VisionLabs

MACHINES CAN SEE

VisionLabs LUNA ID

v.1.20.0

Table of contents

1. Introduction

2. General info
2.1 Overview

2.1.1 Key features

2.2 System requirements

2.2.1 Hardware requirements
2.2.2 Software requirements
2.3 Technical support and resources

3. Licensing

3.1 Activating the license
3.2 License parameters

4. Initial setup

4.1 Step 1: Download LUNA ID POS
4.2 Step 2: Configure repository
4.3 Step 3: Provide user credentials
4.4 Step 4: Specify dependencies
4.5 Step 5: Initialize LUNA ID POS
4.6 Step 6: Launch the camera
4.7 Step 7: Get the best shot

5. Working with LUNA ID POS

5.1 Best shots

5.1.1 About best shot estimations

5.1.2 Getting the best shot

5.1.3 Getting the best shot with an occluded face
5.1.4 Getting the best shot with faces with closed eyes
5.1.5 Getting the best shot with faces with occluded eyes

5.1.6 Errors

VisionLabs B.V.

Page 2 of 39

(o)}

0 N o O

15
16

16
16
17
17
18
20
21
22

22

22
27
30
31
32
33

5.2 OneShotLiveness

VisionLabs B.V.

5.2.1 About OneShotLiveness estimation
5.2.2 Performing Online OneShotLiveness estimation
5.2.3 Performing Offline OneShotLiveness estimation

5.2.4 Disabling OneShotLiveness estimation

Page 3 of 39

34

34
36
37
39

1. Introduction

LUNA ID POS is a software development kit (SDK) designed for integration into Point-of-Sale
(POS) terminals. It enables face detection, image quality estimations, and subsequent
biometric data transmission for processing, The SDK integrates LUNA PLATFORM 5 for
advanced processing, OneShotLiveness estimation, and identity matching.

o Start here

* Licensing

Initial setup

Support & resources

Download docs ',

= Getting the best shot

Best shot estimations

* Getting the best shot

OneShotlLiveness

e Offline OneShotLiveness

* Online OneShotLiveness

+ Interaction with LUNA PLATFORM

e Overview

* Configuration

VisionLabs B.V. Page 4 of 39

2. General info

2.1 Overview

LUNA ID POS is a software development kit (SDK) designed for integration into Point-of-Sale
(POS) terminals. It enables face detection, image quality estimations, and subsequent
biometric data transmission for processing, The SDK integrates LUNA PLATFORM 5 for
advanced processing, OneShotLiveness estimation, and identity matching.

2.1.1 Key features
LUNA ID POS provides the following features:

* Getting the best shot:
» Estimating the best shot by the following criteria:
* Number of faces in the frame
* Face detection bounding box size
* Frame edges offset
* Eye state (open, closed, or occluded)
* Head pose (pitch, yaw, and roll)

* AGS (Average Garbage Score, frame quality check for subsequent descriptor
extraction)

* Image quality (lightness, darkness, and blurriness)
* Face occlusion

* Submitting the best shot with the detected face to LUNA PLATFORM 5 to perform
OneShotLiveness estimation on the backend

* Submitting the best shot with the detected face to LUNA PLATFORM 5 for backend
descriptor matching

* Interface customization (displaying face functionality in end-client applications)

VisionLabs B.V. Page 5 of 39

2.2 System requirements
2.2.1 Hardware requirements

The following minimal hardware specifications are required for LUNA ID POS operation:

Component Requirement

CPU architecture armo64-v8a, armeabi-v7a

RAM Minimum 2 GB

Camera Front-facing camera with minimum 720p resolution recommended

2.2.2 Software requirements

Component Requirement
Android API Level 21 or higher

Android NDK Version 28 or higher
Operating system Android 5.0 or higher

VisionLabs B.V. Page 6 of 39

2.3 Technical support and resources

If you have questions, problems or just need help with LUNA ID POS, you can either contact
our Technical Support or try to search for the needed information using other help resources.

You can contact our Technical Support via email:

s Support@visionlabs.ru

VisionLabs B.V. Page 7 of 39

3. Licensing

3.1 Activating the license

To integrate LUNA ID POS with your project and use its features, you need to activate the
license.

The license activation mechanism is as follows:

LUNA ID POS first checks if you provided a license file via the initEngine method.

If provided, the license is directly passed to the engine.

If not provided, the system attempts to read the license from the assets folder and passes
it to the engine.

If no license is found in either location, the activation process fails.
To activate the license, follow the step below:

1. Obtain the following parameters from VisionLabs:

Parameter Description

Server The URL of the license server.

EID A unique identifier for your application.
ProductID The product identifier for LUNA ID POS.

2. Specify the parameters in license.conf and save the changes.

VisionLabs B.V. Page 8 of 39

\J
Example structure of license.conf

Here is an example structure of the file:

<?xml version="1.0"7?>
<settings>
<section name="Licensing::Settings">
<param name="Server" type="Value::String" text="https://example-
license-server.com"/>
<param name="EID" type="Value::String" text="your-eid-here"/>
<param name="ProductIlD" type="Value::String" text="your-product-id-
here"/>
<param name="Filename" type="Value::String" text="license.dat"/>
<param name="ContainerMode" type="Value::Int1" x="0"/>
<param name="ConnectionTimeout" type="Value::Int1" x="15"/>
<param name="licenseModel" type="Value::Int1" x="2" />
</section>
</settings>

3. Save the license.conf file in the assets/data/license.conf directory of your project.

The license key will be generated and saved to the specified directory. The license file has a
binary format. At the next launch of your app on the same device, the license will be read
from this file.

4. Call the initEngine() method to initialize LUNA ID POS and activate the license.

Here is an example implementation:

private fun initLunaSdk() {
val baseUrl = "url"
val token = "token"
val headers = mapOf("Authorization" to token)
val apiHumanConfig = ApiHumanConfig(baseUrl, headers)
val lunaConfig = LunaConfig.create(
acceptOccludedFaces = true,
acceptOneEyed = false,
acceptEyesClosed = false,
detectFrameSize = 350,
skipFrames = 36,
ags = 0.5f,
bestShotinterval = 500,
detectorStep =1,
usePrimaryFaceTracking = true,

VisionLabs B.V. Page 9 of 39

glassesChecks = setOf(GlassesCheckType.GLASSES CHECK SUN)
)

FacePay.initEngine(
app: Application,
lunaConfig: LunaConfig,
apiHumanConfig: ApiHumanConfig? = null,
license : File? = null,
timeoutMillis : Long = 30_000L

Hote
The parameters in the example are set to default values. Adjust them according to your
requirements.

VisionLabs B.V. Page 10 of 39

(ey components of the example code

VisionLabs B.V. Page 11 of 39

The example code has the following components:

VisionLabs B.V. Page 12 of 39

Component

baseUrl

token

headers

apiHumanConfig

ApiHumanConfig
lunaConfig
LunaConfig

acceptOccludedFaces

acceptEyesClosed

detectFrameSize

skipFrames

ags

bestShotinterval

detectorStep

usePrimaryFaceTracking

glassesChecks

FacePay.initEngine

license

VisionLabs B.V.

Description

A variable that specifies the URL to LUNA PLATFORM 5. For details, see
Interaction with LUNA PLATFORM 5.

A variable that specifies a LUNA PLATFORM 5 token, which will be
transferred to a request header from LUNA ID POS.

A map that specifies headers that will be added to each request to be
sent to LUNA PLATFORM 5.

An optional configuration parameter for calling the LUNA PLATFORM 5
API. Can be set to null if no LUNA PLATFORM 5 API calls are required.
This will also disable the Online OneShotLiveness estimation, regardless
of the onlineLivenessSettings argument.

A class required for configuration to call the LUNA PLATFORM 5 API.
An argument to be passed for best shot parameters.
A class that describes best shot parameters.

A parameter that specifies whether an image with an occluded face will
be considered the best shot. For details, see Getting the best shot with
an occluded face.

A parameter that specifies whether an image with two closed eyes will
be considered the best shot. For details, see Getting the best shot with
faces with closed eyes.

A parameter that specifies a face detection bounding box size.

A parameter that specifies a number of frames to wait until a face is
detected in the face recognition area before video recording is stopped.

A parameter that specifies a source image score for further descriptor
extraction and matching. For details, see AGS.

A parameter that specifies a minimum time interval between best shots.

A parameter that specifies a number of frames between frames with full
face detection.

A parameter that specifies whether to track the face that was detected
in the face recognition area first.

A parameter that specifies what images with glasses can be best shots.
For details, see Getting the best shot with faces with occluded eyes.

A method that activates the LUNA ID POS license.

An instance of java.io.File. If this parameter is not provided, the
system will use the default license.conf file located in the project.

Page 13 of 39

Component Description

timeoutMillis The timeout for license activation, with a default value of 30 seconds
(30,000 milliseconds).

5. Subscribe to events from the LunalD.enginelnitStatus flow to monitor the initialization
process:

LunalD.enginelnitStatus.flowWithLifecycle(this.lifecycle, Lifecycle.State.STARTED)
.onEach {
if(it is LunalD.enginelnitStatus.InProgress) {
// LUNA ID POS is loading
}else if(it is LunalD.enginelnitStatus.Success) {
// LUNA ID POS is ready
}
}.flowOn(Dispatchers.Main)
Jaunchin(this.lifecycleScope)

VisionLabs B.V. Page 14 of 39

3.2 License parameters

The table below outlines the parameters required for license activation and subsequent
processing in LUNA ID POS:

Parameter

Server

EID

ProductID

Filename

ContainerMode

ConnectionTimeout

licenseModel

VisionLabs B.V.

Required

Default

value

Not set

Not set

Not set

license.dat

15

Description

The URL of the activation server used to
validate and activate the license.

A unique identifier (Entitlement ID)
assigned to your application.

The specific product identifier for LUNA ID
POS.

The default name of the file where the
activated license is saved.

Maximum length: 64 characters.
Changing this name is not recommended.

Indicates whether the application is
running in a containerized environment.

Specifies the maximum time (in seconds)
allowed for the license activation request.
Setting this value to 0 disables the timeout.
Negative values are not allowed.

Maximum value: 300 seconds.

Defines the license to be used.
Possible values:

e 1 -Thales
e 2 -Zeus

Page 15 of 39

4. Initial setup

This section provides step-by-step instructions for setting up and integrating LUNA ID POS into
Android applications.

4.1 Step 1: Download LUNA ID POS

LUNA ID POS is distributed as a collection of modular archive files containing essential
libraries and neural networks for mobile application integration.

Obtain the distribution kit from VisionLabs.

Move the archives to the desired directory.

4.2 Step 2: Configure repository

Add the following repository configuration to the settings.gradle.kts file:

mfo

The settings.gradle.kts file is located in the root directory of your project and defines which
projects and libraries you need to add to the classpath of your build script.

dependencyResolutionManagement {
repositories {
google()
mavenCentral()

// VisionLabs repository configuration
ivy {
url = java.net.URIl.create("https://download.visionlabs.ru/")
patternLayout {
artifact("releases/lunaid-[artifact]-[revision].[ext]")
setM2compatible(false)
}
credentials {
username = getLocalProperty("vl.login") as String
password = getLocalProperty("vl.pass") as String
}

metadataSources { artifact() }

}

VisionLabs B.V. Page 16 of 39

4.3 Step 3: Provide user credentials

In the local.properties file, specify your credentials:

vl.login=YOUR_LOGIN
vl.pass=YOUR_PASSWORD

Implement the following utility function to access credentials programmatically:

fun getlLocalProperty(key: String, file: String = "local.properties"): Any {
val properties = java.util.Properties()
val localProperties = File(file)

if (localProperties.isFile) {

InputStreamReader(FileInputStream(localProperties), Charsets.UTF_8).use {
reader ->

properties.load(reader)
}
} else {

error("File not found: '$file'")

}

if (!properties.containsKey(key)) {
error("Key '$key' not found in file '$file'")
}

return properties.getProperty(key)
}

Vwarning

Add local.properties to your .gitignore file to prevent credential exposure through version
control systems.

4.4 Step 4: Specify dependencies

Add the necessary .aar files as dependencies in your module's build.gradle.kts. This file
defines various build parameters including dependencies, plugins, library versions,
compilation options, and testing configurations.

Add the following dependencies to your build.gradle.kts:

VisionLabs B.V. Page 17 of 39

dependencies {
// CameraX dependencies (required for camera functionality)
implementation(libs.camera.core)
implementation(libs.camera.camera2)
implementation(libs.camera.lifecycle)
implementation(libs.camera.video)
implementation(libs.camera.view)

// VL-LUNA-ID-POS core modules
implementation("ai.visionlabs.lunaid:core:$ {DepVersions.sdkVersion} @aar")
implementation("ai.visionlabs.lunaid:common-arm:${DepVersions.sdkVersion}
@aar")
implementation("ai.visionlabs.lunaid:cnn60-arm:$ { DepVersions.sdkVersion} @aar")
implementation("ai.visionlabs.lunaid:mask-arm:$ { DepVersions.sdkVersion} @aar")
implementation("ai.visionlabs.lunaid:glasses-arm:${DepVersions.sdkVersion} @aar")
implementation("ai.visionlabs.lunaid:oslm-arm:${DepVersions.sdkVersion} @aar")
implementation("ai.visionlabs.lunaid:security:$ {DepVersions.sdkVersion} @aar")
implementation("ai.visionlabs.lunaid:facePayCore:$ {DepVersions.sdkVersion}
@aar")

(
(
(
(
(
(

}

4.5 Step 5: Initialize LUNA ID POS

Initialize the SDK once during application startup:

@HiltViewModel

class MainViewModel @Inject constructor(
val application: Application,
val dataStore: AppDataStore,
private val userDao: UserDao

) : ViewModel() {

init {
// Initialize the SDK engine
initEngine()

// Optional: Monitor initialization status
monitorEngineStatus()

}

private fun initEngine() = CoroutineScope(Dispatchers.Default).launch {
// Configure recognition parameters
val config = LunaConfig(livenessType = LivenessType.Offline)

VisionLabs B.V. Page 18 of 39

// Configure server connection for data processing
val apiHumanConfig = ApiHumanConfig(
baseUrl = "https://luna-api-aws.visionlabs.ru/6/",
headers = mapOf(
"Authorization" to "Bearer <YOUR_JWT_TOKEN>"
)
)

// Load license file from application's internal storage
val customLicense = File(application.filesDir, "license.conf")

// Initialize VL-LUNA-ID-POS
FacePay.initEngine(application, config, apiHumanConfig, customLicense)

}

private fun monitorEngineStatus() {
LunalD.enginelnitStatus
.onEach { status -> Log.d("FacePay", "enginelnitStatus=$status") }
Jaunchin(CoroutineScope(Dispatchers.lO))

VisionLabs B.V. Page 19 of 39

}

Component Type Description

MainViewModel Class Primary ViewModel hosting initialization logic.

init {...} Initialization Executes when the MainviewModel instance is created.

block Calls initEngine() and sets up initialization status

monitoring.

initEngine() Function Contains core LUNA ID POS initialization logic.

LunalD.enginelnitStatus Flow Provides subscription to LUNA ID POS initialization state
changes for process monitoring.

Log.d("FacePay", ...) Logging Outputs current initialization status to system log for
debugging.

LunaConfig Class Defines LUNA ID POS operational parameter
configuration.

livenessType Parameter Sets OneShotLiveness estimation mode.
LivenessType.Offline indicates local device processing
without server communication.

ApiHumanConfig Class Configures interaction with LUNA PLATFORM 5 API.

baseUrl Variable Specifies LUNA PLATFORM 5 URL for request
submission (for example, verification requests).

headers Map Defines headers appended to each request sent to
LUNA PLATFORM 5.

customlLicense Variable File object pointing to license file (license.conf) in
application's private storage.

FacePay.initEngine(...) Method Primary LUNA ID POS initialization method. Accepts

application context, configuration objects, and starts

the recognition engine.

4.6 Step 6: Launch the camera

Initiate face capture by calling the FacePay.showCamera method:

@Optin(ExperimentalCamera2interop::class)
fun openCamera(context: Context) {
val settings = dataStore.settings().first()

val showCameraParams = settings.showCameraParams.copy(

VisionLabs B.V. Page 20 of 39

borderDistanceStrategy =
BorderDistancesStrategy.WithCustomView(R.id.faceCaptureOverlay),

checkSecurity = true // Virtual camera detection
)

FacePay.showCamera(
context = context,
params = showCameraParams,
interactions = Interactions.Builder().build(),
commands = Commands.Builder().build()

4.7 Step 7: Get the best shot

Subscribe to the bestShot flow to capture best shots:

LunalD.bestShot
filterNotNull()
.onEach { bestShot ->
// Extract processed (warped) face image
val faceBitmap = bestShot.bestShot.warp

// Example: Send image to external system (Rosreestr in this case)
sendToExternalSystem(faceBitmap)
}

.launchlin(viewModelScope)

VisionLabs B.V.

Page 21 of 39

5. Working with LUNA ID POS

5.1 Best shots

5.1.1 About best shot estimations

This section explains how LUNA ID POS evaluates image quality to get the best shot from a
video stream.

How it works

LUNA ID POS analyzes each frame of a video stream captured by your device's camera,
searching for a face. For accurate evaluation, each frame must contain only one face. Frames
with faces that pass specific estimations are considered the best shots.

If an estimation fails, the corresponding error message is returned.

The minimum camera resolution required for optimal estimator performance is 720p
(1280x720 pixels).

The LunalD.allEvents() event (or the more specialized LunalD.finishStates()) emits the
ResultSuccess event containing the best shot found and an optional path to the recorded
video.

You can adjust parameters for best shot estimations in LunaConfig.kt.

Estimations
LUNA ID POS performs several estimations to determine if an image qualifies as the best shot.
NUMBER OF FACES IN THE FRAME

The estimation ensures that the frame contains only one face. If multiple faces are detected,
the system returns a TooManyFacesError error message.

By default, no value is set for this estimation.
AGS ESTIMATION

The estimation calculates a score indicating the suitability of the source image for descriptor
extraction and matching. The output is a normalized float score ranging from 0 to 1. A score
closer to 1 indicates better matching results for the image.

By default, the AGS threshold is set to 0.5.

VisionLabs B.V. Page 22 of 39

Implementation: public val ags: Float = DEFAULT _AGS

HEAD POSE ESTIMATION

The estimation determines a person's head rotation angles in 3D space, specifically along the

pitch, yaw, and roll axes:

* Pitch (X-axis): This angle measures the vertical tilt of the head. It limits the head
rotation along the X-axis.

* Yaw (Y-axis): This angle measures the horizontal rotation of the head. It limits the head
rotation along the Y-axis.

* Roll (Z-axis): This angle measures the lateral tilt of the head. It limits the head rotation

along the Z-axis.

Head pose

By default, all rotation angles (pitch, yaw, and roll) are set to 25 degrees each side.

Implementation:

Angle Implementation

Pitch public val headPitch: Float = DEFAULT_HEAD_PITCH
Yaw public val headYaw: Float = DEFAULT_HEAD_YAW
Roll public val headRoll: Float = DEFAULT_HEAD_ROLL

VisionLabs B.V. Page 23 of 39

IMAGE QUALITY ESTIMATION

The estimation evaluates an image based on several key criteria to ensure it meets the
necessary standards. These criteria include:

* Blurriness: The image appears out of focus.
* Underexposure: The image is too dark.

* Overexposure: The image is too bright.

Below are the default values for each criterion used in the image quality estimation:

Parameter Default value
Blurriness 0.61
Lightness 0.57
Darkness 0.50

FACE DETECTION BOUNDING BOX SIZE

The estimation ensures that the detected face's bounding box matches a specified size. This
estimation helps determine if the subject is too far from the camera, affecting image quality.

The minimum recommended size for the face bounding box is 200 x 200 pixels.
The default value is 350 dp (density-independent pixels).
Warning

If the converted pixel value is less than 100 pixels, the frame size will automatically be set
to 100 pixels to maintain a minimum acceptable quality.

Here are the configuration details for setting the minimum detectable frame size: public const
val DEFAULT _MIN_DETECT_FRAME_SIZE: Int = 350

Implementation: public val detectFrameSize: Int = DEFAULT_MIN_DETECT_FRAME_SIZE

FRAME EDGES OFFSET

The estimation calculates the distance from the detected face's bounding box to the edges of
the image.

VisionLabs B.V. Page 24 of 39

Minimal border distance:

* Without OneShotLiveness estimation: The minimal border distance for best shot
estimation is 0 pixels. This means the face can be right at the edge of the frame.

* With OneShotLiveness estimation: The minimal border distance increases to 10 pixels to
ensure sufficient space around the face for accurate OneShotLiveness estimation.

The default value is set to 0 pixels.

Implementation: public val borderDistance: Int = DEFAULT_BORDER_DISTANCE
EYE STATE

The estimation determines whether the eyes in a detected face are open or closed.
The estimation is performed only if eye interaction is enabled.

FACE OCCLUSION

The estimation determines whether the lower part of the face in the frame is occluded by an

object. This feature allows you to define whether such frames can still be considered as best
shots.

You can enable or disable the estimation via the LunaConfig.acceptOccludedFaces parameter. By
default, this parameter is set to true, meaning that no estimations for occluded faces are

performed.
val config = LunaConfig.create(

acceptOccludedFaces = true

When acceptOccludedFaces = false , LUNA ID POS checks for occlusions of the nose, mouth, and
lower part of the face. If an occlusion is detected, it triggers the OccludedFace error.

If acceptOccludedFaces or acceptMask are setto true, LUNA ID POS skips the corresponding
estimations for face occlusions or medical masks, respectively.

Implementation: public val acceptOccludedFaces: Boolean = true

VisionLabs B.V. Page 25 of 39

MEDICAL MASK ESTIMATION

The estimation determines whether the face in a frame is partially covered by a medical

mask. This feature allows you to define whether such frames can still be considered as best
shots.

If acceptOccludedFaces or acceptMask are set to true, LUNA ID POS skips the corresponding
estimations for face occlusions or medical masks, respectively.

By default, acceptMask is set to true, allowing frames with occluded faces to be considered as
potential best shots. Adjust this setting based on your specific requirements.

Implementation: public val acceptMask: Boolean = true
GLASSES ESTIMATION

The estimation determines whether the eyes in a frame are occluded by glasses.
You can specify detailed rules for eye occlusion:

* Images of people wearing sunglasses cannot be considered best shots.
* Images of people wearing eyeglasses cannot be considered best shots.

* Images of people wearing any type of glasses cannot be considered best shots.

For details, see Getting the best shot with faces with occluded eyes.

VisionLabs B.V. Page 26 of 39

5.1.2 Getting the best shot

With LUNA ID POS, you can capture video stream and get the best shot on which the face is
fixed in the optimal angle for further processing.

Tip

In LUNA ID POS you can specify a face recognition area for best shot selection.

Step 1: Start the camera

Call the FacePay.showCamera() method to start the camera session. This method initiates face
detection and analysis within the video stream.

Step 2: Get the list of best shots (optional)

Implement the step, if you want to get multiple best shots during a session. You can then
send the list of acquired best shot to the backend for estimation aggregation.
Set the LunaConfig.multipartBestShotsEnabled parameter to true to get multiple frames.

Specify the number of best shots to be returned by setting the LunaConfig.bestShotsCount
parameter. The valid range of values for bestShotsCount is from 1 to 10.

When multipartBestShotsEnabled is active, the list of best shots will be returned in the
BestShotsFound event. Use the bestShots Flow to collect this list.

Structure of BestShotsFound :

data class BestShotsFound(
val bestShots: List<BestShot>?
) : Event()

Usage example:

LunalD.bestShots.filterNotNull().onEach { bestShotsList ->
Log.e(TAG, "bestShots: ${bestShotsList.bestShots}")
}.launchin(viewModelScope)

This Flow continuously gets a list of best shots as they are detected during the session.

VisionLabs B.V. Page 27 of 39

Step 3: Subscribe to the final best shot result

To retrieve the final best shot result (including metadata such as videoPath and
interactionFrames), subscribe to the LunalD.bestShot Flow.

Structure of BestShotFound :

data class BestShotFound(

val bestShot: BestShot, // The selected best shot

val videoPath: String?, // Path to the recorded video (if enabled)

val interactionFrames: List<InteractionFrame>? // Frames with Dynamic Liveness
interactions (optional)
) : Event()

Usage example:

val bestShotFlow = MutableStateFlow<Event.BestShotFound?=>(null)

LunalD.bestShot.filterNotNull().onEach { bestShotFound ->
Log.e("BestShotFound", bestShotFound.toString())
// Process the best shot or its associated metadata here
}.launchin(viewModelScope)

Step 4: Handle best shot events

The system gets events for both individual best shots (BestShotFound) and lists of best shots
(BestShotsFound). Depending on your use case, handle these events accordingly:

Event Description

BestShotFound Contains the final best shot and optional metadata. Use this for single-best-shot
scenarios.

BestShotsFound Contains a list of all best shots detected during the session. Use this for multi-

best-shot scenarios.

VisionLabs B.V. Page 28 of 39

Face recognition area

In some cases, you may need the best shot search to start only after a user places their face
in a certain area in the screen. You can specify face recognition area borders by implementing
one of the following strategies:

Border distances are not initialized

Border distances are initialized with an Android custom view

Border distances are initialized in dp

Border distances are initialized automatically

Add a delay before starting face recognition

You can optionally set up a fixed delay or specific moment in time to define when the face
recognition will start after the camera is displayed in the screen. To do this, use the
StartBestShotSearchCommand command.

Add a delay before getting the best shot

You can optionally set up a delay, in milliseconds, to define for how long a user's face should
be placed in the face detection bounding box before the best shot is taken. To do this, use the
LunalD.foundFaceDelayMs parameter. The default value is 0.

VisionLabs B.V. Page 29 of 39

https://docs.visionlabs.ai/luna-id/v.1.20.0/working-with/best-practices/customizing-ui/android/customizing-face-recognition-area-borders.md#border-distances-are-not-initialized
https://docs.visionlabs.ai/luna-id/v.1.20.0/working-with/best-practices/customizing-ui/android/customizing-face-recognition-area-borders.md#border-distances-are-initialized-with-an-android-custom-view
https://docs.visionlabs.ai/luna-id/v.1.20.0/working-with/best-practices/customizing-ui/android/customizing-face-recognition-area-borders.md#border-distances-are-initialized-in-dp
https://docs.visionlabs.ai/luna-id/v.1.20.0/working-with/best-practices/customizing-ui/android/customizing-face-recognition-area-borders.md#border-distances-are-initialized-automatically

5.1.3 Getting the best shot with an occluded face

In LUNA ID POS, you can define whether images with occluded faces can be considered as
best shots. This feature allows you to customize the behavior based on your specific

requirements.

To determine whether an image with an occluded face will be considered the best shot, use
the LunaConfig.acceptOccludedFaces parameter.

The acceptOccludedFaces parameter has the following values:

Value Description
true Default. An image with an occluded face can be considered the best shot.
false An image with an occluded face cannot be considered the best shot.

The BestShotsFound event will appear in LunalD.bestShots() with payload
DetectionError.OccludedFace every time an occluded face is recognized.

warning

The acceptOccludedFaces parameter requires the lunaid-mask-X.X.X.aar dependency.

To define that images with occluded faces can be considered as best shots:

1. Add the required .plan files to your project dependencies:

implementation("ai.visionlabs.lunaid:mask:X.X.X@aar")

2. Specify the acceptOccludedFaces parameter in LunaConfig :

LunaConfig.create(
acceptOccludedFaces = true

VisionLabs B.V. Page 30 of 39

5.1.4 Getting the best shot with faces with closed eyes

In LUNA ID POS, you can define whether images with faces with one or two closed eyes can
be considered best shots.

One closed eye

To get the best shot with a closed eye, use the acceptOneEyeClose parameter. The parameter
has the following values:

Value Description
true Default. Specifies that frames that contain faces with a closed eye can be best shots.
false Specifies that frames that contain faces with a closed eye cannot be best shots.

However, it is possible to get the best shot with an occluded eye. For details, see
Getting the best shot with faces with occluded eyes.

Warning

The acceptOneEyeClose parameter requires the acceptOneEyed parameter to be enabled.

Two closed eyes

To get the best shot with two closed eyes, use the acceptEyesClosed parameter. The parameter
has the following values:

Value Description

true Specifies that frames that contain faces with closed eyes can be best shots.

false Default. Specifies that frames that contain faces with closed eyes cannot be best
shots.

Consider an example below:

LunaConfig.create(
acceptEyesClosed = false,

)

VisionLabs B.V. Page 31 of 39

5.1.5 Getting the best shot with faces with occluded eyes

In LUNA ID POS, you can define whether an image in with occluded eyes can be considered
the best shot.

You can specify the following eye occlusion rules:

* Images of people in sunglasses cannot be best shots.
* Images of people in eyeglasses cannot be best shots.

* Images of people in any glasses cannot be best shots.
To get best shots with faces with occluded eyes:

1. Add the required .plan files to the dependency:

implementation("ai.visionlabs.lunaid:glasses:X.X.X@aar")

2. Specify the glassesChecks parameter in LunaConfig to define the type of glasses in the
image and whether the image can be the best shot:

lunaConfig = LunaConfig.create(
glassesChecks = setOf(GlassesCheckType.GLASSES CHECK SUN,
GlassesCheckType.GLASSES CHECK DIOPTER)
)

The glassesChecks parameter specifies what images with glasses can be best shots.

Possible values:

Value Description

GlassesCheckType.GLASSES CHECK_SUN Defines that images with people in sunglasses cannot be
best shots.

GlassesCheckType.GLASSES CHECK_DIOPTER Defines that images with people in eyeglasses cannot be
best shots.

You can specify either one, none, or both possible values.

The default value is not set.

VisionLabs B.V. Page 32 of 39

5.1.6 Errors

Error

PrimaryFacelostCritical

PrimaryFacelost

FacelLost

TooManyFaces

FaceOutOfFrame

FaceDetectSmall

BadHeadPose

BadQuality

BlurredFace

TooDark

TooMuchLight

GlassesOn

OccludedFace

BadEyesStatus

FaceWithMask

VisionLabs B.V.

The table below lists best shot errors:

Description

The primary face that was detected in the video stream has been lost.
The primary face was not detected in the video stream or has been lost.
Unable to detect a face in the video stream.

The frame must contain only one face for LUNA ID POS to perform a series
of estimations, and then select the best shot.

A face is too close to the camera and does not fit the face recognition area.

The size of the detected face does not correspond to the specified bounding
box size size.

Head rotation angles are not between the minimal and maximum valid head
position values.

The input image does not meet the AGS estimation threshold.
The input image does not meet the blurriness threshold.

The input image does not meet the darkness threshold.

The input image does not meet the lightness threshold.

The person in the input image is wearing sunglasses.

The face is not properly visible in the input image.

The eye state estimation failed.

The person in the input image is wearing a medical mask.

Page 33 of 39

5.2 OneShotLiveness

5.2.1 About OneShotLiveness estimation

OneShotLiveness is an algorithm for determining whether a person in one or more images is
"real" or a fraudster using a fake ID (printed face photo, video, paper, or 3D mask).

OneShotLiveness is used as a pre-check before performing face detection.

OneShotLiveness estimation types

With LUNA ID POS, you can perform the following types of OneShotLiveness estimation:

* Online OneShotLiveness estimation

To perform Online OneShotLiveness estimation, LUNA ID sends a request to the LUNA
PLATFORM 5 /liveness endpoint. For more details about LUNA ID and LUNA PLATFORM 5
interaction, see the Interaction of LUNA ID with LUNA PLATFORM 5.

* Offline OneShotLiveness estimation

To perform Offline OneShotLiveness estimation, you do not need to send requests to
LUNA PLATFORM 5. You can perform the estimation directly on your device.

Image requirements

An image that LUNA ID takes as input must be a source image and meet the following
requirements:

OneShotLiveness thresholds

By default, two thresholds are used for OneShotLiveness estimation:

* Quality threshold

¢ Liveness threshold

VisionLabs B.V. Page 34 of 39

QUALITY THRESHOLD

Quality threshold estimates the input image by the following parameters. The table below has
the default threshold values. These values are set to optimal:

Parameter Threshold Value
Blurriness blurThreshold 0.61
Darkness (underexposure) darknessThreshold 0.50
Lightness (overexposure) lightThreshold 0.57
lllumination illuminationThreshold 0.1
Specularity specularityThreshold 0.1

LIVENESS THRESHOLD

The LunaConfig.livenessQuality parameter specifies the threshold lower which the system will
consider the result as a presentation attack.

For images received from mobile devices, the default liveness threshold value is 0.5. For
details, see Liveness threshold.

Number of best shots

You can specify a number of best shot to be collected for a OneShotLiveness estimation. To do
this, use the LunaConfig.bestShotsCount parameter.

The default value is 1.

VisionLabs B.V. Page 35 of 39

https://docs.visionlabs.ai/luna/v.5.103.0/lp-distribution/administrator-manual/additional-information/#liveness-threshold

5.2.2 Performing Online OneShotLiveness estimation

You can automatically perform Online OneShotLiveness estimation by sending a request to
the LUNA PLATFORM 5 /liveness endpoint. The estimation allows you determine if the person
in the image is a living person or a photograph. You can then validate the received images
with LUNA PLATFORM 5.

To perform Online OneShotLiveness estimation:

1. Specify the livenessType: LivenessType field in LunaConfig . The field accepts one of the
following values:

Value Description

None Disables the estimation. The default value.

Online Enables the estimation by sending a request to the LUNA PLATFORM 5 /liveness
endpoint.

2. Specify the required LUNA PLATFORM 5 server parameters in ApiHumanConfig .
The example below shows how to enable Online OneShotLiveness estimation:

val apiConfig = ApiHumanConfig("http://luna-platform.com/api/6/")
LunalD.init(

apiHumanConfig = apiConfig,
lunaConfig = LunaConfig.create(
livenessType = LivenessType.Online,
)I

VisionLabs B.V. Page 36 of 39

5.2.3 Performing Offline OneShotLiveness estimation

With LUNA ID POS, you can perform liveness estimation directly on your device. Unlike Online
OneShotLiveness estimation, which sends requests to the LUNA PLATFORM 5 /liveness
endpoint, Offline OneShotLiveness estimation operates locally, ensuring faster processing and
reduced dependency on backend services.

This feature allows you to determine whether the person in the image is a living individual or
a spoof (for example, a photograph or mask).

To perform Offline OneShotLiveness estimation:
1. Add the required dependency.

Add the appropriate dependency to your build.gradle file based on your device's architecture.
This dependency includes the neural networks required for Offline OneShotLiveness
estimation.

implementation("ai.visionlabs.lunaid:oslm-arm:X. X.X@aar")

2. Specify the estimation type in LunaConfig :

LunaConfig.create(
livenessType = LivenessType.Offline

3. Specify the neural networks to be used for the estimation by using the
LunaConfig.livenessNetVersion parameter. This parameter is of type LivenessNetVersion and
supports two values:

Value Description

LITE Default. Loads the neural network models:
* oneshot_rgb_liveness_v12 model 4_arm.plan
* oneshot_rgb_liveness_v12 model 5 arm.plan

MOBILE Loads only the oneshot_rgb_liveness v12 model 6 _arm.plan model.
Recommended for devices with lower performance.

VisionLabs B.V. Page 37 of 39

VWwarning
After changing the livenessNetVersion parameter, restart the final application for the
changes to take effect.

LunaConfig.create(
livenessType = LivenessType.Offline,
livenessNetVersion = LivenessNetVersion.LITE

Logging

When configuring the livenessNetVersion parameter, you can now monitor which networks are
loaded directly from the logs:

* livenessNetVersion = 1 - The system loads: oneshot _rgb _liveness v12 model 6 arm.plan

* livenessNetVersion = 2 - The system loads: oneshot _rgb_liveness v12 model 4 _arm.plan
and oneshot rgb _liveness v12 model 5 arm.plan

VisionLabs B.V. Page 38 of 39

5.2.4 Disabling OneShotLiveness estimation

If you want to skip a liveness estimation over the best shot, you can disable a
OneShotLiveness estimation.

To disable OneShotLiveness estimations, set the livenessType: LivenessType field to None in
LunaConfig .

If livenessType: LivenessType is not specified, OneShotLiveness estimations are disabled by
default.

The example below shows how to disable OneShotLiveness estimations:

val apiConfig = ApiHumanConfig("http://luna-platform.com/api/6/")
LunalD.init(

apiHumanConfig = apiConfig,
lunaConfig = LunaConfig.create(
livenessType = LivenessType.None,
),

VisionLabs B.V. Page 39 of 39

	VisionLabs LUNA ID
	1. Introduction
	2. General info
	2.1 Overview
	2.1.1 Key features

	2.2 System requirements
	2.2.1 Hardware requirements
	2.2.2 Software requirements

	2.3 Technical support and resources

	3. Licensing
	3.1 Activating the license
	3.2 License parameters

	4. Initial setup
	4.1 Step 1: Download LUNA ID POS
	4.2 Step 2: Configure repository
	4.3 Step 3: Provide user credentials
	4.4 Step 4: Specify dependencies
	4.5 Step 5: Initialize LUNA ID POS
	4.6 Step 6: Launch the camera
	4.7 Step 7: Get the best shot

	5. Working with LUNA ID POS
	5.1 Best shots
	5.1.1 About best shot estimations
	How it works
	Estimations
	NUMBER OF FACES IN THE FRAME
	AGS ESTIMATION
	HEAD POSE ESTIMATION
	IMAGE QUALITY ESTIMATION
	FACE DETECTION BOUNDING BOX SIZE
	FRAME EDGES OFFSET
	EYE STATE
	FACE OCCLUSION
	MEDICAL MASK ESTIMATION
	GLASSES ESTIMATION

	5.1.2 Getting the best shot
	Step 1: Start the camera
	Step 2: Get the list of best shots (optional)
	Step 3: Subscribe to the final best shot result
	Step 4: Handle best shot events
	Face recognition area
	Add a delay before starting face recognition
	Add a delay before getting the best shot

	5.1.3 Getting the best shot with an occluded face
	5.1.4 Getting the best shot with faces with closed eyes
	One closed eye
	Two closed eyes

	5.1.5 Getting the best shot with faces with occluded eyes
	5.1.6 Errors

	5.2 OneShotLiveness
	5.2.1 About OneShotLiveness estimation
	OneShotLiveness estimation types
	Image requirements
	OneShotLiveness thresholds
	QUALITY THRESHOLD
	LIVENESS THRESHOLD

	Number of best shots

	5.2.2 Performing Online OneShotLiveness estimation
	5.2.3 Performing Offline OneShotLiveness estimation
	Logging

	5.2.4 Disabling OneShotLiveness estimation

