner {x: float, y: float}
rightRear object Coordinates of the rear right corner {x: float, y: float}

«vehicle_orientation_v1»#

The classifier recognizes the orientation of a vehicle in an image, returning 8 possible values that represent the vehicle's orientation relative to the camera. These orientations cover all major angles: front, back, left, right, as well as their combinations.

An example of an input image is shown in Figure 7.

Example input image for «vehicle_orientation_v1» classifier
Example input image for «vehicle_orientation_v1» classifier

Example Response:

{
    "classifier": "vehicle_orientation_v1",
    "execution_time": 20,
    "orientation": "front_right",
    "orientation_score":  0.8609
}

Table 9. Description of the fields in the «vehicle_orientation_v1» classifier

Field Type Description Possible values
classifier string Name of classifier vehicle_orientation_v1
execution_time int Execution time in milliseconds 0…1000
orientation string Vehicle orientation front, back, left, right, front_right, front_left, back_left, back_right
orientation_score float Assessment of orientation recognition accuracy 0.0000…1.0000

«detailed_vehicle_emergency» и «detailed_vehicle_emergency_v2»#

The classifier is used to determine the affiliation of a vehicle to emergency services and the presence of flashing lights. The classifier analyzes vehicle images, classifies the type of emergency service, and detects the presence of a flashing light.

An example of an input image is shown in Figure 8.

Example input image for «detailed_vehicle_emergency_v2» classifier
Example input image for «detailed_vehicle_emergency_v2» classifier

Response example:

{
    "classifier": "detailed_vehicle_emergency_v2",
    "execution_time": 20, 
    "emergency_type": "01", 
    "emergency_type_score": 0.6714, 
    "flashing_light": "without_flashing_light", 
    "flashing_light_score": 0.0896
}

Table 10. Description of the fields in the «detailed_vehicle_emergency_v2» classifier

Field Type Description Possible values
classifier string Name of classifier detailed_vehicle_emergency_v2
execution_time int Execution time in milliseconds 0…1000
emergency_type string Type of emergency service 01 – Fire department
02 – Police
03 – Ambulance
04 — Emergency services
05 — EMERCOM
112 – Emergency
not_emergency – Vehicles not belonging to emergency services (passenger, military vehicle etc.)
emergency_type_score float Assessment of the emergency type recognition accuracy 0.0000…1.0000
flashing_light string Presence of flashing lights with_flashing_light / without_flashing_light
flashing_light_score float Assessment of flashing light detection accuracy 0.0000…1.0000

«public_transport_type»#

The classifier recognizes the type of public transport by returning the type of public transport in the response and an estimate of the recognition accuracy.

Taxis are considered public transport if their color schemes comply with GOST R 58287-2018 «Distinctive Signs and Information Support for Passenger Ground Transport Vehicles, Stop Points, and Bus Stations. General Technical Requirements». Carsharing is considered public transport if their color schemes comply with the order of the Moscow Department of Transport dated September 2, 2015, No. 61-02-283/5 «On Approval of the Requirements for the Color Scheme of Vehicles Used for Car Sharing Services».

An example of an input image is shown in Figure 9.

Example input image for «public_transport_type» classifier
Example input image for «public_transport_type» classifier

Response example:

    {
      "classifier": "public_transport_type",
      "execution_time": 20,
      "public_type": "taxi",
      "public_type_score": 0.9999
    }

Table 11. Description of the fields in the «public_transport_type» classifier

Field name Type Description Possible values
classifier string Name of classifier public_transport_type
execution_time int Execution time in milliseconds 0…1000
public_type string Public transport category - route_transport,
- taxi,
- carshering,
- other
public_type_score float Assessment of accuracy recognition 0.0000…1.0000

«special_transport_type»#

The classifier recognizes the type of special transport by returning the type of special transport in the response and an estimate of the recognition accuracy.

An example of an input image is shown in Figure 10.

Example input image for «special_transport_type» classifier
Example input image for «special_transport_type» classifier

Response example:

    {
      "classifier": "special_transport_type",
      "execution_time": 20,
      "special_type": "garbage_truck",
      "special_type_score": 0.9999
  }

Table 12. Description of the fields in the «special_transport_type» classifier

Field name Type Description Possible values
classifier string Name of classifier special_transport_type
execution_time int Execution time in milliseconds 0…1000
special_type string Special transport category - forklift,
- paver,
- bulldozer,
- grader,
- roller,
- truck_crane,
- concrete_mixer,
- tractor,
- excavator,
- sweeper,
- garbage_truck,
- sprinkler_truck,
- dump_truck,
- truck,
- other_special,
- other_non_special
special_type_score float Assessment of accuracy recognition 0.0000…1.0000

«vehicle_axles»#

The classifier detects the vehicle's axles: their coordinates and count. For each axle, the detection accuracy is determined, and the overall detection accuracy for all axles is provided.

An example of an input image is shown in Figure 11.

Example input image for «vehicle_axles» classifier
Example input image for «vehicle_axles» classifier

Response example:

{
    "classifier": "vehicle_axles",
    "execution_time": 20,
    "aggregatedScore": 0.9006090760231018,
    "detections": [
        {
            "height": 119.57168579101563,
            "score": 0.917134165763855,
            "width": 109.78546142578125,
            "x": 180.5765380859375,
            "y": 385.35791015625
        },
        {
            "height": 93.49630737304688,
            "score": 0.8918288946151733,
            "width": 66.70538330078125,
            "x": 565.5817260742188,
            "y": 359.1695861816406
        },
        {
            "height": 91.6329345703125,
            "score": 0.8791476488113403,
            "width": 84.33480834960938,
            "x": 477.0045471191406,
            "y": 372.5871276855469
        }
    ],
    "numberOfWheelAxles": 3
}

Table 13. Description of the fields in the «vehicle_axles» classifier

Field name Type Description Possible values
classifier string Name of classifier vehicle_axles
execution_time int Execution time in milliseconds 0…1000
aggregatedScore float Overall detection accuracy for all vehicle axles 0…1
detections array Array containing coordinates and size of each axle detection on the image, as well as the detection accuracy for each axle -
height int Height of the axle's BBox (in pixels) 0…1080
score float Detection accuracy for the axle 0.0000…1.0000
width int Width of the axle's BBox (in pixels) 0…1920
x int Horizontal coordinate of the top-left corner of the axle's BBox 0…1920
y int Vertical coordinate of the top-left corner of the axle's BBox 0…1080
numberOfWheelAxles int Number of detected axles 1…n

«vehicle_descriptor_v2»#

The classifier extracts the vehicle descriptor.

This descriptor is used for searching vehicles by image in the CARS Analytics interface. Image is encoded in Base64 format. Image-based search is especially useful when it is necessary to find records in the archive related to a specific vehicle.

More details on the process of vehicle search by image can be found in the «CARS Analytics. User Guide». The vehicle descriptor can be up to several thousand characters long.

An example of an input image is shown in Figure 12.

Example input image for «vehicle_descriptor_v2» classifier
Example input image for «vehicle_descriptor_v2» classifier

Response example:

        {
            "classifier": "vehicle_descriptor_v2",
            "execution_time": 23,
            "vehicle_descriptor": "AACAvQAAALwAAAA9..."
        }

Table 14. Description of the fields in the «vehicle_descriptor_v2» classifier

Field name Type Description Possible values
classifier string Name of classifier vehicle_descriptor_v2
execution_time int Execution time in milliseconds 0…1000
vehicle_descriptor string Vehicle descriptor AACAvQ...

«vehicle_tracks_reid_descriptor»#

The classifier is used to detect track breaks of the vehicle and allows continuing the existing track instead of creating a new one.

It extracts the vehicle descriptor, which is necessary for searching the vehicle by image in the CARS Analytics interface. Image is encoded in Base64 format. Image-based search helps find records in the archive related to a specific vehicle.

More information about the process of searching for a vehicle by image can be found in the «CARS Analytics. User Guide». The vehicle descriptor can be several thousand characters long.

The «vehicle_tracks_reid_descriptor» classifier works faster than «vehicle_descriptor_v2», but its accuracy is slightly lower.

An example of an input image is shown in Figure 13.

Example input image for «vehicle_tracks_reid_descriptor» classifier
Example input image for «vehicle_tracks_reid_descriptor» classifier

Response example:

        {
            "classifier": "vehicle_tracks_reid_descriptor",
            "execution_time": 20,
            "vehicle_descriptor": "AACAvQAAALwAAAA9..."
        }

Table 15. Description of the fields in the «vehicle_tracks_reid_descriptor» classifierr

Field name Type Description Possible values
classifier string Name of classifier vehicle_tracks_reid_descriptor
execution_time int Execution time in milliseconds 0…1000
vehicle_descriptor string Vehicle descriptor AACAvQ...

License plate classifiers#

This section describes the available LP classifiers in the CARS API and their fields.

Operating logic of LP recognition networks#

The logic scheme of LP recognition networks is shown in Figure 14.

LP networks operation logic
LP networks operation logic

The description of the scheme is provided in Table 16.

Table 16. Description of the operating logic of LP recognition networks

Step Description
0 The CARS API receives a frame containing an LP number.
1 The LP country recognition classifier «grz_all_countries» is launched.
2 The country of affiliation of the LP is determined.
3 If the country of affiliation is NOT defined, the «eu_cis_recognition_v4» classifier is launched.
4 If the country of affiliation is determined, the corresponding classifier from Table 17 is launched.

Table 17. Correspondence of classifiers and countries of LP affiliation:

Classifier Country of LP affiliation
rus_plate_recognition_v3 Russian Federation, Abkhazia, South Ossetia, DPR and LPR.
grz_country_recognition_v4, grz_all_countries Russia, Abkhazia, South Ossetia, DPR, LPR, Belarus, Kazakhstan, Ukraine, Azerbaijan, Armenia, Georgia, Kyrgyzstan, Moldova, Tajikistan, Turkmenistan, Uzbekistan, Turkey, Austria, Andorra, Albania, Belgium, Bulgaria, Bosnia and Herzegovina, Vatican, Hungary, Germany, Greece, Denmark, Ireland, Spain, Italy, Cyprus, Kosovo, Latvia, Lithuania, Liechtenstein, Luxembourg, Malta, Monaco, Netherlands, Norway, Poland, Portugal, Transnistria, Romania, San Marino, North Macedonia, Serbia, Slovakia, Slovenia, Finland, France, Croatia, Montenegro, Czech Republic, Switzerland, Sweden, Estonia, Israel, Iran, Palestine, Pakistan, Qatar, Oman, Kuwait, Bahrain, Saudi Arabia, United Kingdom, Singapore, Hong Kong, Macau, Indonesia, Vietnam, Malaysia, Sri Lanka, Taiwan, Philippines, Thailand, UAE, India, China, Mongolia, Japan, South Korea, Brazil, Bangladesh, Canada, USA, Mexico
uae_plate_recognition_v2 UAE
eu_cis_recognition_v3, eu_cis_recognition_v4 CIS and EU countries. Ukraine, Kazakhstan, Belarus, Georgia, Moldova, Armenia, Azerbaijan, Tajikistan, Turkmenistan, Kyrgyzstan, Uzbekistan, Andorra, Albania, Austria, Bosnia and Herzegovina, Belgium, Bulgaria, Switzerland, Cyprus, Czech Republic, Germany, Denmark, Estonia, Spain, Finland, France, Greece, Croatia, Hungary, Ireland, Israel, Palestine, Guernsey, Iran, Italy, Liechtenstein, Lithuania, Luxembourg, Latvia, Monaco, Montenegro, North Macedonia, Malta, Netherlands, Norway, Poland, Transnistria, Portugal, Romania, Serbia, Sweden, Slovenia, Slovakia, San Marino, Turkey, Vatican, Kosovo
emirate_recognition_v1 UAE
grz_uk_asia_recognition_v2 India, Pakistan, Vietnam, Indonesia, Malaysia, Taiwan, Philippines, Sri Lanka, Macau, Singapore, Hong Kong, the United Kingdom
chn_plate_recognition_v2 China
mng_recognition_v1 Mongolia
america_plate_recognition_v1 USA, Canada, Mexico, Brazil
persian_plate_recognition_v1 Bahrain, Kuwait, Oman, Qatar, Saudi Arabia
thailand_plate_recognition_v1 Thailand

«license_plate_ags_v1»#

The classifier evaluates the quality of the LP image. It is used to optimize selection of the best frame.

To filter LPs images by quality, you need to set upper and lower score threshold values. More information about the process of filtering LPs images by quality can be found in the «CARS Analytics. User Guide».

An example of an input image is shown in Figure 15.

Example input image for «license_plate_ags_v1» classifier
Example input image for «license_plate_ags_v1» classifier

Response example:

        {
            "classifier": "license_plate_ags_v1",
            "execution_time": 20,
            "score": 0.9963796734809875,
        }

Table 17. Description of the fields in the ««license_plate_ags_v1» classifier

Field name Type Description Possible values
classifier string Name of classifier license_plate_ags_v1
execution_time int Execution time in milliseconds 0…1000
score float Estimation of LPs image quality 0.0000…1.0000

«rus_plate_recognition_v3»#

The classifier recognizes LP symbols and their features, evaluates the accuracy of their recognition, and provides an score accuracy of LP recognition.

Classifier «rus_plate_recognition_v3» is available for LP images from Russia, Abkhazia, South Ossetia, the DPR, and LPR. A detailed list of supported LPs is provided in Appendix 3.

An example of an input image is shown in Figure 16.

Example input image for «rus_plate_recognition_v3» classifier
Example input image for «rus_plate_recognition_v3» classifier

Response example:

        {
            "classifier": "rus_plate_recognition_v3",
            "execution_time": 20,
            "features": [
                {
                    "score": 0.9998,
                    "type": "rus_spec_type",
                    "value": "regular"
                },
                {
                    "score": 0.9987,
                    "type": "rus_region_number",
                    "value": "94"
                }
            ],
            "regno_ai_score": 0.9959,
            "symbol_scores": [
                0.9998,
                0.9996,
                0.9994,
                0.9991,
                0.9996, 
                0.9996,
                0.9994,
                0.9994
            ],
            "symbols": [
                "K", 
                "2", 
                "1", 
                "2", 
                "K", 
                "K", 
                "9", 
                "4"
            ]
        }

Table 18. Description of the fields in the ««rus_plate_recognition_v3» classifier

Field name Type Description Possible values
classifier string Name of classifier rus_plate_recognition_v3
execution_time int Execution time in milliseconds 0…1000
score float Accuracy score for recognizing LP features 0.0000…1.0000
type string Type of LP feature - rus_spec_type – LP format
value string LP feature - regular
- police
- diplomatic
- military
- machines&moto
- trailer
- transit
- taxi
score float Accuracy score for recognizing the LP region 0.0000…1.0000
type string LP region - rus_region_number – vehicle registration region
value string Array of recognized LP symbols 0…9
regno_ai_score float Accuracy score for LP recognition 0.0000…1.0000
symbol_scores float Accuracy score for recognizing each LP symbol 0.0000…1.0000
symbols string Array of recognized LP symbols 0…9; A, B, C, E…

«grz_country_recognition_v4»#

The classifier recognizes the country of the LP and evaluates the accuracy of recognition.

The classifier separates boxes into «relevant» and «irrelevant» to keep only relevant plates. It determines whether the box belongs to the main car or a neighboring one. All plates on a single car are considered «relevant». A detailed list of possible values for the country parameter is provided in Appendix 3.

An example of an input image is shown in Figure 17.

Example input image for «grz_country_recognition_v4» classifier
Example input image for «grz_country_recognition_v4» classifier

Response example:

{
   classifier:  grz_country_recognition,
   "execution_time": 20,
   country: RUS,
   country_score : 0.9718532562255859
}

Table 19. Description of the fields in the «grz_country_recognition_v4» classifier

Field name Type Description Possible values
classifier string Name of classifier «grz_country_recognition_v4»
execution_time int Execution time in milliseconds 0…1000
country string Country of the LP RUS – Russian Federation (RF)
country_score float Accuracy score for country recognition 0.0000…1.0000

«grz_all_countries»#

The classifier recognizes the country of registration of the LP and their features, evaluates the accuracy of their recognition, and provides an score accuracy  of LP recognition.

A detailed list of supported LPs is provided in Appendix 3.

An example of an input image is shown in Figure 18.

Example input image for «grz_all_countries» classifier
Example input image for «grz_all_countries» classifier

Response example:

        {
            "classifier": "grz_all_countries",
            "execution_time": 20,
            "features": [
                {
                    "score": 0.9998,
                    "type": "rus_spec_type",
                    "value": "regular"
                },
                {
                    "score": 0.9987,
                    "type": "rus_region_number",
                    "value": "94"
                }
            ],
            "regno_ai_score": 0.9959,
            "symbol_scores": [
                0.9998,
                0.9996,
                0.9994,
                0.9991,
                0.9996, 
                0.9996,
                0.9994,
                0.9994
            ],
            "symbols": [
                "K", 
                "2", 
                "1", 
                "2", 
                "K", 
                "K", 
                "9", 
                "4"
            ]
        }

Table 20. Description of the fields in the «grz_all_countries» classifier

Field name Type Description Possible values
classifier string Name of classifier grz_all_countries
execution_time int Execution time in milliseconds 0…1000
score float Accuracy score for recognizing LP features 0.0000…1.0000
type string Type of LP feature - rus_spec_type – LP format
value string LP feature - regular
- police
- diplomatic
- military
- machines&moto
- trailer
- transit
- taxi
score float Accuracy score for recognizing the LP region 0.0000…1.0000
type string LP region - rus_region_number – vehicle registration region
value string Array of recognized LP symbols 0…9
regno_ai_score float Accuracy score for LP recognition 0.0000…1.0000
symbol_scores float Accuracy score for recognizing each LP symbol 0.0000…1.0000
symbols string Array of recognized LP symbols 0…9; A, B, C, E…

«uae_plate_recognition_v2»#

The classifier recognizes the emirate of registration of the LP, the symbols of the LP and the evaluation of the accuracy of their recognition.

A detailed list of supported LPs is provided in Appendix 3.

An example of an input image is shown in Figure 19.

Example input image for «uae_plate_recognition_v2» classifier
Example input image for «uae_plate_recognition_v2» classifier

Response example:

{
    "classifier": "uae_plate_recognition_v2",
    "execution_time": 43,
    "features": [
        {
            "score": 0.848,
            "type": "emirate_name",
            "value": "SHARJAH"
        }
    ],
    "regno_ai_score": 0.5661,
    "symbol_scores": [
        0.9044,
        0.9116,
        0.9182,
        0.9042,
        0.9087,
        0.9101
    ],
    "symbols": [
        "2",
        "1",
        "4",
        "5",
        "6",
        "7"
    ]
}

Table 21. Description of the fields in the «uae_plate_recognition_v2» classifier

Field name Type Description Possible values
classifier string Name of classifier uae_plate_recognition_v2
execution_time int Execution time in milliseconds 0…1000
features array List of LP features emirate_name
score float Assessment of the accuracy of determining the emirate 0.0000…1.0000
type string Feature type emirate_name
value string Recognition result DUBAI, ABU_DHABI, SHARJAH, KHAIMAN, QUWAIN, AJMAN, FUJAIRAH
regno_ai_score float General assessment of the accuracy of LP recognition 0.0000…1.0000
symbol_scores float Accuracy score for recognizing each LP symbol 0.0000…1.0000
symbols string Array of recognized LP symbols. Symbols for recognition include: 0…9; A, B, C, E…
- series;
- LP symbols;
- region of registration code/name

«eu_cis_recognition_v3» и «eu_cis_recognition_v4»#

The classifiers recognize LP symbols from CIS countries and the European Union, as well as individual country plates within the EU, and evaluate the accuracy of their recognition.

The «eu_cis_recognition_v4» classifier is capable of recognizing more types of LP.

A detailed list of supported LPs is provided in Appendix 3.

An example of an input image is shown in Figure 20.

Example input image for «eu_cis_recognition_v4» classifier
Example input image for «eu_cis_recognition_v4» classifier

Response example:

{
  "classifier": "eu_cis_recognition_v4",
  "execution_time": 20,
  "regno_ai": {
    "length_scores": [
      0.0, 
      0.0, 
      0.0, 
      0.0, 
      0.0, 
      1.0, 
      0.0, 
      0.0, 
      0.0, 
      0.0, 
      0.0
    ],
    "scores": [
      0.9137,
      0.9112,
      0.9082,
      0.9054,
      0.9043
    ],
    "symbols": [
      "K",
      "U",
      "H",
      "L",
      "1"
    ]
  },
  "regno_ai_score": 0.6191
}

Table 22. Description of the fields in the «eu_cis_recognition_v4» classifier

Field name Type Description Possible values
classifier string Name of classifier eu_cis_recognition_v4
length_scores float An array of 11 elements showing the probability of the number of characters in the LP: - The 1st element corresponds to 0 characters, the 11th to 10 characters. The sum of all elements equals 1. The highest value indicates the number of characters in the LP. 0.0000…1.0000
scores float An array displaying the assessment of the recognition accuracy of each LP symbol 0.0000…1.0000
symbols string Array of recognized LP symbols 0…9; A, B, C, E…
regno_ai_score float Assessment of the recognition accuracy of the LP 0.0000…1.0000

«grz_uk_asia_recognition_v2»#

The classifier recognizes LP symbols of Asian and British countries, individual numbers of Asian countries, and also evaluates the accuracy of their recognition.

A detailed list of supported LPs is provided in Appendix 3.

An example of an input image is shown in Figure 21.

Example input image for «grz_uk_asia_recognition_v2» classifier
Example input image for «grz_uk_asia_recognition_v2» classifier

Response example:

{
    "classifier": "grz_uk_asia_recognition_v2",
    "execution_time": 55,
    "regno_ai": {
        "length_scores": [
            0.0,
            0.0,
            0.0,
            0.0,
            0.0,
            0.0,
            0.0,
            0.0,
            0.0,
            0.0,
            1.0
        ],
        "scores": [
            1.0,
            1.0,
            1.0,
            1.0,
            1.0,
            1.0,
            1.0,
            1.0
            1.0
            1.0
        ],
        "symbols": [
            "G",
            "J",
            "0",
            "8",
            "C",
            "G",
            "2",
            "5",
            "3",
            "1",
        ]
    },
    "regno_ai_score": 1.0
}

Table 23. Description of the fields in the «grz_uk_asia_recognition_v2» classifier

Field name Type Description Possible values
classifier string Name of classifier grz_uk_asia_recognition_v2
execution_time int Execution time in milliseconds 0…1000
length_scores float An array of 11 elements showing the probability of the number of characters in the LP: - The 1st element corresponds to 0 characters, the 11th to 10 characters. The sum of all elements equals 1. The highest value indicates the number of characters in the LP. 0.0000…1.0000
scores float An array displaying the assessment of the recognition accuracy of each LP symbol 0.0000…1.0000
symbols string Array of recognized LP symbols 0…9; A, B, C, E…
regno_ai_score float Assessment of the recognition accuracy of the LP 0.0000…1.0000

«chn_plate_recognition_v2»#

The classifier recognizes LP symbols of the China, evaluates the accuracy of recognition of each symbol and the entire LP.

A detailed list of supported LPs is provided in Appendix 3.

An example of an input image is shown in Figure 22.

Example input image for «chn_plate_recognition_v2» classifier
Example input image for «chn_plate_recognition_v2» classifier

Response example:

{
"classifier": "chn_plate_recognition_v2",
    "execution_time": 24,
    "features": [
        {
            "score": 0.8903,
            "type": "spec_type",
            "value": "regular"
        }
    ],
    "regno_ai_score": 0.4932,
    "symbol_scores": [
        0.8961,
        0.9147,
        0.9064,
        0.9024,
        0.9049,
        0.901,
        0.9023
    ],
    "symbols": [
        "吉",
        "H",
        "A",
        "Y",
        "4",
        "5",
        "7"
    ]
}

Table 24. Description of the fields in the «chn_plate_recognition_v2» classifier

Field name Type Description Possible values
classifier string Name of classifier chn_plate_recognition_v2
execution_time int Execution time in milliseconds 0…1000
score float Assessment of the recognition accuracy of each feature 0.0000…1.0000
type string Type of feature - spec_type – LP form
value string The value of LP feature - regular
- large&moto – motorcycles, trucks, buses;
- electric – electric cars;
- cross-boarder – numbers for crossing the border with Macau and Hong Kong;
- trailer;
- temporary – transit;
- police;
- training.
regno_ai_score float Assessment of the recognition accuracy of the LP 0.0000…1.0000
symbol_scores float Accuracy score for recognizing each LP symbol 0.0000…1.0000
symbols string Array of recognized LP symbols 0…9; A, B, C, E…; O, 皖, 沪, 津…

«mng_recognition_v1»#

The classifier recognizes LP symbols of the Mongolia, evaluates the accuracy of recognition of each symbol and the entire LP.

A detailed list of supported LPs is provided in Appendix 3.

An example of an input image is shown in Figure 23.

Example input image for ««mng_recognition_v1» classifier
Example input image for ««mng_recognition_v1» classifier

Response example:

{
    "classifier": "mng_recognition_v1",
    "execution_time": 206,
    "regno_ai": {
        "length_scores": [
            0,
            0,
            0,
            0,
            0,
            0,
            1,
            0,
            0,
            0,
            0
        ],
        "scores": [
            0.9869,
            0.9909,
            0.9974,
            0.9981,
            0.9529,
            0.9952
        ],
        "symbols": [
            "1",
            "2",
            "3",
            "4",
            "Д",
            "К"
        ]
    },
    "regno_ai_score": 0.9231
}

Table 25. Description of the fields in the ««mng_recognition_v1» classifier

Field name Type Description Possible values
classifier string Name of classifier mng_recognition_v1
execution_time int Execution time in milliseconds 0…1000
length_scores float An array of 11 elements showing the probability of the number of characters in the LP: - The 1st element corresponds to 0 characters, the 11th to 10 characters. The sum of all elements equals 1. The highest value indicates the number of characters in the LP. 0.0000…1.0000
scores float An array displaying the assessment of the recognition accuracy of each LP symbol 0.0000…1.0000
symbols string Array of recognized LP symbols 0…9; A, B, C, E…
regno_ai_score float Assessment of the recognition accuracy of the LP 0.0000…1.0000

«america_plate_recognition_v1»#

The classifier recognizes LP symbols of the USA, Canada, Mexico and Brazil, evaluates the accuracy of recognition of each symbol and the entire LP.

A detailed list of supported LPs is provided in Appendix 3.

An example of an input image is shown in Figure 24.

Example input image for «america_plate_recognition_v1» classifier
Example input image for «america_plate_recognition_v1» classifier

Response example:

{
    "classifier": "america_plate_recognition_v1",
    "execution_time": 190,
    "regno_ai": {
        "length_scores": [
            0,
            0,
            0,
            0,
            0,
            0,
            0,
            1,
            0,
            0,
            0
        ],
        "scores": [
            0.9971,
            0.9943,
            0.9947,
            0.9997,
            0.999,
            0.9989,
            0.9992
        ],
        "symbols": [
            "К",
            "N",
            "М",
            "1",
            "9",
            "5",
            "4"
        ]
    },
    "regno_ai_score": 0.983
}

Table 26. Description of the fields in the «america_plate_recognition_v1» classifier

Field name Type Description Possible values
classifier string Name of classifier america_plate_recognition_v1
execution_time int Execution time in milliseconds 0…1000
length_scores float An array of 11 elements showing the probability of the number of characters in the LP: - The 1st element corresponds to 0 characters, the 11th to 10 characters. The sum of all elements equals 1. The highest value indicates the number of characters in the LP. 0.0000…1.0000
scores float An array displaying the assessment of the recognition accuracy of each LP symbol 0.0000…1.0000
symbols string Array of recognized LP symbols 0…9; A, B, C, E…
regno_ai_score float Assessment of the recognition accuracy of the LP 0.0000…1.0000

«persian_plate_recognition_v1»#

The classifier recognizes LP symbols of of Bahrain, Kuwait, Oman, Oman, Qatar, Saudi Arabia, evaluates the accuracy of recognition of each symbol and the entire LP.

A detailed list of supported LPs is provided in Appendix 3.

An example of an input image is shown in Figure 25.

Example input image for «persian_plate_recognition_v1» classifier
Example input image for «persian_plate_recognition_v1» classifier

Response example:

{
    "classifier": "persian_plate_recognition_v1",
    "execution_time": 49,
    "regno_ai": {
        "length_scores": [
            0,
            0,
            0,
            0,
            0,
            1,
            0,
            0,
            0,
            0,
            0
        ],
        "scores": [
            0.9047,
            0.9088,
            0.9063,
            0.9099,
            0.9062
        ],
        "symbols": [
            "1",
            "2",
            "3",
            "4",
            "5"
        ]
    },
    "regno_ai_score": 0.6144
}

Table 27. Description of the fields in the «persian_plate_recognition_v1» classifier

Field name Type Description Possible values
classifier string Name of classifier persian_plate_recognition_v1
execution_time int Execution time in milliseconds 0…1000
length_scores float An array of 11 elements showing the probability of the number of characters in the LP: - The 1st element corresponds to 0 characters, the 11th to 10 characters. The sum of all elements equals 1. The highest value indicates the number of characters in the LP. 0.0000…1.0000
scores float An array displaying the assessment of the recognition accuracy of each LP symbol 0.0000…1.0000
symbols string Array of recognized LP symbols 0…9; A, B, C, E…
regno_ai_score float Assessment of the recognition accuracy of the LP 0.0000…1.0000

«thailand_plate_recognition_v1»#

The classifier recognizes the region of registration of the LP, the symbols of the LP, individual numbers of Thailand, evaluates the accuracy of recognition of each symbol and the entire LP.

A detailed list of supported LPs is provided in Appendix 3.

An example of an input image is shown in Figure 26.

Example input image for «thailand_plate_recognition_v1» classifier
Example input image for «thailand_plate_recognition_v1» classifier

Response example:

{
  "classifier": "thailand_plate_recognition_v1",
  "execution_time": 20,
  "features": [
    {
      "score": 0.9891,
      "type": "region",
      "value": "Ratchaburi"
    },
    {
      "score": 0.9899,
      "type": "spec_type",
      "value": "private"
    }
  ],
  "regno_ai_score": 0.991,
  "symbol_scores": [
    0.9992,
    0.9937,
    0.9995,
    0.9997,
    0.9993,
    0.9996
  ],
  "symbols": [
    "ก",
    "ก",
    "7",
    "7",
    "4",
    "2"
  ]
}

Table 28. Description of the fields in the «thailand_plate_recognition_v1» classifier

Field name Type Description Possible values
classifier string Name of classifier thailand_plate_recognition_v1
execution_time int Execution time in milliseconds 0…1000
score float Assessment of the accuracy of determining the region 0.0000…1.0000
type string Feature type region
value string Recognition result Bangkok, Chai Nat, Sing Buri, Ratchaburi…etc.
score float Assessment of the recognition accuracy of each feature 0.0000…1.0000
type string Type of feature - spec_type – LP form
value string The value of LP feature - regular
- bus&truck – trucks and buses;
- private – private individuals;
- business – commercial vehicles;
- taxi
- temporary – dealer vehicles;
- non-regular – individual;
- moto – motorcycles
regno_ai_score float Assessment of the recognition accuracy of the LP 0.0000…1.0000
symbol_scores float Accuracy score for recognizing each LP symbol 0.0000…1.0000
symbols string Array of recognized LP symbols 0…9; ก, ข, ค, ฆ…

Classifier accuracy#

The accuracy of the classifiers was measured for several datasets. All data were obtained from various sources obtained under different conditions.

The accuracy values for recognition of vehicle and LP attributes by classifiers are given in Table 29.

Table 29. Data on the accuracy of classifiers

Classifier Number of images Accuracy (%)
Car_brand_model_v2 (brand) 213 000 98.65
Car_brand_model_v2 (model) 213 000 96.77
Vehicle_color 13 323 96.39
Vehicle_type 10 413 99.34
Vehicle_emergency_type 18 016 82.00
Public_transport_type 12 683 98.40
Special_transport_type 24 844 97.95
LP attributes classifiers 10 000 99.70