
VisionLabs LUNA ID

v.1.20.0

Table of contents

41. Introduction

52. General info

52.1 Overview

52.1.1 Key features

62.2 System requirements

62.2.1 Hardware requirements

62.2.2 Software requirements

72.3 Technical support and resources

83. Licensing

83.1 Activating the license

153.2 License parameters

164. Initial setup

164.1 Step 1: Download LUNA ID POS

164.2 Step 2: Configure repository

174.3 Step 3: Provide user credentials

174.4 Step 4: Specify dependencies

184.5 Step 5: Initialize LUNA ID POS

204.6 Step 6: Launch the camera

214.7 Step 7: Get the best shot

225. Working with LUNA ID POS

225.1 Best shots

225.1.1 About best shot estimations

275.1.2 Getting the best shot

305.1.3 Getting the best shot with an occluded face

315.1.4 Getting the best shot with faces with closed eyes

325.1.5 Getting the best shot with faces with occluded eyes

335.1.6 Errors

VisionLabs B.V. Page 2 of 39

345.2 OneShotLiveness

345.2.1 About OneShotLiveness estimation

365.2.2 Performing Online OneShotLiveness estimation

375.2.3 Performing Offline OneShotLiveness estimation

395.2.4 Disabling OneShotLiveness estimation

VisionLabs B.V. Page 3 of 39

1. Introduction

LUNA ID POS is a software development kit (SDK) designed for integration into Point-of-Sale

(POS) terminals. It enables face detection, image quality estimations, and subsequent

biometric data transmission for processing, The SDK integrates LUNA PLATFORM 5 for

advanced processing, OneShotLiveness estimation, and identity matching.

 Start here

Licensing•

Initial setup•

Support & resources•

Download docs •

 Getting the best shot

Best shot estimations•

Getting the best shot•

 OneShotLiveness

Offline OneShotLiveness•

Online OneShotLiveness•

 Interaction with LUNA PLATFORM

Overview•

Configuration•

VisionLabs B.V. Page 4 of 39

2. General info

2.1 Overview

LUNA ID POS is a software development kit (SDK) designed for integration into Point-of-Sale

(POS) terminals. It enables face detection, image quality estimations, and subsequent

biometric data transmission for processing, The SDK integrates LUNA PLATFORM 5 for

advanced processing, OneShotLiveness estimation, and identity matching.

2.1.1 Key features

LUNA ID POS provides the following features:

Getting the best shot: •

Estimating the best shot by the following criteria: •

Number of faces in the frame•

Face detection bounding box size•

Frame edges offset•

Eye state (open, closed, or occluded)•

Head pose (pitch, yaw, and roll)•

AGS (Average Garbage Score, frame quality check for subsequent descriptor

extraction)

•

Image quality (lightness, darkness, and blurriness)•

Face occlusion•

Submitting the best shot with the detected face to LUNA PLATFORM 5 to perform

OneShotLiveness estimation on the backend

•

Submitting the best shot with the detected face to LUNA PLATFORM 5 for backend

descriptor matching

•

Interface customization (displaying face functionality in end-client applications)•

VisionLabs B.V. Page 5 of 39

2.2 System requirements

2.2.1 Hardware requirements

The following minimal hardware specifications are required for LUNA ID POS operation:

2.2.2 Software requirements

Component Requirement

CPU architecture arm64-v8a, armeabi-v7a

RAM Minimum 2 GB

Camera Front-facing camera with minimum 720p resolution recommended

Component Requirement

Android API Level 21 or higher

Android NDK Version 28 or higher

Operating system Android 5.0 or higher

VisionLabs B.V. Page 6 of 39

2.3 Technical support and resources

If you have questions, problems or just need help with LUNA ID POS, you can either contact

our Technical Support or try to search for the needed information using other help resources.

You can contact our Technical Support via email:

 support@visionlabs.ru

VisionLabs B.V. Page 7 of 39

3. Licensing

3.1 Activating the license

To integrate LUNA ID POS with your project and use its features, you need to activate the

license.

The license activation mechanism is as follows:

To activate the license, follow the step below:

1․ Obtain the following parameters from VisionLabs:

2․ Specify the parameters in license.conf and save the changes.

LUNA ID POS first checks if you provided a license file via the initEngine method.

If provided, the license is directly passed to the engine.

If not provided, the system attempts to read the license from the assets folder and passes

it to the engine.

If no license is found in either location, the activation process fails.

Parameter Description

Server The URL of the license server.

EID A unique identifier for your application.

ProductID The product identifier for LUNA ID POS.

VisionLabs B.V. Page 8 of 39

Here is an example structure of the file:

3․ Save the license.conf file in the assets/data/license.conf directory of your project.

The license key will be generated and saved to the specified directory. The license file has a

binary format. At the next launch of your app on the same device, the license will be read

from this file.

4․ Call the initEngine() method to initialize LUNA ID POS and activate the license.

Here is an example implementation:

Example structure of license.conf

<?xml version="1.0"?>
<settings>
 <section name="Licensing::Settings">
 <param name="Server" type="Value::String" text="https://example-
license-server.com"/>
 <param name="EID" type="Value::String" text="your-eid-here"/>
 <param name="ProductID" type="Value::String" text="your-product-id-
here"/>
 <param name="Filename" type="Value::String" text="license.dat"/>
 <param name="ContainerMode" type="Value::Int1" x="0"/>
 <param name="ConnectionTimeout" type="Value::Int1" x="15"/>
 <param name="licenseModel" type="Value::Int1" x="2" />
 </section>
</settings>

private fun initLunaSdk() {
 val baseUrl = "url"
 val token = "token"
 val headers = mapOf("Authorization" to token)
 val apiHumanConfig = ApiHumanConfig(baseUrl, headers)
 val lunaConfig = LunaConfig.create(
 acceptOccludedFaces = true,
 acceptOneEyed = false,
 acceptEyesClosed = false,
 detectFrameSize = 350,
 skipFrames = 36,
 ags = 0.5f,
 bestShotInterval = 500,
 detectorStep = 1,
 usePrimaryFaceTracking = true,

VisionLabs B.V. Page 9 of 39

The parameters in the example are set to default values. Adjust them according to your

requirements.

 glassesChecks = setOf(GlassesCheckType.GLASSES_CHECK_SUN)
)

 FacePay.initEngine(
 app: Application,
 lunaConfig: LunaConfig,
 apiHumanConfig: ApiHumanConfig? = null,
 license : File? = null,
 timeoutMillis : Long = 30_000L
)
}

Note

VisionLabs B.V. Page 10 of 39

Key components of the example code

VisionLabs B.V. Page 11 of 39

The example code has the following components:

VisionLabs B.V. Page 12 of 39

Component Description

baseUrl A variable that specifies the URL to LUNA PLATFORM 5. For details, see

Interaction with LUNA PLATFORM 5.

token A variable that specifies a LUNA PLATFORM 5 token, which will be

transferred to a request header from LUNA ID POS.

headers A map that specifies headers that will be added to each request to be

sent to LUNA PLATFORM 5.

apiHumanConfig An optional configuration parameter for calling the LUNA PLATFORM 5

API. Can be set to null if no LUNA PLATFORM 5 API calls are required.

This will also disable the Online OneShotLiveness estimation, regardless

of the onlineLivenessSettings argument.

ApiHumanConfig A class required for configuration to call the LUNA PLATFORM 5 API.

lunaConfig An argument to be passed for best shot parameters.

LunaConfig A class that describes best shot parameters.

acceptOccludedFaces A parameter that specifies whether an image with an occluded face will

be considered the best shot. For details, see Getting the best shot with

an occluded face.

acceptEyesClosed A parameter that specifies whether an image with two closed eyes will

be considered the best shot. For details, see Getting the best shot with

faces with closed eyes.

detectFrameSize A parameter that specifies a face detection bounding box size.

skipFrames A parameter that specifies a number of frames to wait until a face is

detected in the face recognition area before video recording is stopped.

ags A parameter that specifies a source image score for further descriptor

extraction and matching. For details, see AGS.

bestShotInterval A parameter that specifies a minimum time interval between best shots.

detectorStep A parameter that specifies a number of frames between frames with full

face detection.

usePrimaryFaceTracking A parameter that specifies whether to track the face that was detected

in the face recognition area first.

glassesChecks A parameter that specifies what images with glasses can be best shots.

For details, see Getting the best shot with faces with occluded eyes.

FacePay.initEngine A method that activates the LUNA ID POS license.

license An instance of java.io.File. If this parameter is not provided, the

system will use the default license.conf file located in the project.

VisionLabs B.V. Page 13 of 39

5․ Subscribe to events from the LunaID.engineInitStatus flow to monitor the initialization

process:

Component Description

timeoutMillis The timeout for license activation, with a default value of 30 seconds

(30,000 milliseconds).

LunaID.engineInitStatus.flowWithLifecycle(this.lifecycle, Lifecycle.State.STARTED)
.onEach {
 if(it is LunaID.engineInitStatus.InProgress) {
 // LUNA ID POS is loading
 }else if(it is LunaID.engineInitStatus.Success) {
 // LUNA ID POS is ready
 }
}.flowOn(Dispatchers.Main)
.launchIn(this.lifecycleScope)

VisionLabs B.V. Page 14 of 39

3.2 License parameters

The table below outlines the parameters required for license activation and subsequent

processing in LUNA ID POS:

Parameter Required Default

value

Description

Server Not set The URL of the activation server used to

validate and activate the license.

EID Not set A unique identifier (Entitlement ID)

assigned to your application.

ProductID Not set The specific product identifier for LUNA ID

POS.

Filename license.dat The default name of the file where the

activated license is saved.

Maximum length: 64 characters.

Changing this name is not recommended.

ContainerMode 0 Indicates whether the application is

running in a containerized environment.

ConnectionTimeout 15 Specifies the maximum time (in seconds)

allowed for the license activation request.

Setting this value to 0 disables the timeout.

Negative values are not allowed.

Maximum value: 300 seconds.

licenseModel 2 Defines the license to be used.

Possible values:

1 - Thales

2 - Zeus

•

•

VisionLabs B.V. Page 15 of 39

4. Initial setup

This section provides step-by-step instructions for setting up and integrating LUNA ID POS into

Android applications.

4.1 Step 1: Download LUNA ID POS

LUNA ID POS is distributed as a collection of modular archive files containing essential

libraries and neural networks for mobile application integration.

4.2 Step 2: Configure repository

Add the following repository configuration to the settings.gradle.kts file:

The settings.gradle.kts file is located in the root directory of your project and defines which

projects and libraries you need to add to the classpath of your build script.

Obtain the distribution kit from VisionLabs.

Move the archives to the desired directory.

Info

dependencyResolutionManagement {
 repositories {
 google()
 mavenCentral()

 // VisionLabs repository configuration
 ivy {
 url = java.net.URI.create("https://download.visionlabs.ru/")
 patternLayout {
 artifact("releases/lunaid-[artifact]-[revision].[ext]")
 setM2compatible(false)
 }
 credentials {
 username = getLocalProperty("vl.login") as String
 password = getLocalProperty("vl.pass") as String
 }
 metadataSources { artifact() }
 }
 }
}

VisionLabs B.V. Page 16 of 39

4.3 Step 3: Provide user credentials

In the local.properties file, specify your credentials:

Implement the following utility function to access credentials programmatically:

Add local.properties to your .gitignore file to prevent credential exposure through version

control systems.

4.4 Step 4: Specify dependencies

Add the necessary .aar files as dependencies in your module's build.gradle.kts. This file

defines various build parameters including dependencies, plugins, library versions,

compilation options, and testing configurations.

Add the following dependencies to your build.gradle.kts:

vl.login=YOUR_LOGIN
vl.pass=YOUR_PASSWORD

fun getLocalProperty(key: String, file: String = "local.properties"): Any {
 val properties = java.util.Properties()
 val localProperties = File(file)

 if (localProperties.isFile) {
 InputStreamReader(FileInputStream(localProperties), Charsets.UTF_8).use {
reader ->
 properties.load(reader)
 }
 } else {
 error("File not found: '$file'")
 }

 if (!properties.containsKey(key)) {
 error("Key '$key' not found in file '$file'")
 }

 return properties.getProperty(key)
}

Warning

VisionLabs B.V. Page 17 of 39

4.5 Step 5: Initialize LUNA ID POS

Initialize the SDK once during application startup:

dependencies {
 // CameraX dependencies (required for camera functionality)
 implementation(libs.camera.core)
 implementation(libs.camera.camera2)
 implementation(libs.camera.lifecycle)
 implementation(libs.camera.video)
 implementation(libs.camera.view)

 // VL-LUNA-ID-POS core modules
 implementation("ai.visionlabs.lunaid:core:${DepVersions.sdkVersion}@aar")
 implementation("ai.visionlabs.lunaid:common-arm:${DepVersions.sdkVersion}
@aar")
 implementation("ai.visionlabs.lunaid:cnn60-arm:${DepVersions.sdkVersion}@aar")
 implementation("ai.visionlabs.lunaid:mask-arm:${DepVersions.sdkVersion}@aar")
 implementation("ai.visionlabs.lunaid:glasses-arm:${DepVersions.sdkVersion}@aar")
 implementation("ai.visionlabs.lunaid:oslm-arm:${DepVersions.sdkVersion}@aar")
 implementation("ai.visionlabs.lunaid:security:${DepVersions.sdkVersion}@aar")
 implementation("ai.visionlabs.lunaid:facePayCore:${DepVersions.sdkVersion}
@aar")

}

@HiltViewModel
class MainViewModel @Inject constructor(
 val application: Application,
 val dataStore: AppDataStore,
 private val userDao: UserDao
) : ViewModel() {

 init {
 // Initialize the SDK engine
 initEngine()

 // Optional: Monitor initialization status
 monitorEngineStatus()
 }

 private fun initEngine() = CoroutineScope(Dispatchers.Default).launch {
 // Configure recognition parameters
 val config = LunaConfig(livenessType = LivenessType.Offline)

VisionLabs B.V. Page 18 of 39

 // Configure server connection for data processing
 val apiHumanConfig = ApiHumanConfig(
 baseUrl = "https://luna-api-aws.visionlabs.ru/6/",
 headers = mapOf(
 "Authorization" to "Bearer <YOUR_JWT_TOKEN>"
)
)

 // Load license file from application's internal storage
 val customLicense = File(application.filesDir, "license.conf")

 // Initialize VL-LUNA-ID-POS
 FacePay.initEngine(application, config, apiHumanConfig, customLicense)
 }

 private fun monitorEngineStatus() {
 LunaID.engineInitStatus
 .onEach { status -> Log.d("FacePay", "engineInitStatus=$status") }
 .launchIn(CoroutineScope(Dispatchers.IO))

VisionLabs B.V. Page 19 of 39

4.6 Step 6: Launch the camera

Initiate face capture by calling the FacePay.showCamera method:

 }
}

Component Type Description

MainViewModel Class Primary ViewModel hosting initialization logic.

init {…} Initialization

block

Executes when the MainViewModel instance is created.

Calls initEngine() and sets up initialization status

monitoring.

initEngine() Function Contains core LUNA ID POS initialization logic.

LunaID.engineInitStatus Flow Provides subscription to LUNA ID POS initialization state

changes for process monitoring.

Log.d("FacePay", …) Logging Outputs current initialization status to system log for

debugging.

LunaConfig Class Defines LUNA ID POS operational parameter

configuration.

livenessType Parameter Sets OneShotLiveness estimation mode.

LivenessType.Offline indicates local device processing

without server communication.

ApiHumanConfig Class Configures interaction with LUNA PLATFORM 5 API.

baseUrl Variable Specifies LUNA PLATFORM 5 URL for request

submission (for example, verification requests).

headers Map Defines headers appended to each request sent to

LUNA PLATFORM 5.

customLicense Variable File object pointing to license file (license.conf) in

application's private storage.

FacePay.initEngine(…) Method Primary LUNA ID POS initialization method. Accepts

application context, configuration objects, and starts

the recognition engine.

@OptIn(ExperimentalCamera2Interop::class)
fun openCamera(context: Context) {
 val settings = dataStore.settings().first()

 val showCameraParams = settings.showCameraParams.copy(

VisionLabs B.V. Page 20 of 39

4.7 Step 7: Get the best shot

Subscribe to the bestShot flow to capture best shots:

 borderDistanceStrategy =
BorderDistancesStrategy.WithCustomView(R.id.faceCaptureOverlay),
 checkSecurity = true // Virtual camera detection
)

 FacePay.showCamera(
 context = context,
 params = showCameraParams,
 interactions = Interactions.Builder().build(),
 commands = Commands.Builder().build()
)
}

LunaID.bestShot
 .filterNotNull()
 .onEach { bestShot ->
 // Extract processed (warped) face image
 val faceBitmap = bestShot.bestShot.warp

 // Example: Send image to external system (Rosreestr in this case)
 sendToExternalSystem(faceBitmap)
 }
 .launchIn(viewModelScope)

VisionLabs B.V. Page 21 of 39

5. Working with LUNA ID POS

5.1 Best shots

5.1.1 About best shot estimations

This section explains how LUNA ID POS evaluates image quality to get the best shot from a

video stream.

How it works

LUNA ID POS analyzes each frame of a video stream captured by your device's camera,

searching for a face. For accurate evaluation, each frame must contain only one face. Frames

with faces that pass specific estimations are considered the best shots.

If an estimation fails, the corresponding error message is returned.

The minimum camera resolution required for optimal estimator performance is 720p

(1280x720 pixels).

The LunaID.allEvents() event (or the more specialized LunaID.finishStates()) emits the

ResultSuccess event containing the best shot found and an optional path to the recorded

video.

You can adjust parameters for best shot estimations in LunaConfig.kt.

Estimations

LUNA ID POS performs several estimations to determine if an image qualifies as the best shot.

NUMBER OF FACES IN THE FRAME

The estimation ensures that the frame contains only one face. If multiple faces are detected,

the system returns a TooManyFacesError error message.

By default, no value is set for this estimation.

AGS ESTIMATION

The estimation calculates a score indicating the suitability of the source image for descriptor

extraction and matching. The output is a normalized float score ranging from 0 to 1. A score

closer to 1 indicates better matching results for the image.

By default, the AGS threshold is set to 0.5.

VisionLabs B.V. Page 22 of 39

Implementation: public val ags: Float = DEFAULT_AGS

HEAD POSE ESTIMATION

The estimation determines a person's head rotation angles in 3D space, specifically along the

pitch, yaw, and roll axes:

Head pose

By default, all rotation angles (pitch, yaw, and roll) are set to 25 degrees each side.

Implementation:

Pitch (X-axis): This angle measures the vertical tilt of the head. It limits the head

rotation along the X-axis.

•

Yaw (Y-axis): This angle measures the horizontal rotation of the head. It limits the head

rotation along the Y-axis.

•

Roll (Z-axis): This angle measures the lateral tilt of the head. It limits the head rotation

along the Z-axis.

•

Angle Implementation

Pitch public val headPitch: Float = DEFAULT_HEAD_PITCH

Yaw public val headYaw: Float = DEFAULT_HEAD_YAW

Roll public val headRoll: Float = DEFAULT_HEAD_ROLL

VisionLabs B.V. Page 23 of 39

IMAGE QUALITY ESTIMATION

The estimation evaluates an image based on several key criteria to ensure it meets the

necessary standards. These criteria include:

Below are the default values for each criterion used in the image quality estimation:

FACE DETECTION BOUNDING BOX SIZE

The estimation ensures that the detected face's bounding box matches a specified size. This

estimation helps determine if the subject is too far from the camera, affecting image quality.

The minimum recommended size for the face bounding box is 200 x 200 pixels.

The default value is 350 dp (density-independent pixels).

If the converted pixel value is less than 100 pixels, the frame size will automatically be set

to 100 pixels to maintain a minimum acceptable quality.

Here are the configuration details for setting the minimum detectable frame size: public const

val DEFAULT_MIN_DETECT_FRAME_SIZE: Int = 350

Implementation: public val detectFrameSize: Int = DEFAULT_MIN_DETECT_FRAME_SIZE

FRAME EDGES OFFSET

The estimation calculates the distance from the detected face's bounding box to the edges of

the image.

Blurriness: The image appears out of focus.•

Underexposure: The image is too dark.•

Overexposure: The image is too bright.•

Parameter Default value

Blurriness 0.61

Lightness 0.57

Darkness 0.50

Warning

VisionLabs B.V. Page 24 of 39

Minimal border distance:

The default value is set to 0 pixels.

Implementation: public val borderDistance: Int = DEFAULT_BORDER_DISTANCE

EYE STATE

The estimation determines whether the eyes in a detected face are open or closed.

The estimation is performed only if eye interaction is enabled.

FACE OCCLUSION

The estimation determines whether the lower part of the face in the frame is occluded by an

object. This feature allows you to define whether such frames can still be considered as best

shots.

You can enable or disable the estimation via the LunaConfig.acceptOccludedFaces parameter. By

default, this parameter is set to true , meaning that no estimations for occluded faces are

performed.

When acceptOccludedFaces = false , LUNA ID POS checks for occlusions of the nose, mouth, and

lower part of the face. If an occlusion is detected, it triggers the OccludedFace error.

If acceptOccludedFaces or acceptMask are set to true , LUNA ID POS skips the corresponding

estimations for face occlusions or medical masks, respectively.

Implementation: public val acceptOccludedFaces: Boolean = true

Without OneShotLiveness estimation: The minimal border distance for best shot

estimation is 0 pixels. This means the face can be right at the edge of the frame.

•

With OneShotLiveness estimation: The minimal border distance increases to 10 pixels to

ensure sufficient space around the face for accurate OneShotLiveness estimation.

•

val config = LunaConfig.create(
 ...
 acceptOccludedFaces = true
 ...
)

VisionLabs B.V. Page 25 of 39

MEDICAL MASK ESTIMATION

The estimation determines whether the face in a frame is partially covered by a medical

mask. This feature allows you to define whether such frames can still be considered as best

shots.

If acceptOccludedFaces or acceptMask are set to true , LUNA ID POS skips the corresponding

estimations for face occlusions or medical masks, respectively.

By default, acceptMask is set to true , allowing frames with occluded faces to be considered as

potential best shots. Adjust this setting based on your specific requirements.

Implementation: public val acceptMask: Boolean = true

GLASSES ESTIMATION

The estimation determines whether the eyes in a frame are occluded by glasses.

You can specify detailed rules for eye occlusion:

For details, see Getting the best shot with faces with occluded eyes.

Images of people wearing sunglasses cannot be considered best shots.•

Images of people wearing eyeglasses cannot be considered best shots.•

Images of people wearing any type of glasses cannot be considered best shots.•

VisionLabs B.V. Page 26 of 39

5.1.2 Getting the best shot

With LUNA ID POS, you can capture video stream and get the best shot on which the face is

fixed in the optimal angle for further processing.

In LUNA ID POS you can specify a face recognition area for best shot selection.

Step 1: Start the camera

Call the FacePay.showCamera() method to start the camera session. This method initiates face

detection and analysis within the video stream.

Step 2: Get the list of best shots (optional)

Implement the step, if you want to get multiple best shots during a session. You can then

send the list of acquired best shot to the backend for estimation aggregation.

Structure of BestShotsFound :

Usage example:

This Flow continuously gets a list of best shots as they are detected during the session.

Tip

Set the LunaConfig.multipartBestShotsEnabled parameter to true to get multiple frames.

Specify the number of best shots to be returned by setting the LunaConfig.bestShotsCount

parameter. The valid range of values ​​for bestShotsCount is from 1 to 10.

When multipartBestShotsEnabled is active, the list of best shots will be returned in the

BestShotsFound event. Use the bestShots Flow to collect this list.

data class BestShotsFound(
 val bestShots: List<BestShot>?
) : Event()

LunaID.bestShots.filterNotNull().onEach { bestShotsList ->
 Log.e(TAG, "bestShots: ${bestShotsList.bestShots}")
}.launchIn(viewModelScope)

VisionLabs B.V. Page 27 of 39

Step 3: Subscribe to the final best shot result

To retrieve the final best shot result (including metadata such as videoPath and

interactionFrames), subscribe to the LunaID.bestShot Flow.

Structure of BestShotFound :

Usage example:

Step 4: Handle best shot events

The system gets events for both individual best shots (BestShotFound) and lists of best shots

(BestShotsFound). Depending on your use case, handle these events accordingly:

data class BestShotFound(
 val bestShot: BestShot, // The selected best shot
 val videoPath: String?, // Path to the recorded video (if enabled)
 val interactionFrames: List<InteractionFrame>? // Frames with Dynamic Liveness
interactions (optional)
) : Event()

val bestShotFlow = MutableStateFlow<Event.BestShotFound?>(null)

LunaID.bestShot.filterNotNull().onEach { bestShotFound ->
 Log.e("BestShotFound", bestShotFound.toString())
 // Process the best shot or its associated metadata here
}.launchIn(viewModelScope)

Event Description

BestShotFound Contains the final best shot and optional metadata. Use this for single-best-shot

scenarios.

BestShotsFound Contains a list of all best shots detected during the session. Use this for multi-

best-shot scenarios.

VisionLabs B.V. Page 28 of 39

Face recognition area

In some cases, you may need the best shot search to start only after a user places their face

in a certain area in the screen. You can specify face recognition area borders by implementing

one of the following strategies:

Add a delay before starting face recognition

You can optionally set up a fixed delay or specific moment in time to define when the face

recognition will start after the camera is displayed in the screen. To do this, use the

StartBestShotSearchCommand command.

Add a delay before getting the best shot

You can optionally set up a delay, in milliseconds, to define for how long a user's face should

be placed in the face detection bounding box before the best shot is taken. To do this, use the

LunaID.foundFaceDelayMs parameter. The default value is 0.

Border distances are not initialized

Border distances are initialized with an Android custom view

Border distances are initialized in dp

Border distances are initialized automatically

VisionLabs B.V. Page 29 of 39

https://docs.visionlabs.ai/luna-id/v.1.20.0/working-with/best-practices/customizing-ui/android/customizing-face-recognition-area-borders.md#border-distances-are-not-initialized
https://docs.visionlabs.ai/luna-id/v.1.20.0/working-with/best-practices/customizing-ui/android/customizing-face-recognition-area-borders.md#border-distances-are-initialized-with-an-android-custom-view
https://docs.visionlabs.ai/luna-id/v.1.20.0/working-with/best-practices/customizing-ui/android/customizing-face-recognition-area-borders.md#border-distances-are-initialized-in-dp
https://docs.visionlabs.ai/luna-id/v.1.20.0/working-with/best-practices/customizing-ui/android/customizing-face-recognition-area-borders.md#border-distances-are-initialized-automatically

5.1.3 Getting the best shot with an occluded face

In LUNA ID POS, you can define whether images with occluded faces can be considered as

best shots. This feature allows you to customize the behavior based on your specific

requirements.

To determine whether an image with an occluded face will be considered the best shot, use

the LunaConfig.acceptOccludedFaces parameter.

The acceptOccludedFaces parameter has the following values:

The acceptOccludedFaces parameter requires the lunaid-mask-X.X.X.aar dependency.

To define that images with occluded faces can be considered as best shots:

1․ Add the required .plan files to your project dependencies:

2․ Specify the acceptOccludedFaces parameter in LunaConfig :

Value Description

true Default. An image with an occluded face can be considered the best shot.

false An image with an occluded face cannot be considered the best shot.

The BestShotsFound event will appear in LunaID.bestShots() with payload

DetectionError.OccludedFace every time an occluded face is recognized.

Warning

 implementation("ai.visionlabs.lunaid:mask:X.X.X@aar")

LunaConfig.create(
 acceptOccludedFaces = true
)

VisionLabs B.V. Page 30 of 39

5.1.4 Getting the best shot with faces with closed eyes

In LUNA ID POS, you can define whether images with faces with one or two closed eyes can

be considered best shots.

One closed eye

To get the best shot with a closed eye, use the acceptOneEyeClose parameter. The parameter

has the following values:

The acceptOneEyeClose parameter requires the acceptOneEyed parameter to be enabled.

Two closed eyes

To get the best shot with two closed eyes, use the acceptEyesClosed parameter. The parameter

has the following values:

Consider an example below:

Value Description

true Default. Specifies that frames that contain faces with a closed eye can be best shots.

false Specifies that frames that contain faces with a closed eye cannot be best shots.

However, it is possible to get the best shot with an occluded eye. For details, see

Getting the best shot with faces with occluded eyes.

Warning

Value Description

true Specifies that frames that contain faces with closed eyes can be best shots.

false Default. Specifies that frames that contain faces with closed eyes cannot be best

shots.

LunaConfig.create(
acceptEyesClosed = false,
)

VisionLabs B.V. Page 31 of 39

5.1.5 Getting the best shot with faces with occluded eyes

In LUNA ID POS, you can define whether an image in with occluded eyes can be considered

the best shot.

You can specify the following eye occlusion rules:

To get best shots with faces with occluded eyes:

1․ Add the required .plan files to the dependency:

2․ Specify the glassesChecks parameter in LunaConfig to define the type of glasses in the

image and whether the image can be the best shot:

The glassesChecks parameter specifies what images with glasses can be best shots.

Possible values:

You can specify either one, none, or both possible values.

The default value is not set.

Images of people in sunglasses cannot be best shots.•

Images of people in eyeglasses cannot be best shots.•

Images of people in any glasses cannot be best shots.•

implementation("ai.visionlabs.lunaid:glasses:X.X.X@aar")

lunaConfig = LunaConfig.create(
 glassesChecks = setOf(GlassesCheckType.GLASSES_CHECK_SUN,
GlassesCheckType.GLASSES_CHECK_DIOPTER)
)

Value Description

GlassesCheckType.GLASSES_CHECK_SUN Defines that images with people in sunglasses cannot be

best shots.

GlassesCheckType.GLASSES_CHECK_DIOPTER Defines that images with people in eyeglasses cannot be

best shots.

VisionLabs B.V. Page 32 of 39

5.1.6 Errors

The table below lists best shot errors:

Error Description

PrimaryFaceLostCritical The primary face that was detected in the video stream has been lost.

PrimaryFaceLost The primary face was not detected in the video stream or has been lost.

FaceLost Unable to detect a face in the video stream.

TooManyFaces The frame must contain only one face for LUNA ID POS to perform a series

of estimations, and then select the best shot.

FaceOutOfFrame A face is too close to the camera and does not fit the face recognition area.

FaceDetectSmall The size of the detected face does not correspond to the specified bounding

box size size.

BadHeadPose Head rotation angles are not between the minimal and maximum valid head

position values.

BadQuality The input image does not meet the AGS estimation threshold.

BlurredFace The input image does not meet the blurriness threshold.

TooDark The input image does not meet the darkness threshold.

TooMuchLight The input image does not meet the lightness threshold.

GlassesOn The person in the input image is wearing sunglasses.

OccludedFace The face is not properly visible in the input image.

BadEyesStatus The eye state estimation failed.

FaceWithMask The person in the input image is wearing a medical mask.

VisionLabs B.V. Page 33 of 39

5.2 OneShotLiveness

5.2.1 About OneShotLiveness estimation

OneShotLiveness is an algorithm for determining whether a person in one or more images is

"real" or a fraudster using a fake ID (printed face photo, video, paper, or 3D mask).

OneShotLiveness is used as a pre-check before performing face detection.

OneShotLiveness estimation types

With LUNA ID POS, you can perform the following types of OneShotLiveness estimation:

Image requirements

An image that LUNA ID takes as input must be a source image and meet the following

requirements:

OneShotLiveness thresholds

By default, two thresholds are used for OneShotLiveness estimation:

Online OneShotLiveness estimation

To perform Online OneShotLiveness estimation, LUNA ID sends a request to the LUNA

PLATFORM 5 /liveness endpoint. For more details about LUNA ID and LUNA PLATFORM 5

interaction, see the Interaction of LUNA ID with LUNA PLATFORM 5.

•

Offline OneShotLiveness estimation

To perform Offline OneShotLiveness estimation, you do not need to send requests to

LUNA PLATFORM 5. You can perform the estimation directly on your device.

•

Quality threshold•

Liveness threshold•

VisionLabs B.V. Page 34 of 39

QUALITY THRESHOLD

Quality threshold estimates the input image by the following parameters. The table below has

the default threshold values. These values are set to optimal:

LIVENESS THRESHOLD

The LunaConfig.livenessQuality parameter specifies the threshold lower which the system will

consider the result as a presentation attack.

For images received from mobile devices, the default liveness threshold value is 0.5. For

details, see Liveness threshold.

Number of best shots

You can specify a number of best shot to be collected for a OneShotLiveness estimation. To do

this, use the LunaConfig.bestShotsCount parameter.

The default value is 1.

Parameter Threshold Value

Blurriness blurThreshold 0.61

Darkness (underexposure) darknessThreshold 0.50

Lightness (overexposure) lightThreshold 0.57

Illumination illuminationThreshold 0.1

Specularity specularityThreshold 0.1

VisionLabs B.V. Page 35 of 39

https://docs.visionlabs.ai/luna/v.5.103.0/lp-distribution/administrator-manual/additional-information/#liveness-threshold

5.2.2 Performing Online OneShotLiveness estimation

You can automatically perform Online OneShotLiveness estimation by sending a request to

the LUNA PLATFORM 5 /liveness endpoint. The estimation allows you determine if the person

in the image is a living person or a photograph. You can then validate the received images

with LUNA PLATFORM 5.

To perform Online OneShotLiveness estimation:

1․ Specify the livenessType: LivenessType field in LunaConfig . The field accepts one of the

following values:

2․ Specify the required LUNA PLATFORM 5 server parameters in ApiHumanConfig .

The example below shows how to enable Online OneShotLiveness estimation:

Value Description

None Disables the estimation. The default value.

Online Enables the estimation by sending a request to the LUNA PLATFORM 5 /liveness

endpoint.

val apiConfig = ApiHumanConfig("http://luna-platform.com/api/6/")
 LunaID.init(
 ...
 apiHumanConfig = apiConfig,
 lunaConfig = LunaConfig.create(
 livenessType = LivenessType.Online,
),
)

VisionLabs B.V. Page 36 of 39

5.2.3 Performing Offline OneShotLiveness estimation

With LUNA ID POS, you can perform liveness estimation directly on your device. Unlike Online

OneShotLiveness estimation, which sends requests to the LUNA PLATFORM 5 /liveness

endpoint, Offline OneShotLiveness estimation operates locally, ensuring faster processing and

reduced dependency on backend services.

This feature allows you to determine whether the person in the image is a living individual or

a spoof (for example, a photograph or mask).

To perform Offline OneShotLiveness estimation:

1․ Add the required dependency.

Add the appropriate dependency to your build.gradle file based on your device's architecture.

This dependency includes the neural networks required for Offline OneShotLiveness

estimation.

2․ Specify the estimation type in LunaConfig :

3․ Specify the neural networks to be used for the estimation by using the

LunaConfig.livenessNetVersion parameter. This parameter is of type LivenessNetVersion and

supports two values:

implementation("ai.visionlabs.lunaid:oslm-arm:X.X.X@aar")

LunaConfig.create(
 livenessType = LivenessType.Offline
)

Value Description

LITE Default. Loads the neural network models:

oneshot_rgb_liveness_v12_model_4_arm.plan

oneshot_rgb_liveness_v12_model_5_arm.plan

MOBILE Loads only the oneshot_rgb_liveness_v12_model_6_arm.plan model.

Recommended for devices with lower performance.

•

•

VisionLabs B.V. Page 37 of 39

After changing the livenessNetVersion parameter, restart the final application for the

changes to take effect.

Logging

When configuring the livenessNetVersion parameter, you can now monitor which networks are

loaded directly from the logs:

Warning

LunaConfig.create(
 livenessType = LivenessType.Offline,
 livenessNetVersion = LivenessNetVersion.LITE
)

livenessNetVersion = 1 - The system loads: oneshot_rgb_liveness_v12_model_6_arm.plan•

livenessNetVersion = 2 - The system loads: oneshot_rgb_liveness_v12_model_4_arm.plan

and oneshot_rgb_liveness_v12_model_5_arm.plan

•

VisionLabs B.V. Page 38 of 39

5.2.4 Disabling OneShotLiveness estimation

If you want to skip a liveness estimation over the best shot, you can disable a

OneShotLiveness estimation.

To disable OneShotLiveness estimations, set the livenessType: LivenessType field to None in

LunaConfig .

If livenessType: LivenessType is not specified, OneShotLiveness estimations are disabled by

default.

The example below shows how to disable OneShotLiveness estimations:

val apiConfig = ApiHumanConfig("http://luna-platform.com/api/6/")
 LunaID.init(
 ...
 apiHumanConfig = apiConfig,
 lunaConfig = LunaConfig.create(
 livenessType = LivenessType.None,
),
)

VisionLabs B.V. Page 39 of 39

	VisionLabs LUNA ID
	1. Introduction
	2. General info
	2.1 Overview
	2.1.1 Key features

	2.2 System requirements
	2.2.1 Hardware requirements
	2.2.2 Software requirements

	2.3 Technical support and resources

	3. Licensing
	3.1 Activating the license
	3.2 License parameters

	4. Initial setup
	4.1 Step 1: Download LUNA ID POS
	4.2 Step 2: Configure repository
	4.3 Step 3: Provide user credentials
	4.4 Step 4: Specify dependencies
	4.5 Step 5: Initialize LUNA ID POS
	4.6 Step 6: Launch the camera
	4.7 Step 7: Get the best shot

	5. Working with LUNA ID POS
	5.1 Best shots
	5.1.1 About best shot estimations
	How it works
	Estimations
	NUMBER OF FACES IN THE FRAME
	AGS ESTIMATION
	HEAD POSE ESTIMATION
	IMAGE QUALITY ESTIMATION
	FACE DETECTION BOUNDING BOX SIZE
	FRAME EDGES OFFSET
	EYE STATE
	FACE OCCLUSION
	MEDICAL MASK ESTIMATION
	GLASSES ESTIMATION

	5.1.2 Getting the best shot
	Step 1: Start the camera
	Step 2: Get the list of best shots (optional)
	Step 3: Subscribe to the final best shot result
	Step 4: Handle best shot events
	Face recognition area
	Add a delay before starting face recognition
	Add a delay before getting the best shot

	5.1.3 Getting the best shot with an occluded face
	5.1.4 Getting the best shot with faces with closed eyes
	One closed eye
	Two closed eyes

	5.1.5 Getting the best shot with faces with occluded eyes
	5.1.6 Errors

	5.2 OneShotLiveness
	5.2.1 About OneShotLiveness estimation
	OneShotLiveness estimation types
	Image requirements
	OneShotLiveness thresholds
	QUALITY THRESHOLD
	LIVENESS THRESHOLD

	Number of best shots

	5.2.2 Performing Online OneShotLiveness estimation
	5.2.3 Performing Offline OneShotLiveness estimation
	Logging

	5.2.4 Disabling OneShotLiveness estimation

