VisionLabs

MACHINES CAN SEE

VisionLabs LUNA ID

v.1.20.0

Table of contents

1. Introduction

2. General information

2.1 Overview

2.1.1
2.1.2
2.1.3
2.1.4

Supported operating systems and programming languages

Use cases
LUNA ID features

Usage scenarios

2.2 Getting LUNA ID

2.2.1
2.2.2
2.2.3
2.2.4

Download LUNA ID
Distribution kit
Next steps

See also

2.3 What's new in LUNA ID v.1.20.0

2.3.1

In LUNA ID for Android

2.4 Version history

VisionLabs B.V.

24.1
2.4.2
2.4.3
2.4.4
2.4.5
2.4.6
2.4.7
2.4.8
2.4.9
2.4.10
2411
2.4.12
2.4.13

LUNA ID v.1.19.4
LUNA ID v.1.19.3
LUNA ID v.1.19.2
LUNA ID v.1.19.1
LUNA ID v.1.19.0
LUNA ID v.1.18.1
LUNA ID v.1.18.0
LUNA ID v.1.17.2
LUNA ID v.1.17.1
LUNA ID v.1.17.0
In LUNA ID for iOS
LUNA ID v.1.16.2
LUNA ID v.1.16.1

Page 2 of 270

11
15

15

15
15
16
19
21

21
21
25
25
26

26
27

27
27
27
28
28
29
30
31
31
31
32
32
32

VisionLabs B.V.

2.4.14
2.4.15
2.4.16
2.4.17
2.4.18
2.4.19
2.4.20
2421
2.4.22
2.4.23
2.4.24
2.4.25
2.4.26
2.4.27
2.4.28
2.4.29
2.4.30
2.4.31
2.4.32
2.4.33
2.4.34
2.4.35
2.4.36
2.4.37
2.4.38
2.4.39
2.4.40
2.4.41
2.4.42
2.4.43
2.4.44

LUNA ID v.1.16.0
LUNA ID v.1.15.0
LUNA ID v.1.14.2
LUNA ID v.1.14.1
LUNA ID v.1.14.0
In LUNA ID for iOS
LUNAID v. 1.13.3
LUNAID v. 1.13.2
LUNAID v.1.13.1
LUNAID v. 1.13.0
LUNAIDv.1.12.1
LUNAID v. 1.12.0
LUNAID v. 1.11.5
LUNAIDv.1.11.4
LUNAID v. 1.11.3
LUNAID v. 1.11.2
LUNAIDv.1.11.1
LUNAID v. 1.11.0
LUNAID v. 1.10.1
LUNAID v. 1.10.0
LUNAID v. 1.9.7
LUNAID v. 1.9.6
LUNAID v. 1.9.5
LUNAIDv.1.94
LUNAID v. 1.9.3
LUNAID v. 1.9.2
LUNAIDv.1.9.1
LUNAID v. 1.9.0
LUNAID v. 1.8.7
LUNAID v. 1.8.6
LUNAID v. 1.8.5

Page 3 of 270

33
35
36
36
36
37
38
38
38
38
39
39
40
40
40
40
40
40
41
41
41
41
42
42
42
42
42
43
43
43
43

VisionLabs B.V.

2.4.45
2.4.46
2.4.47
2.4.48
2.4.49
2.4.50
2.4.51
2.4.52
2.4.53
2.4.54
2.4.55
2.4.56
2.4.57
2.4.58
2.4.59
2.4.60
2.4.61
2.4.62
2.4.63
2.4.64
2.4.65
2.4.66
2.4.67
2.4.68
2.4.69
2.4.70
2.4.71
2.4.72
2.4.73
2.4.74
2.4.75

LUNAIDv.1.84
LUNAID v. 1.8.3
LUNAID v. 1.8.2
LUNAIDv.1.8.1
LUNA ID v. 1.8.0
LUNAID v.1.7.9
LUNAID v.1.7.8
LUNAID v. 1.7.7
LUNAID v.1.7.6
LUNAID v. 1.7.5
LUNAIDv.1.7.4
LUNAID v. 1.7.3
LUNAID v.1.7.2
LUNAIDv.1.7.1
LUNAID v. 1.7.0
LUNAID v.1.6.1
LUNAID v. 1.6.0
LUNAID v. 1.5.1
LUNAID v. 1.5.0
LUNAID v. 1.4.5
LUNAIDv.1.4.4
LUNAID v.1.4.3
LUNAID v.1.4.2
LUNAIDv.14.1
LUNAIDv.1.4.0
LUNA ID v.1.3.3
LUNA ID v.1.3.2
LUNAID v.1.3.1
LUNAID v. 1.3.0
LUNAIDv. 1.2.0-1.2.4
LUNAID v.1.1.0

Page 4 of 270

43
43
44
44
44
44
44
44
45
45
45
45
46
46
46
47
47
47
48
48
48
48
48
48
49
49
49
49
49
50
50

2.5 System and hardware requirements

2.5.1 Information about third-party software

2.6 Getting LUNA ID version

2.6.1 In LUNA ID for Android
2.6.2 In LUNA ID for iOS
2.7 LUNA ID size

2.7.1 Total size
2.7.2 Measure LUNA ID size
2.7.3 Reduce your app size
2.8 Neural networks used in LUNA ID
2.9 Glossary

2.10 Technical Support and resources
2.10.1 Contact Technical Support

2.10.2 More resources

3. Licensing
3.1 Activating the license

3.1.1 In LUNA ID for Android
3.1.2 In LUNA ID for iOS
3.2 Updating the license
3.2.1 In LUNA ID for Android
3.2.2 In LUNA ID for iOS
3.3 Verifying license validity
3.3.1 Default method
3.3.2 Customized method
3.4 License expiration handling
3.4.1 LicenseExpired event

3.4.2 FeatureExpired error

3.5 License parameters

VisionLabs B.V.

Page 5 of 270

51

51
52

52
52
53

53
54
62
63
67
68

68
68
69

69

69
75
77

77
78
80

80
80
82

82
82
83

3.6

Resetting the license cache

3.6.1 In LUNA ID for Android
3.6.2 In LUNA ID for iOS

3.7 Working with status code 1025

4. APl documentation

4.1 API documentation

4.2 Changelog

4.2.1 API changes made in LUNA ID for Android v.1.5.0 in comparison to v.
1.4.x

4.2.2 APl changes made in LUNA ID for Android v.1.5.1 in comparison to v.
1.5.0

4.2.3 API changes made in LUNA ID for Android v.1.6.0 in comparison to v.
151

4.2.4 APl changes made in LUNA ID for Android v.1.8.4 in comparison to v.
1.6.0

4.2.5 API changes made in LUNA ID for Android v.1.9.4 in comparison to v.
1.8.4

4.2.6 API changes made in LUNA ID for Android v.1.16.0 in comparison to
earlier versions

4.2.7 API changes made in LUNA ID for Android v.1.16.1 in comparison to
earlier versions

5. Integration guide

51

5.2

VisionLabs B.V.

Integration guide for LUNA ID for Android

5.1.1 Prerequisites

5.1.2 Step 1: Configure repository
5.1.3 Step 2: Set up credentials
5.1.4 Step 3: Add dependencies
5.1.5 Step 4: Add permissions
5.1.6 Step 5: Initialize LUNA ID
5.1.7 Step 6: Launch the camera
Integration guide for LUNA ID for iOS

5.2.1 Step 1: Project setup

Page 6 of 270

85

85
85
87
88

88
89

89

90

91

93

94

95

105
106

106

106
106
107
107
108
108
108
111

111

5.2.2
5.2.3

6. Initial setup

Step 2: ViewController setup

Step 3: Ul customization

6.1 |Initial setup of LUNA ID for Android

6.1.1
6.1.2
6.1.3
6.1.4
6.1.5
6.1.6

Step 1. Get the .aar file

Step 2. Provide your user credentials

Step 3. Add the .aar file as a dependency

Step 4. Initialize LUNA ID and activate the license
Step 5. Call LUNA ID functions

Examples

6.2 |Initial setup of LUNA ID for iOS

6.2.1
6.2.2
6.2.3
6.2.4

Step 1. Add XCFrameworks
Step 2. Enable OneShotLiveness estimation
Step 3. Specify license data

Step 4. Create a face recognition screen in your app

7. Working with LUNA ID

7.1 Best shots

7.1.1
7.1.2
7.1.3
7.1.4
7.1.5
7.1.6
7.1.7

Best shot estimations

Getting the best shot

Getting the best shot with an occluded face
Getting the best shot with faces with closed eyes
Getting the best shot with faces with occluded eyes
Using aggregation

Best shot error notifications

7.2 Face tracking

7.2.1 Tracking a face identity

7.2.2

Fixing a face in the frame

7.3 OneShotLiveness

7.3.1
7.3.2

VisionLabs B.V.

About OneShotLiveness estimation

Performing Online OneShotLiveness estimation

Page 7 of 270

111
112
114

114

114
114
115
116
119
119
120

120
120
121
121
122

122

122
137
141
143
145
147
150
154

154
155
156

156
159

7.3.3 Performing Offline OneShotLiveness estimation
7.3.4 Disabling OneShotLiveness estimation

7.4 Dynamic Liveness

7.4.1 About Dynamic Liveness estimation

7.4.2 Performing Dynamic Liveness estimation

7.4.3 Getting Dynamic Liveness estimation results

7.4.4 Interception of Dynamic Liveness interaction events
7.4.5 Customizing Dynamic Liveness notifications

7.5 Video streams

7.5.1 About working with video streams

7.5.2 Recording a video stream

7.5.3 Recording a video stream only with the face detected
7.5.4 Video stream settings

7.6 Logs

7.6.1 Getting logs from mobile devices
7.6.2 Saving logs on an end user’s device
7.6.3 Status codes and errors
7.6.4 Device fingerprinting
7.6.5 Enabling low-level logging

7.7 Using descriptors

7.7.1 In LUNA ID for Android
7.7.2 In LUNA ID for iOS

7.8 Using commands

7.8.1 StartBestShotSearchCommand
7.8.2 CloseCameraCommand
7.8.3 Usage
7.8.4 Example
7.9 Using OCR

7.9.1 Key considerations

7.9.2 Step 1: Add the OCR dependency

VisionLabs B.V.

Page 8 of 270

161
163
165

165
168
174
176
177
178

178
180
182
184
191

191
199
201
207
208
209

209
212
213

213
213
213
214
215

215
215

7.9.3 Step 2: Activate the OCR license 215

7.9.4 Step 3: Initialize OCR 216
7.9.5 Step 4: Start the OCR 216
7.9.6 Step 5: Handle results 217

8. Configuring LUNA ID 218
8.1 Best shot properties 218
8.1.1 In LUNA ID for Android 218
8.1.2 In LUNA ID for iOS 223

8.2 Changing detection settings 227
8.2.1 In LUNA ID for Android 227
8.2.2 In LUNA ID for iOS 227

8.3 Bulk editing LUNA ID parameters 228
8.3.1 Configuration file 228
8.3.2 Configuration parameters 231

8.4 Setting up timeouts 236
8.4.1 Face fixing timeout 236
8.4.2 Best shot timeouts 236
8.4.3 Dynamic Liveness estimation timeouts 237

8.5 Configuring the camera 238
8.5.1 Camera parameters 238
8.5.2 Default configuration 241
8.5.3 Pre-initializing camera availability 242
8.5.4 Launching the camera with dynamic selection 243

9. Interacting with LUNA PLATFORM 245
9.1 Interaction of LUNA ID with LUNA PLATFORM 5 245
9.2 Usage scenario: Complete face recognition cycle 248
9.2.1 Scenario description 248
9.2.2 Scenario realization stages 248
9.2.3 Prerequisites 248
9.2.4 Scenario realization steps 249

VisionLabs B.V. Page 9 of 270

9.3 Specifying LUNA PLATFORM URL and handler IDs 251

9.3.1 In LUNA ID for Android 251
9.3.2 In LUNA ID for iOS 252

9.4 Sending multiple frames for estimation aggregation to the backend 253
9.4.1 In LUNA ID for Android 253
9.4.2 In LUNA ID for iOS 255

10. Best practices 256
10.1 Security options 256
10.1.1 Virtual camera usage check 256
10.1.2 Jailbreak check 257

10.2 Reducing your app size by excluding .plan files 258
10.2.1 In LUNA ID for Android 258
10.2.2 In LUNA ID for iOS 258

10.3 Getting LUNA ID status after initialization 259
10.4 Optimizing camera initialization with Camera Limiter 260
10.4.1 Implementation 260

10.5 Customizing Ul with LUNA ID 261
10.5.1 Customizing face recognition area borders 261
10.5.2 Customizing Ul with LUNA ID for iOS 265

10.6 Performing 1:N face matching on device 267
10.6.1 Overview 267
10.6.2 Function specification 267
10.6.3 Usage example 269

11. Documentation download page 270

VisionLabs B.V. Page 10 of 270

1. Introduction

LUNA ID is a comprehensive suite of development tools designed for face recognition and
analysis in mobile applications. It includes libraries and neural networks that enable advanced
functionalities such as face detection, recognition, and Liveness estimation. By embedding

VisionLabs B.V. Page 11 of 270

LUNA ID into your mobile application, you can leverage its powerful face recognition
capabilities, enhance security measures, and provide seamless user experiences.

VisionLabs B.V. Page 12 of 270

o Start here

* Licensing

Initial setup .

Initial setup ¢

« Latest version

What's new

LUNA ID for Android

LUNA ID for iOS

e Technical support

Support & resources

Examples .

Examples ¢

Download docs ',

. APl docs

API Reference

LunaCamera Reference ¢

LunaCore Reference

LunaWeb Reference ¢

= Getting the best shot

Best shot estimations

Getting the best shot

Best shot properties

o Protection & security

VisionLabs B.V. Page 13 of 270

https://github.com/VisionLabs/LunaID-Android-Examples
https://github.com/VisionLabs/LunaID-iOS-Examples
http://git.visionlabs.ru/65apps/lunaid/luna-id-android/-/blob/develop/API_DOCUMENTATION.md

* Virtual camera usage
* Jailbreak

* Face identity tracking

Liveness

e Offline OneShotLiveness
¢ Online OneShotLiveness

* Dynamic Liveness

+ Interaction with LUNA PLATFORM

* Overview
* Usage scenario

* Configuration

« More

* Working with video streams
* Customizing Ul .

* Customizing Ul

VisionLabs B.V. Page 14 of 270

2. General information

2.1 Overview

LUNA ID is a set of development tools for face recognition and analysis in mobile applications.
It includes libraries and neural networks that enable advanced functionalities such as face
detection and recognition, image quality estimations, and liveness estimations to prevent
spoofing attacks. Additionally, LUNA ID supports OCR (Optical Character Recognition) for
document scanning and recognition.

By integrating LUNA ID into your mobile app, you can use its key features and integrate with
LUNA PLATFORM 5 for enhanced capabilities, including OneShotLiveness estimation and
descriptor matching. For details, see Interaction of LUNA ID with LUNA PLATFORM 5.

2.1.1 Supported operating systems and programming languages
LUNA ID is compatible with the Android and iOS operating systems.
The supported programming languages are:

 Kotlin for Android app development

* Swift for iOS app development

For details, see System and hardware requirements.

2.1.2 Use cases

Embedding LUNA ID in your mobile app allows you to implement the following use cases:

* Client enrollment
Flow: Registration
Process: Creating a new user account with face recognition and optional document
recognition.

* User authentication
Flow: Verification (1:1)
Process: Verifying a user during login against authorized biometric data. The use case is
available after registration. You can use OCR in this use case.

* User recognition
Flow: Identification (1:N)
Process: Comparing a detected face against all faces in a database to recognize the
user. You can use OCR in this use case.

VisionLabs B.V. Page 15 of 270

The diagram below shows these processes, the LUNA ID key features required to implement
them, and the sequence in which we recommend using them. Depending on your business
logic, you may or may not use certain LUNA ID features.

User authentication

User recognition

Client enroliment

Security Video — > Face Getting the Spoofing Identification Verification
checks processing substitution best shot attack (1:N) (1:1)
and face protection checks
recognition
() () Offine f)
Virtual camera Video session Face identity Required OneShotLiveness ‘ Performed in LUNA PLATFORM ‘
usage recording tracking estimations - <
— - o Online ‘ LUNA PLATFORM pre-configuration ‘
—— —— OneShotLiveness L required)
) Video session Face fixing in a Optional
Jailbreak h N .))
recording settings frame estimations Dynamic Liveness Descriptor matching
p. 7 . 4
Legend
Features for the Client enrollment use case The step is performed in LUNA ID The step is performed in LUNA PLATFORM
Features for the User recognition use case Antifraud estimations The estimation is performed LUNA PLATFORM

Features for the User authentication use case

LUNA ID use cases and features

2.1.3 LUNA ID features
Security checks

* Virtual camera usage check .
Detects if the device's camera has been replaced with a virtual one. The check is only
available in LUNA ID for Android.

* Jailbreak check
Determines if the device has been jailbroken.

Video stream processing and face recognition

LUNA ID analyzes each frame of the video stream captured by your device's camera to detect
faces. To proceed with further estimations and get the best shot, each frame must contain
exactly one face.

VisionLabs B.V. Page 16 of 270

The following video recording options are available::

* Record entire video sessions
Capturing the full video stream without filtering frames.
* Record only when a face is detected

Capturing video sessions only if at least one frame contains a detected face.

You can customize various settings for the recorded video:

Setting Platform
Video stream quality -
Timeout before starting recording "

Video stream duration - <
Custom frame resolution -
Autofocus =
Compression -

Protection against face substitution

LUNA ID provides robust mechanisms to prevent face substitution by tracking the identity of a
detected face throughout the entire video session. This ensures that the system consistently
identifies the same person, mitigating potential security risks and guaranteeing the
authenticity of the detected face.

Key features:

* Face identity tracking
Enables you to continuously monitor the detected face in the video stream to confirm it
belongs to a single individual.

* Event handling .
Enables you to implement an event listener that triggers when a face appears in the
frame. This allows for immediate processing or additional checks once the face is
detected.

* Timeout configuration
Enables you to set a timeout to react to the appearance of a face in the frame. This
ensures timely processing and enhances the overall security of the recognition process.

VisionLabs B.V. Page 17 of 270

Getting the best shot

Estimation

Number of faces in the

frame

AGS

Head pose

Image quality

Face detection
bounding box size

Frame edges offset
Eye state

Glasses

Face occlusion

Medical mask

To get the best shot, LUNA ID performs a number of estimations.

Required Description
. Ensures there is only one face in the frame.
. Evaluates face quality using a normalized score (0-1).

Higher scores indicate better quality.

. Measures head rotation angles (pitch, roll, yaw) in 3D
space.

. Assesses criteria like blurriness and exposure.

. Verifies the size of the detected face relative to the
frame.

. Checks the distance of the face from the frame edges.

Detects whether eyes are open or closed.
Identifies if the eyes are occluded by glasses.
Determines whether the face is occluded by an object.

Determines if the face is covered by a medical mask.

Protection against spoofing attacks

LUNA ID can perform a number of estimations to determine whether the person in the frame
is real or a fraudster using a fake ID (a printed photo of a face, a video, or a 3D mask).

Estimation

Offline
OneShotLiveness

Online
OneShotLiveness

Dynamic Liveness

VisionLabs B.V.

Description

Allows you to perform the OneShotLiveness estimation directly on your
device.

Sends images with the detected face to LUNA PLATFORM 5 to perform the
estimation on the backend. For details, see Interaction of LUNA ID with LUNA
PLATFORM 5.

Allows you to determine whether a person is alive by interacting with the
camera and is performed on your device without any backend processing.

Page 18 of 270

Identification and verification

With LUNA ID, you can send source images to LUNA PLATFORM 5 for descriptor matching on
the backend. It allows you to perform the following tasks:

* 1:N identification
Verifies whether the face in an image matches a person in the client list.

* 1:1 verification
Matches the detected face with the face that corresponds to the client ID in a global
database.

For details, see Interaction of LUNA ID with LUNA PLATFORM 5.

OCR

LUNA ID supports OCR (Optical Character Recognition) for document scanning and
recognition. For details, see Using OCR.

2.1.4 Usage scenarios

This section describes sample LUNA ID usage scenarios.

These are only examples. You need to change them according to your business logic.

Scenario 1: Getting images
SCENARIO DESCRIPTION

You want to get a photo with a person's face, and then implement your own business logic for
processing the image.

SCENARIO REALIZATION STAGES
To apply this scenario in your mobile app, follow these stages:

* Getting the best shot with the detected face by performing best shot estimations.

* Getting a warp or source image with the face on a mobile device to transfer it to an
external system.

SCENARIO REALIZATION STEPS
The scenario has the following steps:

1. Video stream processing and face detection.

VisionLabs B.V. Page 19 of 270

2. Getting the best shot based on the standard best shot estimations. In some cases, the best
shot is an image that also successfully passed OneShotLiveness estimation.

3. Getting a warp.
4. Saving the warp on the device. You can then send it to a middleware for further processing.

The diagram below shows the steps of this scenario:

Mobile device -

Getting a video

L ctream for processing >

] Best shot estimations,
‘ Getting the best shot

3 Creating a warp

4 Saving the war
< g P

Scenario realization steps

Scenario 2: Complete face recognition cycle
SCENARIO DESCRIPTION

You want to run a full face recognition cycle using frontend and backend. This scenarios
involves interaction of LUNA ID with LUNA PLATFORM 5.

SCENARIO REALIZATION STAGES
Applying a full face recognition cycle in your mobile app proceeds in stages:

* Getting the best shot with the detected face and performing the Online
OneShotLiveness estimation.

* |ldentifying that the face in the image belongs to a person from a client list (1:N
identification).

¢ Matching the detected face with the face corresponding to the client ID in a global
database (1:1 verification).

SCENARIO REALIZATION STEPS

For details on the scenario implementation and scenario realization steps, see Usage
scenario.

VisionLabs B.V. Page 20 of 270

2.2 Getting LUNA ID
2.2.1 Download LUNA ID

To start using LUNA ID, download it from our release portal. You can find the list of
downloadable artifacts in the Distribution kit section.

Contact your manager to get your login and password to download LUNA ID.

2.2.2 Distribution kit

LUNA ID is distributed as a set of modular archives that provide the necessary libraries, neural
networks, and frameworks to embed its functionality into mobile applications. Below is a
detailed description of the distribution kits for LUNA ID for Android and iOS.

VisionLabs B.V. Page 21 of 270

LUNA ID for Android

The following .aar files are available for integrating LUNA ID into Android applications. Each
archive serves a specific purpose and includes the required dependencies.

VisionLabs B.V. Page 22 of 270

Archive

lunaid-
core-v.
1.20.0.aar

lunaid-
common-
arm-v.
1.20.0.aar

lunaid-
oslm-arm-
V.
1.20.0.aar

lunaid-
security-
arm-v.
1.20.0.aar

lunaid-
mask-
arm-v.
1.20.0.aar

lunaid-
cnn60-
arm-v.
1.20.0.aar

VisionLabs B.V.

Required

Description

Contains the
minimum set of
files required to
embed LUNA ID in
your application.

Contains the
minimum set of
libraries and
neural networks
required for
embedding LUNA
ID. For details, see
an example
below.

Contains neural
networks used for
Offline
OneShotLiveness
estimation.

Contains a
functionality for
checking virtual
camera usage.

Contains a neural
network used to
define face
occlusion with a
medical mask.

Contains a neural
network used for
descriptor
generation from
an image. For
details, see Using
descriptors.

Neural networks

None

ags_v3_arm.plan
eye_status_estimation_arm.plan
eyes_estimation_flwr8_arm.plan
face_occlusion_v1l_arm.plan

FaceDet v2_first_arm.plan

FaceDet v2_second_arm.plan

FaceDet v2_third_arm.plan

headpose v3_arm.plan
model_subjective_quality vl _arm.plan
model_subjective_quality v2_arm.plan
sdc_rgb2gray_arm.plan

sdc_vl _arm.plan
viTracker_detection_arm.plan
viTracker_template_arm.plan
viTracker_update_arm.plan

oneshot _rgb_liveness v12 model 4 arm.plan
oneshot _rgb_liveness v12 model 5 arm.plan
oneshot _rgb_liveness v12 model 6 arm.plan

None

mask_clf_v3_arm.plan

cnn60m_arm.plan

Page 23 of 270

Archive Required

lunaid-
glasses-
arm-v.
1.20.0.aar

lunaid-
ocr-v.
1.20.0.aar

EXAMPLE

Description

Contains a neural
network used to
define eye
occlusion with
glasses. For
details, see
Getting the best
shot with faces
with occluded
eyes.

Contains the OCR
functionality.

Neural networks

glasses_estimation_v2_arm.plan

None

The example below shows how to specify the core and common required dependencies:

implementation("ai.visionlabs.lunaid:core:X.X.X@aar")
implementation("ai.visionlabs.lunaid:common-arm:X.X.X@aar")

The example below shows how to specify all the dependencies:

implementation
implementation
implementation
implementation
implementation
implementation
implementation
implementation

A~ N A~~~ A~~~

For a detailed example, see CameraExample.

VisionLabs B.V.

"ai.visionlabs.lunaid:core:X.X.X@aar")
"ai.visionlabs.lunaid:common-arm:X. X. X@aar")
"ai.visionlabs.lunaid:security-arm:X.X.X@aar")
"ai.visionlabs.lunaid:cnn60-arm:X.X.X@aar")
"ai.visionlabs.lunaid:mask-arm:X.X. X@aar")
"ai.visionlabs.lunaid:osIm-arm:X.X.X@aar")
ai.visionlabs.lunaid:glasses-arm:X.X.X@aar")
"ai.company.product:ocr:X.X.X@aar")

Page 24 of 270

https://github.com/VisionLabs/LunaID-Android-Examples/blob/master/CameraExample/build.gradle.kts

LUNA ID for iOS

LUNA ID for iOS provides the following archives containing the necessary frameworks for
integration. Download the required frameworks and proceed with the integration.

Archive , Description

flower Contains flower_v.5.31.0.xcframework.

tsdk Contains tsdk_v.5.31.0.xcframework.

fsdk Contains fsdk_v.5.31.0.xcframework.
LunaCore Contains LunaCore_v.1.19.3.

LunaCamera Contains LunaCamera_v.1.19.3.

LunaWeb Contains LunaWeb_v.1.19.3.

CryptoSwift Contains CryptoSwift.xcframework.
CheckJailBreakDevice Contains CheckjailBreakDevice.xcframework.

2.2.3 Next steps
Perform initial setup of LUNA ID to embed it in your application. For details, see:

* Initial setup of LUNA ID for Android
* Initial setup of LUNA ID for iOS

2.2.4 See also

* System and hardware requirements
Describes the hardware and software requirements your computer must meet so that
you can use LUNA ID.

* Licensing
Describes how to activate your LUNA ID license.

VisionLabs B.V. Page 25 of 270

https://download.visionlabs.ru/releases/flower_v.5.31.1.xcframework.zip
https://download.visionlabs.ru/releases/tsdk_v.5.31.1.xcframework.zip
https://download.visionlabs.ru/releases/fsdk_v.5.31.1.xcframework.zip
https://download.visionlabs.ru/releases/LunaCore_v.1.19.3.zip
https://download.visionlabs.ru/releases/LunaCamera_v.1.19.3.zip
https://download.visionlabs.ru/releases/LunaWeb_v.1.19.3.zip
https://download.visionlabs.ru/releases/CryptoSwift.xcframework.zip
https://download.visionlabs.ru/releases/CheckJailBreakDevice.xcframework.zip

2.3 What's new in LUNA ID v.1.20.0

Below are the changes made to LUNA ID v.1.20.0 relative to the previous version of the
product. For information on the changes made to other versions, see Version History.

2.3.1 In LUNA ID for Android

New features and improvements

Updated the public API.

Implemented OCR support.

Implemented aggregation in TrackEngine.

* Implemented internal improvements for error handling.

Enhanced the head rotation logic for Dynamic Liveness estimation.

Enhanced license management and error handling:

* Added the LicenseExpired event which is emitted whenever a license validity issue
occurs.

* Added detailed information about which licensed features have expired to logs.
* Implemented license expiration timestamps in logs.

* Implemented a new function to retrieve the expiration date of any licensed feature:

fun getExpirationLicenseDateAsDate(feature: LicenseFeature): java.util.Date?

Important notice

* Changed the default value of the checkSecurity parameter to false . If your
application requires security validations, you must explicitly enable this feature.

VisionLabs B.V. Page 26 of 270

2.4 Version history
2.4.1 LUNAID v.1.19.4
In LUNA ID for Android

* Enhanced virtual camera detection by adding support for identifying virtual cameras on
cloud (remote) devices.

2.4.2 LUNA ID v.1.19.3
In LUNA ID for Android

* Implemented support of VisionLabs LUNA SDK v.5.31.3.
* Added tags to improve log readability.

* Improved the license activation mechanism so you do not need to restart the
application after a failed initial license activation due to being offline.

e Expanded virtual camera block list.
In LUNA ID for iOS

e Improved the error handling system.

* Implemented iPad support. Now, if during an active camera session the device's
orientation changes relative to the one set when the session was started, LUNA ID
automatically terminates the session and returns the

LMCameraError.deviceOrientationChangedError error.

2.4.3 LUNA ID v.1.19.2
In LUNA ID for Android

* Implemented the useDescriptors parameter to control whether descriptor-related
functionality is enabled.

In LUNA ID for iOS

* Implemented low-level logging.

* Implemented internal license handling improvements.

VisionLabs B.V. Page 27 of 270

2.4.4 LUNA ID v.1.19.1

In LUNA ID for Android

Implemented support of VisionLabs LUNA SDK v.5.31.1.

Improved logging of license initialization errors.

Added logging of device information during license activation.

Improved the license activation process. Now, LUNA ID automatically clears the local
cache and retries the activation if an error occurs. If the retry succeeds, activation
proceeds seamlessly. If it fails, the original error is returned, indicating an invalid or
expired license.

* Added the LunalD.getFingerprint() function that returns a unique string identifier
representing the device's fingerprint.

¢ Made the security module an optional one so you can exclude it from your project if you
do not use virtual camera detection.

In LUNA ID for iOS

* Implemented support of VisionLabs LUNA SDK v.5.31.1.

* Added a new method to the LCLunalDServiceProtocol protocol for comparing two Ulimage
objects:

* (BOOL)match:(Ulimage *)firstimage second:(Ullmage *)secondlmage;

* Implemented support for landscape mode.

2.4.5 LUNA ID v.1.19.0
In LUNA ID for Android

* Implemented support of VisionLabs LUNA SDK v.5.31.0.
* Improved the logging mechanism:
* Implemented an opportunity to save logs in the .logcat format.

* Implemented an opportunity to forcibly clear the license cash and update the
license.

* Enhanced logging for OneShotLiveness mode switching and network selection.
* Improved initEngine logging.
* Implemented tablets support.

* Updated NDK to version 28.2.13676358, enabling support for 16 KB memory pages.

VisionLabs B.V. Page 28 of 270

* Renamed the LivenessNetVersion enum from V3 AND V4 and V4 to LITE and MOBILE,
respectively. The new names correspond to following neural networks:

* MOBILE uses oneshot_rgb_liveness v11l model 6.
* LITE uses oneshot_rgb_liveness vll model 4 and vl1l_model_5.

* Removed the following unused neural network files from the distribution package to
optimize its size:

* nir_liveness_v3_model_2_arm.plan
* nir_liveness v2 model 1 arm.plan
* mouth_estimator_v4_arm.plan

* depth_liveness v2_arm.plan

* Added the CameraPermissionDenied event. This event is triggered and sent through the
event stream when the user denies camera access permission.

* Implemented a number of API changes:
* Removed the acceptOccludedMouth and faceOcclusionEstimatorEnabled parameters.

* Added the acceptMask parameter. It controls whether faces wearing medical masks
are allowed in best shot selection. By default, the parameter is set to true.

* Added the FacewithMask error to DetectionError. This error is triggered when
acceptMask = false and a face is detected wearing a medical mask.

* Added a configurable timeout parameter to the initEngine() function. The parameter
defaults to 30 seconds.

In LUNA ID for iOS

* Implemented support of VisionLabs LUNA SDK v.5.31.0.
* Implemented logging to a file.

* Implemented passing LCLicenseConfig directly to the built-in camera Ul via a new
licenseConfig parameter in LMCameraBuilder.viewController() .

* Removed mouth_estimation_v4_arm.plan from the distribution package to optimize its
size.

2.4.6 LUNA ID v.1.18.1
In LUNA ID for iOS

Resolved a critical issue where LUNA ID would crash due to unexpected changes in the device
fingerprint.

VisionLabs B.V. Page 29 of 270

2.4.7 LUNA ID v.1.18.0
In LUNA ID for Android

* Implemented support of VisionLabs LUNA SDK v.5.30.2.
* Declared deprecated cnn59m_arm.plan.
* Implemented support for the YUV image format for analysis on older devices.
* Expanded functionality of LUNA ID for Android Example with the following widgets:
* Override Start - Enables delayed frame pushing for more controlled processing.

* Override Close - Allows delayed camera closure, providing flexibility in session
management.

* Find bestshot with frame - Opens the camera with borders for better
visualization during the best shot detection process.

* Find bestshot and record video - Opens the camera with video recording
enabled, allowing simultaneous best shot detection and video capture.

* Find bestshot with commands - Opens the camera while considering the states
of the Override Start and Override Close checkboxes, enabling fine-tuned control
over the camera session.

* Removed unused parameters from the API:
* LunaConfig.onlineLivenessErrorTimeout
* ShowCameraParams.usePrimaryFaceTracking
* ShowCameraParams.livenessType

* Implemented an opportunity to optimize camera search time. For details, see
Optimizing camera initialization with Camera Limiter.

* Improved the license activation mechanism. For details, see Activating the license.

* Starting from this version, CPU plan files have been removed from the distribution kit for
LUNA ID for Android.

» Starting with the next release, the NDK version will be updated to version 28.

In LUNA ID for iOS

* Implemented support of VisionLabs LUNA SDK v.5.30.2.
* Updated the public API.

VisionLabs B.V. Page 30 of 270

2.4.8 LUNAID v.1.17.2
In LUNA ID for Android
* Fixed issues related to incorrect face position recognition in the frame when using the

withDp parameter.

* Fixed issues affecting the performance of the Offline OneShotLiveness estimation.

In LUNA ID for iOS

* Introduced a new configuration class, LWConfig, in the Lunaweb module:

* Moved all fields from LCLunaConfiguration that are required for LUNA PLATFORM
interaction into the LwcConfig class.

* Renamed the IlunaPlatformToken field to platformToken .
* All other fields retain the same purpose as in LCLunaConfiguration .
* Implemented an opportunity to update the license without reissuing your application.

* Fixed miscellaneous bugs.

2.4.9 LUNAID v.1.17.1
In LUNA ID for Android

* Fixed miscellaneous bugs.

In LUNA ID for iOS

* Fixed a bug related to camera initialization.

* Fixed an issue specific to Redmi 5 devices.

2.4.10 LUNA ID v.1.17.0
In LUNA ID for Android

* Implemented an opportunity to update the license without reissuing your application.

* Improved face occlusion estimation. Now the estimation detects occlusions not only in
the lower part of the face, but also in the upper part.

* Implemented support of VisionLabs LUNA SDK v.5.26.0.

* Updated minFaceSideToMinScreenSide behavior. The aspect ratio of the detected face is
now calculated relative to the dimensions of the image displayed in the preview.

* Removed cnn52m_arm.plan and cnn52m_cpu.plan from the distribution kit.

VisionLabs B.V. Page 31 of 270

Fixed a bug related to slow camera opening.

Fixed an issue with incorrect detection coordinates.

Fixed a bug related to incorrect operation of the face detector on Android NDK 23.

two faces in a frame.
e Fixed an issue related to license activation.

* Fixed a bug where the blink interaction would happen automatically without the user
actually doing it. This allowed for a better shot without having to go through the
interaction.

2.4.11 In LUNA ID for iOS

* Improved face occlusion estimation. Now the estimation detects occlusions not only in
the lower part of the face, but also in the upper part.

* Implemented support of VisionLabs LUNA SDK v.5.26.0.

* Fixed miscellaneous bugs.

2.4.12 LUNA ID v.1.16.2
In LUNA ID for Android

* Fixed an issue where the face detector would stop working at certain resolutions on
Samsung Galaxy S23 and S20 FE devices.

2.4.13 LUNA ID v.1.16.1
In LUNA ID for Android

* Improved event utilization. All events are now utilized effectively, except for
UnknownError . Previously in version 1.16.0 , events such as InteractionStarted ,
InteractionFailed , Started , FaceFound, and UnknownError were not fully implemented or
ignored. This update ensures broader coverage of event types to improve system
responsiveness and debugging capabilities.

* Reintroduced the following commands:
* CloseCameraCommand - Allows closing the camera session programmatically.
* StartBestShotSearchCommand - Initiates the best shot search process explicitly.

In LUNA ID for iOS

* Implemented an opportunity to change minDetSize .

VisionLabs B.V. Page 32 of 270

Fixed a bug where duplicate frames and interaction videos were created after detecting

2.4.14 LUNA ID v.1.16.0
In LUNA ID for Android

* Implemented a number of API changes:
* Improved event handling and added the following event subscription flows:
* XML Fragment Implementation
* Jetpack Compose Implementation
* Shared ViewModel

* Removed the statusBarColorHex parameter from ShowCameraParams .

Moved videoQuality from ShowCameraParams to LunaConfig and renamed it to
LunaVideoQuality .

* Replaced customFrameResolution with preferredAnalysisFrameWwidth and
preferredAnalysisFrameHeight . For details, see Custom frame resolution.

Added the aspectRatioStrategy parameter to explicitly set the screen aspect ratio.
* Renamed InitBorderDistanceStrategy to BorderDistanceStrategy .

* Renamed LunalD.activateLicense() to LunalD.initEngine() .

* Improved best shot retrieval.

* Implemented face occlusion estimation. The estimation determines whether the lower
part of the face in a frame is covered by an object.

* Declared deprecated the mouth estimation. The estimation will be removed from LUNA
ID in the next release.

* Implemented overall performance and stabilization enhancements.

* Implemented an opportunity to select versions of .plan files to be used in the Offline
OneShotLiveness estimation.

* Implemented an opportunity to initialize a license via LunaConfig.licenseParams .

* Implemented a fallback mechanism. Now, for unsupported resolutions or configurations,
the system falls back to the nearest available option.

* Replaced the detectFrameSize parameter with faceFramePerScreen . The faceFramePerScreen
parameter, unlike detectFrameSize , is suitable for all screens and is not tied to pixels.

* Removed model_subjective_quality vl _arm.plan and
model_subjective_quality vl cpu.plan from the distribution kit.

* Optimized the primary face identity tracking feature. Tracking is now based on
TrackEngine.

* Fixed a bug that led to the camera hanging.

VisionLabs B.V. Page 33 of 270

* Fixed a bug that caused LUNA ID to incorrectly identify frames containing only half of a
face as valid best shots.

* Fixed a bug due to which interactions started without generating a best shot upon
reopening the camera.

* Fixed a bug due to which the camera would unexpectedly close immediately after being
opened in detection and interaction modes.

* Fixed a bug related to occasional faults of the mouth estimation.

* Fixed a bug related to Dynamic Liveness interaction messages.

* Fixed a bug related to Dynamic Liveness interactions via head rotation.

* Fixed performance slowdown on Samsung Al13 devices during application usage.

* Fixed an issue where the StateFinished event was not consistently returned via both
LunalD.allEvents() and LunalD.finishStates() .

* Fixed a bug related to the timeout logic during Dynamic Liveness interactions.
* Fixed a bug related to Offline OneShotLiveness estimation.

* Fixed an issue where the camera closed unexpectedly during when performing the blink
interaction.

* Fixed issues related to displaying user messages.

* Fixed an issue where the "Primary face lost" error occurred when wearing sunglasses
during face tracking.

* Fixed an issue where interactions were not recognized after the second face left the
camera frame.

* Fixed a bug related to a memory leak when reopening the camera.
* Fixed a bug related to the medical mask estimation.

* Fixed a project build error related to the absence of the _emutls_get address symbol in
the libFaceEngineSDK.so library.

* Fixed an issue where the camera would close due to a timeout after losing face
detection.

¢ Fixed an issue related to border distances.
¢ Fixed issues related to the size and duration of the recorded video.

* Fixed an issue where the best shot was incorrectly captured with two faces in the frame
when primary face tracking was enabled and interactions were disabled.

VisionLabs B.V. Page 34 of 270

In LUNA ID for iOS
* Implemented face occlusion estimation.The estimation determines whether the lower
part of the face in a frame is covered by an object.

* Declared deprecated the mouth estimation. The estimation will be removed from LUNA
ID in the next release.

* Implemented overall performance and stabilization enhancements.
* Implemented Swift Package Manager distribution support.

* Reduced the LUNA ID size to 77 MB by removing the following .plan files from the
distribution kit:

* model_subjective_quality_ vl arm.plan
* eye status_estimation_flwr_arm.plan
* Fixed a bug that caused a significant delay in the camera screen initialization.

* Fixed an issue that previously required the mandatory use of the cnn60m_arm.plan file,
regardless of the specific application requirements.

* Fixed a bug where the session would not end if the mouth estimation was enabled.
* Fixed bugs that caused occasional crashes of LUNA ID.

* Fixed a bug related to the timeout logic not properly accounting for the presence of
multiple faces in the frame.

* Fixed an issue related to license activation.
* Fixed an issue that caused best shot retrieval slowdown.
* Fixed an issue where the resulting video file was not saved.

* Fixed a bug related to OCR.

2.4.15 LUNA ID v.1.15.0
In LUNA ID for Android

* Implemented an opportunity to receive frames of Dynamic Liveness estimation
interactions. You can then integrate these interaction frames into your final app reports.
For details, see Getting Dynamic Liveness estimation results.

* Added parameters eyesAggregationEnabled and glassesAggregationEnabled to disable and
enable aggregation of eye status and glasses estimations, respectively. For details,
please refer to the LUNA ID documentation.

* Enhanced logging. Logs now show the start and end of AGS, medical mask, and glasses
estimations.

VisionLabs B.V. Page 35 of 270

Fixed an issue related to the virtual camera usage check.

Fixed a bug due to which LUNA ID was prematurely throwing the FacelLost error when
exiting a frame without waiting for the set capture time.

Fixed a bug that lead to the camera hanging.

Fixed an issue related to duplicate class names between obfuscated libraries in LUNA ID
v.1.14.0.

Fixed a bug related to Dynamic Liveness interactions via head rotation.

In LUNA ID for iOS

* Enhanced the aggregation mechanism:
» Added aggregations for mouth and medical mask estimations.
* Implemented a concurrent run of all aggregations instead of a sequential one.

* Implemented an opportunity to receive frames of Dynamic Liveness estimation
interactions. You can then integrate these interaction frames into your final app reports.
For details, see Getting Dynamic Liveness estimation results.

* Fixed a bug that used a significant delay in the camera screen initialization.

* Fixed a bug that caused incorrect messages when performing mouth and medical mask
estimations.

* Fixed a bug related to Dynamic Liveness interaction messages.
* Fixed issues that caused occasional LUNA ID crashes.

* Fixed a bug related to the aggregation mechanism.

2.4.16 LUNA ID v.1.14.2

In LUNA ID for iOS, fixed a bug related to license activation.

2.4.17 LUNA ID v.1.14.1

In LUNA ID for iOS, fixed a bug due to which a video was recorded with two faces in the frame.

2.4.18 LUNA ID v.1.14.0
In LUNA ID for Android

* Implemented support of VisionLabs LUNA SDK v.5.25.0. This reduced the minimum size
of LUNA ID to 202 MB.

* Implemented the mouth estimation. For details, see Mouth estimation.

VisionLabs B.V. Page 36 of 270

* Implemented an opportunity to send multiple frames for aggregation to the backend.
For details, see Sending multiple frames for estimation aggregation to the backend.

* Moved the functionality for checking virtual camera usage to a separate module. The
module is mandatory and you need to specify this module as a dependency. For details,
see Virtual camera usage check.

* Fixed a bug related to the Dynamic Liveness interaction via blinking.

* Fixed a bug related to successful performing of Dynamic Liveness interactions with the
occluded lower part of the face.

* Fixed a bug related to performing Dynamic Liveness interactions with two faces in the
frame.

* Fixed a bug due to which it was possible to get the best shot after passing the Online
OneShotLiveness estimation by photo.

* Fixed a bug due to which a recorded video was damaged and could not be played if a
person in the video-stream is wearing a medical mask.

* Fixed issues related to Android NDK 23.

2.4.19 In LUNA ID for iOS
* Implemented support of VisionLabs LUNA SDK v.5.25.0. This reduced the minimum size
of LUNA ID to 116.1 MB.
* Implemented the mouth estimation. For details, For details, see Mouth estimation.

* Implemented an opportunity to send multiple frames for aggregation to the backend.
For details, see Sending multiple frames for estimation aggregation to the backend.

* Implemented an opportunity to customize the Ul of your final app. For details, see
Customizing Ul with LUNA ID for iOS.

* Fixed a bug that caused occasional crashes when the Dynamic Liveness interaction
timeout had expired and lead to the camera hanging.

* Fixed an issue related to getting the best shot with the occluded lower part of the face.

* Fixed an issue related to license activation when transferring the client app to a new
device.

* Fixed an issue due to which a video session stopped when tracking the primary face
identity.

* Fixed a bug due to which a video was recorded with two faces in the frame.
* Fixed a bug related to slow camera opening.

* Fixed bugs related to biometric identification.

VisionLabs B.V. Page 37 of 270

* Fixed bugs related to cases when there are two faces in the frame and one of them
leaves the frame.

* Fixed a bug that occurred during the Dynamic Liveness interaction when a part of the
face was covered by a dark object.

2.4.20 LUNAID v. 1.13.3

In LUNA ID for Android, fixed an issue related to displaying errors.

2.4.21 LUNAID v. 1.13.2

In LUNA ID for Android, fixed a bug due to which a recorded video was damaged and could
not be opened and the video duration did not correspond to the specified settings.

2.4.22 LUNAID v. 1.13.1

In LUNA ID for Android, fixed an issue where a face would not be detected after successfully
getting the best shot several times.

2.4.23 LUNAID v. 1.13.0

* Implemented LUNA ID version encryption. For details, please refer to the LUNA ID
documentation.

* In LUNA ID for iOS, implemented an opportunity to add a timeout after which the video
session will stop if a face has not appeared in the frame. For details, please refer to the
LUNA ID documentation.

* In LUNA ID for iOS, implemented a check that determines whether the device has been
jailbroken. For details, please refer to the LUNA ID documentation.

* In LUNA ID for iOS, improved a license migration mechanism. For details, please refer to
the LUNA ID documentation.

In LUNA ID for iOS, fixed a number of issues on iOS 12.

In LUNA ID for Android, values for the detectFrameSize parameter should now be
specified in dp. For details, please refer to the LUNA ID documentation.

In LUNA ID for Android, implemented an opportunity to disable check for virtual camera
usage.

In LUNA ID for Android, implemented an opportunity to enable and disable aggregation.

In LUNA ID for Android, changed the default threshold value of the AGS estimation to 0,2
to minimize the number of errors associated with low image quality.

VisionLabs B.V. Page 38 of 270

* In LUNA ID for Android, added the LunalD.Event.FaceFound event that is triggered when
a face is detected in the frame.

* In LUNA ID for Android, implemented an opportunity to get the current LUNA ID status at
any time after initialization. For details, please refer to the LUNA ID documentation.

* In LUNA ID for Android, fixed a bug related to closing the camera on Samsung Al3.
* In LUNA ID for Android, fixed an issue related to memory leaks on PAX AF6.

* In LUNA ID for Android, fixed a bug related to the Offline OneShotLiveness estimation on
PAX AF6.

* In LUNA ID for Android, fixed an issue related to occasional crashes when attempting to
invoke virtual method 'boolean android.view.View.post(java.lang.Runnable)' on a null
object reference.

2.4.24 LUNAID v. 1.12.1

In LUNA ID for Android, fixed an issue related to the integration of LUNA ID into the client SDK.

2.4.25 LUNAID v. 1.12.0
* Optimized the primary face identity tracking feature. Tracking is now based on
TrackEngine.
* In LUNA ID for iOS, changed the default AGS estimation threshold value to 0.2.

* Implemented a new logic of presenting error notifications when getting the best shot.
For details, please refer to the LUNA ID documentation.

* In LUNA ID for Android, implemented an opportunity to control the duration of the
recorded video. Now, you can set the number of milliseconds during which the video
recording should take place. For details, please refer to the LUNA ID documentation.

* In LUNA ID for iOS, fixed a bug related to recording a video where a face appears in the
frame a few seconds after the session starts.

* In LUNA ID for iOS, fixed a bug related to application crashes when the tracking face
identity feature was enabled.

* In LUNA ID for iOS, fixed an issue with video duration settings.

* In LUNA ID for Android, fixed an issue related to checking the eye status during Dynamic
Liveness interactions.

* In LUNA ID for Android, fixed a bug that caused wrong face detection when opening a
camera to perform Dynamic Liveness estimation interactions.

* In LUNA ID for Android, fixed a bug caused face detection outside the face detection
bounding box

VisionLabs B.V. Page 39 of 270

2.4.26 LUNAID v. 1.11.5

In LUNA ID for iOS, fixed a bug related to application crashes when the tracking face identity
feature was disabled.

2.4.27 LUNAID v. 1.11.4

In LUNA ID for iOS, fixed an issue related to recorded video duration settings.

2.4.28 LUNAID v. 1.11.3
* In LUNA ID for iOS, optimized the logic for selecting the best shot with aggregation
enabled for eye status and glasses neural networks.

* In LUNA ID for iOS, fixed issues related to primary face tracking.

2.4.29 LUNAID v. 1.11.2

In LUNA ID for iOS, fixed an issue related to the customization of Dynamic Liveness
interaction texts.

2.4.30 LUNAID v. 1.11.1

In LUNA ID for iOS, fixed an issue related to memory leak on iPhone 8 and X.

2.4.31 LUNAID v. 1.11.0

* Implemented an opportunity to use aggregation to correctly determine eye statuses and
the presence of glasses to get the best shot. This eliminates occasional neural network
faults which eliminates the incorrect operation of neural networks. For details, Using
aggregation.

* In LUNA ID for iOS, implemented the LCLunaConfiguration.resetLicenseCache() method
for clearing license cache when updating an app. This helped eliminate crashes in client
apps after updating on a number of devices. For details, see Catching an application
update and resetting the license cache.

* In LUNA ID for iOS, implemented an opportunity to control the duration of the recorded
video. Now you can set the number of seconds during which the video recording should
take place. For details, see Limit video stream duration.

* In LUNA ID for Android, implemented an opportunity to set a video stream quality. For
details, see Set video stream quality.

* In LUNA ID for iOS, fixed a bug which affected the accuracy of estimating a single eye's
status.

VisionLabs B.V. Page 40 of 270

* In LUNA ID for iOS, fixed a bug that caused crashes due to license naming.
* In LUNA ID for Android, fixed an issue related to primary face tracking.

* In LUNA ID for Android, improved the work of the Dynamic Liveness interaction via
blinking.

2.4.32 LUNAID v. 1.10.1

In LUNA ID for iOS, fixed an issue related to the Apple privacy manifest.

2.4.33 LUNAID v. 1.10.0
* Implemented support of new neural networks that provide quicker and more precise
glasses and OneShotLiveness estimations:
* glasses_estimation_v2_*.plan
* oneshot_rgb_liveness v7_model 3 *.plan
* oneshot_rgb_liveness v7_model 4 *.plan

* Implemented error messages that inform about LUNA ID initialization and license
activation failures. For details, see Status codes and errors.

* In LUNA ID for iOS, implemented the LCLunaConfiguration.plist configuration file that
allows you to bulk edit various LUNA ID parameters in one place. For details, see Bulk
editing LUNA ID parameters.

2.4.34 LUNA ID v. 1.9.7

* In LUNA ID for Android, improved the work of border distance initialization strategies.

* In LUNA ID for Android, fixed an issue related to the QUERY ALL PACKAGES permission.
Now Google will not ask for information about checking the installed applications, since
this permission has been removed.

2.4.35 LUNA ID v. 1.9.6

* In LUNA ID for Android, implemented new ways of initializing border distances to specify
a face recognition area. Now, you can do this with the WithDp and WithViewld classes.
For details, see Face recognition area.

* In LUNA ID for Android, implemented the usePrimaryFaceTracking and
faceSimilarityThreshold parameters. Now, you can explicitly configure tracking face
identity. For details, see Tracking face identity.

VisionLabs B.V. Page 41 of 270

2.4.36 LUNAID v. 1.9.5

* In LUNA ID for Android, optimized overall and image processing performance.

* In LUNA ID for Android, implemented new error descriptions that are returned when
quality of an image is low. Now, they are more detailed.

* In LUNA ID for Android, changed the AGS threshold value for best shot estimation. Now,
it defaults to 0.5.

* In LUNA ID for Android, implemented an opportunity to set a status bar color so it
matches an overlay color.

* In LUNA ID for Android, fixed a bug that caused the check for the presence of multiple
faces in a frame to work incorrectly.

* In LUNA ID for Android, fixed a bug that prevented LUNA ID background processes from
stopping and led to rapid battery drain. This problem was most common on Google Pixel
devices.

* In LUNA ID for Android, fixed a bug related to performing Dynamic Liveness interactions
in either sun or eyeglasses.

* In LUNA ID for Android, fixed bugs related to the PrimaryFaceLost and TooManyFaces
errors.

2.4.37 LUNAID v. 1.9.4

In LUNA ID for Android, implemented new ways of initializing border distances to specify a
face recognition area. Now, you can do this with the Default and WithCustomView classes. For
details, see Face recognition area.

2.4.38 LUNAID v. 1.9.3

* In LUNA ID for Android, optimized Dynamic Liveness interactions so they work faster.

* In LUNA ID for Android, fixed bugs that caused occasional LUNA ID crashes on Samsung
S21 FE 5G and vivo V23E.

2.4.39 LUNA ID v. 1.9.2

In LUNA ID for Android, fixed a bug related to best shot mirroring in POS terminals.

2.4.40 LUNAID v. 1.9.1

* In LUNA ID for Android, fixed bugs related to frames with multiple faces.
* In LUNA ID for Android, fixed a bug related to the glasses estimation.

VisionLabs B.V. Page 42 of 270

* In LUNA ID for Android, fixed a bug related to checking a face presence in a frame.

2.4.41 LUNAID v. 1.9.0
* In LUNA ID for Android, implemented estimations that allow you to detect the use of a
virtual camera instead of the device’s native camera.

* In LUNA ID for iOS, fixed a bug related to Offline OneShotLiveness.

2.4.42 LUNA ID v. 1.8.7

In LUNA ID for iOS, fixed a video compression issue relevant to iOS 16 or higher.

2.4.43 LUNAID v. 1.8.6

In LUNA ID for iOS, fixed an issue related to a memory leak that causes occasional crashes of
LUNA ID and device slowdowns

2.4.44 LUNAID v. 1.8.5
* In LUNA ID for Android, implemented automatic switching to the device main camera, if
the front camera was not detected.

* In LUNA ID for iOS, fixed an issue related to a memory leak that causes occasional
crashes of LUNA ID and device slowdowns.

2.4.45 LUNAID V. 1.8.4

* In LUNA ID for Android, implemented the glassesChecks optional parameter. Now, you
can define the type of glasses in the image and whether the image can be the best
shot.

e In LUNA ID for Android, implemented the borderDistance optional parameter that allows
you to specify a face recognition area for any device screens, including foldable screens
as in Samsung Galaxy Z Fold.

* In LUNA ID for iOS, fixed a bug related to the face identity feature.

2.4.46 LUNAID v. 1.8.3

* In LUNA ID for Android, extended a glasses estimation. Now, images with eyeglasses
can be considered to be best shots. For details, see Glasses estimation.

* In LUNA ID for iOS, fixed a bug related to the LCLunaConfiguration.trackFaceldentity property.

* In LUNA ID for iOS, fixed a bug related to Dynamic Liveness interaction timeouts.

VisionLabs B.V. Page 43 of 270

2.4.47 LUNAID v. 1.8.2

* In LUNA ID for Android, separated the x86 and ARM files at the dependency package
level. Now, to work with LUNA ID, you need to specify the mandatory core and common
dependencies, where common indicates the required architecture. For details, see
Getting LUNA ID.

¢ |In LUNA ID for iOS, reduced resolution of a recorded stream video file. Now, it is
180x320 pixels.

* In LUNA ID for iOS, fixed a bug related to timeout between Dynamic Liveness
interactions.
2.4.48 LUNAID v. 1.8.1

* In LUNA ID for iOS, implemented an optional glasses estimation. It allows you to exclude
images with sunglasses from best shot candidates. For details, see Getting the best shot
with faces with occluded eyes.

* In LUNA ID for Android, fixed a bug related to the acceptGlasses and acceptEyesclosed
parameters.

2.4.49 LUNAID v. 1.8.0

Enhanced security and implemented protection against changing faces during user
identification. For details, see Tracking face identity.

2.4.50 LUNAID v. 1.7.9

* In LUNA ID for iOS, implemented a possibility to add delays between Dynamic Liveness
interactions. Now, if you specify a 2-second’s delay, 2 seconds will pass after the first
interaction ends and the next one starts.

* In LUNA ID for iOS, implemented statuses that show the current Dynamic Liveness
interaction states — start, in progress, and end.

2.4.51 LUNAID v. 1.7.8

In LUNA ID for iOS, fixed an aspect ratio for low resolution video files.

2.4.52 LUNAID v. 1.7.7

In LUNA ID for iOS, reduced a video file size for iOS 15 and lower.

VisionLabs B.V. Page 44 of 270

2.4.53 LUNAID v. 1.7.6

* In LUNA ID for Android, implemented an opportunity to add delays between Dynamic
Liveness interactions. Now, if you specify a 2000-millisecond’s delay, 2 seconds will
pass after the first interaction ends and the next one starts. For details, see Set a
timeout between interactions.

* In LUNA ID for Android, implemented statuses that show the current Dynamic Liveness
interaction states — start and end. For details, see View interaction statuses.

* In LUNA ID for Android, implemented the acceptEyesClosed optional parameter that
allows you to get the best shot if an image has closed eyes. For details, see Getting the
best shot with faces with closed eyes.

* In LUNA ID for Android, implemented a glasses estimation.
* In LUNA ID for Android, fixed a bug related to a face detection bounding box size. Now,
the detected face must properly fit the box size.

* In LUNA ID for Android, fixed bugs related to head pose and blinking Dynamic Liveness
interactions.

* In LUNA ID for Android, fixed a bug related to Offline OneShotLiveness.

* In LUNA ID for iOS, fixed a bug related to the multiple call of the bestShot function.

2.4.54 LUNAID v. 1.7.5

* In LUNA ID for Android, implemented the LunaConfig.livenessFormat and
LunaConfig.compressionQuality parameters that you can use to reduce the size of the
image to be sent for Online OneShotLiveness estimation.

* In LUNA ID for iOS, fixed a bug related to the LCLunaConfiguration::faceTime property.

2.4.55 LUNAID V. 1.7.4

* In LUNA ID for Android, fixed a bug due to which no notifications were sent when a face
was out of the face detection bounding box.

* In LUNA ID for iOS, fixed a bug related to the LCLunaConfiguration::faceTime property.

2.4.56 LUNAID v. 1.7.3

* In LUNA ID for Android, implemented the LunalD.foundFaceDelayMs parameter that allows
you to define for how long a user's face should be placed in the face detection bounding
box before the best shot is taken.

* In LUNA ID for Android, fixed a bug that caused occasional LUNA ID crashes.

VisionLabs B.V. Page 45 of 270

* In LUNA ID for iOS, fixed a bug related to the LCLunaConfiguration::faceTime property.

2.4.57 LUNAID v. 1.7.2

* In LUNA ID for Android, implemented API changes that introduce the
StartBestShotSearchCommand and CloseCameraCommand commands for camera
management. For details on changes, see Using commands.

* In LUNA ID for iOS, changed the license activation process. Now, you need to activate
the license explicitly in your final app. For details, see Licensing.

* In LUNA ID for iOS, implemented the LCLunaConfiguration::faceTime property that allows
you to define for how long a user's face should be placed in the face detection bounding
box before the best shot is taken.

2.4.58 LUNAID v. 1.7.1

* In LUNA ID for Android, changed the license activation process. Now, you need to
activate the license explicitly by calling the activateLicense() method. This allows you to
make sure that the activation has passed successfully before you start a camera.

* In LUNA ID for iOS, you can now define your own sequence of Dynamic Liveness
interactions, as well as a number of interactions, interaction timeouts, and head rotation
angles.

* In LUNA ID for Android, fixed an issue related to the face detection bounding box. Now,
the bounding box size is taken into account when performing Dynamic Liveness user
interactions.

* In LUNA ID for Android, fixed an issue related to the use of the
mask_clf \<version>_\<device>.plan files. Now, you do not need to specify the
dependencies if you are not going to estimate face occlusion.

* In LUNA ID for iOS, fixed a bug related to detection of occluded faces.

2.4.59 LUNAID v. 1.7.0

* Implemented a new type of OneShotLiveness estimation - Offline OneShotLiveness
estimation. Now, you can perform the estimation directly on a mobile device without
sending the request to LUNA PLATFORM.

* Implemented optional delay before the best shot search begins after camera start up.
* Implemented optional face occlusion estimation for further best shot selection.

* Implemented a parameter that allows you to perform blinking with one eye, rather than
two, for further best shot selection.

VisionLabs B.V. Page 46 of 270

* In LUNA ID for Android, implemented a parameter that allows to use images of a person
with one eye for further best shot selection.

* In LUNA ID for Android, implemented a possibility to specify a face recognition area for
further best shot selection. This allows you to use your own Ul and customize face
detection bounding box size.

¢ In LUNA ID for Android, fixed an issue when no notifications were sent on start of a
OneShotLiveness estimation.

¢ In LUNA ID for Android, fixed an issue with the Online OneShotLiveness estimation when
the request to the /liveness endpoint was sent multiple times instead of one.

2.4.60 LUNA ID v. 1.6.1

In LUNA ID for iOS, fixed an issue related to building of fat binary files in Xcode 15.

2.4.61 LUNAID v. 1.6.0

* Implemented support of VisionLabs LUNA SDK v. 5.16.0.
* Implemented support of CNN 52 descriptors.

* In LUNA ID for Android, implemented API changes. For details on changes API changes
made in LUNA ID for Android v.1.6.0 in comparison to v.1.5.1.

* In LUNA ID for Android, reduced the distribution package size to 96 MB. Optional
packages for CNN 52 and CNN 59 descriptors will add 25 MB and 44 MB to a client's app
respectively.

¢ In LUNA ID for iOS, the detected face is now being tracked all the time the camera is on.

* In LUNA ID for iOS, you can now specify a number of Dynamic Liveness interactions to
be performed, as well as timeouts for every interaction.
2.4.62 LUNAID v. 1.5.1
Implemented the following changes in LUNA ID for Android:

* Fixed a regression bug related to OneShotLiveness estimation introduced in LUNA ID v.
1.5.0.

* Changed API for setting up OneShotLiveness estimation. For details on changes, see API
changes made in LUNA ID for Android v.1.5.1 in comparison to v.1.5.0.

VisionLabs B.V. Page 47 of 270

2.4.63 LUNAID v. 1.5.0

* Implemented new Dynamic Liveness interactions in addition to blinking. Now, a user
can be asked to:

* Rotate the head to the right.
* Rotate the head to the left.
* Pitch the head up.

* Pitch the head down.

* In LUNA ID for Android, implemented API changes. For details on changes, see API
changes made in LUNA ID for Android v.1.5.0 in comparison to v.1.4.x.

2.4.64 LUNAID v. 1.4.5

In LUNA ID for Android, fixed a regression bug. An occasional crash happened due to an
interaction flow bug even when interaction was disabled.

2.4.65 LUNAID V. 1.4.4

In LUNA ID for Android, fixed an issue with a delay in the start of displaying the face detection
bounding box.

2.4.66 LUNAIDv. 1.4.3
Implemented the following bug fixes in LUNA ID for Android:

Fixed hanging-up during face detection on some Xiaomi devices.

Fixed occasional crashes on face detection start up.

2.4.67 LUNAID v. 1.4.2

In LUNA ID for Android, fixed occasional LUNA ID crashes.

In LUNA ID for iOS, removed the appearance of a progress indicator on the device screen
after turning on the front camera.

2.4.68 LUNAID v. 1.4.1

In LUNA ID for Android, fixed LUNA ID crash on some Xiaomi devices. The problem was due
to a bug in MIUI.

In LUNA ID for iOS, fixed an issue due to which the best shot could not be gotten and the
face detection bounding box did not appear. The issue occurred on iOS 15 and earlier.

VisionLabs B.V. Page 48 of 270

2.4.69 LUNAIDvV. 1.4.0
Implemented recording of a video stream only with a detected face. Now, you can record
either full sessions or only those in which a face has been detected in at least one frame.
Expanded notification customization options.
In LUNA ID for Android, added interception of Dynamic Liveness interaction events.

In LUNA ID for Android, you can now enable Dynamic Liveness estimation for each best
shot detection session by using LunalD.showCamera() instead of LunalD.init().

In LUNA ID for Android, starting from this version, LunalD.showCamera() accepts
ShowCameraParams with all available parameters.

2.4.70 LUNA ID v.1.3.3

Implemented optional saving of logs on an end user’s device in LUNA ID for Android.

2.4.71 LUNA ID v.1.3.2

Now, you can initialize LUNA ID only once during your app lifecycle in LUNA ID for Android.

2.4.72 LUNA ID v.1.3.1

In LUNA ID for iOS, implemented disabling of OneShotLiveness estimation.

In LUNA ID for Android, fixed an aspect ratio of a recorded video stream.

2.4.73 LUNAID v. 1.3.0

Video recording. The first iteration of the feature implies storing videos on a client’s side.

Account ID. The feature provides an opportunity to add tokens for end user sessions when
sending requests to LUNA PLATFORM 5.

Support of ARM simulators (only in LUNA ID for iOS).

Support of Android SDK 21. Prior to this, the minimum supported version was 23.

VisionLabs B.V. Page 49 of 270

2.4.74 LUNAID v. 1.2.0-1.2.4
Both platforms
* License update fix. From now on a license will be updated automatically after replacing

ProductID and EID in license.conf and releasing an updated application.

* Support of optional interaction (a request to blink) for liveness in accordance with the
requirements by the National Bank of the Republic of Kazakhstan.

* Support of optional descriptor generation on devices.
LUNA ID for Android

* Fix for an optional liveness check when getting the best shot.
» Refactoring of camera in order to make it independent of the calling code lifecycle.
* Fix of a crash when building apk from console.
LUNA ID for iOS
* Improved SDK size: the size of models for neural networks has been reduced almost
twice. Now it requires 85 MB.

* Fix for the display of multiple faces notification in Ul.

* Fix of a crash when using the caching mechanism.

2.4.75 LUNAID v. 1.1.0

* Update of C++ SDK up to 5.9.1.
* Eyes status check.

¢ Customizable detection screen (a client can select color and thickness of a detection
frame, background, fonts, add custom notification texts for users, etc.)

* Document recognition functionality by OCR provider Regula.

* Improved size of LUNA ID for Android - now it requires around 30 MB for the main ARM
platforms.

VisionLabs B.V. Page 50 of 270

2.5 System and hardware requirements

To use LUNA ID, the following system and hardware requirements must be met:

Requirement Android ioS

OS version 5.0 or later 13 or later

CPU architecture armo64-v8a, armeabi-v7a armoe4
Developments tools Android SDK 21 XCode 13.2 or later
Free RAM 400 MB or more 400 MB or more
Camera resolution 1280x720 pixels 1280x720 pixels

2.5.1 Information about third-party software
LUNA SDK
LUNA ID is based on LUNA SDK:

¢ LUNA ID for Android uses LUNA SDK v.5.31.3.
¢ LUNA ID for iOS uses LUNA SDK v.5.31.1.

VisionLabs B.V. Page 51 of 270

2.6 Getting LUNA ID version

To ensure more reliable version identification, the LUNA ID version is transmitted as the
SHA256 hash.

2.6.1 In LUNA ID for Android

To get the LUNA ID version, call the LunalD.getVersion() method. For example:

val version = LunalD.getVersion()
printin("version: $version")

The method transmits the LUNA ID version in encrypted form when interacting with a server

or other system components where authentication or verification of the LUNA ID version is
required.

2.6.2 In LUNA ID for iOS

To get the LUNA ID version, call the LCLunaConfiguration::lunalDSDKVersion() method.

VisionLabs B.V. Page 52 of 270

2.7 LUNA ID size

2.7.1 Total size

The maximum size of LUNA ID that includes all the dependencies is:

e LUNA ID for Android - 63,192 MB

* LUNA ID for iOS - 116,1 MB

This size is the sum of the sizes of the required dependencies and neural networks used in
LUNA ID. Knowing this information is crucial for understanding how each component
influences the overall functionality and performance of LUNA ID.

The tables below provide the sizes of required dependencies, in MB.

IN LUNA ID FOR ANDROID

.S0 set .SO

FaceEngine libFaceEngineSDK.so
libMatchingKernel.so

Flower libflower.so

TrackEngine libvlTracker.so

libTrackEngineSDK.so

IN LUNA ID FOR I0S

Dependency
fsdk

Flower

tsdk
LunaCamera
LunaCore
LunaWEB

CheckJailBreakDevice

VisionLabs B.V.

Size

125.68 MB

9.29 MB

3.1 MB

720.68 KB

554.97 KB

823.21 KB

101 KB

arm64-v8a, MB

4
0,0151
Total: 4,0151

2,6

1,5
1
Total: 2,5

Total: 9,1151

armeabi-v7a, MB

3,5
0,0033
Total: 3,5033

2,4

1,2
0,86
Total: 2,06

Total: 7,9633

Page 53 of 270

The table below provides the sizes that .plan files add to LUNA ID. For details about each
.plan file and a functionality it covers, see Neural networks used in LUNA ID.

.plan file (0 1 Size, MB Required
ags_v3_arm.plan < - 0,62 .
cnn60m_arm.plan € - 18,54

eye status_estimation_arm.plan " - 0,26 P
eyes_estimation_flwr8_arm.plan ‘ - 0,94 v
face_occlusion_v1l_arm.plan ‘ - 0,17

FaceDet v2_first_arm.plan ‘ - 0,01 .
FaceDet v2_second_arm.plan Py - 0,11 .
FaceDet _v2_third_arm.plan < - 1,64 .
gaze v2_arm.plan < - 0,91
glasses_estimation_v2_arm.plan P - 0,72
headpose_v3_arm.plan " - 0,28 .
mask_clf_v3_arm-int8.plan ‘ - 2,64
model_subjective_quality vl arm.plan ‘ - 0,05 P
model_subjective_quality v2_arm.plan ‘ - 0,38 .
mouth_estimation_v4_arm.plan Py 1,56
oneshot_rgb_liveness v12_model_4_arm.plan < - 4

oneshot _rgb_liveness v12 model 5 arm.plan < - 4

oneshot _rgb_liveness v12 _model 6 _arm.plan € - 4,64
sdc_rgb2gray_arm.plan " - 0.002
sdc_v1l_arm.plan p - 0.006
viTracker_detection_arm.plan ‘ - 0,61 »
viTracker_template_arm.plan ‘ - 0,57 .
viTracker_update_arm.plan Py - 0,13 .

2.7.2 Measure LUNA ID size

You can measure the size that LUNA ID adds to your app.

VisionLabs B.V. Page 54 of 270

In LUNA ID for Android

1. Update build files to build separate .apk files for different platforms:

* In the build.gradle.kts file:

android {

splits {
abi {
isEnable = true
reset()
include("armeabi-v7a", "arm64-v8a")
isUniversalApk = false

* In the build.dragle file:
android {

splits {
abi {
enable true
reset()
include "armeabi-v7a", "arm64-v8a"
universalApk false
}
}

2. In Android Studio, run the Analyze APK utility.

VisionLabs B.V.

Page 55 of 270

3. Open the build platfrom-specific .apk file (for example, armeabi-v7a) and see the size of the
following files:

* assets/data* folder

e lib/{platform}/libTrackEngineSDK.so

* lib/{platform}/libBestShotMobile.so

* lib/{platform}/libflower.so

¢ lib/{platform}/libMatchingKernel.s

* lib/{platform}/libFaceEngineSDK.so

* lib/{platform}/libwrapper.so

* lib/{platform}/libc++_shared.so

IMPORTANT NOTES

* Any other files are not parts of LUNA ID and are added by other dependencies of your
app.

* In the Analyze APK utility, there should be only one platform in the /ib folder (for
example, armeabi-v7a, arm64-v8a or any another). If there is more than one platform in
this folder, then you are looking at a universal .apk file that includes all platforms. Go
back a step and rebuild the app with splits.abi enabled.

In LUNA ID for iOS
1. Open your project with added frameworks in Xcode.

2. Go to Product > Archive.

VisionLabs B.V. Page 56 of 270

@ Xcode File Edit View Find Navigate Editor Debug Source Control Window Help

®@ @® P W A FaceEnginelosExample) /~ Generic iOSj;J
Y
Runtime ['
> |i=r, FaceEnginelosExample project 1 issue [} PROJECT E
p /- . FaceEnginelosExample 2 issues ' l’g] FaceEnginelosExa
TARGETS |
ﬁFaceEng'neIos

Run #R | FaceEnginelc
Test #U

Profile 3l General Signing & C
Analyze {+3¥#B

Build For >
Perform Action »
Build #¥B
Clean Build Folder {r3K
Stop af.

Scheme »
Destination >
Test Plan >

Create Bot...

!

Archiving

3. Click the Distribute App button after archiving finishes.

Crashes

Energy

Metrics

Creation Date

20 Apr 2020, 15:50

B FaceEnginelosExample

FaceEnginelosE...

LivenessEnginel...

v Version Archive Information

11.2 (23)
FaceEnginelosExample
20 Apr 2020, 15:50

B

Validate App

Details
Version 1.1.2 (23)
Identifier ru.visionlabs.FaceEnginelos...
Type iOS App Archive
Team VIZHNLABS, 000

Download Debug Symbols

Description

1 archive

Distribute App

4. Select a distribution method. For example, Development.

VisionLabs B.V.

Page 57 of 270

o i it Blsber e S

formation
Select a method of distribution: | ——
elosExam
15:50
(") App Store Connect }
Distribute on TestFlight and the App Store te App
() Ad Hoc
Install on designated devices
(") Enterprise)
R S S labs.FaceE|
Distribute to your organizatior
Archive
© Development ABS, 000
Distribute to members of your team
bug Symbc
Cancel Previous ;
Method of distribution
5. Select development distribution options.
Development distribution options:
App Thinning: one S| 3
Additional Options: Strip Swift symbols
Reduce app size by stripping symbols from Swift

standard libraries

[1 Include manifest for over-the-air installation

Users can download your app using Safari

~ Cancel Previous

Development distribution options

VisionLabs B.V. Page 58 of 270

6. Select a device for distribution creation. For example, All compatible device variants.

Development distribution options:

App Thinning v None '
Additional Options BRG] 1 o] CN6 W CERVETIET S

iPad (5th generation)

iPad (6th generation)

iPad (7th generation)

iPad Air

iPad Air (3rd generation)

iPad Air 2

iPad Pro (10.5-inch)

? iPad Pro (11-inch)

o iPad Pro (11-inch) (2nd generation)
iPad Pro (12.9-inch)

Pl iPad Pro (12.9-inch) (2nd generation)

__Cancel | iPad Pro (12.9-inch) (3rd generation)
iPad Pro (12.9-inch) (4th generation)
iPad Pro (9.7-inch)

iPad mini (5th generation)

iPad mini 2

iPad mini 3

iPad mini 4

iPhone 11

iPhone 11 Pro

iPhone 11 Pro Max

iPhone 5s

iPhone 6

iPhone 6 Plus

iPhone 6s

iPhone 6s Plus

iPhone 7

iPhone 7 Plus

iPhone 8

iPhone 8 Plus

Development distribution options

7. Re-sign your application. For example, by the developer signing.

VisionLabs B.V. Page 59 of 270

Re-sign "FaceEnginelosExample™:

"FaceEnginelosExample" needs to be re-signed for Development distribution. Select one of the following
signing options to continue.

© Automatically manage signing

() Manually manage signing

Cancel Previous m |

Re-signing

8. View the information about the archive.

VisionLabs B.V. Page 60 of 270

} Review FaceEnginelosExample.ipa content:

v ' FaceEnginelosExample...
&y flower.framework

&
I
2

FaceEnginelosExample.app

Y

iy fsdk.framework
SUMMARY

Team: VIZHNLABS, 000
Certificate: Apple Development
Profile: iOS Team Provisioning Profile: ru.visionlabs.FaceEnginelosExample ©

Architectures: arm64

ENTITLEMENTS

application-identifier
ru.visionlabs.FaceEnginelosExample

keychain-access-groups
.ru.visionlabs.FaceEnginelosExample

get-task-allow
true

com.apple.developer.team-identifier

Cancel Previous

Re-signing

9. Export your app.

) Export As: | FaceEnginelosExample 2020-04-20 15-!|

Tags:

Where: | [Desktop v

T N AT IR SRS LU W PRSI T IR T L e =re

Export

10. Open the App Thinning Size Report.txt file.

VisionLabs B.V. Page 61 of 270

O O '™ FaceEnginelosExample 2020-04-20 15-57-40
H] = =R E = Q

[=]
(=]

|

Favourites Name : Date Modified
@) AirDrop L App Thinning Size Report.txt Today, 15:57
@ R t app-thinning.plist Today, 15:57

e » [Apps Today, 15:57
2\ Applications DistributionSummary.plist Today, 15:57
@ Desktop ExportOptions.plist Today, 15:57
& Packaging.log Today, 15:57
@ Documents
0 Downloads
Export

11. Find necessary information about the application size.

The picture below shows the size of the application without additional swift frameworks from
this example.

App + On Demand Resources size: 19,6 MB compressed, 25,3 MB uncompressed
App size: 19,6 MB compressed, 25,3 MB uncompressed

On Demand Resources size: Zero KB compressed, Zero KB uncompressed

Export

12. Verify the size of the packed application.

2.7.3 Reduce your app size

You can reduce the size of your app by removing unnecessary .plan files. For details, see
Reducing your app size by excluding .plan files.

VisionLabs B.V. Page 62 of 270

2.8 Neural networks used in LUNA ID

In LUNA ID, neural networks efficiently and accurately process faces in both images and video
streams. These neural networks are stored in .plan files.

The table below lists all .plan files used in LUNA ID, along with the functionalities they
provide. Some of these files are required for integrating LUNA ID into your application.

VisionLabs B.V. Page 63 of 270

Note, that using the .plan files will add extra size to your app. To learn how to exclude extra
.plan files, see Reducing your app size by excluding .plan files.

VisionLabs B.V. Page 64 of 270

.plan file

ags_v3_arm.plan

cnn60m_arm.plan

eye status_estimation_arm.plan

eyes_estimation_flwr8_arm.plan

face_occlusion_v1l_arm.plan

FaceDet _v2_first_arm.plan
FaceDet v2_second_arm.plan
FaceDet_v2_third_arm.plan

glasses_estimation_v2_arm.plan

headpose_v3_arm.plan

VisionLabs B.V.

oS

Size, Required
MB

0,62 .
18,54

0,26 .
0,94 .
0,17

0,01 .
0,11 .
1,64 .
0,72

0,28 .

Functionality

Best shot quality
estimation

Descriptor generation
from an image

See also:
- : Descriptor
« - Descriptor

Eye state estimation

See also:
= . Eyes estimation
« - Eyes estimation

Eye state estimation

See also:
- . Eyes estimation
« - Eyes estimation

Face occlusion

Face detection

See also:

- . Detection
facility

« . Detection
facility

Glasses estimation

See also:
= . Glasses
estimation

« . Glasses
estimation
Getting the best shot
with faces with

occluded eyes

Head pose estimation

Page 65 of 270

https://docs.visionlabs.ai/sdk/LUNA%20SDK%20v.5.31.3/sdk-android/handbookcompilation/parameter-estimation-facility/#bestshotquality-estimation
https://docs.visionlabs.ai/sdk/LUNA%20SDK%20v.5.31.3/sdk-android/handbookcompilation/parameter-estimation-facility/#bestshotquality-estimation
https://docs.visionlabs.ai/sdk/LUNA%20SDK%20v.5.31.3/sdk-android/handbookcompilation/descriptor-processing-facility/#descriptor
https://docs.visionlabs.ai/sdk/LUNA%20SDK%20v.5.31.1/sdk-ios/handbookcompilation/descriptor-processing-facility/#descriptor
https://docs.visionlabs.ai/sdk/LUNA%20SDK%20v.5.31.3/sdk-android/handbookcompilation/parameter-estimation-facility/#eyes-estimation
https://docs.visionlabs.ai/sdk/LUNA%20SDK%20v.5.31.1/sdk-ios/handbookcompilation/parameter-estimation-facility/#eyes-estimation
https://docs.visionlabs.ai/sdk/LUNA%20SDK%20v.5.31.3/sdk-android/handbookcompilation/parameter-estimation-facility/#eyes-estimation
https://docs.visionlabs.ai/sdk/LUNA%20SDK%20v.5.31.1/sdk-ios/handbookcompilation/parameter-estimation-facility/#eyes-estimation
https://docs.visionlabs.ai/sdk/LUNA%20SDK%20v.5.31.3/sdk-android/handbookcompilation/detection-facility
https://docs.visionlabs.ai/sdk/LUNA%20SDK%20v.5.31.3/sdk-android/handbookcompilation/detection-facility
https://docs.visionlabs.ai/sdk/LUNA%20SDK%20v.5.31.1/sdk-ios/handbookcompilation/detection-facility
https://docs.visionlabs.ai/sdk/LUNA%20SDK%20v.5.31.1/sdk-ios/handbookcompilation/detection-facility
https://docs.visionlabs.ai/sdk/LUNA%20SDK%20v.5.31.3/sdk-android/handbookcompilation/parameter-estimation-facility/#glasses-estimation
https://docs.visionlabs.ai/sdk/LUNA%20SDK%20v.5.31.3/sdk-android/handbookcompilation/parameter-estimation-facility/#glasses-estimation
https://docs.visionlabs.ai/sdk/LUNA%20SDK%20v.5.31.1/sdk-ios/handbookcompilation/parameter-estimation-facility/#glasses-estimation
https://docs.visionlabs.ai/sdk/LUNA%20SDK%20v.5.31.1/sdk-ios/handbookcompilation/parameter-estimation-facility/#glasses-estimation

.plan file

mask_clf v3_arm-int8.plan

model_subjective_quality vl _arm.plan
model_subjective_quality v2_arm.plan

mouth_estimator_v4 _arm.plan

oneshot_rgb_liveness v12_model_4_arm.plan
oneshot _rgb_liveness v12 _model 5 arm.plan
oneshot _rgb_liveness v12 _model 6 _arm.plan

VisionLabs B.V.

oS

Size,
MB

2,64

0,05
0,38

Required

Functionality

Medical mask
estimation

See also:

= : Medical mask
estimation
functionality

Getting the best shot
with an occluded face

Image quality
estimation

See also:

= . Image quality
estimation

« Image quality
estimation

Mouth estimation

Offline
OneShotLiveness
estimation

See also:

=

LivenessOneShotRGB
Estimation

[3
LivenessOneShotRGB

Estimation

Page 66 of 270

https://docs.visionlabs.ai/sdk/LUNA%20SDK%20v.5.31.3/sdk-android/handbookcompilation/parameter-estimation-facility/#medical-mask-estimation-functionality
https://docs.visionlabs.ai/sdk/LUNA%20SDK%20v.5.31.3/sdk-android/handbookcompilation/parameter-estimation-facility/#medical-mask-estimation-functionality
https://docs.visionlabs.ai/sdk/LUNA%20SDK%20v.5.31.3/sdk-android/handbookcompilation/parameter-estimation-facility/#medical-mask-estimation-functionality
https://docs.visionlabs.ai/sdk/LUNA%20SDK%20v.5.31.3/sdk-android/handbookcompilation/parameter-estimation-facility/#image-quality-estimation
https://docs.visionlabs.ai/sdk/LUNA%20SDK%20v.5.31.3/sdk-android/handbookcompilation/parameter-estimation-facility/#image-quality-estimation
https://docs.visionlabs.ai/sdk/LUNA%20SDK%20v.5.31.1/sdk-ios/handbookcompilation/parameter-estimation-facility/#image-quality-estimation
https://docs.visionlabs.ai/sdk/LUNA%20SDK%20v.5.31.1/sdk-ios/handbookcompilation/parameter-estimation-facility/#image-quality-estimation
https://docs.visionlabs.ai/sdk/LUNA%20SDK%20v.5.31.3/sdk-android/handbookcompilation/parameter-estimation-facility/#livenessoneshotrgb-estimation
https://docs.visionlabs.ai/sdk/LUNA%20SDK%20v.5.31.3/sdk-android/handbookcompilation/parameter-estimation-facility/#livenessoneshotrgb-estimation
https://docs.visionlabs.ai/sdk/LUNA%20SDK%20v.5.31.1/sdk-ios/handbookcompilation/parameter-estimation-facility/#livenessoneshotrgb-estimation
https://docs.visionlabs.ai/sdk/LUNA%20SDK%20v.5.31.1/sdk-ios/handbookcompilation/parameter-estimation-facility/#livenessoneshotrgb-estimation

2.9 Glossary

Term

Approximate
Garbage Score
(AGS)

Best shot

Descriptor

Estimator

Eye estimation

Face
Handler

Landmarks

Liveness

LUNA PLATFORM

Matching

Occlusion

Samples, Warps

Verification

Verifier

VisionLabs B.V.

Description

A BestShotQuality estimator component that determined the source image
score for further descriptor extraction and matching. Estimation output is a
float score which is normalized in range [0..1]. The closer score to 1, the better
matching result is received for the image.

The frame of the video stream on which the face is fixed in the optimal angle
for further processing.

Data set in closed, binary format prepared by recognition system based on the
characteristic being analyzed.

Neural network used to estimate a certain parameter of the face in the source
image.

Estimator that determines an eye status (open, closed, occluded) and precise
eye iris and eyelid location as an array of landmarks.

Changeable objects that include information about a human face.
Set of rules or policies that describe how to process the received images.

Reference points on the face used by recognition algorithms to localize the
face.

Software method that enables you to confirm whether a person in one or more
images is "real" or a fraudster using a fake ID (printed face photo, video,
paper, or 3D mask).

Automated face and body recognition system that allows you to perform face
detection, Liveness check biometric template extraction, descriptor extraction,
quality and attribute estimation, such as gender, age, and so on, on images
using neural networks.

The process of descriptors comparison. Matching is usually implemented as a
distance function applied to the feature sets and distances comparison later
on. The smaller the distance, the closer are descriptors, hence, the more
similar are the objects.

State of an object (eye, mouth) when it is hidden by any other object.

Normalized (centered and cropped) image obtained after face detection, prior
to descriptor extraction.

Comparison of two photo images of a face in order to determine belonging to
the same face.

Specifies a list of rules for processing and verifying incoming images. Unlike
handlers, it not only processes, but also verifies the images.

Page 67 of 270

2.10 Technical Support and resources

If you have questions, problems or just need help with LUNA ID, you can either contact our
Technical Support or try to search for the needed information using other help resources.
2.10.1 Contact Technical Support

You can contact our Technical Support via email:

= support@visionlabs.ru

2.10.2 More resources
Downloadable documentation
Download the LUNA ID documentation:

.. LUNA ID v.1.20.0.pdf

Examples
Check out LUNA ID examples to learn how to embed LUNA ID in your app:

* LUNA ID for Android examples
* LUNA ID for iOS examples

VisionLabs B.V. Page 68 of 270

https://github.com/VisionLabs/LunaID-Android-Examples
https://github.com/VisionLabs/LunaID-iOS-Examples

3. Licensing

3.1 Activating the license

To integrate LUNA ID with your project and use its features, you need to activate the license.

3.1.1 In LUNA ID for Android
Activating the license

The license activation mechanism is as follows:

LUNA ID first checks if you provided a license file via the initEngine method.

If provided, the license is directly passed to the engine.

If not provided, the system attempts to read the license from the assets folder and passes

it to the engine.

If no license is found in either location, the activation process fails.

Important: Since v.1.18.0, the licenseParams parameter has been removed from the

LunaConfig object.
To activate the license:
1. Request license parameters

Obtain the following parameters from VisionLabs:

Parameter Description

Server The URL of the license server.

EID A unique identifier for your application.
ProductID The product identifier for LUNA ID.

For details, see License parameters.

2. Specify parameters in license.conf

Add the received parameters to the license.conf file and save the changes.

VisionLabs B.V.

Page 69 of 270

\J
Example structure of license.conf

Below is an example structure of the file:

<?xml version="1.0"7?>
<settings>
<section name="Licensing::Settings">
<param name="Server" type="Value::String" text="https://example-
license-server.com"/>
<param name="EID" type="Value::String" text="your-eid-here"/>
<param name="ProductID" type="Value::String" text="your-product-id-
here"/>
<param name="Filename" type="Value::String" text="license.dat"/>
<param name="ContainerMode" type="Value::Int1l" x="0"/>
<param name="ConnectionTimeout" type="Value::Int1" x="15"/>
<param name="licenseModel" type="Value::Intl" x="2" />
<param name="OCR" type="Value::String" text="ocrLicense" />
</section>
</settings>

3. Place license.conf in your project
Save the license.conf file in the assets/data/license.conf directory of your project.

The license key will be generated and saved to the specified directory. The license file has a
binary format. At the next launch of the mobile app on the same device, the license will be
read from this file.

4. Activate the license
Call the initEngine() method to initialize LUNA ID and activate the license.

Below is an example implementation:

private fun initLunaSdk() {
val baseUrl = "url"
val token = "token"
val headers = mapOf("Authorization" to token)
val apiHumanConfig = ApiHumanConfig(baseUrl, headers)
val lunaConfig = LunaConfig.create(
acceptOccludedFaces = true,
acceptOneEyed = false,
acceptEyesClosed = false,
detectFrameSize = 350,
skipFrames = 36,

VisionLabs B.V. Page 70 of 270

ags = 0.5f,

bestShotlinterval = 500,

detectorStep = 7,

usePrimaryFaceTracking = true,

glassesChecks = setOf(GlassesCheckType.GLASSES CHECK SUN)
)

LunalD.initEngine(
app: Application,
lunaConfig: LunaConfig,
apiHumanConfig: ApiHumanConfig? = null,
license : File? = null,
timeoutMillis : Long = 30_000L

Note: The parameters in the example are set to default values. Adjust them according to
your requirements.

VisionLabs B.V. Page 71 of 270

(ey components of the example code

VisionLabs B.V. Page 72 of 270

The example code has the following components:

VisionLabs B.V. Page 73 of 270

Component

baseUrl

token

headers

apiHumanConfig

ApiHumanConfig
lunaConfig
LunaConfig

acceptOccludedFaces

acceptOneEyed

acceptEyesClosed

detectFrameSize

skipFrames

ags

bestShotlInterval

detectorStep

usePrimaryFaceTracking

glassesChecks

LunalD.initEngine

license

VisionLabs B.V.

Description

A variable that specifies the URL to LUNA PLATFORM 5. For details, see
Interaction of LUNA ID with LUNA PLATFORM 5.

A variable that specifies a LUNA PLATFORM 5 token, which will be
transferred to a request header from LUNA ID.

A map that specifies headers that will be added to each request to be
sent to LUNA PLATFORM 5.

An optional configuration parameter for calling the LUNA PLATFORM 5
API. Can be set to null if no LUNA PLATFORM 5 API calls are required.
This will also disable the Online OneShotLiveness estimation, regardless
of the onlineLivenessSettings argument.

A class required for configuration to call the LUNA PLATFORM 5 API.
An argument to be passed for best shot parameters.
A class that describes best shot parameters.

A parameter that specifies whether an image with an occluded face will
be considered the best shot. For details, see Getting the best shot with
an occluded face.

A parameter that specifies whether blinking with one eye is enabled.

A parameter that specifies whether an image with two closed eyes will
be considered the best shot. For details, see Getting the best shot with
faces with closed eyes.

A parameter that specifies a face detection bounding box size.

A parameter that specifies a number of frames to wait until a face is
detected in the face recognition area before video recording is stopped.

A parameter that specifies a source image score for further descriptor
extraction and matching. For details, see AGS.

A parameter that specifies a minimum time interval between best shots.

A parameter that specifies a number of frames between frames with full
face detection.

A parameter that specifies whether to track the face that was detected
in the face recognition area first. For details, see Tracking face identity.

A parameter that specifies what images with glasses can be best shots.
For details, see Getting the best shot with faces with occluded eyes.

A method that activates the LUNA ID license.

An instance of java.io.File. If this parameter is not provided, the
system will use the default license.conf file located in the project.

Page 74 of 270

https://docs.visionlabs.ai/luna/latest/standard-distribution/admin-manual/general-concepts/#authorization-system

Component Description

timeoutMillis The timeout for license activation, with a default value of 30 seconds

(30,000 milliseconds).

5. Subscribe to initialization events

Subscribe to events from the LunalD.enginelnitStatus flow to monitor the initialization process:

LunalD.enginelnitStatus.flowWithLifecycle(this.lifecycle, Lifecycle.State.STARTED)

.onEach {
if(it is LunalD.enginelnitStatus.InProgress) {

// LUNA ID is loading
}else if(it is LunalD.enginelnitStatus.Success) {

// LUNA ID is ready

}
}.flowOn(Dispatchers.Main)

Jaunchin(this.lifecycleScope)

Now, you can start the camera and proceed with embedding LUNA ID functionality in your
app.

For a detailed example, see App.kt.

3.1.2 In LUNA ID for iOS
Activating license via vllicense.plist
To activate the license:
1. Request license parameters
Obtain the following parameters from VisionLabs:

* Server - The URL of the license server.
* EID - A unique identifier for your application.
* ProductlD - The product identifier for LUNA ID.

For details, see License parameters.

2. Specify parameters in vllicense.plist

Add the received parameters to the vllicense.plist file and save the changes.

VisionLabs B.V. Page 75 of 270

https://github.com/VisionLabs/LunaID-Android-Examples/blob/master/CameraExample/src/main/java/ai/visionlabs/examples/camera/App.kt

\J
ﬁample structure of vilicense.plist

Below is an example structure of the file:

xml

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

<dict>
<key>ContainerMode</key>
<real>0</real>
<key>ConnectionTimeout</key>
<integer>15</integer>
<key>Filename</key>
<string>license.dat</string>
<key>ProductiD</key>
<string>your-product-id-here</string>
<key>EID</key>
<string>your-eid-here</string>
<key>Server</key>
<string>https://fexample-license-server.com</string>
<key>ServerRetriesCount</key>
<integer>1l</integer>
<key>UseZeus</key>
<true/>

</dict>

</plist>

3. Add vllicense.plist to your app

The license key will be generated and saved to the specified directory. The license file has a
binary format. At the next launch of the mobile app on the same device, the license will be
read from this file.

Renaming vllicense.plist

You can optionally rename the vllicense.plist file. To do this, change the default value, which is
vllicense.plist , of the LCLunaConfiguration::plistLicenseFileName property.

VisionLabs B.V. Page 76 of 270

3.2 Updating the license

This topic explains how to dynamically update the license in LUNA ID.

3.2.1 In LUNA ID for Android

To dynamically update the license, pass the license file to the LunalD.initEngine method. Below
is an example:

val config = LunaConfig.create(
// other configuration options...

)

LunalD.initEngine(
app: Application,
lunaConfig: LunaConfig,
apiHumanConfig: ApiHumanConfig? = null,
license : File? = null,
timeoutMillis : Long = 30_000L

\J
(ey components of the example code

The example code has the following components:

Component Description
lunaConfig An argument to be passed for best shot parameters.
license An instance of java.io.File. If this parameter is not provided, the system will use

the default license.conf file located in the project.

timeoutMillis The timeout for license activation, with a default value of 30 seconds (30,000
milliseconds).

Important notes:

* The license must be updated before initializing LUNA ID.

* If changes are made after initialization, you must restart the app or re-initialize the
engine with the new configuration.

VisionLabs B.V. Page 77 of 270

3.2.2 In LUNA ID for iOS

<!-- You can dynamically update the license using the LCLicenseConfig class. Populate its fields
with the required data and pass it during the initialization of the LUNA ID engine.

Important: The responsibility for providing the required license data lies with the client
application, which retrieves the values from its server and populates the fields of the
configuration class.

Below is an example of how to configure and populate LCLicenseConfig class:

var newConfig = LunaCore.LCLicenseConfig()
newConfig.eid = "your_entitlement_id"
newConfig.productlD = "your_product id"

These values are then passed to the LunaConfig object during engine initialization:

let config = LCLunaConfiguration()
config.licenseConfig = newConfig

LunalD.initEngine(config)
N

LUNA ID for iOS provides multiple approaches for license management.

##+# Method 1: .plist file configuration

> **Tip:** This is the recommended approach for license configuration.

Store your license details in a *.plist* file within your application bundle:

T swift
let licenseConfiguration = LunaCore.LCLicenseConfig(
plistFilePath: Bundle.main.path(forResource: "vllicense", ofType: "plist") 7?2 ""

)

Method 2: Programmatic configuration (basic approach)
Configure the license programmatically using LCLicenseConfig :
let configuration = LCLunaConfiguration()
let licenseConfig = LCLicenseConfig()

licenseConfig.eid = "your_entitlement_id"
licenseConfig.productID = "your_product_id"

VisionLabs B.V. Page 78 of 270

licenseConfig.save()

let lunalDService = LunaCore.LCLunalDServiceBuilder.buildLunalDService(withConfig:
configuration)

if let error = lunalDService.activateLicense(with: licenseConfig) {...}

Important: Call save() before using userDefaults() . Without calling save() , userDefaults()
will return an empty license.

Method 3: Using LCLunalDServiceBuilder

You can update your license in the LCLunalDServiceBuilder object by using the following
methods:

¢ buildLunalDService(withConfig: LCLunaConfiguration)
Calling let lunalDService = LunaCore.LCLunalDServiceBuilder.buildLunalDService(withConfig:
configuration) creates an engine object with the license specified in the
LCLunaConfiguration (config.plistLicenseFileName) object.

¢ buildLunalDService(withConfig: LCLunaConfiguration, license: LCLicenseConfig?)
Calling this method creates an object with the license passed in the license argument.

VisionLabs B.V. Page 79 of 270

3.3 Verifying license validity

Applies to LUNA ID for iOS only.

To verify the license validity in LUNA ID, you can use either the default method or a
customized approach depending on your requirements.

3.3.1 Default method

This approach checks the license in silent mode, meaning the license validation occurs
automatically during the LCLunalDServiceBuilder.buildLunalDService() call. Here's how it works:

// Creating LunalD configuration

let configFilePath = Bundle.main.path(forResource: "luna_config", ofType: "plist") 77 ""
let lunaConfig: LunaCore.LCLunaConfiguration =
LunaCore.LCLunaConfiguration(plistFilePath: configFilePath)

// Creating LunalD service
let lunalDService: LunaCore.LCLunalDServiceProtocol =
LCLunalDServiceBuilder.buildLunalDService(withConfig: lunaConfig)

In this method, the LunaCore.LCLunaConfiguration.plistLicenseFileName property specifies the name
of the .plist file where LUNA ID will look for license information. The system will attempt to

locate the file named "{LunaCore.LCLunaConfiguration.plistLicenseFileName}.plist" in the
main bundle.

3.3.2 Customized method

If you want to explicitly validate the license and ensure that the license data is correct, you
can use the following customized approach:

// Creating LunalD configuration
let configFilePath = Bundle.main.path(forResource: "luna_config", ofType: "plist") 7?7 ""
let lunaConfig = LunaCore.LCLunaConfiguration(plistFilePath: configFilePath)

// Creating LunalD service
let lunalDService: LunaCore.LCLunalDServiceProtocol =
LCLunalDServiceBuilder.buildLunalDService(withConfig: lunaConfig)

// Creating license configuration
let licenseFilePath = Bundle.main.path(forResource: "vllicense", ofType: "plist") ?? "*
let licenseConfig = LunaCore.LCLicenseConfig(plistFilePath: licenseFilePath)

VisionLabs B.V. Page 80 of 270

// Checking license configuration
if let error = lunalDService.activateLicense(with: licenseConfig) {
debugPrint("Error while checking license on application startup: \(error)")

}

In this approach, although the silent license check is still performed when creating the LUNA
ID service, you gain additional control. You can create a LunaCore.LCLicenseConfig object from
any .plist file with a custom name and place it in any bundle. Afterward, you can explicitly
invoke LunaCore.LCLunalDServiceProtocol.activateLicense() . This method returns nil if the license is
valid, or an Error object if the license is invalid.

VisionLabs B.V. Page 81 of 270

3.4 License expiration handling

Applies to LUNA ID for Android only.

To retrieve the expiration date of any of the licensed features, use the following method:
fun getExpirationLicenceDateAsDate(feature: LicenseFeature): java.util.Date?
The LicenseFeature enum defines the licensable components:

enum class LicenseFeature {
Detection,
BestShot,
Liveness,
MedicalMaskDetection

3.4.1 LicenseExpired event

The LicenseExpired event signals when the active license has expired or when a required
feature is no longer valid due to time constraints.

3.4.2 FeatureExpired error

When the FeatureExpired error occurs, LUNA ID logs detailed diagnostic information about the
expired features:

* Feature names that have expired.

* Exact expiration time (as a Unix timestamp in seconds, in the expiresAt field).

Category Features logged
Always * Detection
* BestShot
Conditionally ¢ Liveness — if OneShotLiveness estimation is enabled in the session.

¢ MedicalMaskDetection — if mask acceptance is disabled (acceptMask = false).

VisionLabs B.V. Page 82 of 270

3.5 License parameters

The table below outlines the parameters required for license activation and subsequent
processing in LUNA ID:

VisionLabs B.V. Page 83 of 270

Parameter

Server

EID

ProductID

Filename

ContainerMode

ConnectionTimeout

licenseModel

UseZeus

OCR

VisionLabs B.V.

Default
value

Not set

Not set

Not set

license.dat

15

true

ocrlLicense

Description

The URL of the activation
server used to validate and
activate the license.

A unique identifier
(Entitlement ID) assigned to
your application.

The specific product
identifier for LUNA ID.

The default name of the file
where the activated license
is saved.

Maximum length: 64
characters.

Changing this name is not
recommended.

Indicates whether the
application is running in a
containerized environment.

Specifies the maximum time
(in seconds) allowed for the
license activation request.
Setting this value to 0
disables the timeout.
Negative values are not
allowed.

Maximum value: 300
seconds.

Defines the license to be
used.

Possible values:

1 - Thales

2 -Zeus

Defines the license to be
used.

Possible values:

true - Zeus

false - Thales

Enables OCR.

Page 84 of 270

3.6 Resetting the license cache
3.6.1 In LUNA ID for Android
To reset the license cache:

Call the LunalD.resetLicenseCache(context) method.

Restart your app. LUNA ID will reinitialize and generate a fresh license cache.

3.6.2 In LUNA ID for iOS
We recommend that you reset license cache when you update your app. To do this:

1. Create the LCLunaConfiguration.resetLicenseCache() function to check the application version
and reset the license cache:

import Foundation

func checkAndResetLicenseCache() {
let currentAppVersion = Bundle.main.infoDictionary?
["CFBundleShortVersionString"] as? String
let savedAppVersion = UserDefaults.standard.string(forKey: "AppVersion")

if currentAppVersion != savedAppVersion {
LCLunaConfiguration.resetLicenseCache()
UserDefaults.standard.set(currentAppVersion, forKey: "AppVersion")

}
}
2. Call this function when the application starts:
* With UIKit in the AppDelegate.swift file:
@main
class AppDelegate: UIResponder, UlApplicationDelegate {
var window: UIWindow?

func application(_ application: UlApplication, didFinishLaunchingWithOptions
launchOptions: [UlApplication.LaunchOptionsKey: Any]?) -> Bool {
checkAndResetLicenseCache()

return true

VisionLabs B.V. Page 85 of 270

* With SwiftUl in the App.swift file:

@main
struct YourApp: App {
init() {
checkAndResetLicenseCache()

}

var body: some Scene {
WindowGroup {
ContentView()
}
}
}

VisionLabs B.V. Page 86 of 270

3.7 Working with status code 1025

Applies to LUNA ID for iOS only.
Status code 1025 applies to LUNA ID for iOS and informs about a license check failure.
To retrieve status code 1025 and its corresponding error message, do the following:

1. Call the activateLicense method. Here is an example of how you might set this up:

func application(_ application: UlApplication, didFinishLaunchingWithOptions launchOptions:
[UlApplication.LaunchOptionsKey: Any] ?)->Bool {
AppAppearance.setupAppearance()

let configuration = LCLunaConfiguration()

configuration.identifyHandlerID = "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX"
configuration.registrationHandlerID = "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX"
configuration.verifylD = "XXXXXXXX-XXXX=XXXX-XXXX=XXXXXXXXXXXX"
configuration.lunaAccountlD = "XXXXXXXX-XXXX=XXXX-XXXX-XXXXXXXXXXXX"
configuration.lunaServerURL = URL(string: "https://luna-api-aws.visionlabs.ru/6")
configuration.plistLicenseFileName = "vllicense.plist"

let error = configuration.activateLicense()debugPrint("error while license check \(error)")

let viewController = LERootViewController()

let navvc = UINavigationController(rootViewController: viewController)window = UlWindow(frame:
UlScreen.main.bounds)

window?.backgroundColor = .white window?.rootViewController = navvc

window?.makeKeyAndVisible()

return true

2. Get the error message by calling (error as NSError).localizedDescription . This will give you a
more detailed description of what went wrong.

3. Get the error code by calling (error as NSError).code . This will help you identify and
troubleshoot specific issues related to the license activation process.

VisionLabs B.V. Page 87 of 270

4. APl documentation

4.1 APl documentation

This section includes links to LUNA ID for iOS and LUNA ID for Android RESTful API reference

manuals. You can use these documents to find out about LUNA ID features and their
implementation.

The table below provides links to the API reference manuals.

oS Module Link

Android - API reference manual
i0S LunaCamera LunaCamera Reference
i0S LunaCore LunaCore Reference
i0S LunaWeb LunaWeb Reference

VisionLabs B.V. Page 88 of 270

http://git.visionlabs.ru/65apps/lunaid/luna-id-android/-/blob/develop/API_DOCUMENTATION.md

4.2 Changelog
4.2.1 APl changes made in LUNA ID for Android v.1.5.0 in comparison to v.
1.4.x

This topic lists API changes that were made in LUNA ID for Android v.1.5.0 in comparison to v.
1.4.x.

The changes are:

1. The whole flow of a LUNA ID camera is now exposed via LunalD.allEvents() . You can
subscribe to it to catch all events or subscribe to specific events, for example:
- LunalD.finishStates()

LunalD.detectionCoordinates()

LunalD.detectionErrors()

LunalD.interactions()
2. All callbacks were replaced with the native Flow API:
* The detection coordinates APl was changed. The CameraOverlayDelegateOut class was

removed. Instead, use LunalD.detectionCoordinates() .

e The CameraUlDelegate class was removed. Instead, use LunalD.finishStates() . That is,
CameraUlDelegate#bestShot , CameraUlDelegate#canceled , CameraUlDelegate#error are no
longer supported.

* LunalD.showCamera() does not require CameraUlDelegate anymore.
¢ LunalD.unregisterListener() was removed.
¢ LunalD.poplLastCameraState() and LunalD.getLastCameraState() were removed.

e LunaError and its descendants were replaced with the DetectionError enumeration. For
example, instead of LunaError.messageResld , use DetectionError.messageResld .

Interaction parameters moved from LunaConfig . Now, to setup a blink interaction,
provide its parameters to LunalD.showCamera() . For example, instead of

LunaConfig.interactionEnabled Or LunaConfig.interactionTimeout, use Blinkinteraction() .

3. LunalD.showCamera() now accepts a list of interactions to be run.

VisionLabs B.V. Page 89 of 270

4.2.2 APl changes made in LUNA ID for Android v.1.5.1 in comparison to v.
1.5.0

This topic lists API changes that were made in LUNA ID for Android v.1.5.1 in comparison to v.
1.5.0.

The changes apply to OneShotLiveness estimation configuration.

Prior to the API changes, LunalD.init() accepted an argument of the LivenessSettings type to
specify how the estimation will be performed. This argument no longer exists. Instead, the
estimation is set in LunaConfig .

For details, see Performing Online OneShotLiveness estimation and Disabling
OneShotLiveness estimation.

VisionLabs B.V. Page 90 of 270

4.2.3 APl changes made in LUNA ID for Android v.1.6.0 in comparison to v.
1.5.1

This topic lists API changes that were made in LUNA ID for Android v.1.6.0 in comparison to v.
1.5.1.

The changes are:

* Now, build.gradle does not require the following code block, so you need to remove it:

androidResources(
ignoreAssetsPatterns.addAll(

* The BestShot class does not contain the pre-computed descriptor field. To get a
descriptor of a particular version, use LunaUtils . For details, see Using descriptors.

* Now, LunalD.init() does not accept the areDescriptorsEnabled parameter. For details, see

Using descriptors.

In earlier versions of LUNA ID for Android, the main distribution package included all .plan
files. You could exclude unnecessary .plan files by using ignoreAssetsPatterns . Now, the
ai.visionlabs.lunaid:core:1.6.0 package includes only necessary .plan files. The files are:

* FaceDet_v2_first_arm.plan

* FaceDet v2 second_arm.plan

* FaceDet_v2_third_arm.plan

* ags_angle_estimation_flwr_arm.plan

* ags_v3 _cpuplan

* eye status_estimation_flwr

* eyes_estimation_flwr8

* headpose_v3

* model_subjective_quality_v1

* model_subjective _quality v2

VisionLabs B.V. Page 91 of 270

Additional .plan files are available in the following distribution packages:
e ai.visionlabs.lunaid:cnn59:1.6.0 - Contains the following .plan files used for descriptor
generation from an image:
* cNn59m_arm.plan
* cNnn59m_cpu.plan

* ai.visionlabs.lunaid:cnn52:1.6.0 - Contains the following .plan files used for descriptor
generation from an image:

* cnn52m_cpu.plan

* cnn52m_arm.plan

For details on using descriptors, see Using descriptors.

VisionLabs B.V. Page 92 of 270

4.2.4 APl changes made in LUNA ID for Android v.1.8.4 in comparison to v.
1.6.0

This topic lists API changes that were made in LUNA ID for Android v.1.8.4 in comparison to v.
1.6.0.

The changes are:

* Deprecated the acceptGlasses parameter. Now, use the glassesChecks parameter to
restrict images of people in glasses from being best shots.

* Deprecated the LunaConfig.border* parameters. Now, use the borderDistance parameter to
specify a face recognition area.

VisionLabs B.V. Page 93 of 270

4.2.5 APl changes made in LUNA ID for Android v.1.9.4 in comparison to v.
1.8.4

This topic lists API changes that were made in LUNA ID for Android v.1.9.4 in comparison to v.
1.8.4.

The changes apply to strategies of initializing border distances to specify a face recognition
area. You can now do this with the following strategies:

* InitBorderDistancesStrategy.Default() - Specifies a strategy when border distances are not
initialized.

* InitBorderDistancesStrategy.WithCustomView() - Specifies a strategy when border distances
are initialized with an Android custom view.

VisionLabs B.V. Page 94 of 270

4.2.6 APl changes made in LUNA ID for Android v.1.16.0 in comparison to
earlier versions

This document outlines the changes introduced in LUNA ID for Android v1.16.0 compared to
previous versions. Carefully review these updates to ensure a smooth migration and
continued functionality in your final application.

Configuration updates
REMOVED PARAMETERS

The statusBarColorHex parameter was removed from ShowCameraParams because the screen
format now uses Edge-to-Edge.

TRANSFERRED PARAMETERS
* The checkSecurity parameter has been moved from LunaConfig to ShowCameraParams . If
the parameter is not specified, it is set to true by default.

* The videoQuality parameter has been moved from ShowCameraParams to LunaConfig and
was renamed LunaVideoQuality .

* Possible values: sD, HD.
* Default video quality: sD (~640x480 pixels).
* The customFrameResolution parameter has been replaced with:
¢ preferredAnalysisFrameWidth
¢ preferredAnalysisFrameHeight

Note: The prefix preferred indicates that the user specifies their preferred
resolution, which may not always be supported by the device's camera. If
unsupported, the system adjusts to the nearest available resolution.

The default frame resolution for analysis is 480x320.

NEW PARAMETER
aspectRatioStrategy

An enum class (LunaAspectRatioStrategy) used to explicitly set the screen aspect ratio.
Possible values:

* RATIO 4 3 FALLBACK AUTO_STRATEGY (default)

 RATIO_16_9 FALLBACK_AUTO_STRATEGY

VisionLabs B.V. Page 95 of 270

NAMING CHANGES

* InitBorderDistanceStrategy iS NOw BorderDistanceStrategy .

¢ LunalD.activateLicense(..) iS nOw LunalD.initEngine(..) .

Changes in best shot retrieval (multipartBestShotsEnabled)

The method of retrieving the list of best shots has been updated when
multipartBestShotsEnabled is active.

BEFORE

The list of best shots was located in the Event.BestShotFound data class:

data class BestShotFound(

val bestShot: BestShot,

val bestShots: List<BestShot>?,

val videoPath: String?,

val interactionFrames: List<InteractionFrame>?
) : Event()

AFTER
The list of best shots has been moved to a separate Event called BestShotsFound :
data class BestShotsFound(

val bestShots: List<BestShot>?
) : Event()

The new structure of BestShotFound is as follows:

data class BestShotFound(

val bestShot: BestShot,

val videoPath: String?,

val interactionFrames: List<InteractionFrame>?
) : Event()

To retrieve the list of best shots, use the bestShots Flow:

VisionLabs B.V. Page 96 of 270

LunalD.bestShots.filterNotNull().onEach { bestShotsList ->
Log.e(TAG, "bestShots: ${bestShotsList.bestShots}")
}.

Changes in result retrieval

Previously, the result could be obtained through the LunalD.finishStates() Flow , which returned
Event.StateFinished .

Now, the result can be retrieved via the LunalD.bestShot Flow :

val bestShot = MutableStateFlow<Event.BestShotFound?>(null)

This Flow returns an object of the class Event.BestShotFound :

data class BestShotFound(

val bestShot: BestShot,

val videoPath: String?,

val interactionFrames: List<InteractionFrame>?
) : Event()

Usage example:

LunalD.bestShot
filterNotNull()
.onEach { bestShotFound ->
Log.e("BestShotFound", bestShotFound.toString())

}

.launchin(viewModelScope)

Changes in error retrieval

You can now obtain errors through errorFlow :

val errorFlow: Flow<LunalD.Effect.Error>

Usage example:

VisionLabs B.V. Page 97 of 270

LunalD.errorFlow
.sample(1000)
.onEach { effect ->
when (effect.error) {
DetectionError.PrimaryFacelLostCritical -> TODO("Handle critical primary face
loss")
DetectionError.PrimaryFacelLost -> TODO("Handle primary face loss")
DetectionError.FacelLost -> TODO("Handle face not detected")
DetectionError.TooManyFaces -> TODO("Handle multiple faces detected")
DetectionError.FaceOutOfFrame -> TODO("Handle face out of frame")
DetectionError.FaceDetectSmall -> TODO("Handle small face detection")
DetectionError.BadHeadPose -> TODO("Handle incorrect head pose")
DetectionError.BadQuality -> TODO("Handle poor image quality")
DetectionError.BlurredFace -> TODO("Handle blurred face")
DetectionError.TooDark -> TODO("Handle underexposed image")
DetectionError.TooMuchLight -> TODO("Handle overexposed image")
DetectionError.GlassesOn -> TODO("Handle glasses on face")
DetectionError.OccludedFace -> TODO("Handle partially occluded face")
DetectionError.BadEyesStatus -> TODO("Handle closed or obstructed eyes")

}

.Jlaunchin(this.lifecycleScope)

Event subscription updates

In LUNA ID for Android v.1.16.0, the single Flow handling multiple event types has been
replaced with separate Flows for each event category. This modular approach enhances
clarity and simplifies event handling.

VisionLabs B.V. Page 98 of 270

Event categories:

Category
errorFlow

currentinteractionType

bestShot
videoRecordingResult
enginelnitStatus
faceDetectionChannel

eventChannel

bestShots

Description
Captures errors from LUNA ID.

Represents the current type of interaction (for example, blinking, head
rotation).

Contains the result of LUNA ID processing (best shot detection).
Provides outcomes of video recording operations.

Indicates the status of engine activation.

Emits face detection events.

Captures all other events not included in the above Flows (for example,
liveness checks, interaction timeouts).

In future updates, this Channel will be further divided into more specific
categories.

Lists all best shots when multipartBestShotsEnabled is active.

XML FRAGMENT IMPLEMENTATION

Below is an example of how to implement an event subscription using an XML fragment:

class OverlayFragment : Fragment() {
private val viewModel: OverlayViewModel by viewModels()
private var binding: FragmentOverlayBinding? = null
private val binding get() = _binding!!

companion object {
private const val TAG = "OverlayFragment"

override fun onCreateView(
inflater: Layoutinflater,
container: ViewGroup?,
savedlnstanceState: Bundle?

): View {

_binding = FragmentOverlayBinding.inflate(inflater, container, false)
return binding.root

override fun onViewCreated(view: View, savedlnstanceState: Bundle?) {
super.onViewCreated(view, savedinstanceState)

// Subscribe to current interaction events

VisionLabs B.V.

Page 99 of 270

viewModel.currentinteraction
.onEach { interaction ->
Log.d(TAG, "onViewCreated: collected interaction $interaction")
_binding?.overlaylnteraction?.text = interaction
}
.flowOn(Dispatchers.Main)
Jaunchin(lifecycleScope)

// Subscribe to error state events

viewModel.errorState.onEach { error ->
binding.overlayError.text = error

}.launchlin(this.lifecycleScope)

// Handle other LunalD events
LunalD.eventChannel.receiveAsFlow()
.onEach { event ->
when (event) {
is LunalD.Event.SecurityCheck.Success -> {
Log.d(TAG, "onViewCreated() collect security SUCCESS")
}
is LunalD.Event.SecurityCheck.Failure -> {
Log.d(TAG, "onViewCreated() collect security FAILURE")
}
is LunalD.Event.FaceFound -> {
Log.d(TAG, "onViewCreated() face found")
}
is LunalD.Event.InteractionEnded -> {
Log.d(TAG, "onViewCreated() interaction ended")
}
is LunalD.Event.InteractionFailed -> {
Log.d(TAG, "onViewCreated() interaction failed")
}
is LunalD.Event.InteractionTimeout -> {
Log.d(TAG, "onViewCreated() interaction timeout")
Toast.makeText(this.activity, "Interaction timeout",
Toast.LENGTH_LONG).show()
activity?.finish()
}
is LunalD.Event.LivenessCheckError -> {
Log.d(TAG, "onViewCreated() liveness check error ${event.cause}")
}
is LunalD.Event.LivenessCheckFailed -> {
Log.d(TAG, "onViewCreated() Liveness Check Failed")
activity?.finish()
Toast.makeText(this.activity, "liveness check error",
Toast.LENGTH_LONG).show()

}

VisionLabs B.V. Page 100 of 270

is LunalD.Event.LivenessCheckStarted -> {
Log.d(TAG, "onViewCreated() liveness check started")
}

is LunalD.Event.Started -> {
Log.d(TAG, "onViewCreated() started")
}

is LunalD.Event.UnknownError -> {

Log.d(TAG, "onViewCreated() unknown error ${event.cause}")
}
else -> {

Log.d(TAG, "onViewCreated() collected unknown event")

}
}

Jaunchin(this.lifecycleScope)

}

override fun onDestroyView() {
super.onDestroyView()
_binding = null

}

Compose implementation

Here’s an example of implementing an event subscription using Jetpack Compose:

class OverlayComposeView @JvmOverloads constructor(
context: Context,
attrs: AttributeSet? = null,
defStyleAttr: Int = 0
) : AbstractComposeView(context, attrs, defStyleAttr), MeasureBorderDistances {

private var innerBoxPosition by mutableStateOf(Offset.Zero)

@Composable
override fun Content() {
val viewModel: OverlayViewModel =
ViewModelProvider(context as ViewModelStoreOwner)
[OverlayViewModel::class.java]
val interactionState = viewModel.currentinteraction.onStart {
delay(1000) }.collectAsState("")
val errorState = viewModel.errorState.onStart { delay(1000) }.collectAsState("")

Box(
modifier = Modifier.fillMaxSize(),

VisionLabs B.V. Page 101 of 270

contentAlignment = Alignment.Center
) {
if (true) {
Box(
modifier = Modifier

.Size(256.dp)
.border(BorderStroke(4.dp, Color.White))
.onGloballyPositioned { coordinates ->

innerBoxPosition = coordinates.localToWindow(Offset.Zero)

}

}
}

Column(
modifier = Modifier.fillMaxSize().padding(16.dp)

) {
Spacer(modifier = Modifier.weight(4f))

// Display error messages
Text(
modifier = Modifier.fillMaxWidth(),
fontSize = 18.sp,
fontWeight = FontWeight.Bold,
textAlign = TextAlign.Center,
text = errorState.value,
color = MaterialTheme.colorScheme.error,

)
Spacer(modifier = Modifier.size(8.dp))

// Display interaction messages
Text(
modifier = Modifier.fillMaxWidth(),
fontSize = 18.sp,
fontWeight = FontWeight.Bold,
textAlign = TextAlign.Center,
text = interactionState.value,
color = Color.Yellow,

)

Spacer(modifier = Modifier.weight(1f))
}
}

override fun measureBorderDistances(): BorderDistancesInPx {
Log.d("OverlayComposeView", "x=${innerBoxPosition.x} y=%
{innerBoxPosition.y}")

VisionLabs B.V.

Page 102 of 270

val fromLeft = innerBoxPosition.x.tolnt()
val fromTop = innerBoxPosition.y.tolnt()
val fromRight = fromLeft

val fromBottom = fromTop

Log.d(
"OverlayComposeView",
"fromLeft=$fromLeft fromTop=%$fromTop fromRight=$fromRight
fromBottom=%$fromBottom"

)

return BorderDistancesInPx(
fromLeft = fromLeft,
fromTop = fromTop,
fromRight = fromRight,
fromBottom = fromBottom

VIEWMODEL FOR BOTH Ul VARIANTS

The following ViewModel can be used for both Compose and XML implementations:

class OverlayViewModel(application: Application) : AndroidViewModel(application) {
val currentinteraction = LunalD.currentinteractionType
filterNotNull()
.map { Interaction.message(application.applicationContext, it) }
.stateln(viewModelScope, started = SharingStarted.WhileSubscribed(1000), "")

private val _errorState = MutableStateFlow("")
val errorState = _errorState.asStateFlow()

var job: Job? = null

init {
LunalD.errorFlow
.onEach { event ->
val text =
application.applicationContext.getString(event.error.messageResld()!!)
updateTextAndClearLater(text)
}

Jaunchin(viewModelScope)

}

suspend fun updateTextAndClearLater(text: String) {

VisionLabs B.V. Page 103 of 270

Log.d("OverlayViewModel", "updateTextAndClearLater: with text $text")
job?.cancel()
_errorState.update { text }
job = viewModelScope.launch {
delay(1000)
_errorState.update { "" }
}
}
}

VisionLabs B.V. Page 104 of 270

4.2.7 APl changes made in LUNA ID for Android v.1.16.1 in comparison to
earlier versions

This document outlines the changes introduced in LUNA ID for Android v.1.16.1 compared to

previous versions. Carefully review these updates to ensure a smooth migration and
continued functionality in your final application.

Enhanced event handling

All events are now utilized effectively, except for UnknownError . Previously in version 1.16.0 ,
events such as InteractionStarted , InteractionFailed, Started, FaceFound, and UnknownError were

not fully implemented or ignored. This update ensures broader coverage of event types to
improve system responsiveness and debugging capabilities.

Command API restoration
The following commands have been reintroduced:

* CloseCameraCommand - Allows closing the camera session programmatically.

* StartBestShotSearchCommand - Initiates the best shot search process explicitly.

A method for sending commands has been restored:

sendCommand(command: Command)

This method allows you to interact with LUNA ID more flexibly by triggering specific actions
(for example, starting or stopping processes) directly through the API.

VisionLabs B.V. Page 105 of 270

5. Integration guide

5.1 Integration guide for LUNA ID for Android

This guide provides a step-by-step overview of integrating LUNA ID into an Android
application.

5.1.1 Prerequisites
Before you begin, make sure you have:

* Android Studio
* Android project with minimum SDK version 21 or higher

* Valid credentials for https://download.visionlabs.ru/

5.1.2 Step 1: Configure repository

Add the repository to your settings.gradle.kts:

dependencyResolutionManagement {
repositories {
google()
mavenCentral()

ivy {
url = java.net.URIl.create("https://download.visionlabs.ru/")
patternLayout {
artifact("releases/lunaid-[artifact]-[revision].[ext]")
setM2compatible(false)
}
credentials {
username = getlLocalProperty("vl.login") as String
password = getLocalProperty("vl.pass") as String
}
metadataSources { artifact() }
¥
}
}

fun getLocalProperty(key: String, file: String = "local.properties"): Any {
val file = File(rootProject.projectDir, file)
val properties = java.util.Properties()

if (file.isFile) {

VisionLabs B.V. Page 106 of 270

InputStreamReader(FilelnputStream(file), Charsets.UTF_8).use {
properties.load(it)
}
} else if (System.getenv("CI") '= null) {
return "nothing"
} else {
error("File not found: '$file'")

}

return properties.getProperty(key) ?: error("Key '$key' not found")

5.1.3 Step 2: Set up credentials

Create or edit local.properties in your project root:

vl.login=YOUR_LOGIN
vl.pass=YOUR_PASSWORD

Important: Add /local.properties to your .gitignore file to keep credentials secure.

5.1.4 Step 3: Add dependencies

In your app-level build.gradle.kts, add the required LUNA ID and CameraX dependencies:

dependencies {
// LUNA ID (replace {VERSION} with actual version, e.g., 1.20.0)
implementation("ai.visionlabs.lunaid:core: {VERSION } @aar")
implementation("ai.visionlabs.lunaid:common-arm:{VERSION} @aar")
implementation("ai.visionlabs.lunaid:cnn60-arm:{VERSION } @aar")

// CameraX (required)
implementation("androidx.camera:camera-core:1.3.0")
implementation("androidx.camera:camera-camera2:1.3.0")
implementation("androidx.camera:camera-lifecycle:1.3.0")
implementation("androidx.camera:camera-video:1.3.0")

(

implementation("androidx.camera:camera-view:1.3.0")

VisionLabs B.V. Page 107 of 270

5.1.5 Step 4: Add permissions

Add the following permissions to your AndroidManifest.xml:

<uses-permission android:name="android.permission.CAMERA" />
<uses-permission android:name="android.permission.INTERNET" />
<uses-feature android:name="android.hardware.camera" android:required="true" />

5.1.6 Step 5: Initialize LUNA ID

Initialize the SDK in your Application class:

import android.app.Application
import ru.visionlabs.sdk.lunacore.LunaConfig
import ru.visionlabs.sdk.lunacore.LunalD

class MyApp : Application() {
override fun onCreate() {
super.onCreate()

// Initialize with default configuration
LunalD.initEngine(
context = applicationContext,
lunaConfig = LunaConfig.create()

Make sure your AndroidManifest.xml references this class:

<application
android:name=".MyApp"
LS

5.1.7 Step 6: Launch the camera

Before launching the camera, request permission in your Activity :

import android.Manifest
import android.content.pm.PackageManager
import androidx.activity.result.contract.ActivityResultContracts

VisionLabs B.V. Page 108 of 270

import androidx.appcompat.app.AppCompatActivity
import androidx.core.content.ContextCompat

class MainActivity : AppCompatActivity() {

private val requestPermission = registerForActivityResult(
ActivityResultContracts.RequestPermission()

) { granted ->
if (granted) {

launchLunaCamera()

}

}

private fun checkAndRequestCameraPermission() {
if (ContextCompat.checkSelfPermission(
this,
Manifest.permission.CAMERA
) == PackageManager.PERMISSION_GRANTED
) {
launchLunaCamera()
} else {
requestPermission.launch(Manifest.permission.CAMERA)
}
}

private fun launchLunaCamera() {
// Implementation in Step 7

}

In your Activity , launch the camera and handle results:

import androidx.lifecycle.lifecycleScope
import kotlinx.coroutines.flow.filter
import kotlinx.coroutines.flow.filterNotNull
import kotlinx.coroutines.flow.first

import kotlinx.coroutines.launch

import ru.visionlabs.sdk.lunacore.LunalD

class MainActivity : AppCompatActivity() {
override fun onCreate(savedinstanceState: Bundle?) {
super.onCreate(savedlnstanceState)
setContentView(R.layout.activity_main)

// Wait for SDK initialization
lifecycleScope.launch {
LunalD.enginelnitStatus

VisionLabs B.V. Page 109 of 270

filter { it is LunalD.EnginelnitStatus.Success }

first()

// Request camera permission before launching
checkAndRequestCameraPermission()

}

// Handle captured best shots
lifecycleScope.launch {
LunalD.bestShotResult
filterNotNull()
.collect { event ->
val bestShot = event.bestShot
// Process the captured face image
// e.q., display, save, or send to server

}

}

private fun launchLunaCamera() {
LunalD.showCamera(this@MainActivity)

}

LUNA ID is now integrated and ready to use. When you run your app, the camera will

automatically open and start detecting faces.

VisionLabs B.V.

Page 110 of 270

5.2 Integration guide for LUNA ID for iOS

This guide provides a step-by-step overview of integrating LUNA ID into an iOS application.

5.2.1 Step 1: Project setup

Create a new empty iOS application project in Xcode.
Get the vllicense.plist license file from your VisionLabs contact.
Add vllicense.plist to your Xcode project as a resource file.
Download the following required frameworks:

* CheckjailBreakDevice.xcframework

e CryptoSwift.xcframework

* fsdk.xcframework

* tsdk.xcframework

* LunaCamera.xcframework

* LunaCore.xcframework

* LunaWeb.xcframework
Place all .xcframework files in your application folder.

Drag and drop the frameworks into the General > Frameworks, Libraries, and
Embedded Content section of your application target in Xcode.

Set the embedding option for each framework to Embed & Sign to ensure they are
included in your application bundle.

5.2.2 Step 2: ViewController setup

1. Define pipeline estimations

Before presenting the camera interface, configure the estimations you want to include in the
LUNA ID pipeline. These estimations are managed using the LunaCore.LCLunaConfiguration class.

¢ Create an instance of LCLunaConfiguration .

* Customize its properties to match your requirements.

VisionLabs B.V. Page 111 of 270

2. Create the camera view controller

e Use LunaCamera.LMCameraBuilder.viewController() to create an instance of
LMCameraViewControllerProtocol .

* Pass the configured LCLunaConfiguration object as an input parameter.

5.2.3 Step 3: Ul customization

The LunaCamera.LMCameraBuilder.viewController() method gets as an input parameter object of
class LunaCamera.LMCustomization , which allows you to customize the Ul.

The main customization object is the LunaCamera.LMCustomization class. To use it, create an
instance of the LunaCamera.LMCustomization class. It contains the uiCustomizer property of the
LunaCamera.LMUICustomizerProtocol protocol. You can create your own implementation of
LunaCamera.LMUICustomizerProtocol methods which will return your views implementation and
will be used as overlay for video feed.

LunaCamera.LMUICustomizerProtocol supports customization of the following components:

 face tracking frame
e notification view

¢ root customization view

Face tracking frame

func faceDetectionFrameView() -> LMFaceDetectionViewProtocol

This method returns a custom view that tracks the position of the face in the video feed. The
returned view must conform to the LMFaceDetectionViewProtocol .

Required methods:

* switchToPositiveState() : Called when the face tracking process is successful.

¢ switchToNegativeState() : Called when there is an issue with the face in the video feed.

Important: LUNA ID can modify the LunaCamera.LMFaceDetectionViewProtocol frame at any
time. It affects size and position of view.

VisionLabs B.V. Page 112 of 270

Notification view

func videoStreamNotificationView() -> LMVideoStreamNotificationViewProtocol

This method returns a custom view for displaying notifications on top of the video feed.
Required methods:

* showNotificationMessage : Triggered when a notification needs to be displayed.
notificationMessage : Returns the current notification message.

The default implementation of LunaCamera.LMVideoStreamNotificationViewProtocol is the
LunaCamera.LMVideoStreamNotificationView class. You can use
LunaCamera.LMVideoStreamNotificationView class and customize font or text color:

e Use applyFont(_ useFont: UIFont) to change the font.

¢ Use applyTextColor(_ color: UlColor) to change the text color.

Root customization view

func rootCustomizationView() -> UlView

This method returns a custom UlView that overlays the video feed. You can use it as a
container for additional Ul elements.

VisionLabs B.V. Page 113 of 270

6. Initial setup

6.1 Initial setup of LUNA ID for Android

This topic describes how to perform the initial setup of LUNA ID to start using it in your
Android projects.

6.1.1 Step 1. Get the .aar file

To download the .aar file:

1. Specify the file repository.

2. Provide user credentials in the local.properties file.

3. Add the following code fragment to the repositories block in the settings.gradle.kts file:

The settings.gradle.kts file is located in the root directory of your project and defines
which projects and libraries you need to add to your build script classpath.

repositories {

ivy {
url = java.net.URIl.create("https://download.visionlabs.ru/")
patternLayout {
artifact ("releases/lunaid-[artifact]-[revision].[ext]")
setM2compatible(false)

}

credentials {
username = getlLocalProperty("vl.login") as String
password = getLocalProperty("vl.pass") as String

}

metadataSources { artifact() }
}
}

6.1.2 Step 2. Provide your user credentials

Important: Only authorized users can download artifacts from https://
download.visionlabs.ru/.

To provide your user credentials, in the local.properties file:

VisionLabs B.V. Page 114 of 270

1. Specify your user credentials:

vl.login=YOUR_LOGIN
vl.pass=YOUR_PASSWORD

2. Add a function for getting your login and password:

fun getlLocalProperty(key: String, file: String = "local.properties"): Any {
val file = File(rootProject.projectDir, file)
val properties = java.util.Properties()
val localProperties = file
if (localProperties.isFile) {

java.io.InputStreamReader(java.io.FilelnputStream(localProperties),
Charsets.UTF_8)

.use { reader ->
properties.load(reader)

}
} else if (System.getenv("CI") '= null) {
// on Cl we dont really use it
return "nothing"
} else error("File from not found: '$file')

if (!properties.containsKey(key)) {
error("Key not found '$key' in file '$file™)

}

return properties.getProperty(key)

We recommend that you add the local.properties file to .gitignore for the version control
system does not track the file.

6.1.3 Step 3. Add the .aar file as a dependency

To initialize LUNA ID with your project, you need to add the .aar file as a dependency in the
build.gradle.kts file. The build.gradle.kts file defines various build settings such as
dependencies, plugins, library versions, compilation and testing settings, and so on. All these
settings affect how the project is build and what functionality it contains.

To add the .aar file as a dependency, add the following piece of code to the dependencies
block of the build.gradle.kts file:

VisionLabs B.V. Page 115 of 270

dependencies {

implementation("ai.visionlabs.lunaid:core: {VERSION } @aar")

}

For example, implementation("ai.visionlabs.lunaid:core:X.X.X@aar") .

You need to update the {VERSION} parameter when a new version of LUNA ID is released.

6.1.4 Step 4. Initialize LUNA ID and activate the license
To initialize LUNA ID in your project and activate the license as shown in the example below:

Note: The parameters in the example are set to default values.

import android.app.Application

import ru.visionlabs.sdk.lunacore.LunaConfig

import ru.visionlabs.sdk.lunacore.LunalD

import ru.visionlabs.sdk.lunacore.liveness.GlassesCheckType
import ru.visionlabs.sdk.lunaweb.v6.ApiHumanConfig

class DemoApp : Application() {
override fun onCreate() {
super.onCreate()
val baseUrl = "url"
val token = "token"
val headers = mapOf("Authorization" to token)
val apiHumanConfig = ApiHumanConfig(baseUrl, headers)
val lunaConfig = LunaConfig.create(
acceptOccludedFaces = true,
acceptOneEkyed = false,
acceptEyesClosed = false,
detectFrameSize = 350,
skipFrames = 36,
ags = 0.5f,
bestShotinterval = 500,
detectorStep = 7,
glassesChecks = setOf(GlassesCheckType.GLASSES CHECK _SUN)
)
LunalD.initEngine(
app = this,
lunaConfig = lunaConfig,
apiHumanConfig = apiHumanConfig

VisionLabs B.V. Page 116 of 270

Important: For complete instructions on how to activate the LUNA ID license, see
Licensing.

VisionLabs B.V. Page 117 of 270

The example has the following components:

Component

baseUrl

token

headers

apiHumanConfig

ApiHumanConfig
lunaConfig
LunaConfig

acceptOccludedFaces

acceptOneEyed

acceptEyesClosed

detectFrameSize

skipFrames

ags

bestShotlinterval

detectorStep

glassesChecks

LunalD.initEngine

faceFramePerScreen

VisionLabs B.V.

Description

A variable that specifies the URL to LUNA PLATFORM 5. For details, see
Interaction of LUNA ID with LUNA PLATFORM 5.

A variable that specifies a LUNA PLATFORM 5 token, which will be transferred
to a request header from LUNA ID.

A map that specifies headers that will be added to each request to be sent to
LUNA PLATFORM 5.

An optional configuration parameter for calling the LUNA PLATFORM 5 API.
Can be set to null if no LUNA PLATFORM 5 API calls are required. This will also
disable the Online OneShotLiveness estimation, regardless of the
onlineLivenessSettings argument.

A class required for configuration to call the LUNA PLATFORM 5 API.
An argument to be passed for best shot parameters.
A class that describes best shot parameters.

A parameter that specifies whether an image with an occluded face will be
considered the best shot. For details, see Getting the best shot with an
occluded face.

A parameter that specifies whether blinking with one eye is enabled.

A parameter that specifies whether an image with two closed eyes will be
considered the best shot. For details, see Getting the best shot with faces
with closed eyes.

A parameter that specifies a face detection bounding box size.

A parameter that specifies a number of frames to wait until a face is detected
in the face recognition area before video recording is stopped.

A parameter that specifies a source image score for further descriptor
extraction and matching. For details, see AGS.

A parameter that specifies a minimum time interval between best shots.

A parameter that specifies a number of frames between frames with full face
detection.

Specifies what images with glasses can be best shots. For details, see Getting
the best shot with faces with occluded eyes.

A method that activates the LUNA ID license.

A parameter that specifies how much of the screen's width or height the
detected face occupies.

Page 118 of 270

https://docs.visionlabs.ai/luna/latest/standard-distribution/admin-manual/general-concepts/#authorization-system

6.1.5 Step 5. Call LUNA ID functions

To use LUNA ID functionality, such as open a camera, send a request to LUNA PLATFORM 5,
and so on, import LUNA ID libraries and specify the required functions in the build.gradle.kts
file. Consider the following example:

import android.app.Application

import ru.visionlabs.sdk.lunacore.LunaConfig

import ru.visionlabs.sdk.lunacore.LunalD

import ru.visionlabs.sdk.lunaweb.v6.ApiHumanConfig

class DemoApp : Application () {
override fun onCreate() {
super.onCreate()
val token = "token"
val headers = mapOf("Authorization" to token)
LunalD.initEngine(
app = this,
lunaConfig = LunaConfig.create(),
apiHumanConfig = ApiHumanConfig("url", headers)

import android.os.Bundle

import androidx.appcompat.app.AppCompatActivity
import ru.visionlabs.lunademo.R

import ru.visionlabs.sdk.lunacore.LunalD

class MainActivity : AppCompatActivity(){
override fun onCreate(savedinstanceState: Bundle?) {
super.onCreate(savedinstanceState)
setContentView(R.layout.activity_main)
LunalD.showCamera(this)

}
}

6.1.6 Examples
For detailed examples, see:

* CameraExample

* PlatformAPIExample

VisionLabs B.V. Page 119 of 270

https://github.com/VisionLabs/LunaID-Android-Examples/blob/master/CameraExample/src/main/java/ai/visionlabs/examples/camera/MainActivity.kt
https://github.com/VisionLabs/LunaID-Android-Examples/blob/master/PlatformAPIExample/src/main/java/ai/visionlabs/examples/platformapi/MainActivity.kt

6.2 Initial setup of LUNA ID for iOS

This topic describes how to perform an initial setup of LUNA ID to start using it in your iOS
projects.

6.2.1 Step 1. Add XCFrameworks
To embed XCFrameworks into your app:

1. Drag and drop the following .xcframework files from the LUNA ID installation package to
the Frameworks, Libraries, and Embedded Content section of Xcode:

* flower.xcframework

* fsdk.xcframework

* tsdk.xcframework

* LunaCamera.xcframework

* LunaCore.xcframework

* LunaWeb.xcframework

2. Make sure that all the files have the Embed label so that they will be bundled with your
final app. Otherwise, your app will crash at start.

6.2.2 Step 2. Enable OneShotLiveness estimation

To enable OneShotLiveness estimation, specify the the following parameters in the LwConfig
class at the app start:

Parameter Description

identifyHandlerID Specifies the ID of a handler that receives the best shot and identification
according to the existing list of faces.

registrationHandlerlD Specifies the ID of a handler that registers a new user and receives the best
shot and user name.

verifylD Specifies the ID of a verifier used to roll out LUNA PLATFORM 5.

lunaAccountID Specifies the account_ id generated after creating the LUNA PLATFORM 5
account for authorization by the Luna-Account-ld header.

lunaServerURL Specifies the LUNA PLATFORM 5 host URL. The URL should not have the slash
at the end. For example: https://LUNA_PLATFORM_HOST/6 .

VisionLabs B.V. Page 120 of 270

6.2.3 Step 3. Specify license data

Specify license data in the vilicense.plist file. For details, see Licensing.

6.2.4 Step 4. Create a face recognition screen in your app
To create a face recognition screen on which the video stream from the camera is displayed:
1. Add the LMCameraBuilder.viewController() method in the required part of your app.

2. Specify the LCLunaConfiguration object as an input parameter. It allows you to set various
threshold values that affect the resulting recognition screen.

You can also set up a delay, in seconds, to define when the face recognition will start after the
camera is displayed in the screen. To do this, use LCLunaConfiguration.startDelay .

VisionLabs B.V. Page 121 of 270

7. Working with LUNA ID

7.1 Best shots

7.1.1 Best shot estimations
About best shot estimations

This section explains how LUNA ID evaluates image quality to get the best shot from a video
stream.

HOW IT WORKS

LUNA ID analyzes each frame of a video stream captured by your device's camera, searching
for a face. For accurate evaluation, each frame must contain only one face. Frames with faces
that pass specific estimations are considered the best shots.

If an estimation fails, the corresponding error message is returned.

The minimum camera resolution required for optimal estimator performance is 720p
(1280x720 pixels).

In LUNA ID for Android

* The LunalD.allEvents() event (or the more specialized LunalD.finishStates()) emits a
ResultSuccess event containing the best shot found and an optional path to the recorded
video.

* You can adjust parameters for best shot estimations in LunaConfig.kt.

In LUNA ID for iOS

¢ The CameraUlDelegate.bestShot() callback receives the best shot.

* You can adjust parameters for best shot estimations in the LCLunaConfiguration structure.

VisionLabs B.V. Page 122 of 270

ESTIMATIONS

LUNA ID performs several estimations to determine if an image qualifies as the best shot:

VisionLabs B.V. Page 123 of 270

* Number of faces in the frame
The estimation ensures that the frame contains only one face. If multiple faces are
detected, the system returns a TooManyFacesError error message.
By default, no value is set for this estimation.

* AGS estimation
The estimation calculates a score indicating the suitability of the source image for
descriptor extraction and matching. The output is a normalized float score ranging from
0 to 1. A score closer to 1 indicates better matching results for the image.

* Head pose estimation
The estimation determines a person's head rotation angles in 3D space, specifically
along the pitch, yaw, and roll axes.

* Image quality estimation
The estimation evaluates an image based on several key criteria to ensure it meets the
necessary standards. These criteria include:

* Blurriness
* Underexposure
* Overexposure

* Face detection bounding box size
The estimation ensures that the detected face's bounding box matches a specified size.
This estimation helps determine if the subject is too far from the camera, affecting
image quality.

* Frame edges offset
The estimation calculates the distance from the detected face's bounding box to the
edges of the image.

* Eye state
The estimation determines whether the eyes in a detected face are open or closed.

* Face occlusion
The estimation determines whether the lower part of the face in the frame is occluded
by an object. This feature allows you to define whether such frames can still be
considered as best shots. For details, see Getting the best shot with an occluded face.

* Medical mask estimation
The estimation determines whether the face in a frame is partially covered by a medical
mask. This feature allows you to define whether such frames can still be considered as
best shots. For details, see Getting the best shot with an occluded face.

* Mouth estimation
The estimation determines whether the mouth in a frame is occluded by an object, such
as a hand or other obstructions.

VisionLabs B.V. Page 124 of 270

* Glasses estimation
The estimation determines whether the eyes in a frame are occluded by glasses.

VisionLabs B.V. Page 125 of 270

AGS estimation

The AGS (Approximate Garbage Score) estimation calculates a score indicating the suitability
of the source image for descriptor extraction and matching. The output is a nhormalized float
score ranging from 0 to 1. A score closer to 1 indicates better matching results for the image.

VALUE RANGE

The AGS estimation value must be between the minimal and maximum values:

Platform Minimum value configuration Maximum value configuration

LUNA ID for public const val AGS_MIN: Float = OF public const val AGS_MAX: Float = 1F

Android

LUNA ID for LCLunaConfiguration - LCLunaConfiguration -

i0S bestShotConfiguration — bestShotConfiguration —
estimationThreshold - ags = 0; estimationThreshold - ags = 1;

DEFAULT VALUE

By default, the AGS threshold is set to 0.5 in LUNA ID for Android and 0.2 in LUNA ID for iOS.
We strongly do not recommend that you change the value.

Platform Configuration
LUNA ID for Android public const val DEFAULT_AGS: Float = 0.5F
LUNA ID for iOS LCLunaConfiguration - bestShotConfiguration - estimationThreshold - ags = 0.2;

IMPLEMENTATION

Platform Implementation
LUNA ID for Android public val ags: Float = DEFAULT_AGS
LUNA ID for iOS @property (nonatomic) CGFloat ags;

VisionLabs B.V. Page 126 of 270

Head pose estimation

The head pose estimation determines a person's head rotation angles in 3D space,
specifically along the pitch, yaw, and roll axes:

* Pitch (X-axis): This angle measures the vertical tilt of the head. It limits the head
rotation along the X-axis.

* Yaw (Y-axis): This angle measures the horizontal rotation of the head. It limits the head
rotation along the Y-axis.

* Roll (Z-axis): This angle measures the lateral tilt of the head. It limits the head rotation
along the Z-axis.

J ! N
> N\

Head pose
ACCEPTABLE ANGLE RANGES
For optimal results, the acceptable ranges for these angles are as follows:

* Pitch: 0 to 45 degrees
* Yaw: O to 45 degrees
* Roll: 0 to 45 degrees

All pitch, yaw, and roll values must fall within the minimal and maximal valid head position
values specified by your system configuration.

DEFAULT VALES

By default, all rotation angles (pitch, yaw, and roll) are set to 25 degrees each side.

VisionLabs B.V. Page 127 of 270

RECOMMENDED VALUES

We recommend that you specify the following values for the rotation angles:

Angle LUNA ID for Android LUNA ID for iOS

Pitch public const val

LCLunaConfiguration = bestShotConfiguration -
DEFAULT_HEAD_PITCH: Float = 15F

estimationThreshold —» headPitch = 15;

Yaw public const val DEFAULT_HEAD_YAW: LCLunaConfiguration - bestShotConfiguration -
Float = 15F estimationThreshold - headYaw = 15;
Roll public const val LCLunaConfiguration - bestShotConfiguration -
DEFAULT_HEAD_ROLL: Float = 15F estimationThreshold —» headRoll = 15;
IMPLEMENTATION
Angle LUNA ID for Android LUNA ID for iOS
Pitch public val headPitch: Float = @property (nonatomic) CGFloat
DEFAULT_HEAD_PITCH headPitch;
Yaw public val headYaw: Float = DEFAULT_HEAD_YAW @property (nonatomic) CGFloat
headYaw;
Roll

public val headRoll: Float = DEFAULT_HEAD_ROLL @property (nonatomic) CGFloat

headRoll;

VisionLabs B.V. Page 128 of 270

Image quality estimation

The image quality estimation evaluates an image based on several key criteria to ensure it
meets the necessary standards. These criteria include:

* Blurriness: The image appears out of focus.
* Underexposure: The image is too dark.

* Overexposure: The image is too bright.

To perform the estimation, LUNA ID uses the LUNA SDK SubjectiveQuality estimator. For
details, see Image Quality Estimation.

DEFAULT VALUES

Below are the default values for each criterion used in the image quality estimation:

Parameter Default value
Blurriness 0.61
Lightness 0.57
Darkness 0.50

VisionLabs B.V. Page 129 of 270

https://docs.visionlabs.ai/sdk/v.5.31.0/sdk/handbookcompilation/parameter-estimation-facility/#image-quality-estimation

Face detection bounding box size estimation

The face detection bounding box size estimation ensures that the detected face's bounding
box matches a specified size. This estimation helps determine if the subject is too far from
the camera, affecting image quality.

RECOMMENDED MINIMUM SIZE
The minimum recommended size for the face bounding box is 200 x 200 pixels.
DEFAULT VALUES

* LUNA ID for iOS: 200 pixels
* LUNA ID for Android: 350 dp (density-independent pixels)

If the converted pixel value is less than 100 pixels, the frame size will automatically
be set to 100 pixels to maintain a minimum acceptable quality.

CONFIGURATION DETAILS

Below are the configuration details for setting the minimum detectable frame size:

Platform Configuration
LUNA ID for Android public const val DEFAULT_MIN_DETECT_FRAME_SIZE: Int = 350
LUNA ID for iOS LCLunaConfiguration - bestShotConfiguration - minDetSize = 200;

IMPLEMENTATION

Platform Implementation
LUNA ID for Android public val detectFrameSize: Int = DEFAULT _MIN_DETECT FRAME_SIZE
LUNA ID for iOS @property (nonatomic, assign) NSinteger minDetSize;

VisionLabs B.V. Page 130 of 270

Frame edges offset

The frame edges offset estimation calculates the distance from the detected face's bounding
box to the edges of the image.

MINIMAL BORDER DISTANCE

* Without OneShotLiveness Estimation: The minimal border distance for best shot
estimation is 0 pixels. This means the face can be right at the edge of the frame.

* With OneShotLiveness Estimation: The minimal border distance increases to 10
pixels to ensure sufficient space around the face for accurate OneShotLiveness
estimation.

DEFAULT VALUES

* LUNA ID for Android : The default value is set to 0 pixels.
* LUNA ID for iOS : The default value is set to 10 pixels.

IMPLEMENTATION

Platform Implementation
LUNA ID for Android public val borderDistance: Int = DEFAULT_BORDER_DISTANCE
LUNA ID for iOS @property (nonatomic, assign) NSinteger borderDistance;

VisionLabs B.V. Page 131 of 270

Eye state
The eye state estimation determines whether the eyes in a detected face are open or closed.

BEHAVIOR IN DIFFERENT PLATFORMS

In LUNA ID for Android

* Best shot with closed eyes: In some scenarios, a frame with a face that has closed
eyes can still be considered the best shot. For details, see Getting the best shot with
faces with closed eyes.

* Dynamic Liveness: If Dynamic Liveness is enabled, all frames can be considered the
best shots regardless of the eye status.

In LUNA ID for iOS

* Skipping frames with closed eyes: Frames where one or both eyes are closed are
automatically skipped.

* Dynamic Liveness: If Dynamic Liveness is enabled, all frames can be considered the
best shots regardless of the eye status.

IMPLEMENTATION

Platform Implementation
LUNA ID for Android The estimation is performed only if eye interaction is enabled.
LUNA ID for iOS @property (nonatomic, assign) BOOL checkEyes;

If set to true, the best shot with closed eyes will be skipped.

VisionLabs B.V. Page 132 of 270

Medical mask estimation

The medical mask estimation recognizes full or partial face coverage by a medical mask. This
feature allows you to define whether such frames can still be considered as best shots. For
details, see Getting the best shot with an occluded face.

DEPENDENCY ON FACE OCCLUSION ESTIMATION

¢« LUNA ID for Android: If acceptOccludedFaces or acceptMask are set to true, LUNA ID
skips the corresponding estimations for face occlusions or medical masks, respectively.

* LUNA ID for iOS: Face occlusion and medical mask estimations are performed
independently. If both face occlusion and medical mask estimations are enabled, the
mask estimator runs first. When a medical mask is detected, the face occlusion
estimation is omitted.

For details, see Face occlusion estimation.

ERROR HANDLING

* LUNA ID for Android: Returns the FacewithMask error message.

* LUNA ID for iOS: Returns error code 1010.

IMPLEMENTATION

Platform Implementation
LUNA ID for Android public val acceptMask: Boolean = true
LUNA ID for iOS @property (nonatomic, assign) BOOL occludeCheck;

ADDITIONAL NOTES

* LUNA ID for Android: By default, acceptMask is set to true, allowing frames with
occluded faces to be considered as potential best shots. Adjust this setting based on
your specific requirements.

* LUNA ID for iOS: The occludeCheck parameter toggles the medical mask estimation.
Setting it to false disables this estimation, while setting it to true enables it. Ensure that
you adjust this parameter according to your application's needs.

VisionLabs B.V. Page 133 of 270

Face occlusion estimation

The face occlusion estimation determines whether the face in a frame is covered by an
object.

BEHAVIOR IN DIFFERENT PLATFORMS
In LUNA ID for Android

You can enable or disable via the LunaConfig.acceptOccludedFaces parameter. By default, this
parameter is set to true, meaning that no estimations for occluded faces are performed.

val config = LunaConfig.create(

acceptOccludedFaces = true

When acceptOccludedFaces = false , LUNA ID checks for occlusions of the nose, mouth, and lower
part of the face. If an occlusion is detected, it triggers the OccludedFace error.

Dependency on the medical mask estimation
If acceptOccludedFaces or acceptMask are setto true, LUNA ID skips the corresponding
estimations for face occlusions or medical masks, respectively.

In LUNA ID for iOS

The face occlusion estimation checks if the face in a frame are occluded by an object.
However, you can still perform the mouth and medical mask estimations separately.

The faceOcclusionEstimatorEnabled parameter controls whether the system should check one
face for an occlusion. Setting it to false disables this estimation, while setting it to true
enables it.

Dependency on mouth estimation
The face occlusion estimation is performed after the mouth estimation if both the estimations
are enabled.

ERROR HANDLING

* LUNA ID for Android: Returns the DetectionError.OccludedFace error message.

VisionLabs B.V. Page 134 of 270

* LUNA ID for iOS: Returns the following error codes:

* 1031
* 1033

1034

1035

1036

IMPLEMENTATION

Platform
LUNA ID for Android

LUNA ID for iOS

VisionLabs B.V.

Implementation
public val acceptOccludedFaces: Boolean = true

@property (nonatomic, assign) BOOL faceOcclusionEstimatorEnabled;

Page 135 of 270

Glasses estimation

The glasses estimation determines whether the eyes in a frame are occluded by glasses. This
feature allows you to define whether frames with occluded eyes can be considered as best
shot candidates.

ESTIMATION RULES
In LUNA ID for Android
You can specify detailed rules for eye occlusion:
* Images of people wearing sunglasses cannot be considered best shots.

* Images of people wearing eyeglasses cannot be considered best shots.

* Images of people wearing any type of glasses cannot be considered best shots.

In LUNA ID for iOS

* Frames containing faces with sunglasses will automatically be excluded from best shot
candidates.

* Frames containing faces with regular eyeglasses can still be considered as best shots.

For details, see Getting the best shot with faces with occluded eyes.

VisionLabs B.V. Page 136 of 270

7.1.2 Getting the best shot

With LUNA ID, you can capture video stream and get the best shot on which the face is fixed
in the optimal angle for further processing.

Tip: In LUNA ID for Android you can specify a face recognition area for best shot selection.

In LUNA ID for Android
1. Initialize the camera.

Call the LunalD.showCamera() method to start the camera session. This method initiates face
detection and analysis within the video stream.

2. Get the list of best shots.

This step is optional. Implement it, if you want to get multiple best shots during a session.
You can then send the list of acquired best shot to the backend for estimation aggregation.
For details, see Sending multiple frames for estimation aggregation to the backend.

2.1. Set the LunaConfig.multipartBestShotsEnabled parameter to true to get multiple frames.

2.2. Specify the number of best shots to be returned by setting the LunaConfig.bestShotsCount
parameter. The valid range of values for bestShotsCount is from 1 to 10.

When multipartBestShotsEnabled is active, the list of best shots will be returned in the
BestShotsFound event. Use the bestShots Flow to collect this list.

Structure of BestShotsFound :

data class BestShotsFound(
val bestShots: List<BestShot>?
) : Event()

Usage example:

LunalD.bestShots.filterNotNull().onEach { bestShotsList ->
Log.e(TAG, "bestShots: ${bestShotsList.bestShots}")
}.launchin(viewModelScope)

This Flow continuously gets a list of best shots as they are detected during the session.

3. Subscribe to the final best shot result.

VisionLabs B.V. Page 137 of 270

To retrieve the final best shot result (including metadata such as videoPath and
interactionFrames), subscribe to the LunalD.bestShot Flow.

Structure of BestShotFound :

data class BestShotFound(

val bestShot: BestShot, // The selected best shot

val videoPath: String?, // Path to the recorded video (if enabled)

val interactionFrames: List<InteractionFrame>? // Frames with Dynamic Liveness
interactions (optional)
) : Event()

Usage example:

val bestShotFlow = MutableStateFlow<Event.BestShotFound?=>(null)

LunalD.bestShot.filterNotNull().onEach { bestShotFound ->
Log.e("BestShotFound", bestShotFound.toString())
// Process the best shot or its associated metadata here
}.launchin(viewModelScope)

4. Handle best shot events.

The system gets events for both individual best shots (BestShotFound) and lists of best shots
(BestShotsFound). Depending on your use case, handle these events accordingly:

BestShotFound

Contains the final best shot and optional metadata.
Use this for single-best-shot scenarios.

BestShotsFound

Contains a list of all best shots detected during the session.
Use this for multi-best-shot scenarios.

VisionLabs B.V. Page 138 of 270

FACE RECOGNITION AREA

In some cases, you may need the best shot search to start only after a user places their face
in a certain area in the screen. You can specify face recognition area borders by implementing
one of the following strategies:

Border distances are not initialized

Border distances are initialized with an Android custom view

Border distances are initialized in dp

Border distances are initialized automatically
ADD A DELAY BEFORE STARTING FACE RECOGNITION

You can optionally set up a fixed delay or specific moment in time to define when the face
recognition will start after the camera is displayed in the screen. To do this, use the
StartBestShotSearchCommand command.

ADD A DELAY BEFORE GETTING THE BEST SHOT

You can optionally set up a delay, in milliseconds, to define for how long a user's face should
be placed in the face detection bounding box before the best shot is taken. To do this, use the
LunalD.foundFaceDelayMs parameter. The default value is 0.

In LUNA ID for iOS

To get the best shots, pass a value to the delegate parameter of the
LMCameraBuilder.viewController camera controller instance creation function that conforms to
the LMCameraDelegate protocol.

let controller = LMCameraBuilder.viewController(delegate: LMCameraDelegate,
configuration: LCLunaConfiguration,
livenessAPI: livenessAPI)

VisionLabs B.V. Page 139 of 270

With the implementation of the LMCameraDelegate protocol, the camera controller will interact

with the user application. In the implemented methods, you will receive the best shot or the
corresponding error.

public protocol LMCameraDelegate: AnyObject {
func bestShot(_ bestShot: LunaCore.LCBestShot, _ videoFile: String?)

func error(_ error: LMCameraError, _ videoFile: String?)

FACE RECOGNITION AREA

The minDetSize parameter specifies the minimum size of a face (in pixels) that LUNA ID can
detect within a frame. For example, if a face fits into a square with a side length of 50 pixels
and minDetSize is set to 60, such a face will not be detected.

You can define minDetSize in either of the following ways:
* Locate the LCLunaConfiguration class in the best shot configuration section and define the
minDetSize property with the required value.

* Configure minDetSize via the LCLunaConfiguration.plist file.

Difference between minDetSize and minFaceSize :

* minDetSize determines the smallest detectable face size in the frame.

* minFaceSize specifies the minimum acceptable size, in pixels, for a detected face. Faces
smaller than this size will be ignored during the detection process.

This parameter does not affect face detection but rather ensures the quality of the
detected face.

ADD A DELAY BEFORE STARTING FACE RECOGNITION

You can optionally set up a delay, in seconds, to define when the face recognition will start
after the camera is displayed in the screen. To do this, use LCLunaConfiguration.startDelay .

ADD A DELAY BEFORE GETTING THE BEST SHOT

You can optionally set up a delay, in seconds, to define for how long a user's face should be
placed in the face detection bounding box before the best shot is taken. To do this, define the
LCLunaConfiguration::faceTime property. The default value is 5. In case, the face disappears from
the bounding box within the specified period, the BestShotError.FACE_LOST will be caught in the
LCBestShotDelegate::bestShotError delegate.

VisionLabs B.V. Page 140 of 270

7.1.3 Getting the best shot with an occluded face

In LUNA ID, you can define whether images with occluded faces can be considered as best
shots. This feature allows you to customize the behavior based on your specific requirements.

In LUNA ID for Android

To determine whether an image with an occluded face will be considered the best shot, use
the LunaConfig.acceptOccludedFaces parameter.

The acceptOccludedFaces parameter has the following values:

Value Description
true Default. An image with an occluded face can be considered the best shot.
false An image with an occluded face cannot be considered the best shot.

The BestShotsFound event will appear in LunalD.bestShots() with payload
DetectionError.OccludedFace every time an occluded face is recognized.

Important: The acceptOccludedFaces parameter requires the lunaid-mask-X.X.X.aar
dependency. For details, see Distribution kit.

To define that images with occluded faces can be considered as best shots:

1. Add the required .plan files to your project dependencies:

implementation("ai.visionlabs.lunaid:mask:X.X.X@aar")

2. Specify the acceptOccludedFaces parameter in LunaConfig :

LunaConfig.create(
acceptOccludedFaces = true

In LUNA ID for iOS

To determine whether an image with an occluded face will be considered the best shot, use
the LCLunaConfiguration.occludeCheck parameter.

VisionLabs B.V. Page 141 of 270

The occludeCheck parameter has the following values:

Value Description
true Default. An image with an occluded face can be considered the best shot.
false An image with an occluded face cannot be considered the best shot.

If an occluded face is recognized, either of the following errors will be returned: 1008,
1009, 1010. For error descriptions, see Status codes and errors.

VisionLabs B.V. Page 142 of 270

7.1.4 Getting the best shot with faces with closed eyes

In LUNA ID, you can define whether images with faces with one or two closed eyes can be
considered best shots.

In LUNA ID for Android
ONE CLOSED EYE

To get the best shot with a closed eye, use the acceptOneEyeClose parameter. The parameter
has the following values:

Value Description
true Default. Specifies that frames that contain faces with a closed eye can be best shots.
false Specifies that frames that contain faces with a closed eye cannot be best shots.

However, it is possible to get the best shot with an occluded eye. For details, see
Getting the best shot with faces with occluded eyes.

Important: The acceptOneEyeClose parameter requires the acceptOneEyed parameter to be
enabled. For details, see Performing Dynamic Liveness estimation.

TWO CLOSED EYES

To get the best shot with two closed eyes, use the acceptEyesClosed parameter. The parameter
has the following values:

Value Description

true Specifies that frames that contain faces with closed eyes can be best shots.

false Default. Specifies that frames that contain faces with closed eyes cannot be best
shots.

Consider an example below:

LunaConfig.create(
acceptEyesClosed = false,
)

Important: The acceptEyesClosed parameter requires the lunaid-common-arm-X.X.X.aar
dependency. For details, see Distribution kit.

VisionLabs B.V. Page 143 of 270

In LUNA ID for iOS
ONE CLOSED EYE

To get the best shot with a closed eye, use the eyelnjury parameter. The parameter has the
following values:

Value Description
true Default. Specifies that frames that contain faces with a closed eye can be best shots.
false Specifies that frames that contain faces with a closed eye cannot be best shots.

However, it is possible to get the best shot with an occluded eye. For details, see
Getting the best shot with faces with occluded eyes.

TWO CLOSED EYES

In LUNA ID for iOS, it is impossible to get the best shot with two closed eyes.

VisionLabs B.V. Page 144 of 270

7.1.5 Getting the best shot with faces with occluded eyes

In LUNA ID, you can define whether an image in with occluded eyes can be considered the
best shot.

In LUNA ID for Android, you can specify the following eye occlusion rules:

* Images of people in sunglasses cannot be best shots.
* Images of people in eyeglasses cannot be best shots.

* Images of people in any glasses cannot be best shots.

In LUNA ID for iOS, images that contain faces with sunglasses will be excluded from best shot
candidates. Images that contain faces with eyeglasses can be best shots.

In LUNA ID for Android
To get best shots with faces with occluded eyes:

1. Add the required .plan files to the dependency:

implementation("ai.visionlabs.lunaid:glasses:X.X.X@aar")

2. Specify the glassesChecks parameter in LunaConfig to define the type of glasses in the
image and whether the image can be the best shot:

lunaConfig = LunaConfig.create(
glassesChecks = setOf(GlassesCheckType.GLASSES CHECK SUN,
GlassesCheckType.GLASSES CHECK DIOPTER)
)

glassesChecks
Specifies what images with glasses can be best shots.

Possible values:

Value Description

GlassesCheckType.GLASSES CHECK_SUN Defines that images with people in sunglasses cannot be
best shots.

GlassesCheckType.GLASSES CHECK_DIOPTER Defines that images with people in eyeglasses cannot be
best shots.

VisionLabs B.V. Page 145 of 270

You can specify either one, none, or both possible values.

The default value is not set.

In LUNA ID for iOS

To get best shots with faces with occluded eyes, set the LCLunaConfiguration.glassesCheckEnabled
property to true. The default value is false . This will enable the glasses estimation. Only
images that contain faces in eyeglasses will be considered best shots.

Optionally, you can set the LCLunaConfiguration.advancedSunglasses property to true to prohibit
getting best shots with transparent sunglasses. The default value is false .

VisionLabs B.V. Page 146 of 270

7.1.6 Using aggregation

The aggregation mechanism in LUNA ID is designed to enhance the accuracy and reliability of
face recognition by analyzing multiple frames collectively. Aggregation helps mitigate
occasional neural network faults when performing the following best shot estimations:

Estimation Platform
Eye state - “
Glasses - ,
Mouth .

Face occlusion %

How it works

LUNA ID uses an aggregation process to improve accuracy by analyzing multiple frames.
Here’s how it works.

IN LUNA ID FOR ANDROID
The aggregation mechanism operates as follows:

Frame collection: LUNA ID captures 10 consecutive frames.

Glasses detection: LUNA ID checks if any frame has glasses. If even one frame does, the
set is disqualified, and the user gets a "Take off the glasses" error message.

Eye status estimation: No more than two frames should show closed eyes. If more than
two frames have closed eyes, the system sends an "Eyes closed" error message.

Best shot determination : If none of the frames have glasses and no more than two
frames show closed eyes, LUNA ID selects this set as the best shot.

Final result formation:

* The final result is generated only after accumulating the minimum required number of
best shots.

¢ |f the minimum threshold is not met, the result is not recorded or returned.

VisionLabs B.V. Page 147 of 270

IN LUNA ID FOR 10S
For each specific aggregator, the mechanism operates as follows:

* Frame collection: LUNA ID captures 20 consecutive frames.

¢ Initial estimation: If there are 14 or more successful frames (that is, at least 14 out of
20), the aggregation is considered successful.

* Handling unsuccessful aggregations: If the initial evaluation is unsuccessful, LUNA
ID continues to add new frames one by one to the previously accumulated set. Each
time a new frame is added to the end of the queue, the first frame in the queue is
discarded. This creates a "sliding window" effect, where the aggregation score is
updated continuously with each new frame.

* Termination criteria: Aggregation does not stop when it receives a positive response.
Instead, it continues until all active aggregations are successful. This ensures that all
criteria are met simultaneously before proceeding.

* Simultaneous evaluation: All aggregations run in parallel. LUNA ID requires all checks
to be approved at the same moment for a best shot to be captured.

Enable aggregation
IN LUNA ID FOR ANDROID

You can selectively enable aggregation for either eye status, glasses estimation, or both,
depending on your specific needs.

To enable aggregation:

* Set LunaConfig.eyesAggregationEnabled to true to enable eye status estimation
aggregation.

* Set LunaConfig.glassesAggregationEnabled to true to enable glasses estimation
aggregation.

By default, eyesAggregationEnabled and glassesAggregationEnabled are set to true.
Performance optimization

For POS terminals, we recommend disabling aggregation by setting the
LunaConfig.eyesAggregationEnabled and LunaConfig.glassesAggregationEnabled parameters to false .
This adjustment will significantly boost processing speed and reduce system load.

IN LUNA ID FOR 10S
You can enable aggregation through code or a configuration file:

Through code

VisionLabs B.V. Page 148 of 270

Set the LCLunaConfiguration.glassesCheckEnabled and LCLunaConfiguration.aggregationEnabled
properties to true.

Through a configuration file

In the LCLunaConfiguration.plist configuration file, set glassesCheckEnabled and
aggregationEnabled parameters to true.

By default, glassesCheckEnabled and aggregationEnabled are set to false .

Aggregation in TrackEngine
HOW IT WORKS
In LUNA ID for Android

Aggregation in TrackEngine minimizes false alarms for PrimaryFacelostCritical and Facelost

errors that occur when a face is momentarily absent, thereby improving detection stability.
The mechanism operates as follows:

The system monitors face detection results on a per-frame basis.

The PrimaryFacelostCritical or FacelLost error is triggered only if a face is not detected in three
consecutive frames.

If a face is successfully detected in any of these three frames, the error is suppressed, and
the system considers the face to be present in the frame.

ENABLE AGGREGATION IN TRACKENGINE

In LUNA ID for Android
To enable aggregation in TrackEngine, set the trackAggregationEnabled parameter to true in

LunaConfig :

val config = LunaConfig.create(
trackAggregationEnabled = true

By default, the trackAggregationEnabled parameter is set to true.

VisionLabs B.V. Page 149 of 270

7.1.7 Best shot error notifications
In LUNA ID for Android

A best shot error notification is displayed as soon as an error occurs. The next notification
may not be sent earlier than in half a second. If half a second has passed, a new notification
will be displayed immediately.

When multiple errors occur within a second, notifications are sent simultaneously. The
number of notifications sent depends on the maxMessages parameter in the event-receiving
function.

The default parameter value is 0,5.

The maximum parameter value is 3.

fun allEvents(maxMessages: Int = 0,5)

If you need to hide a notification, you can link the hiding to the appropriate event, for
example, to bestShot .

VisionLabs B.V. Page 150 of 270

Error

PrimaryFacelostCritical

PrimaryFacelost

FacelLost

TooManyFaces

FaceOutOfFrame

FaceDetectSmall

BadHeadPose

BadQuality

BlurredFace

TooDark

TooMuchLight

GlassesOn

OccludedFace

BadEyesStatus

The table below lists best shot errors in descending order by their priority:

Description

The primary face that was detected in the video stream has been lost.
The primary face was not detected in the video stream or has been lost.
Unable to detect a face in the video stream.

The frame must contain only one face for LUNA ID to perform a series of
estimations, and then select the best shot.

A face is too close to the camera and does not fit the face recognition area.

The size of the detected face does not correspond to the specified bounding
box size size.

Head rotation angles are not between the minimal and maximum valid head
position values.

The input image does not meet the AGS estimation threshold.
The input image does not meet the blurriness threshold.

The input image does not meet the darkness threshold.

The input image does not meet the lightness threshold.

The person in the input image is wearing sunglasses.

The face is not properly visible in the input image.

The eye state estimation failed.

In case there are more than 3 errors, the first 3 highest priority ones are selected, the rest are
discarded.

In LUNA ID for iOS

The LMErrorPresenter class has an object that allows you to manage error notifications.
LMErrorPresenter accumulates an array of errors that occurred over the past second, and then

passes them out via the LMErrorPresenterDelegate protocol in the func send(errors: [Error])

method.

The error presenter object is contained in the LMBestShotService class and is not accessible

directly. It only works with the LMBestShotServiceDelegate delegate, which forwards the

LMErrorPresenterDelegate methods.

VisionLabs B.V.

Page 151 of 270

The errors: [Error] array can contain from 0 to 3 errors. You can specify the number of errors by
using the errorLimit: Int argument in the LMBestShotService constructor. The limit can take
values from 0 to 3. The default value is 3.

Errors are sorted in descending order by two criteria:

* The most common ones

* The most critical ones

Important: Even one critical error will be of a higher priority than a repeatedly occurring
non-critical one. In the absence of critical errors, errors will be displayed according to
priorities. The list of error priorities (in descending order) is given below.

CRITICAL ERRORS

The below errors lead to an immediate session termination.

Error Code Description

INTERACTION_TIMEOUT 1007 The frame was not received in the time interval
allotted for the best shot.

PRIMARY_FACE_CRITICAL_LOST 1027 The primary face that was detected in the video
stream has been lost.

LIVENESS_ERROR 1004 The OneShotLiveness estimation failed.

VisionLabs B.V. Page 152 of 270

NON-CRITICAL ERRORS

Non-critical errors inform you that you are doing something wrong when trying to get the best
shot.

Error Code Description

MULTIPLE_FACES 1003 The frame must contain only one face for LUNA ID to
perform a series of estimations, and then select the best
shot.

FACE_LOST 1022 The face that was detected in the video stream has been

lost. The session will not be terminated.

BORDERS 1017 The bounding box size with the detected face does not
correspond to the specified size.

TOO_FAR 1016 The bounding box size with the detected face does not
correspond to the specified size.

OCCLUDED_FACE 1010 The face is not properly visible in the input image.

BAD_HEAD_POSE 1002 Head rotation angles are not between the minimal and
maximum valid head position values.

IMAGE_IS_BLURRED 1011 The input image does not meet the blurriness threshold.

IMAGE_IS_UNDEREXPOSED 1012 The input image does not meet the darkness threshold.

IMAGE_IS_OVEREXPOSED 1013 The input image does not meet the lightness threshold.

SUNGLASSES_DETECTED 1024 The person in the input image is wearing sunglasses.

EYES_CHECK_FAILED 1026 The eye state estimation failed.

BAD_QUALITY 1001 The input image does not meet the AGS estimation
threshold.

Other errors that are not listed above have a lower priority. For a full list of errors, see Status
codes and errors.

In case there are more than 3 errors, the first 3 highest priority ones are selected, the rest are
discarded.

VisionLabs B.V. Page 153 of 270

7.2 Face tracking

7.2.1 Tracking a face identity

In LUNA ID, you can track a face identity of the face detected in a video stream during the
entire session. This helps you avoid security issues and make sure that the detected face
belongs to one person.

In LUNA ID for Android

To implement face identity tracking, use the LunaConfig.usePrimaryFaceTracking and
LunaConfig.faceSimilarityThreshold parameters.

Parameter Description Default
value
usePrimaryFaceTracking Determines whether to track the face that was detected true

in the face recognition area first.

faceSimilarityThreshold Determines whether the face that was first detected in 0,5
the face recognition area remains the same.

In LUNA ID for iOS

To implement face identity tracking, set the LCLunaConfiguration.trackFaceldentity property to
true . By default, the parameter value is false.

VisionLabs B.V. Page 154 of 270

7.2.2 Fixing a face in the frame

In LUNA ID, you can implement an event (in LUNA ID for Android) or timeout (in LUNA ID for
i0S) which will react to the appearance of a face in the frame for further processing.

In LUNA ID for Android

The LunalD.faceDetectionChannel event is triggered when LUNA ID detects a face in the frame
for the first time and is used for further image processing.

Below is a usage example:
LunalD.faceDetectionChannel
.receiveAsFlow()
.onEach {

Log.d(TAG,"face found ${it.data}")
}.launchin(lifecycleScope)

In LUNA ID for iOS

After a video session starts, LUNA ID waits for a face to appear in the frame for further
processing. You can set a timeout, in seconds, within which the face should appear in the
frame. If the face does not appear in the frame after this timeout, the session will be
terminated with the 1028 error.

To set the timeout, use the LCLunaConfiguration.emptyFrameTime property.

The default value is 0.

VisionLabs B.V. Page 155 of 270

7.3 OneShotLiveness

7.3.1 About OneShotLiveness estimation

OneShotLiveness is an algorithm for determining whether a person in one or more images is
"real" or a fraudster using a fake ID (printed face photo, video, paper, or 3D mask).

OneShotLiveness is used as a pre-check before performing face detection.

OneShotLiveness estimation types

With LUNA ID, you can perform the following types of OneShotLiveness estimation:

* Online OneShotLiveness estimation

To perform Online OneShotLiveness estimation, LUNA ID sends a request to the LUNA
PLATFORM 5 /liveness endpoint. For more details about LUNA ID and LUNA PLATFORM 5
interaction, see the Interaction of LUNA ID with LUNA PLATFORM 5.

* Offline OneShotLiveness estimation

To perform Offline OneShotLiveness estimation, you do not need to send requests to
LUNA PLATFORM 5. You can perform the estimation directly on your device.

VisionLabs B.V. Page 156 of 270

Image requirements

An image that LUNA ID takes as input must be a source image and meet the following
requirements:

Parameters Requirements

Minimum resolution for mobile 720x960 pixels

devices

Maximum resolution for mobile 1080x1920 pixels

devices

Compression No

Image warping No

Image cropping No

Effects overlay No

Mask No

Number of faces in the frame 1

Face detection bounding box More than 200 pixels

width

Frame edges offset More than 10 pixels

Head pose -20 to +20 degrees for head pitch, yaw, and roll
Image quality The face in the frame should not be overexposed,

underexposed, or blurred.

OneShotLiveness thresholds
By default, two thresholds are used for OneShotLiveness estimation:

* Quality threshold

¢ Liveness threshold

VisionLabs B.V. Page 157 of 270

QUALITY THRESHOLD

Quality threshold estimates the input image by the following parameters:

Lightness (overexposure)

Darkness (underexposure)

Blurriness

[llumination

Specularity

The table below has the default threshold values. These values are set to optimal:

Threshold Value
blurThreshold 0.61
darknessThreshold 0.50
lightThreshold 0.57
illuminationThreshold 0.1
specularityThreshold 0.1

For details on image quality estimation, see Image Quality Estimation and Quality estimator
settings.

LIVENESS THRESHOLD

The LunaConfig.livenessQuality parameter specifies the threshold lower which the system will
consider the result as a presentation attack.

For images received from mobile devices, the default liveness threshold value is 0.5. For
details, see Liveness threshold.

Number of best shots

You can specify a number of best shot to be collected for a OneShotLiveness estimation. To do
this:

* In LUNA ID for Android, use the LunaConfig.bestShotsCount parameter.
The default value is 1.

* In LUNA ID for iOS, use the LCBestShotConfiguration.numberOfBestShots property.
The default value is 3.

VisionLabs B.V. Page 158 of 270

https://docs.visionlabs.ai/sdk/v.5.31.0/sdk/handbookcompilation/parameter-estimation-facility/#image-quality-estimation
https://docs.visionlabs.ai/sdk/v.5.31.0/sdk/configurationguide/settings/#quality-estimator-settings
https://docs.visionlabs.ai/sdk/v.5.31.0/sdk/configurationguide/settings/#quality-estimator-settings
https://docs.visionlabs.ai/luna/v.5.103.0/lp-distribution/administrator-manual/additional-information/#liveness-threshold

7.3.2 Performing Online OneShotLiveness estimation

You can automatically perform Online OneShotLiveness estimation by sending a request to
the LUNA PLATFORM 5 /liveness endpoint. The estimation allows you determine if the person

in the image is a living person or a photograph. You can then validate the received images
with LUNA PLATFORM 5.

In LUNA ID for Android
To perform Online OneShotLiveness estimation:

1. Specify the livenessType: LivenessType field in LunaConfig . The field accepts one of the
following values:

Value Description

None Disables the estimation. The default value.

Online Enables the estimation by sending a request to the LUNA PLATFORM 5 /liveness
endpoint.

2. Specify the required LUNA PLATFORM 5 server parameters in ApiHumanConfig .
The example below shows how to enable Online OneShotLiveness estimation:

val apiConfig = ApiHumanConfig("http://luna-platform.com/api/6/")
LunalD.init(

apiHumanConfig = apiConfig,
lunaConfig = LunaConfig.create(
livenessType = LivenessType.Online,
)l

VisionLabs B.V. Page 159 of 270

In LUNA ID for iOS

To perform Online OneShotLiveness estimation, you need to pass appropriate values for the
livenessAPI and configuration parameters to the camera controller instance creation function

LMCameraBuilder.viewController :

let controller = LMCameraBuilder.viewController(delegate: self,
configuration: LCLunaConfiguration,
livenessAPI: livenessAPI)

Parameter Description
configuration The parameter is represented by the LCLunaConfiguration structure.
livenessAPI The API should be of type LunaWeb.LivenessAPIV6 .

The APl accepts the configuration parameter, which contains all the necessary settings for
checking liveness.

VisionLabs B.V. Page 160 of 270

7.3.3 Performing Offline OneShotLiveness estimation

With LUNA ID, you can perform liveness estimation directly on your device. Unlike Online
OneShotLiveness estimation, which sends requests to the LUNA PLATFORM 5 /liveness
endpoint, Offline OneShotLiveness estimation operates locally, ensuring faster processing and
reduced dependency on backend services.

This feature allows you to determine whether the person in the image is a living individual or
a spoof (for example, a photograph or mask).

In LUNA ID for Android
To perform Offline OneShotLiveness estimation:
1. Add the required dependency.

Add the appropriate dependency to your build.gradle file based on your device's architecture.
This dependency includes the neural networks required for Offline OneShotLiveness
estimation.

implementation("ai.visionlabs.lunaid:osIm-arm:X.X.X@aar")

2. Specify the estimation type in LunaConfig :

LunaConfig.create(
livenessType = LivenessType.Offline

VisionLabs B.V. Page 161 of 270

3. Specify the neural networks to be used for the estimation by using the
LunaConfig.livenessNetVersion parameter. This parameter is of type LivenessNetVersion and
supports two values:

Value Description

LITE Default. Loads the neural network models:
* oneshot _rgb_liveness v12 model 4 arm.plan
* oneshot _rgb_liveness v12 model 5 arm.plan

MOBILE Loads only the oneshot_rgb_liveness v12 _model 6 _arm.plan model.
Recommended for devices with lower performance.

Important: After changing the livenessNetVersion parameter, restart the final application
for the changes to take effect.

LunaConfig.create(
livenessType = LivenessType.Offline,
livenessNetVersion = LivenessNetVersion.LITE

LOGGING

When configuring the livenessNetVersion parameter, you can now monitor which networks are
loaded directly from the logs:

* livenessNetVersion = 1 - The system loads: oneshot _rgb_liveness v12 model 6 _arm.plan

* livenessNetVersion = 2 - The system loads: oneshot_rgb_liveness v12 model 4 _arm.plan
and oneshot_rgb_liveness_v12_model 5 arm.plan

In LUNA ID for iOS
To perform Offline OneShotLiveness estimation:
1. Make sure that you have the following .plan files in your deployment directory:

* fsdk.framework/data/oneshot rgb liveness vi2 model 4 arm.plan
* fsdk.framework/data/oneshot rgb _liveness vi2 model 5 arm.plan

* fsdk.framework/data/oneshot rgb_liveness vi2 model 6 _arm.plan

2. Enable the estimation:

configuration.bestShotConfiguration.livenessType = LivenessType.Offline

VisionLabs B.V. Page 162 of 270

7.3.4 Disabling OneShotLiveness estimation

If you want to skip a liveness estimation over the best shot, you can disable a
OneShotLiveness estimation.

In LUNA ID for Android

To disable OneShotLiveness estimations, set the livenessType: LivenessType field to None in
LunaConfig .

If livenessType: LivenessType is not specified, OneShotLiveness estimations are disabled by
default.

The example below shows how to disable OneShotLiveness estimations:

val apiConfig = ApiHumanConfig("http://luna-platform.com/api/6/")
LunalD.init(

apiHumanConfig = apiConfig,
lunaConfig = LunaConfig.create(
livenessType = LivenessType.None,
)I

In LUNA ID for iOS

DISABLE ONLINE ONESHOTLIVENESS ESTIMATION

To disable Online OneShotLiveness estimation, disable sending of OneShotLiveness
estimation requests to LUNA PLATFORM 5 by setting livenessType to .none. For example:

private lazy var configuration: LCLunaConfiguration = {
let configuration = LCLunaConfiguration.defaultConfig()

configuration.bestShotConfiguration.livenessType = .none

return configuration

}H0)

VisionLabs B.V. Page 163 of 270

DISABLE OFFLINE ONESHOTLIVENESS ESTIMATION

To disable Offline OneShotLiveness estimation, set the useOfflineLiveness parameter to false in
the LCLunaConfiguration structure:

LCLunaConfiguration.useOfflineLiveness = false

VisionLabs B.V. Page 164 of 270

7.4 Dynamic Liveness

7.4.1 About Dynamic Liveness estimation

Dynamic Liveness estimation is a feature designed to verify whether a person is physically
present and alive by analyzing their interactions with a camera in your application. This
process is performed entirely on the user's device, ensuring privacy and security by
eliminating the need to send data to external servers.

Interaction types

To perform Dynamic Liveness estimation, users are prompted to perform specific interactions.
The supported interaction types include:
* Blinking: The user can blink with either one eye or both eyes.
* Head rotations:
» Left rotation: Rotating the head to the left along the Y-axis.
* Right rotation: Rotating the head to the right along the Y-axis.
* Pitch up: Tilting the head upward along the X-axis.

* Pitch down: Tilting the head downward along the X-axis.

Implementation
IN LUNA ID FOR ANDROID

* By default, all user interactions with the camera are disabled, and Dynamic Liveness
estimation does not start automatically.

* You must specify the order in which interactions will be performed. For details, see
Performing Dynamic Liveness estimation.

VisionLabs B.V. Page 165 of 270

IN LUNA ID FOR 10S

You need to do one of the following to initiate Dynamic Liveness estimation:

* Specify a number of interactions to be performed

The system generates a random sequence of interactions based on the number you

define. For details, see Specify a number of interactions or a sequence of interactions to
be performed.

* Define a sequence of interactions to be performed

You can manually define the sequence of interactions to be performed. For details, see
Define an interaction sequence or a sequence of interactions to be performed.

Dynamic Liveness defaults

INTERACTION TIMEOUT

Each interaction has a configurable timeout, which defaults to 5 seconds. This timeout
determines how long the user has to complete the requested action.

For details on setting the timeout, see:
e Set an interaction timeout in LUNA ID for Android
¢ Set an interaction timeout in LUNA ID for iOS

TIMEOUT BETWEEN INTERACTIONS

You can configure a delay between consecutive interactions. By default, this timeout is set to
0 seconds.

For details on setting the timeout, see:

e Set a timeout between interactions in LUNA ID for Android

e Set a timeout between interactions in LUNA ID for iOS

HEAD ROTATION ANGLES

Head rotation angles define the degree to which a user must turn their head for the
interaction to be successfully recognized.

VisionLabs B.V. Page 166 of 270

The default head rotation angles are:

* In LUNA ID for Android:
* Yaw (left and right rotation): 10-30 degrees.
* Pitch (up and down rotation): 5-20 degrees.

* In LUNA ID for iOS:

* The default head rotation angles are in the 10-25 degrees range.

Results

With LUNA ID, you can capture and integrate interaction frames into your reports. By doing
this, you can provide a more comprehensive and accurate record of the Dynamic Liveness
estimation interactions performed. This ensures that any discrepancies or issues can be easily

identified and addressed, enhancing the overall reliability and transparency of your biometric
verification system.

For details, see Getting Dynamic Liveness estimation results.

VisionLabs B.V. Page 167 of 270

7.4.2 Performing Dynamic Liveness estimation

This topic describes how to implement user interactions with a camera in your app to perform
the Dynamic Liveness estimation.

In LUNA ID for Android

To perform the Dynamic Liveness interaction, do the following:

Enable the estimation by creating a list of interactions.
Specify optional parameters, such as:

* Interaction timeout

* Timeout between interactions

* Head rotation angles

* Blinking with one eye
ENABLE THE ESTIMATION

To enable the estimation, create a list of interactions. To do this, pass the Interactions
argument to LunalD.showCamera() . For example:

LunalD.showCamera(
interactions = Interactions.Builder().build()

In cases, when you specify Interactions.Builder().build() or do not specify the interactions

parameters at all, an empty list of interactions will be created. This means no interactions will
be included.

Interactions is a container for interaction parameters. You can add the following interactions to
it:

Parameter Description

YawLeftInteraction Enables user interaction via rotating the head to the left along the Y axis.
YawRightInteraction Enables user interaction via rotating the head to the right along the Y axis.
PitchUplInteraction Enables user interaction via pitching the head up along the X axis.
PitchDownlinteraction Enables user interaction via pitching the head down along the X axis.
Blinkinteraction Enables user interaction via blinking. See also Enable blinking with one eye.

VisionLabs B.V. Page 168 of 270

Important notes:

* You can specify each parameter only once.

* The interaction parameters will be launched in the order you specify them in your code.
If you do not specify the order, no interactions will be performed.

The interactions that you add to the list will be performed either in a random order or in a
defined sequence.

Perform interactions in a random order

To perform interactions in a random order, add required interaction types with

Interactions.Builder() .

Define an interaction sequence

To define an interaction sequence, use the addinteraction method as shown in the example
below:

LunalD.showCamera(
interactions = Interactions.Builder()
.addInteraction(YawLeftInteraction)
.addInteraction(YawRightInteraction)
.addInteraction(PitchUplnteraction)
.addInteraction(PitchDownInteraction)
.addInteraction(BlinkInteraction)
Juild()

SET AN INTERACTION TIMEOUT

Each interaction has the timeoutMs parameter. It determines the time, in milliseconds, during
which this interaction must be completed.

By default, the parameter value is 5 seconds.
SET A TIMEOUT BETWEEN INTERACTIONS

You can set a timeout between interactions, in milliseconds. This means that a new
interaction will start after the preceding one ends after the specified timeout is passed.

To do this, use the LunaConfig.interactionDelayMs parameter.

By default, the parameter value is 0.

VisionLabs B.V. Page 169 of 270

VIEW INTERACTION STATUSES

LUNA ID for Android has the StatelnteractionStarted and StatelnteractionEnded statuses. The
statuses inform you about an interaction start and successful end, respectively.

SPECIFY HEAD ROTATION ANGLES

Head pose interactions have the startAngleDeg and endAngleDeg parameters. If you do not
specify them, the default values will be used.

Parameter Interaction Default Description
value
startAngleDeg Yawleftinteraction 10 Specifies the start angle at which the user must

rotate their head for the interaction to be

YawRightinteraction 10 considered successful.

PitchUpinteraction 5
PitchDownlInteraction 5

endAngleDeg Yawleftinteraction 30 Specifies the end angle at which the user must
rotate their head for the interaction to be

YawRightinteraction 30 considered successful.

PitchUpinteraction 20

PitchDownlnteraction 20

ENABLE BLINKING WITH ONE EYE

To enable blinking with one eye, set the acceptOneEyed parameter of the Blinkinteraction
interaction to true. This allows users to perform blinking with one eye, rather than two.

By default, the acceptOneEyed parameter is set to false.

Important: The acceptOneEyed parameter requires the lunaid-common-arm-X.X.X.aar
dependency. For details, see Distribution kit.

VisionLabs B.V. Page 170 of 270

In LUNA ID for iOS

To perform the Dynamic Liveness interaction, do the following:

Enable the estimation.
Specify a number of interactions.
Optional. Define an interaction sequence.
Specify optional parameters, such as:

* Interaction timeout

* Timeout between interactions

* Head rotation angles
ENABLE THE ESTIMATION

To enable user interactions with a camera, pass appropriate values for the livenessAPI and
configuration parameters to the LMCameraBuilder.viewController camera controller instance

creation function:

let controller = LMCameraBuilder.viewController(delegate: self,
configuration: LCLunaConfiguration,
livenessAPI: livenessAPI)

Parameter Description

configuration The parameter is represented by the LCLunaConfiguration structure. The
LCLunaConfiguration — InteractionEnabled = true parameter is responsible for interaction

with the camera.

livenessAPI The API should be of type LunaWeb.LivenessAPIV6 .

The APl accepts the configuration parameter, which contains all the necessary settings for
performing Dynamic Liveness.

SPECIFY A NUMBER OF INTERACTIONS

The interaction generator produces a random sequence of interactions from the interaction

types list.

You can specify a number of interactions to be performed. To do this, pass the stepsNumber
parameter to the following property of the LCLunaConfiguration class:

VisionLabs B.V. Page 171 of 270

@property (nonatomic, strong) LCInteractionsConfig *interactionsConfig;

Important:The number of interactions must not exceed 5.
DEFINE AN INTERACTION SEQUENCE

To define a user interaction sequence, use the
LMCameraViewControllerProtocol::definelnteractionsStep method. For example:

let cameraViewController = LMCameraBuilder.viewController(delegate: self,
configuration: self.configuration,
livenessAPI: self.livenessAPI)
cameraViewController.definelnteractionsStep([
LunaCore.LCBIlinkConfig(),
LunaCore.LCDownHeadTrackConfig(),
LunaCore.LCUpHeadTrackConfig()
D
cameraViewController.dismissHandler = { [weak self] in
self?.closeViewController(animated: true)
}
cameraViewController.modalPresentationStyle = .fullScreen
self.present(cameraViewController, animated: true)

You can define an array of LCStepConfigProtocol objects:

Object Description

LCBlinkConfig Enables user interaction via blinking.

LCUpHeadTrackConfig Enables user interaction via pitching the head up along the X axis.
LCDownHeadTrackConfig Enables user interaction via pitching the head down along the X axis.
LCLeftHeadTrackConfig Enables user interaction via rotating the head to the left along the Y axis.
LCRightHeadTrackConfig Enables user interaction via rotating the head to the right along the Y axis.

You can set a timeout for each interaction.
SET AN INTERACTION TIMEOUT

You can set a timeout for every interaction to be performed in a random sequence. It
determines the time, in seconds, during which an interaction must be completed.

To do this, pass the interactionTimeout parameter to the following property of the
LCLunaConfiguration class:

VisionLabs B.V. Page 172 of 270

@property (nonatomic, strong) LCInteractionsConfig *interactionsConfig;

By default, the parameter value is 5 seconds.

If an interaction was not completed within the allotted time, the "Interaction timeout" error
appears.

SET A TIMEOUT BETWEEN INTERACTIONS

You can set a timeout between interactions in seconds. This means that a new interaction will
start after the preceding one ends after the specified timeout is passed.

To do this, use the LCLunaConfiguration.interactionsConfig.timeoutBetweeninteractions property.
By default, the property value is set to 0.
VIEW INTERACTION STATUSES

You can find current interaction statuses from userinfo[NSStepStateKey] in the NSError object
which you will receive in the bestshotError() delegate method. For example:

func bestShotError(_ error: Error) {
if ((error as NSError).code == BestShotError.NEED_TO_BLINK.rawValue) {
print("blink interaction state <\((error as NSError).userinfo[NSStepStateKey] ?? 0)>")
}
}

The statuses inform you about an interaction start, being in progress, and successful end.

SPECIFY HEAD ROTATION ANGLES

For user interactions via head rotations, you can specify head rotation angles. For the default
values, see Head rotation angles.

VisionLabs B.V. Page 173 of 270

7.4.3 Getting Dynamic Liveness estimation results

Dynamic Liveness estimation verifies the authenticity of a user's identity through real-time
interactions. This document outlines how to capture and integrate interaction frames into
your application results, ensuring comprehensive reporting.

In LUNA ID for Android

Enable interaction frame saving
Set the savingInteractionFrames parameter to true . By default, the parameter is set to false .

Capture interaction frames
Capture frames when specific statuses (HEADTRACK_STATE_IN_PROGRESS_BACKWARD or
INTERACTION_EYES CLOSED) are achieved.

Store and pass interaction frames
Store the captured frames in the interactionFrames list and pass them to the result object.

Generate report
Use the captured frames and their corresponding interaction types to generate a detailed
report within your application.

In LUNA ID for iOS

Enable interaction frame saving
Implement the func interactionsFinish(with interactionFrames: [LCInteractionFramelnfo]) method in
your final application.

Generate report
Use the captured frames and their corresponding interaction types to generate a detailed
report within your application.

VisionLabs B.V. Page 174 of 270

The LCinteractionFramelnfo is used to pass information for report generation. It contains data
about interaction frames and interaction types:
* LCInteractionsType - An enumeration that defines the interaction type:

* LCInteractionsType Head left - User interaction via rotating the head to the left along
the Y axis.

* LCInteractionsType_Head right - User interaction via rotating the head to the right along
the Y axis.

* LCInteractionsType Head down - User interaction via pitching the head down along the
X axis.

* LCInteractionsType Head up - User interaction via pitching the head up along the X
axis.

* LCInteractionsType Blink - User interaction via blinking.
* LCInteractionFramelnfo - A class containing information about the interaction frame:
* frame - The interaction frame as a Ulimage object.

* interactionsType - The interaction type corresponding to one of the LCinteractionsType
values.

VisionLabs B.V. Page 175 of 270

7.4.4 Interception of Dynamic Liveness interaction events
Applies to LUNA ID for Android only.
You can intercept interaction events via LunalD.faceDetectionChannel() .
You will receive structure similar to the "error" and "detection" events:
{

"action": "interaction",
"state": ...

Where state is an object of the Lunalnteraction class.

public enum class Lunalnteraction {
INTERACTION_FAILED,
INTERACTION_STARTED,

INTERACTION_EYES_OPENED,
INTERACTION_EYES_CLOSED,
INTERACTION_EYES_OPENED_AGAIN,

INTERACTION_SUCCESS

Just like with errors based on this state, you can control how interaction messages will look
like.

VisionLabs B.V. Page 176 of 270

7.4.5 Customizing Dynamic Liveness notifications

You can customize messages that are shown when a user performs blinking to fulfill the
Dynamic Liveness estimation. For example, you can change:

Notification language

Fonts

Font colors

Background colors

In LUNA ID for Android

To customize Dynamic Liveness notifications, specify them in the LunalD.interactions() method
by implementing your own logic.

The default notification language is English.

In LUNA ID for iOS

To customize Dynamic Liveness notifications, use the
func showNotificationMessage(_newMessage: String) method of LMVideoStreamNotificationViewProtocol .

VisionLabs B.V. Page 177 of 270

7.5 Video streams

7.5.1 About working with video streams

Recording a video stream is a task you may need to perform for further image processing.
The recorded video stream will subsequently be divided into individual frames. The most
appropriate still images will be later used for facial recognition and getting the best shot.

In LUNA ID, you can record:
* Entire video session
* Only video sessions in which a face was detected in at least one frame
Video stream settings

In LUNA ID, you can configure the following settings for video stream recording:

Setting Platform
Video stream quality -
Timeout before starting recording “

Video stream duration - <
Custom frame resolution -
Autofocus =
Compression -

VisionLabs B.V. Page 178 of 270

Information about a recorded video stream

LUNA ID saves video stream to file with the following parameters:

Parameters LUNA ID for Android LUNA ID for iOS

Duration limits None None

Resolution 320x240 pixels 180x320 pixels

Frame rate 30 fps 30 fps

File format .mp4 .mov

Video .H264 .H264

compression

standard

Audio recording None None

Video stream re- Yes Yes

recording The file with the recorded video The file with the recorded video
stream is overwritten when a new stream is overwritten when a new
video session starts. video session starts.

VisionLabs B.V. Page 179 of 270

7.5.2 Recording a video stream

Recording a video stream is a task you may need to perform for further processing of images.
The recorded video stream will then be divided into frames. The most suitable still images will
be later used for facial recognition and getting the best shot.

In LUNA ID for Android

To record a video stream, open a camera by using recordVideo = true . For example:

LunalD.showCamera(

recordVideo = true,

When the camera finishes its work, LunalD.allEvents() (or more specialized LunalD.finishStates())
will emit the ResultSuccess event with the best shot found and an optional path to the
recorded video. The entire process of getting the best shot is written to this video file.

LUNA ID does not manage the video file. This means, that file management, that is
deletion, copying, sending to a server, and so on, is performed on your side.

The recording stops when the best shot is captured or when a user closes the camera before
LUNA ID gets the best shot.

In LUNA ID for iOS
To record a video stream:

1. Define the recordvideo parameter as true in:

let controller = LMCameraBuilder.viewController(delegate: self,
recordVideo: true)

2. Find the video file path in the bestShot function in the LMCameraDelegate protocol.

public protocol LMCameraDelegate: AnyObject {
func bestShot(_ bestShot: LunaCore.LCBestShot, _ videoFile: String?)

func error(_ error: LMCameraError, _ videoFile: String?)

VisionLabs B.V. Page 180 of 270

The detected face in the frame is tracked all the time when the camera is on.

VisionLabs B.V. Page 181 of 270

7.5.3 Recording a video stream only with the face detected

With LUNA ID, you can record either entire video sessions or only video sessions in which a
face was detected in at least one frame.

In LUNA ID for Android

To record a video stream only with the face detected, call LunalD.showCamera() with

ShowCameraParams(recordVideo=true, ignoreVideoWithoutFace=true) .

You can optionally set up a fixed delay or specific moment in time to define when the face
recognition will start after the camera is displayed in the screen. To do this, use the
StartBestShotSearchCommand command.

In LUNA ID for iOS

To record a video stream only with the face detected, pass appropriate values for the
recordVideo and configuration parameters to the LMCameraBuilder.viewController camera
controller instance creation function:

let controller = LMCameraBuilder.viewController(delegate: self,
configuration: LCLunaConfiguration,

recordVideo: true)

Parameter Description

configuration The parameter is represented by the LCLunaConfiguration structure. The
LCLunaConfiguration - saveOnlyFaceVideo = true parameter is responsible for saving
video files only with a face detected.

recordVideo The parameter is responsible for saving the video file.

You can find the video file path in the bestShot function in the LMCameraDelegate protocol.

public protocol LMCameraDelegate: AnyObject {
func bestShot(_ bestShot: LunaCore.LCBestShot, _ videoFile: String?)

func error(_ error: LMCameraError, _ videoFile: String?)

VisionLabs B.V. Page 182 of 270

You can also set up a delay, in seconds, to define when the face recognition will start after the
camera is displayed in the screen. To do this, use LCLunaConfiguration.startDelay .

The detected face in the frame is tracked all the time when the camera is on.

VisionLabs B.V. Page 183 of 270

7.5.4 Video stream settings

In LUNA ID, you can configure the following parameters for video stream recording:

Setting Platform
Video stream quality -
Timeout before starting recording “

Video stream duration - €
Custom frame resolution -
Autofocus -
Compression -

Video stream quality
Applies to LUNA ID for Android only.

To configure the video stream quality, pass the LunaVideoQuality parameter to the LunaConfig
method. The parameter has the following values:

* SD - Default. Provides a lower resolution and smaller file size suitable for most use
cases (~640x480 pixels).

* HD - Increases the resolution, frame rate, and bitrate, resulting in better video quality
but larger file sizes and potentially higher processing requirements.

Video stream quality is determined by the following parameters:

Parameter SD (Low SD (High HD 720p HD 1080p
quality) quality)

Video 640x480 px 720x480 px 1280x720 1920x1080

resolution px pXx

Video frame 20 fps 30 fps 30 fps 30 fps

rate

Video bitrate 384 Kbps 2 Mbps 4 Mbps 20 Mbps

Timeout before starting recording

Applies to LUNA ID for iOS only.

VisionLabs B.V. Page 184 of 270

To configure a delay before starting video recording, use the LCLunaConfiguration.startDelay

parameter. This parameter allows you to specify the duration (in seconds) to wait before
initiating the recording process.

By default, the parameter value is set to 0.

Video stream duration

IN LUNA ID FOR ANDROID

To limit a video stream's duration, use the recordingTimeMillis parameter within the
LunalD.ShowCameraParams configuration. This parameter defines the video stream duration in

milliseconds. By default, this value is not set , meaning you must explicitly configure it when
enabling video recording.

LunalD.showCamera(
activity,
LunalD.ShowCameraParams(
recordVideo = true,

recordingTimeMillis = 10000 // Sets the video recording duration to 10 seconds

Important: The recordingTimeMillis parameter is mandatory if recordVideo is set to true.
Failing to provide a valid positive value will result in the following exception:

lllegalStateException, when param recordVideo is true -> param recordingTimeMillis
must be positive

VisionLabs B.V. Page 185 of 270

IN LUNA ID FOR I0S
To limit the duration of a video stream:

Enable face identity tracking
Set the LCLunaConfiguration.trackFaceldentity property to true to enable face identity tracking
during the video stream.

Set video stream length
Use the LCLunaConfiguration::videoRecordLength parameter to specify the maximum duration
of the video stream in seconds.

Initialize the watchdog object

Call LMCameraCaptureManager::createVideoRecordWatchDog(LunaCore::LCBestShotDetectorProtocol) in
your ViewController .

This initializes a watchdog object that monitors the primary face search and starts the
video recording process. Once the time specified in videoRecordLength elapses, the
recording automatically stops.

The watchdog object lives inside the capture manager and is not available for public usage.

Custom frame resolution
Applies to LUNA ID for Android only.

To specify precise resolution requirements for your application, use the following parameters
of the ShowCameraParams class:

* preferredAnalysisFrameWidth

¢ preferredAnalysisFrameHeight

These parameters allow you to specify a preferred resolution for frame analysis. However,
note that the preferred prefix implies the specified resolution may not always be supported by
the device's camera. In such cases, the system automatically adjusts to the nearest available
resolution.

By configuring these parameters, you can optimize the frame resolution to better suit your
application's needs while ensuring compatibility with the device's hardware capabilities.

The default frame resolution for frame analysis is 480x320.

Autofocus

Applies to LUNA ID for Android only.

VisionLabs B.V. Page 186 of 270

To control whether the camera's autofocus feature will be enabled or disabled upon startup,

use the autofocus parameter of the ShowCameraParams class. The parameter has the following
values:

e true - Default. Disables the camera's autofocus functionality, allowing for a fixed focus
setting regardless of device capabilities.

» false - Enables the camera’s autofocus feature if the device supports it. This aligns with
the default behavior of CameraX, which enables autofocus when supported by the
hardware.

Compression
Applies to LUNA ID for Android only.

To compress a video, you need to integrate FFmpegKit into your Android project:
1. Add the JitPack repository

In your settings.gradle.kts file, include the JitPack repository as follows:

pluginManagement {
repositories {
google()
gradlePluginPortal()
mavenCentral()
maven("https://jitpack.io ")
}
}

dependencyResolutionManagement {
repositoriesMode.set(RepositoriesMode.FAIL_ON_PROJECT_REPOS)
repositories {
google()
mavenCentral()
maven("https://jitpack.io ")
}

2. Add the FFmpegKit Dependency

In your module's build.gradle.kts file (for example, app/build.gradle.kts), add the following
dependency under dependencies :

VisionLabs B.V. Page 187 of 270

dependencies {
implementation("com.github.arthenica:ffmpeg-kit-min-gpl:6.0-2.LTS") // Minimal
GPL version
/I For the full version, use:
// implementation("com.github.arthenica:ffmpeg-kit-full-gpl:6.0-2.LTS")

}
3. Sync your project
After adding the dependencies, sync your project with Gradle files.
In Android Studio, go to File > Sync Project with Gradle Files.
4. Request permissions (if needed)

Add the necessary permissions to your AndroidManifest.xml file:

<uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE"/>
<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>

Note: If targeting Android 10 (API level 29) or higher, consider using the Storage Access

Framework (SAF) instead of requesting direct storage permissions.

5. Add the FFmpegUtils utility class

Create a utility class named FFmpegUtils to handle FFmpeg operations. Here's an example

implementation:

package ru.visionlabs.sdk.lunacore.utils

import com.arthenica.ffmpegkit.FFmpegKit
import com.arthenica.ffmpegkit.ReturnCode
import kotlinx.coroutines.CoroutineScope
import kotlinx.coroutines.Dispatchers
import kotlinx.coroutines.launch

object FFmpegUtils {

/**

* Compresses a video file using FFmpeg.

X

* @param inputPath The path to the input video file.

* @param outputPath The path where the compressed video will be saved.
* @param onSuccess Callback invoked on successful compression.

VisionLabs B.V. Page 188 of 270

* @param onFailure Callback invoked if an error occurs.
*/
fun compressWithFFmpeg(
inputPath: String,
outputPath: String,
onSuccess: () -> Unit,
onFailure: (Throwable) -> Unit
) {
val cmd = listOf(
"oyt "-i", inputPath,
"-vf", "scale=iw/2:ih/2", // Scale video resolution by half
"-c:v", "libx264", "-b:v", "1M", "-preset", "fast", // Video codec settings
“-c:a", "aac", "-b:a", "128k", // Audio codec settings
outputPath

)

CoroutineScope(Dispatchers.l0).launch {
try {
val session = FFmpegKit.execute(cmd.joinToString(" "))
if (ReturnCode.isSuccess(session.returnCode)) {
onSuccess()
} else {
onFailure(
RuntimeException("FFmpeg failed: ${session.returnCode}\n$
{session.failStackTrace}")
)
}
} catch (e: Exception) {
onFailure(e)
}
}
}
}

6. Use the utility in your activity or fragment

To compress a video, use the FFmpegUtils.compressWithFFmpeg method as shown below:

val input = "/sdcard/DCIM/input.mp4" // Path to the input video file
val output = cacheDir.resolve("compressed.mp4").absolutePath // Path to save the
compressed video

FFmpegUtils.compressWithFFmpeg(
inputPath = input,
outputPath = output,
onSuccess = {

VisionLabs B.V. Page 189 of 270

// Handle success (e.g., show a Toast or notify the user)
printin("Compression successful!")

I

onFailure = { err ->
// Handle failure (e.q., log the error or show a message)
printin("Compression failed: ${err.message}")

}

VisionLabs B.V. Page 190 of 270

7.6 Logs

7.6.1 Getting logs from mobile devices

LUNA ID writes service information to the logging system of the corresponding platform -
Android and iOS. You can use this information diagnose and debug both the user application
that uses LUNA ID and to debug and fix LUNA ID.

A common problem that requires getting logs is related to the image that LUNA ID takes as
input. Before you start collecting logs, make sure that the image meets the requirements and
the thresholds are correctly configured to pass the OneShotLiveness estimation. For more
information on image requirements and thresholds, see About OneShotLiveness estimation.

Data to be provided to VisionLabs Technical support
Along with the collected logs, provide the following data to Technical Support:

* Device model on which the issue was detected
« MUI

¢ OS version

LUNA ID version

Detailed playback steps

* Video recording of the issue

Prerequisites
To successfully receive logs from mobile devices, the following prerequisites must be met:

* Make sure that the necessary values for FaceEngine and TrackEngine logging are set in
the configuration files. For details on the required values and configuration files, see the
FaceEngine and TrackEngine logging section.

* Before collecting logs, uninstall the app for which you are going to collect logs, and then
reinstall it. Start collecting logs after the first launch of the app.

* The log file should contain entries from the moment the app was started until the
problem occurred.

* Put the mobile device in developer or debug mode.

VisionLabs B.V. Page 191 of 270

FaceEngine and TrackEngine logging

For detailed logging of FaceEngine and TrackEngine, the following values must be set in
configuration files:

File Value

Faceengine.conf <param name="verboselLogging” type="Value::Intl” x=«4» />
runtime.conf <param name="verboselLogging” type="Value::Intl” x=«4» />
trackengine.conf <param name="mode" type="Value::String” text="12b" />

<param name="severity” type="Value::Int1” x="0" />

Getting logs from Android devices

This guide outlines the process of getting logs from Android devices using Android Studio's
Logcat tool.

STEP 1: ENABLE DEVELOPER OPTIONS & USB DEBUGGING

On your Android device, open Settings.

Navigate to About phone or About tablet.

Locate the Build Number or Android Version section and tap it 7 times repeatedly.
Confirm the transition of the device to developer mode.

Go to Settings > System > For Developers.

Set the USB Debugging switch to on.

Allow USB debugging.

Note: The exact path to these settings may vary slightly depending on your device
manufacturer and Android version.

STEP 2: OPEN LOGCAT IN ANDROID STUDIO

Connect your Android device to your computer via USB.
Open Android Studio.

Select View > Tool Windows > Logcat from the Android Studio menu.

VisionLabs B.V. Page 192 of 270

STEP 3: SELECT DEVICE AND CONFIGURE LOGCAT
In the Logcat window, configure the following filters and settings:

* Device: In the upper-left corner, select the connected device.

* App/Process: In the adjacent field, select the app you want to monitor. To see logs
from all processes, do not change this field.

* Log level: Set the logging level to VERBOSE. This ensures you capture log messages
from all levels.

Logcat

- Google Pixel 4 ru.visionlabs.lunademo.debug Verbose | Q- BestShot

Android Studio Logcat

STEP 4: CONFIGURE THE LOGCAT LAYOUT
To make the logs more readable and informative, enable the following headers:

Go to the Logcat tab settings.

Select Logcat Header.

Select the following options and click OK in the appeared dialog:
* Show date and time (required)
* Show process and thread IDs
* Show package name

* Show tag

VisionLabs B.V. Page 193 of 270

ru.visionlabs.lunademo.debug

Configure Logcat Header

2018-02-06 23:16:28.555 123-456/com.android.sample I/SampleTag: This is a sample message

Configuring the display of logs

STEP 5: FILTER THE LOGS
Use the search bar to narrow down the log output. For example, you can:

* Search by a package name: com.example.app
* Search by a log tag:
* tag:LunalD : Shows all LUNA ID logs.

* tag:LunalD level:info : Shows only info logs containing key operational data, results,
warnings, and errors.

* tag:LunalD is:debug : Shows only debug log containing low-level, internal information
for debugging.

» Search for specific keywords or error levels: fatal, E/AndroidRuntime

UNDERSTANDING THE LOG OUTPUT
The resulting logs contain the following data:

* Date and time of entry.
* Logging level (for example, D is Debug).

* The name of the tool, utility, package from which the message is received, as well as a
decoding of the ongoing action.

Android device logs

VisionLabs B.V. Page 194 of 270

Getting logs from iOS devices

This guide outlines the process of getting logs from Android devices using Xcode's built-in
console tools.

STEP 1: ENABLE DEVELOPER MODE

Open Settings on your iOS device.
Navigate to Privacy & Security.
Toggle the Developer Mode switch on.

Restart your device.
STEP 2: ACCESS DEVICE LOGS IN XCODE

Connect your iOS device to your Mac.
Open Xcode.
Select Window > Devices and Simulators.

Select the connected device.

VisionLabs B.V. Page 195 of 270

W3 Charged

Developer Documentation
Welcome to Xcode
Devices and Simulators
Downloads

Organizer
Touch Bar
Bring All to Front

v B LunaMobile — B LunaMobile.xcodeproj

Devices and Simulators

STEP 3: VIEW AND CAPTURE LOGS
You have two option for viewing logs:

* To analyzing historical logs, click the View Device Logs button.

* To monitor logs in real-time, click the Open Console button.

. 's iPhone

RNy Simulators i0S 16.5.1 (20F75) Show run destination: | Automatic ¢

Model: iPhone 11 Connect via network

Capacity: 114,35 GB (99,9 GB available) e CeTaaTeRat

s iPhone View Device Logs

Open Console

View Device Logs

VisionLabs B.V. Page 196 of 270

STEP 4: FILTER AND EXPORT LOGS

For filtering, use the search bar in either thr Device Logs viewer or the Console app to narrow
down results.

For exporting, select specific log entries and copy them to a text file.

Console

Liveness Demo
Crash Reports

Spin Reports

Log Reports

Logs for iOS device

Tip: To pause the log stream, click the Pause button.
UNDERSTANDING THE LOG OUTPUT
The resulting logs contain the following data:

* Date and time of entry.
* The name of the part of the system or application from which the message came.

* Event description, service information.

1fe00e?] Lowe

iOS device logs

Getting logs for OneShotLiveness estimation from Android devices
If OneShotLiveness is enabled, you can find the corresponding data in logs.

Here is an example of logs for LUNA ID sending a request for OneShotLiveness estimation
when getting the best shot:

| --> POST https://luna-api-aws.visionlabs.ru/6/liveness?aggregate=1

D Deallocating scratch [101632 bytes]

I Content-Type: multipart/form-data; boundary=d9fb08cd-a74a-4d22-b596-c9d1810c7470
| Content-Length: 2510479

I Luna-Account-1d: 12ed7399-xxxx-xxxx-xxxx-bbc45e6017af

| --> END POST (binary 2510479-byte body omitted)

VisionLabs B.V. Page 197 of 270

The response returns the following status codes:

* Status code 200
If the request has reached the server and the server was able to process it, it returns
status code 200 . For example:

| <-- 200 https://luna-api-aws.visionlabs.ru/6/liveness?aggregate=1 (5895ms)

| server: nginx/1.19.2

| date: Tue, 08 Aug 2023 23:30:51 GMT

| content-type: application/json

| vary: Accept-Encoding

| luna-request-id: 1691548250,d70bca42-b40c-4c69-ae71-c3ce8207d3d3

| strict-transport-security: max-age=15724800; includeSubDomains

| access-control-allow-origin: *

| access-control-allow-credentials: true

| access-control-allow-methods: GET, PUT, POST, DELETE, PATCH, OPTIONS

| access-control-allow-headers: Authorization,Cache-Control,Content-Type,luna-account-id
I {"images":[{"filename":"0","status":1,"liveness":{"prediction":1,"estimations": {"probability":
0.9960508346557617,"quality":1.0} },"error": {"error_code":
0,"desc":"Success","detail":"Success","link":"https:\/\/docs.visionlabs.ai\/info\/luna\/
troubleshooting\/errors-description\/code-0"} }],"aggregate_estimations":{"liveness":
{"prediction":1,"estimations":{"probability":0.9960508346557617,"quality":1.0}} } }

| <-- END HTTP (404-byte body)

 Status code other than 200
For details on status codes other than 200, please refer to the LUNA PLATFORM API
documentation.

Getting logs for OneShotLiveness estimation from iOS devices

Currently, you cannot collect logs for OneShotLiveness estimation by using iOS features.

VisionLabs B.V. Page 198 of 270

https://docs.visionlabs.ai/luna/v.5.28.0/ReferenceManuals/APIReferenceManual.html#tag/liveness
https://docs.visionlabs.ai/luna/v.5.28.0/ReferenceManuals/APIReferenceManual.html#tag/liveness

7.6.2 Saving logs on an end user’s device
In LUNA ID for Android
AUTOMATIC SESSION LOGGING WITH SHOWCAMERA
To get log files and save them on your device:
1. Enable logging in LUNA ID: LunalD.showCamera(logToFile = true) .

Every call of showCamera with logToFile set to true will create a log file with a session of
getting the best shot on your mobile device.

2. Get the log files by calling Context#getFilesDir() . The files are stored in the logs folder inside
your app’s private folder. For details, see getFileDir.

We do not provide a solution for getting log files from your device. You need to realize it in
your code by yourself. That is, you will need to add logic for getting these log files and
sending them, for example, to your endpoint or to your mail.

We recommend that you do the following to get logs from your device:

1. In your app, realize hidden camera launching with collecting of logs. For example, you can
do it by long-tapping the camera button or via the hidden developer menu in the release
build.

2. When a user has a problem getting the best shot, you get the logs and forward them to our
Support Team.

SAVING LOGS IN THE .LOGCAT FORMAT

Starting from v.1.19.0, LUNA ID for Android provides the ability to save internal SDK logs into
a file on the device's internal storage in the .logcat format. This feature is particularly useful
for debugging issues in release builds, where direct access to real-time log output (for
example, via Android Studio) is not possible.

You can use the dumpLogs() function to explicitly write collected logs to a specified file.

If no output file is specified, logs are saved by default to \<app_private_directory>/files/
logs.logcat.

Usage example:

val file = File(application.filesDir, "logs.logcat")

dumpLogs(

VisionLabs B.V. Page 199 of 270

https://developer.android.com/reference/android/content/Context#getFilesDir()

context = application,
outputFile = file

After the logs are written, you can upload them to your preferred monitoring or analytics
service. For example, using Sentry:

uploadFileToSentry(file)

In LUNA ID for iOS

When using a logging-enabled build, you can retrieve the log file path by calling
[LCLunaConfiguration logfile] and implement your own logic to collect or upload the logs. The
[LCLunaConfiguration logfile] method is especially useful for diagnosing critical issues such as
license activation failures. However, you cannot enable this functionality on your own — it
must be included in the build by VisionLabs.

VisionLabs B.V. Page 200 of 270

7.6.3 Status codes and errors

LUNA ID responds with status codes and error messages to let you know how things are
going.

LUNA ID for Android

LUNA ID INITIALIZATION EXCEPTIONS

Exception

TRACK_ENGINE_CONFIG_CREATION_FAILED

TRACK_ENGINE_CREATION_FAILED

BESTSHOT_QUALITY_ESTIMATOR_CREATION_FAILED

LIVENESS_ONE_SHOT_RGB_ESTIMATOR_CREATION_FAILED

MASK_ESTIMATOR_CREATION_FAILED
QUALITY_ESTIMATOR_CREATION_FAILED
GLASSES_ESTIMATOR_CREATION_FAILED
BESTSHOT_OBSERVER_CREATION_FAILED
FACE_ENGINE_CREATION_FAILED
LICENSE_PROVIDER_CREATION_FAILED
CACHE_PROVIDER_CREATION_FAILED
LICENSE_FETCH_FAILED
LICENSE_ACTIVATION_FAILED
WARPER_CREATION_FAILED
FACE_DETECTOR_CREATION_FAILED

EYE_ESTIMATOR_CREATION_FAILED

VisionLabs B.V.

Description

Failed to create the TrackEngine configuration
file.

Failed to create TrackEngine.
Failed to create BestShotQualityEstimator.

Failed to create
LivenessOneShotRGBEstimator.

Failed to create MedicalMaskEstimator.
Failed to create QualityEstimator.
Failed to create GlassesEstimator.
Failed to create a best shot observer.
Failed to create FaceEngine.

Failed to create a license provider.
Failed to create a cache provider.
Failed to fetch the LUNA ID license.
Failed to activate the LUNA ID license.
Failed to create a warper.

Failed to create a face detector.

Failed to create EyeEstimator.

Page 201 of 270

https://docs.visionlabs.ai/sdk/v.5.31.0/sdk-android/trackengine-handbook/settings/
https://docs.visionlabs.ai/sdk/v.5.31.0/sdk-android/trackengine-handbook/settings/
https://docs.visionlabs.ai/sdk/v.5.31.0/sdk-android/trackengine-handbook/introduction/
https://docs.visionlabs.ai/sdk/v.5.31.0/sdk-android/handbookcompilation/parameter-estimation-facility/#bestshotquality-estimation
https://docs.visionlabs.ai/sdk/v.5.31.0/sdk-android/handbookcompilation/parameter-estimation-facility/#livenessoneshotrgb-estimation
https://docs.visionlabs.ai/sdk/v.5.31.0/sdk-android/handbookcompilation/parameter-estimation-facility/#medical-mask-estimation-functionality
https://docs.visionlabs.ai/sdk/v.5.31.0/sdk-android/handbookcompilation/parameter-estimation-facility/#image-quality-estimation
https://docs.visionlabs.ai/sdk/v.5.31.0/sdk-android/handbookcompilation/parameter-estimation-facility/#glasses-estimation
https://docs.visionlabs.ai/sdk/v.5.31.0/sdk-android/trackengine-handbook/observers/
https://docs.visionlabs.ai/sdk/v.5.31.0/sdk-android/handbookcompilation/introduction/
https://docs.visionlabs.ai/sdk/v.5.31.0/sdk-android/handbookcompilation/image-warping/
https://docs.visionlabs.ai/sdk/v.5.31.0/sdk-android/handbookcompilation/detection-facility/#face-detection
https://docs.visionlabs.ai/sdk/v.5.31.0/sdk-android/handbookcompilation/parameter-estimation-facility/#eyes-estimation

ONESHOTLIVENESS ESTIMATION STATUS CODES

Code

200

400

403

408

413

500

503

504

VisionLabs B.V.

Status

Success.

Bad request.

Forbidden.

Request payload too large.

Service did not process the
request within the
specified period.

Internal server error.

Service did not process the
request within the
specified period.

Server timeout error.

Description

The OneShotLiveness estimation request has reached
the server and the server was able to process it.

The server cannot process the OneShotLiveness
estimation request due to a client error.

The server understands the OneShotLiveness
estimation request but refuses to authorize it due to an
error on the client side.

The server is unable to process the OneShotLiveness
estimation request due to an error on the server side.

The OneShotLiveness estimation request payload
exceeds the maximum size limit defined by the server.

The server encountered an unexpected condition that
prevented it from fulfilling the OneShotLiveness
estimation request.

The server is currently unable to handle the
OneShotLiveness estimation request due to
maintenance or an overload of requests.

The server did not receive a timely response from the
upstream server that it needed to complete the
OneShotLiveness estimation request.

Page 202 of 270

BEST SHOT ESTIMATION ERRORS

Error Description

BadEyesStatus Eyes in the frame are occluded or closed. For details, see Eye state estimation.

BadHeadPose Head rotation angles are not in the specified range. For details, see Head pose.

BadQuality Image quality is low. For details, see Image quality estimation.

BlurredFace A face in the frame is blurred. For details, see Image quality estimation.

Facelost A face that has been tracked disappeared from the frame.

FaceOutOfframe A face is too close to the camera and does not fit the face recognition area.

GlassesOn Eyes in the frame are occluded with glasses. For details, see Glasses estimation.

OccludedFace A face in the frame is covered with a medical mask. For details, see Medical mask
estimation.

PrimaryFacelost The primary face has disappeared from the frame and another face has
appeared.

TooDark The image is underexposed, that is, too dark. For details, see Image quality
estimation.

TooManyFaces The frame has more than one face.

TooMuchLight The image is overexposed, that is, too light. For details, see Image quality
estimation.

VisionLabs B.V. Page 203 of 270

LUNA ID for iOS

The below status codes apply to LUNA ID for iOS.

VisionLabs B.V. Page 204 of 270

Code

1000

1001

1002

1003

1004

1006

1007

1010

1011

1012

1013

1014

1015

1016

1017

1018

VisionLabs B.V.

Error message
LunaCore initialization error

Low image quality. Check filming
conditions

Wrong head pose. Turn your
head towards the camera and
keep it straight

Multiple faces detected. A single
face is expected.

Liveness check failed

Please blink to continue

Interaction timeout

Face is occluded. Make sure
there are no foreign objects
covering face

Bad filming conditions: face is
blurred

Bad filming conditions: too dark

Bad filming conditions: too
much light

Bad filming conditions: too dark,
too much light, face is blurred

Bad filming conditions: too dark,
too much light, face is blurred

Face is too far. Move face closer
to the camera

Face is out of frame or too close
to the border. Move face to the
center of the frame

Rotate you head to the left

Description
Failed to initialize the LunaCore module.

The input image does not meet the required
image quality thresholds.

Head rotation angles are not between the minimal
and maximum valid head position values.

More than one face was detected in the frame.
Ensure only one face is visible to the camera.

OneShotLiveness estimation failed. The system
could not verify that a real person is present. This
may indicate a spoofing attempt.

The blink interaction for Dynamic Liveness
estimation was not detected or performed
incorrectly.

The frame was not received in the time interval
allotted for the best shot.

The face is not properly visible in the input image.
Remove any objects blocking facial features.

The input image does not meet the blurriness
threshold.

The input image does not meet the darkness
threshold.

The input image does not meet the lightness
threshold.

The input image does not meet the illumination
threshold.

The input image does not meet the specularity
threshold.

The bounding box size with the detected face
does not correspond to the specified size. Move
closer to fill the recommended space.

The bounding box size with the detected face
does not correspond to the specified size. Center
your face in the frame.

The head rotation to the left was not detected or
was insufficient for Dynamic Liveness estimation.

Page 205 of 270

Code Error message

1019 Rotate you head to the right
1020 Move your head down

1021 Move your head up

1023 The face is lost. Please return

the original face back to frame

1024 Please take off your sunglasses
1025 License check failed
1027 Face is lost. Please take a look at

camera again

1028 Face was not found

1029 Mouth is occluded. Make sure
there are no foreign objects
covering face

1031 Lower part of the face is
occluded

1033 Nose is occluded

1034 Eyes are occluded

1035 Forehead is occluded

VisionLabs B.V.

Description

The head rotation to the right was not detected or
was insufficient for Dynamic Liveness estimation.

The downward head movement was not detected
or was insufficient for Dynamic Liveness
estimation.

The upward head movement was not detected or
was insufficient for Dynamic Liveness estimation.

The primary face that was detected in the video
stream has been lost.

Sunglasses are obstructing eye visibility, which is
required for estimation.

LUNA ID failed to check the license. To use LUNA
ID, you must have a valid license.

The primary face that was detected in the video
stream has been lost. A video recording will be
forcibly terminated.

No face was detected within the allotted time
interval.

The mouth area is covered, preventing proper
facial analysis.

The chin, mouth, or lower cheek area is
obstructed by objects or clothing. The face
occlusion estimation failed.

The nose is covered. The face occlusion
estimation failed.

Eyes are not visible. The face occlusion estimation
failed.

The forehead area is covered. The face occlusion
estimation failed.

Page 206 of 270

7.6.4 Device fingerprinting
Applies to LUNA ID for Android only.

LUNA ID for Android provides a secure and reliable way to uniquely identify the device on
which the SDK is running through its device fingerprinting functionality.

To retrieve the device fingerprint, use the LunalD.getFingerprint(context) method:

val fingerPrint: String = LunalD.getFingerprint(context)

* context : Pass the application context.

* Return value: A string containing the unique fingerprint of the device.

VisionLabs B.V. Page 207 of 270

7.6.5 Enabling low-level logging

Applies to LUNA ID for iOS only.

Use the enableLowLevellogs property of the LCLunaConfiguration class to enable low-level
logging during license verification.

By default, enableLowlevellogs is set to false, meaning the fallback logging method is active,
and low-level LUNA ID logging is disabled.

Important: To modify this property, change its default value directly in the
LCLunaConfiguration class code and rebuild the application. The setting is not configurable
through the application's Ul or .plist files.

VisionLabs B.V. Page 208 of 270

7.7 Using descriptors

Descriptors are compact, binary data sets generated by the recognition system based on the
analyzed facial characteristics. These descriptors serve as unique numerical representations
of faces and are used for tasks such as face matching, verification, and identification.

LUNA ID uses the cnn60m_arm.plan file that contains a pre-trained neural network model that
extracts these descriptors from source images. The file contains a compact set of properties
and helper parameters necessary for efficient descriptor generation.

Using the cnn60m_arm.plan file to generate descriptors will increase the size of your
application. To learn how to measure and manage the added size, see Measure LUNA ID
size.

7.7.1 In LUNA ID for Android
Required dependency
Descriptor-related functionality is provided through the following package:

e ai.visionlabs.lunaid:cnn60:X.X.X

Enabling descriptor-related functionality

The useDescriptors parameter controls whether descriptor-related functionality is enabled
within the SDK, allowing you to optimize your app’s size and performance based on actual
usage.

Set useDescriptors = true (default) if your application uses any of the following methods from
the LunaUtils class:

* LunaUtils.getDescriptorFromWarped()
* LunaUtils.getDescriptor()

* LunaUtils.matchDescriptors()
For details on the methods, see the Core methods section.

The useDescriptors parameter should be set during engine initialization as part of the
LunaConfig :

val config = LunaConfig(
// other parameters...
useDescriptors = true // default value

VisionLabs B.V. Page 209 of 270

)

LunalD.initEngine(applicationContext, config, apiHumanConfig, licenseFile)

If your application does not implement cnn60m_arm.plan or use descriptor functionality, you
can set useDescriptors = false to reduce SDK overhead and optimize app performance.

Core methods

To generate or compare descriptors, you can use methods from the LunaUtils class. Below are
examples of the available methods:

public fun getDescriptorFromWrapped(
warp: Bitmap,
@DescriptorVersion descriptorVersion: Int = V60
): ByteArray {
// Returns a descriptor generated from a wrapped image

}

public fun getDescriptor(
image: Bitmap,
@DescriptorVersion descriptorVersion: Int = V60
): ByteArray {
// Returns a descriptor generated from a raw image

}

public fun matchDescriptors(
first: ByteArray,
second: ByteArray,
@DescriptorVersion descriptorVersion: Int = V60

): Float {
// Compares two descriptors and returns a similarity score

}
Component Description

descriptorVersion Determines the model version used for descriptor generation or

comparison.

getDescriptorFromWrapped Generates a descriptor from a preprocessed (wrapped) image.
getDescriptor Generates a descriptor directly from a raw image in Bitmap format.
matchDescriptors Compares two descriptors and returns a similarity score (Float) between

0 (no match) and 1 (perfect match).

VisionLabs B.V. Page 210 of 270

Usage example
Below is an example of extracting and comparing descriptors from two best shots.

Note: Descriptor extraction and comparison are not limited to best shots obtained
through LUNA ID. You can also use any bitmap image containing a single face.

The process involves three main steps:

STEP 1: GETTING BEST SHOTS FOR DESCRIPTOR EXTRACTION

To extract descriptors, first obtain the best shots using the LunalD.bestShot flow. The following
code demonstrates how to collect and assign the best shots for two faces:

LunalD.bestShot.collect { result ->
result?.let {
when (searchingFace) {
SearchingFace.FIRST -> bitmapOfFirstFace = result.bestShot.warp
SearchingFace.SECOND -> bitmapOfSecondFace = result.bestShot.warp
}

STEP 2: EXTRACTING DESCRIPTORS FROM BITMAP IMAGES

Once the best shots are obtained, use the LunaUtils.getDescriptor method to extract descriptors
from the bitmap images. Specify the descriptor version as shown below:

val firstDescriptor = LunaUtils.getDescriptor(
bitmapOfFirstFace,
descriptorVersion = V60

)

val secondDescriptor = LunaUtils.getDescriptor(
bitmapOfSecondFace,
descriptorVersion = V60

STEP 3: COMPARING DESCRIPTORS

To compare the extracted descriptors, use the LunaUtils.matchDescriptors method. This method
calculates a similarity score between the two descriptors, where 1 indicates a perfect match
and 0 indicates no similarity:

VisionLabs B.V. Page 211 of 270

val similarityScore = LunaUtils.matchDescriptors(
firstDescriptor,
secondDescriptor,
descriptorVersion = V60

)
Log.d("FaceSimilarity", "Similarity score: $similarityScore")

The resulting similarityScore provides a quantitative measure of how similar the two faces are.

7.7.2 In LUNA ID for iOS

To calculate descriptors, LUNA ID for iOS uses the cnn60m_arm.plan file.

VisionLabs B.V. Page 212 of 270

7.8 Using commands
This topic applies to LUNA ID for Android only.
LUNA ID for Android provides controls to manage a camera:

* StartBestShotSearchCommand

* CloseCameraCommand

7.8.1 StartBestShotSearchCommand

You can use the StartBestShotSearchCommand command to start a best shot search at any
specified moment, that is after some event or a fixed delay.

If specified in Commands, a call to LunalD.showCamera does not automatically start the best
shot search. To start the best shot search, you need to send the command with

LunalD.sendCommand(StartBestShotSearchCommand) .

7.8.2 CloseCameraCommand

You can use the CloseCameraCommand command you to specify when to close a camera after
the best shot was found.

If specified in Commands, the camera will not be closed automatically when the best shot
search finishes. Currently, this is the default behavior. You will still receive the LunalD.bestShot
finish event. You need to close the camera by calling

LunalD.sendCommand(CloseCameraCommand) .

7.8.3 Usage
To use the commands, you need to do the following:

1. Create the Commands instance with commands that you want to use:

Commands.Builder().apply {
override(StartBestShotSearchCommand)
override(CloseCameraCommand)

}.build()

All the commands override the default behavior when specified. Only the specified
commands will be accepted. If you try to send unspecified commands, an exception will be
thrown.

VisionLabs B.V. Page 213 of 270

2. Call the LunalD.showCamera() method with the Commands instance.

If you do not specify commands, you can expect the default behavior. Nothing will change
for you compared to the previous LUNA ID versions.

LunalD.showCamera(

commands = ...,

3. Send any command with LunalD.sendCommand() .

7.8.4 Example

You can find a detailed example of how to use the StartBestShotSearchCommand and
CloseCameraCommand commands in CameraExample.

VisionLabs B.V. Page 214 of 270

https://github.com/VisionLabs/LunaID-Android-Examples/tree/v1.7.2

7.9 Using OCR

Applies to LUNA ID for Android only.

The OCR (Optical Character Recognition) module enables on-device scanning and recognition
of identity and official documents using the device’s built-in camera. It extracts both textual
and graphical data (for example, photos, signatures) from supported document types.

7.9.1 Key considerations

Memory usage

The OCR module may use up to 256 MB of RAM during initialization and recognition.

Consider this when:

* Running on devices with limited resources.
* Using OCR concurrently with other resource-intensive modules.

* Launching OCR in the background or within complex screen hierarchies.

Camera permission

The camera permission is required for OCR to function.

Errors

License and LUNA ID errors are always propagated and must be handled at the application
level.

7.9.2 Step 1: Add the OCR dependency

To use the OCR functionality, you must explicitly include the OCR module as a dependency in
you Android project. To do this, specify it in the build.gradle.kts file:

implementation("ai.company.product:ocr:X.X.X@aar")

7.9.3 Step 2: Activate the OCR license

The OCR functionality requires a valid license entry in the license.conf file:

VisionLabs B.V. Page 215 of 270

<?xml version="1.0"7?>
<settings>
<section name="Licensing::Settings">
<!-- Other license parameters -->
<param name="0OCR" type="Value::String" text="ocrLicense" />
</section>
</settings>

Important notes:

* If the OCR license parameter is missing, the OCR functionality is disabled.

* If the parameter is present but contains an invalid value, the OCR initialization fails with
an error.

* If the parameter is present and valid, OCR is activated successfully.

* OCR licensing is independent of core LUNA ID licensing. Both can be enabled or disabled
separately.

7.9.4 Step 3: Initialize OCR

After adding the dependency and confirming the license, initialize the OCR using:

Ocr.initialize(context, licenseFile)

The OCR initialization result is returned via Ocr.ocrinitStateFlow as the OcrinitStatus object. All
initialization statuses are defined in the OcrinitStatus class hierarchy:

ealed class OcrlnitStatus {
data object Notlnitialized : OcrlnitStatus()
data object InProgress : OcrinitStatus()
data object Success : OcriInitStatus()
data object NotIincluded : OcrinitStatus()
data class Failure(val cause: Throwable? = null) : OcrinitStatus()

In case of an error, the corresponding reason will be passed to the flow.

7.9.5 Step 4: Start the OCR

Use the following method to start the OCR:

VisionLabs B.V. Page 216 of 270

Ocr.start(context)

After calling the method, a new Activity and the device camera will be launched, and OCR
recognition will be started.

7.9.6 Step 5: Handle results
Once the process is completed, the result is sent to LunalD.eventChannel as an event:
sealed class OcrResult {

data class Success(val data: OcrData) : OcrResult()
data class Failure(val error: Throwable) : OcrResult()

}
Result Description
OcrResult.Success Recognition was successful. Contains the OcrData object, which includes:
* Document type
» Text fields
* Graphical fields (for example, photo, signature)
OcrResult.Failure Recognition failed. Contains an error object (Throwable) which is an OcrError. All

possible OCR errors are defined in the sealed class OcrError .

VisionLabs B.V. Page 217 of 270

8. Configuring LUNA ID

8.1 Best shot properties
8.1.1 In LUNA ID for Android

This section describes properties that apply to the LunaConfig class. You can use them to
configure getting the best shot.

acceptEyesClosed

Specifies whether an image with two closed eyes will be considered the best shot.
Possible values:

* true - Specifies that frames that contain faces with closed eyes can be best shots. For
details on getting the best shot with two closed eyes, see Getting the best shot with
faces with closed eyes.

» false - Default. Specifies that frames that contain faces with closed eyes cannot be

best shots.

e The acceptEyesClosed property requires the lunaid-common-arm-X.X.X.aar
dependency. For details, see Distribution kit.

acceptOccludedFaces

Specifies whether an image with an occluded face will be considered the best shot.
Possible values:

* true - Default. Specifies that an image with an occluded face can be the best shot.
For details on getting the best shot with an occluded face, see Getting the best shot
with an occluded face.

* false - Specifies that an image with an occluded face cannot be the best shot. The
NotificationDetectionError event will appear in LunalD.errorFlow() with payload
DetectionError.OccludedFace every time an occluded face is recognized.

e The acceptOccludedFaces property requires the lunaid-mask-X.X.X.aar dependency.
For details, see Distribution kit.

VisionLabs B.V. Page 218 of 270

acceptOneEyeClose

Specifies whether frames that contain faces with one closed eye can be best shots.

Possible values:

* true - Default. Specifies that frames that contain faces with a closed eye can be best

shots.

* false - Specifies that frames that contain faces with a closed eye cannot be best
shots. However, it is possible to get the best shot with an occluded eye. For details,
see Getting the best shot with faces with occluded eyes.

e Ihe acceptOneEyeClose property requires the acceptOneEyed property to be
enabled. For details, see Performing Dynamic Liveness estimation.

acceptOneEyed

Enables or disables the Dynamic Liveness estimation interaction via blinking with one

eye. Possible values:

* true - Enables blinking with one eye.

» false - Default. Disables blinking with one eye.

e Ihe acceptOneEyed property requires the lunaid-common-arm-X.X.X.aar

dependency. For details, see Distribution kit.

ags

Specifies an AGS threshold for further descriptor extraction and matching. For details, see
AGS estimation.

Non-public parameter. Do not change.

The default value is 0.5.

bestShotinterval

Specifies a minimum time interval between best shots.

The default value is 500.

bestShotsCount

Specifies a number of best shots that need to be collected for a OneShotLiveness

estimation.
The default value is 1.

blurThreshold

Specifies a threshold that determines whether the image is blurred.

VisionLabs B.V. Page 219 of 270

Non-public parameter. Do not change.

The default value is 0.61.

darknessThreshold

Specifies a threshold that determines whether the image is underexposed, that is, too
dark.

Non-public parameter. Do not change.

The default value is 0.5.

detectFrameSize

Specifies a face detection bounding box size, in dp.

The default value is 350.

detectorStep
Specifies a number of frames between frames with full face detection.

The default value is 7.

faceFramePerScreen

Specifies how much of the screen's width or height the detected face occupies. The
smaller dimension between the screen's width and height is used for this calculation.

For example, if the screen width is 1000 pixels and the minFaceSideToMinScreenSide
parameter is set to 0.25, then the minimum acceptable width of the detected face must
be at least 25% of the screen width. In this case, the face width should be at least 250
pixels.

The parameter is a Float type, with values ranging from 0 to 1.

The default value is 0.3.

faceSimilarityThreshold

Specifies a threshold that determines whether the face that was first detected in the face
recognition area remains the same when tracking face identity.

The default value is 0.5.

foundFaceDelayMs

Specifies a delay, in milliseconds, to define for how long a user's face should be placed in
the face detection bounding box before the best shot is taken.

The default value is 0.

VisionLabs B.V. Page 220 of 270

glassesChecks

Specifies what images with glasses can be best shots. For details, see Getting the best
shot with faces with occluded eyes.

headPitch
Specifies the head rotation angle along the X axis.
The default value is 25.

headRoll
Specifies the head rotation angle along the Y axis.
The default value is 25.

headYaw

Specifies the head rotation angle along the Z axis.

The default value is 25.

interactionDelayMs

Specifies a timeout between Dynamic Liveness estimation interactions, in milliseconds.
This means that a new interaction will start after the preceding one ends after the
timeout has passed.

The default value is 0.

lightThreshold

Specifies a threshold that determines whether the image is overexposed, that is, too
light.

Non-public parameter. Do not change.

The default value is 0.57.

livenessCompressionQuality

Specifies a quality of the image to be sent to OneShotLiveness estimation. Value 0
represents the maximum compression.

The default value is 50.

livenessFormat

Specified the image compression format used for OneShotLiveness estimation.

The default value is CompressFormat.JPEG .

VisionLabs B.V. Page 221 of 270

livenessQuality
Specifies a OneShotLiveness estimation threshold lower which the system will consider

the result as a presentation attack.

The default value is 0.5.

livenessType

Specifies a OneShotLiveness estimation type. Possible values:

* LivenessType.Online - Enables the Online OneShotLiveness estimation.

* LivenessType.Offline - Enables the Offline OneShotLiveness estimation.

The default value is not set.

minFaceSideToMinScreenSide

Defines the minimum allowable size of a detected face , expressed as a proportion of the
smallest screen dimension. The face size is calculated relative to the preview image

dimensions, not the full-resolution frame.

The default value is 0.3.

minFaceSize
Specifies the minimum acceptable size, in pixels, for a detected face. Faces smaller than
this size will be ignored during the detection process.

The parameter values range from 20 to 350.
* When set to a higher value, it ensures that only larger, more prominent faces are
processed, which can improve performance and reduce noise from distant or small

faces.
* When set to a lower value, it allows for the detection of smaller faces but may
increase processing time and the likelihood of detecting irrelevant faces.

The default value is 50.

minimalTrackLength

Specifies the minimum number of detections to consider there is a real face in a video

track.
The default value is 1.

onlineLivenessErrorTimeout

Specifies a timeout within which a OneShotLiveness estimation should be performed.

VisionLabs B.V. Page 222 of 270

The default value is not set.

skipFrames

Specifies a number of frames to wait until a face is detected in the face recognition area
before video recording is stopped.

The default value is 36.

strictlyMinSize

Specifies whether the minFaceSize parameter will be considered during face detection.
Possible values:

* true - The minFaceSize parameter is ignored, and all detected faces, regardless of
size, are considered for further processing.

» false - Default. LUNA ID strictly enforces the minFaceSize threshold, ensuring that
only faces meeting or exceeding this size are detected and processed.

usePrimaryFaceTracking

Specifies whether to track the face that was detected in the face recognition area first
For details, see Tracking face identity. Possible values:

* true - Default. Enables primary face tracking.

» false - Disables primary face tracking.

e Ihe acceptOccludedFaces property requires the lunaid-cnn60-X.X.X.aar dependency.
For details, see Distribution kit.

8.1.2 In LUNA ID for iOS

This section describes properties that apply to the LCBestShotConfiguration configuration
instance. You can use them to configure getting the best shot.

estimationThreshold

Specifies a best shot estimation threshold.

The default value depends on a best shot estimation.

LCLunaConfiguration - bestShotConfiguration — estimationThreshold - ags = 0.2;

borderDistance

Specifies the distance, in pixels, from the frame edges and is based on the face detection
bounding box size estimation. For details, see Frame edges offset estimation.

VisionLabs B.V. Page 223 of 270

The default value is 10.

LCLunaConfiguration - bestShotConfiguration —» borderDistance = 10;

minDetSize

Specifies a bounding box size, in pixels. For details, see Face detection bounding box size
estimation.

The default value is 200.

LCLunaConfiguration - bestShotConfiguration - minDetSize = 200;

detectorStep

Specifies a number of frames to be taken between face detections. The smaller the
number is, the more likely that TrackEngine will detect a new face as soon as it appears in
the frame. The higher the number is, the higher the overall performance is. You can use
the property to balance the performance and face detection frequency.

Accepted values vary from 0 to 30.

The default value is 7.

LCLunaConfiguration - bestShotConfiguration — detectorStep = 7;

skipFrames

Specifies a number of frames to wait until a face is detected in the face recognition area
before video recording is stopped.

Accepted values vary from 0 to 50.

The default value is 36.
LCLunaConfiguration - bestShotConfiguration — skipFrames = 36;
minimalTrackLength

Specifies the minimum number of detections to consider there is a real face in a video
track.

VisionLabs B.V. Page 224 of 270

The default value is 5.

LCLunaConfiguration - bestShotConfiguration = minimalTrackLength = 5;

numberOfBestShots

Specifies a number of best shots that need to be collected for a OneShotLiveness
estimation.

The default value is 3.

LCLunaConfiguration - bestShotConfiguration -» numberOfBestShots = 3;

bestShotinterval

Specifies a minimum time interval between best shots.

The default value is 0.5.

LCLunaConfiguration = bestShotConfiguration - bestShotinterval = 0.5;

similarityThreshold

Specifies a threshold that determines whether the face that was first detected in the face
recognition area remains the same when tracking face identity.

The default value is 0.01.

LCLunaConfiguration = bestShotConfiguration - similarityThreshold = 0.01;

livenessQuality

Specifies a OneShotLiveness estimation threshold lower which the system will consider
the result as a presentation attack.

The default value is 0.

LCLunaConfiguration - bestShotConfiguration — livenessQuality = 0;

checkEyes

Enables the eye state estimation.

VisionLabs B.V. Page 225 of 270

If set to true, the best shot with closed eyes will be skipped.

LCLunaConfiguration - bestShotConfiguration —» checkEyes = true;

VisionLabs B.V. Page 226 of 270

8.2 Changing detection settings
8.2.1 In LUNA ID for Android

The LunaCore.aar file uses default detection settings. These settings are stored in the .conf
files inside LunaCore.aar and you cannot change them directly. However, you can change
them if you put the files of the same name in your app along the assets/data path.

For example, if you need to change the FaceEngine settings, then inside your app, where
LunaCore.aar is connected as a dependency, you need to create the assets/data/
faceengine.conf file, which will contain all the FaceEngine settings.

Your faceengine.conf must contain all the settings, not just the ones you want to change,
because your file will completely overwrite all the settings contained in LunaCore.aar.

8.2.2 In LUNA ID for iOS

To change detection settings, pass the required values for the parameters specified in the
table below:

Function Parameter Description

LCLunaConfiguration - headPitch Specifies the head rotation along the X axis.
bestShotConfiguration =

estimationThreshold

LCLunaConfiguration - headYaw Specifies the head rotation along the Y axis.
bestShotConfiguration —»

estimationThreshold

LCLunaConfiguration - headRoll Specifies the head rotation along the Z axis.
bestShotConfiguration -

estimationThreshold

LCLunaConfiguration - ags Specifies the source image score for further
bestShotConfiguration — descriptor extraction and matching.

estimationThreshold

LCLunaConfiguration - borderDistance Specifies the distance from the frame edges
bestShotConfiguration and is based on the face detection bounding
box size estimation.

LCLunaConfiguration — minDetSize Specifies a bounding box size.
bestShotConfiguration

LCLunaConfiguration startDelay Specifies a timeout, in seconds, before face
recognition begins.

VisionLabs B.V. Page 227 of 270

8.3 Bulk editing LUNA ID parameters

Applies to LUNA ID for iOS only.
LUNA ID allows you to configure runtime parameters in two ways:

* Programmatically in your code

* Declaratively via the LCLunaConfiguration.plist file

Important: These approaches are mutually exclusive at runtime. Changing parameter
values in your code will not automatically change them in the LCLunaConfiguration.plist
file.

8.3.1 Configuration file

Using the the LCLunaConfiguration.plist file allows you to bulk edit all the LUNA ID parameters
in one place. The file is located in the following directory:

AMuna-id-sdk_ios v.X.X.X\frameworks\LunaCore.xcframeworklios-
armé4\LunaCore.framework\LCLunaConfiguration.plist

To apply the parameters, pass them to the LCLunaConfiguration object:

LCLunaConfiguration(plistFromDocuments: plist)

VisionLabs B.V. Page 228 of 270

\J
ﬁample structure of LCLunaConfiguration.plist

Below is an example structure of the file:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/
PropertyList-1.0.dtd">

<plist version="1.0">

<dict>

<key>LCLunaConfiguration</key>

<dict>
<key>multipartBestShotsEnabled </key>
<false/>
<key>glassesCheckEnabled</key>
<false/>
<key>aggregationEnabled</key>
<false/>
<key>ocrEnabled</key>
<false/>
<key=>interactionEnabled</key>
<true/>
<key>saveOnlyFaceVideo</key>
<false/>
<key=>trackFaceldentity</key>
<false/>
<key>occludeCheck</key>
<true/>
<key=>advancedSunglasses</key>
<false/>
<key>eyelnjury</key>
<true/>

<key>startDelay</key>
<integer>o0</integer>
<key>faceTime</key>
<integer>o0</integer>
<key=>compressionQuality</key>
<real>0.8</real>
<key>documentVerificationMatch</key >
<real>0.7</real>
<key>primaryFaceMatching</key>
<real>0.7</real>
<key>plistLicenseFileName</key >
<string>vllicense.plist</string>
<key=>videoRecordLength</key>
<integer>o0</integer>
<key>emptyFrameTime</key>
<integer>o0</integer>

VisionLabs B.V. Page 229 of 270

</dict>

<key>LCBestShotConfiguration</key>

<dict>
<key>livenessType</key>
<integer>1</integer>
<key>eyesCheck</key>
<true/>
<key=>borderDistance</key>
<integer>10</integer>
<key>minDetSize</key>
<integer>200</integer>
<key>minFaceSize</key>
<integer>200</integer>
<key>numberOfBestShots</key>
<integer>3</integer>
<key=>bestShotInterval</key>
<integer>5</integer>
<key=>livenessQuality</key>
<integer>o0</integer>

</dict>

<key=>LCInteractionsConfig</key>

<dict>
<key>stepsNumber</key>
<integer>3</integer>
<key=>interactionTimeout</key>
<integer>5</integer>
<key=>timeoutBetweenlInteractions</key>
<integer>o0</integer>

</dict>

<key=>LCEstimationThreshold</key>

<dict>
<key=>headPitch</key>
<integer>25</integer>
<key>headYaw</key>
<integer>25</integer>
<key>headRoll</key>
<integer>25</integer>
<key>ags</key>
<real>0.5</real>

</dict>

</dict>
</plist>

VisionLabs B.V.

Page 230 of 270

8.3.2 Configuration parameters

The parameters listed in LCLunaConfiguration.plist are as follows:

VisionLabs B.V. Page 231 of 270

LCLunaConfiguration section

VisionLabs B.V. Page 232 of 270

Parameter

multipartBestShotsEnabled

emptyFrameTime

glassesCheckEnabled

aggregationEnabled

ocrEnabled

interactionEnabled

saveOnlyFaceVideo

trackFaceldentity

occludeCheck

advancedSunglasses

videoRecordLength

eyelnjury

startDelay

faceTime

plistLicenseFileName

compressionQuality

VisionLabs B.V.

Default
value

false

false

false

false

true

false

false

true

false

true

vllicense.plist

0.8

Description

Enables or disables the capture of multiple best shots
during a single session. For details, see Sending
multiple frames for estimation aggregation to the
backend.

Specifies a timeout within which a face should appear
in the frame, otherwise the video session will be
terminated.

Specifies whether the glasses estimation is enabled.

Specifies whether aggregation for sunglasses and
eye state estimation is enabled.

Specifies whether OCR (Optical Character
Recognition) is enabled.

Specifies whether Dynamic Liveness interactions with
a camera are enabled.

Specifies whether to save video files only with a face
detected.

Specifies whether face identity tracking is enabled.

Specifies whether the face occlusion estimation is
enabled.

Enables or disables advanced sunglasses detection
logic. For details, see Getting the best shot with faces
with occluded eyes.

Specifies a video stream length, in seconds.

Specifies whether images with a closed eye can be
considered the best shots. For details, see Getting
the best shot with faces with closed eyes.

Specifies a timeout, in seconds, before face
recognition begins.

Specifies a delay, in seconds, to define for how long a
user's face should be placed in the face detection
bounding box before the best shot is taken.

Specifies the license file.

Controls the JPEG compression quality of captured
best-shot images, with values typically ranging from
0.0 (lowest quality, smallest file size) to 1.0 (highest
quality, largest file size).

Page 233 of 270

Parameter

documentVerificationMatch

primaryFaceMatching

Default
value

0.7

0.7

LCBestShotConfiguration section

Parameter

livenessType

eyesCheck

borderDistance

minDetSize

minFaceSize

numberOfBestShots

bestShotlInterval

livenessQuality

Default
value

1

true

10

200

200

LCinteractionsConfig section

Parameter Default
value
stepsNumber 3
interactionTimeout 5
timeoutBetweenlnteractions 0

VisionLabs B.V.

Description

Determines the match threshold between a face and
a photo in a document (when using OCR).

Specifies the comparison threshold for 1:1 user
verification.

Description

Specifies the type of OneShotLiveness estimation.
Enables or disables eye state estimation.

Specifies the distance from the frame edges and is based on
the face detection bounding box size estimation.

Specifies a bounding box size.
Specifies the minimum face size in pixels.

Specifies the number of frames from which the best shot will
be selected.

Specifies the time interval between attempts to obtain the
best shot.

Defines the threshold below which the system will consider
the result to be an attempted spoofing attack.

Description

Specifies a number of Dynamic Liveness interactions
to be performed.

Specifies a timeout for every Dynamic Liveness
interaction to be performed in a random sequence.

Specifies a timeout between Dynamic Liveness
interactions.

Page 234 of 270

LCEstimationThreshold section

Parameter

headPitch

headYaw

headRoll

ags

VisionLabs B.V.

Default
value

25
25
25

0,2

Description

Specifies the head rotation along the X axis.
Specifies the head rotation along the Y axis.
Specifies the head rotation along the Z axis.

Specifies the source image score for further descriptor
extraction and matching.

Page 235 of 270

8.4 Setting up timeouts
Adjusting timeouts in LUNA ID lets you maintain resource efficiency, enhance user
experience, and ensure security compliance.
8.4.1 Face fixing timeout
Applies to LUNA ID for iOS only.

After a video session starts, LUNA ID waits for a face to appear in the frame for further
processing. You can set a timeout, in seconds, within which the face should appear in the
frame. If the face does not appear in the frame after this timeout, the session will be
terminated with the 1028 error.

To set the timeout, use the LCLunaConfiguration.emptyFrameTime property. The default value is 0.

8.4.2 Best shot timeouts

You can set up timeouts to configure the process of getting the best shot.

Before starting face recognition

You can set an optional delay or specific moment in time to define when the face recognition
will start after the camera is displayed in the screen.

To do this in LUNA ID for Android, use the StartBestShotSearchCommand command.

To do this in LUNA ID for iOS, use LCLunaConfiguration.startDelay .

Before getting the best shot

You can an optional a delay, to define for how long a user's face should be placed in the face
detection bounding box before the best shot is taken.

To do this in LUNA ID for Android, use the LunalD.foundFaceDelayMs parameter. The default
value is 0 milliseconds.

To do this in LUNA ID for iOS, define the LCLunaConfiguration::faceTime property. The default
value is 5 seconds. In case, the face disappears from the bounding box within the specified
period, the BestShotError.FACE_LOST will be caught in the LCBestShotDelegate::bestShotError
delegate.

VisionLabs B.V. Page 236 of 270

8.4.3 Dynamic Liveness estimation timeouts
Interaction timeout

For each interaction, you can specify the time during which an interaction must be
completed. The timeout is specified in milliseconds in LUNA ID for Android and in seconds in
LUNA ID for iOS.

To do this in LUNA ID for Android, use the timeoutMs parameter. By default, the parameter
value is 5 seconds.

To do this in LUNA ID for iOS, pass the interactionTimeout parameter to the following property
of the LCLunaConfiguration class:

@property (nonatomic, strong) LCInteractionsConfig *interactionsConfig;

By default, the parameter value is 5 seconds.

If an interaction was not completed within the allotted time, the 1007 error appears.

Timeout between interactions

You can set a timeout between interactions, in milliseconds in LUNA ID for Android and in
seconds in LUNA ID for iOS. This means that a new interaction will start after the preceding
one ends after the specified timeout is passed.

To do this in LUNA ID for Android, use the LunaConfig.interactionDelayMs parameter. By default,
the parameter value is 0.

To do this in LUNA ID for iOS, use the
LCLunaConfiguration.interactionsConfig.timeoutBetweenlinteractions property. By default, the property
value is set to 0.

VisionLabs B.V. Page 237 of 270

8.5 Configuring the camera

Applies to LUNA ID for Android only.

LUNA ID for Android uses Google's CameraX library to provide flexible and reliable camera
control, enabling you to customize key video capture parameters for optimal face detection
and analysis.

8.5.1 Camera parameters

The following parameters are part of ShowCameraParams and define how the camera operates
during a face capture session:

@Serializable(with = CameraSelectorSerializer::class)
val cameraSelector: CameraSelector = defaultCameraSelector(),

@Serializable(with = ResolutionSelectorSerializer::class)
val previewResolutionSelector: ResolutionSelector =
defaultPreviewResolutionSelector(),

@Serializable(with = ResolutionSelectorSerializer::class)
val analysisResolutionSelector: ResolutionSelector =
defaultAnalysisResolutionSelector(),

VisionLabs B.V. Page 238 of 270

@Serializable(with = QualitySelectorSerializer::class)
val videoQualitySelector: QualitySelector = defaultVideoQualitySelector(),

VisionLabs B.V. Page 239 of 270

Parameter

analysisResolutionSelector

autoFocus

borderDistanceStrategy

cameraSelector

checkSecurity

disableErrors

ignoreVideoWithoutFace

logToFile

minFaceSideToMinScreenSide

previewResolutionSelector

recordingTimeMillis

recordVideo

VisionLabs B.V.

Type

ResolutionSelector

Boolean

BorderDistancesStrategy

CameraSelector

Boolean

Boolean

Boolean

Boolean

Float

ResolutionSelector

Long

Boolean

Default

Not set

true

Not set

Not set

false

true

true

false

0.3f

Not set

false

Description

Defines the resolution of
frames sent to the LUNA ID
detector for facial analysis
(for example, liveness,
attribute estimation).

Enables continuous
autofocus.

Defines the strategy to be
used to specify face
recognition area borders.

Specifies which physical
camera to use: front

(DEFAULT_FRONT_CAMERA) or
rear

(DEFAULT_BACK_CAMERA).

Enables or disables the
virtual camera usage check.

Enables or disables error
messages.

Specifies whether to record
a video stream only with
the face detected.

Enables or disables saving
logs to a file.

Defines the minimum face-
to-screen ratio [0.0..1.0].

Sets the resolution of the
video stream displayed on
the device screen (Ul
preview).

Limits a video stream's
duration. The parameter is
mandatory if recordVideo is
set to true.

Enables or disables video
recording.

Page 240 of 270

Parameter Type Default Description

videoQualitySelector QualitySelector Not set Determines the quality of
the recorded video output.
Possible values: sD, HD,
FHD , UHD.

8.5.2 Default configuration

LUNA ID applies the following defaults for camera operation:

Parameter Default value

Video quality SD (~640x480 pixels)
Analysis resolution 640x480 pixels
Review resolution 640x480 pixels
Default camera Front-facing

const val DEFAULT_ANALYSIS FRAME_WIDTH = 640
const val DEFAULT_ANALYSIS_FRAME_HEIGHT = 480
const val DEFAULT_PREVIEW_FRAME_WIDTH = 640
const val DEFAULT_PREVIEW_FRAME_HEIGHT = 480

val DEFAULT_ANALYSIS_ASPECT_RATIO_STRATEGY =
AspectRatioStrategy.RATIO_16_9 FALLBACK AUTO_STRATEGY
val DEFAULT_PREVIEW_ASPECT_RATIO_STRATEGY =
AspectRatioStrategy.RATIO_16_9 FALLBACK AUTO_STRATEGY
val DEFAULT_VIDEO_QUALITY: Quality = Quality.SD

These values are used in the corresponding functions:

private fun defaultAnalysisResolutionSelector(): ResolutionSelector =
ResolutionSelector.Builder()
.setResolutionStrategy(
ResolutionStrategy(
Size(DEFAULT_ANALYSIS_FRAME_WIDTH,
DEFAULT_ANALYSIS_FRAME_HEIGHT),
ResolutionStrategy.FALLBACK RULE_CLOSEST HIGHER
)

)
.setAspectRatioStrategy(DEFAULT_ANALYSIS_ASPECT_RATIO_STRATEGY)

.build()

VisionLabs B.V. Page 241 of 270

private fun defaultPreviewResolutionSelector(): ResolutionSelector =
ResolutionSelector.Builder()
.setResolutionStrategy(
ResolutionStrategy(
Size(DEFAULT _PREVIEW_FRAME_WIDTH, DEFAULT PREVIEW_FRAME_HEIGHT),
ResolutionStrategy.FALLBACK_RULE_CLOSEST_HIGHER

)
.setAspectRatioStrategy(ShowCameraParams.DEFAULT PREVIEW_ASPECT RATIO STI

.build()

private fun defaultVideoQualitySelector() =
QualitySelector.from(ShowCameraParams.DEFAULT VIDEO QUALITY)

private fun defaultCameraSelector(): CameraSelector =
CameraSelector.DEFAULT_FRONT_CAMERA

Note: The FALLBACK RULE_CLOSEST HIGHER strategy ensures that if the requested resolution
is not supported by the device, the system selects the closest higher available resolution.

8.5.3 Pre-initializing camera availability

On certain devices, particularly embedded systems like POS terminals, it may be necessary to
pre-initialize the camera provider to ensure timely access. You can proactively load the list of
available cameras, for example, within the MainActivity scope:

CoroutineScope(Dispatchers.10).launch {
(this@MainActivity.application as App)
.availableCameraTypes
.update { getAvailableCameraTypes(this@MainActivity) }

Getting available camera types

Use this function to retrieve available camera types:

@SuppressLint("RestrictedApil")
@ExperimentalCamera2lnterop
suspend fun getAvailableCameraTypes(context: Context): List<Int> =
withContext(Dispatchers.lO) {
val provider = ProcessCameraProvider.getinstance(context).get()
provider
.availableCameralnfos

VisionLabs B.V. Page 242 of 270

.mapNotNull { info ->
val characteristics = Camera2Cameralnfo.from(info).cameraCharacteristicsMap
Log.i("FacePayViewModel", "getAvailableCameraTypes: $characteristics")

val lensFacing =
characteristics.values.firstOrNull()?.get(CameraCharacteristics.LENS_FACING)
when (lensFacing) {
CameraCharacteristics.LENS _FACING BACK -> 1
CameraCharacteristics.LENS_FACING_FRONT -> 0
else -> null
}

}
.distinct()

This populates an observable state (availableCameraTypes) with the supported camera
directions (front or back).

8.5.4 Launching the camera with dynamic selection

Once camera availability is known, you can launch LunalD.showCamera() using the detected
camera type:

val cameras = (context.applicationContext as App).availableCameraTypes

cameras.filterNotNull().first { availableCameras ->
val cameraSelector = getSelectorFor(availableCameras.first())

val showCameraParams = settings.showCameraParams.copy(
borderDistanceStrategy =
BorderDistancesStrategy.WithCustomView(R.id.faceCaptureOverlay),
cameraSelector = cameraSelector,
checkSecurity = false,
)

LunalD.showCamera(
context = context,
params = showCameraParams,
interactions = Interactions.Builder().build(),
commands = Commands.Builder().build()

)

true

}

fun getSelectorFor(type: Int): CameraSelector =
CameraSelector.Builder()

VisionLabs B.V. Page 243 of 270

.requireLensFacing(type)
.build()

VisionLabs B.V. Page 244 of 270

9. Interacting with LUNA PLATFORM

9.1 Interaction of LUNA ID with LUNA PLATFORM 5

Interaction between LUNA ID and LUNA PLATFORM 5 extends LUNA ID functionality and allows
you to perform the following tasks:

* Perform OneShotLiveness estimation to determine whether a person’s face is real
or fake, for example, a photo or printed image.

* Send the best shot for descriptor matching to compare a set of properties and
helper parameters, which describe a person’s face, with the source image to determine
the similarity of represented objects. The result is a similarity score, where 1 means
completely identical, and 0 means completely different.

LUNA ID interacts with LUNA PLATFORM 5 via REST API.

Important: If you are not going to use the LUNA PLATFORM 5 API, we recommend that
you disable OneShotLiveness estimation to avoid possible errors.

LUNA PLATFORM 5 functions as the backend and lets you create and use handlers. Handlers
are sets of rules or policies that describe how to process the received images. For details on
how to create and use handlers, see the LUNA PLATFORM 5 documentation.

The below diagram shows how LUNA ID interacts with LUNA PLATFORM 5. We recommend
that you use it to integrate LUNA ID into your app.

VisionLabs B.V. Page 245 of 270

https://docs.visionlabs.ai/luna/v.5.45.1/ReferenceManuals/APIReferenceManual.html#tag/handlers

Getting a video
stream for processing

2 Getting the best shot,
image analysis

3 Liveness -
4 Liveness check
5 Response
6 Saving the video

Sending the best shot
for descriptor matching_

P §

Sending a request to a handler and
processing the best shot according to policies

9 Response

! e

Interaction of LUNA ID with LUNA PLATFORM 5 through a middleware

As the diagram shows, the process of interaction between LUNA ID and LUNA PLATFORM 5 is a
back-and-forth communication between the frontend and backend.

Your mobile app runs on the frontend and embeds LUNA ID to use its key features. LUNA ID
sends requests to LUNA PLATFORM 5 that functions as the backend.

But, when your production system is deployed, an interaction between LUNA ID and LUNA
PLATFORM 5 is not realized directly. The interaction occurs via a secure channel through a
middleware service that provides encryption and protection of the data being transferred.

Important. This document describes an example of direct interaction between LUNA ID
and LUNA PLATFORM 5. VisionLabs does not provide security solutions for data transfer.
You need to provide data protection by yourself.

VisionLabs B.V. Page 246 of 270

We recommend that you use security best practices to protect data transfer. You should pay
attention to the following security aspects:

* If you want to use the HTTPS protocol, then you need to add NGINX or other similar
software to the backend.

* If you want to use the TLS cryptographic protocol, then you need to implement it at
your mobile app.

* You might need to configure a firewall correctly.

* To restrict access, you can use LUNA PLATFORM 5 tokens, which can be transferred to a
request header from LUNA ID.

VisionLabs B.V. Page 247 of 270

https://docs.visionlabs.ai/luna/latest/standard-distribution/admin-manual/general-concepts/#authorization-system

9.2 Usage scenario: Complete face recognition cycle

This section describes a sample LUNA ID usage scenario, which involves interaction with LUNA
PLATFORM 5.

This is only an example. You need to change it according to your business logic.

9.2.1 Scenario description

You want to run a full face recognition cycle using frontend and backend.

9.2.2 Scenario realization stages
Applying a full face recognition cycle in your mobile app proceeds in stages:

* Getting the best shot with the detected face for best shot and OneShotLiveness
estimation.

* Identifying that the face in the image belongs to a person from a client list (1:N
identification).

* Matching the detected face with the face corresponding to the client ID in a global
database (1:1 verification).

9.2.3 Prerequisites

To use this scenario, you need to configure LUNA PLATFORM 5 for it to work with LUNA ID. For
details on how LUNA PLATFORM 5 works, see the LUNA PLATFORM 5 documentation.

The preliminary steps are:
1. Create a LUNA PLATFORM 5 account. For details, see Create account.

2. Create a list of faces in LUNA PLATFORM 5 for further identification and verification. For
details, see Create list.

3. Add faces to the list by generating a handler event with the link to_lists policy enabled.
4. Create handlers for the following operations:

¢ |dentification

* Verification

VisionLabs B.V. Page 248 of 270

https://docs.visionlabs.ai/luna/latest/
https://docs.visionlabs.ai/luna/v.5.45.1/ReferenceManuals/APIReferenceManual.html#tag/accounts/operation/createAccount
https://docs.visionlabs.ai/luna/v.5.45.1/ReferenceManuals/APIReferenceManual.html#tag/lists/operation/createList
https://docs.visionlabs.ai/luna/v.5.45.1/ReferenceManuals/APIReferenceManual.html#tag/handlers/operation/createHandler
https://docs.visionlabs.ai/luna/v.5.45.1/ReferenceManuals/APIReferenceManual.html#tag/verifiers/operation/createVerifier

9.2.4 Scenario realization steps
The scenario has the following steps:
You should perform some of the scenario realization steps in LUNA PLATFORM 5.
1. Video stream processing and face detection.
2. Getting the best shot.
3. Sending the selected best shot for OneShotLiveness estimation in the backend.

4. Performing OneShotLiveness estimation at the LUNA PLATFORM 5 /liveness resource. The
source image is required for the estimation.

5. Creating a warp for further face recognition, if the previous steps were successfully passed.
6. Saving the video stream with the detected face on the mobile device.
7. Sending the best shot to LUNA PLATFORM 5 for identification according to the existing list.

8. Performing the identification at the LUNA PLATFORM 5 /handlers/handler_id/events resource.
This step creates a temporary attribute that will be used in step 11.

9. Receiving the results.
10. Sending a request for verification according to the existing list to LUNA PLATFORM 5.
11. Performing the verification at the LUNA PLATFORM 5 /verifiers/verifier_id/verification resource.

The resource does not create event objects in LUNA PLATFORM 5 with information about
image processing.

12. Returning the attribute ID.

When implementing the scenario, you can either perform identification (step 8) or
verification (step 10), not necessarily perform the both.

The diagram below shows the steps of this scenario:

VisionLabs B.V. Page 249 of 270

https://docs.visionlabs.ai/luna/v.5.45.1/ReferenceManuals/APIReferenceManual.html#tag/liveness
https://docs.visionlabs.ai/luna/v.5.45.1/ReferenceManuals/APIReferenceManual.html#tag/liveness
https://docs.visionlabs.ai/luna/v.5.45.1/ReferenceManuals/APIReferenceManual.html#tag/events/operation/generateEvents
https://docs.visionlabs.ai/luna/v.5.45.1/ReferenceManuals/APIReferenceManual.html#tag/events/operation/generateEvents
https://docs.visionlabs.ai/luna/v.5.45.1/ReferenceManuals/APIReferenceManual.html#tag/verifiers/operation/postVerifier
https://docs.visionlabs.ai/luna/v.5.45.1/ReferenceManuals/APIReferenceManual.html#tag/verifiers/operation/postVerifier

Getting a video

L ctream for processing >

2 Best shot estimations,
Getting the best shot

<«

3 OneShotLiveness

>
OneShotLiveness
estimation
5 Creating a warp
6 Saving the video stream :
«] '
Sending a request to |
/handlers/handler_id/events >l
Processing the image
according to policies
9 Response
. I
10 Sending a request to !

/veriﬁers/veriﬁer_id/veriﬁcatior&

Processing the image
according to policies

PR

12 Attribute ID

Scenario realization steps

VisionLabs B.V. Page 250 of 270

9.3 Specifying LUNA PLATFORM URL and handler IDs

To guarantee interaction of LUNA ID with LUNA PLATFORM 5, you need to specify the URL to
LUNA PLATFORM 5. This URL will be used to send requests to LUNA PLATFORM 5.

Along with the the URL to LUNA PLATFORM 5, you need to specify IDs of LUNA PLATFORM 5
handlers so you can perform the required tasks.
9.3.1 In LUNA ID for Android

Specify the baseUrl variable to provide the URL to LUNA PLATFORM 5 in the build.gradle.kts
file. Consider the following example:

class DemoApp : Application () {
override fun onCreate() {
super.onCreate()

LunalD.apiHuman

/] specify the URL to LUNA PLATFORM
val baseUrl = "http://luna-platform.com/api/6/"
}

The example has the following components:

Component Description

LunalD.apiHuman Property. Provides access to the LUNA PLATFORM API and allows sending
requests.

baseUrl Variable. Specifies the LUNA PLATFORM URL that is used by the LunalD.apiHuman()
function.

To specify LUNA PLATFORM 5 handler IDs, define variables that correspond to the required
handlers in constantHeaders . For details, see the PlatformAPIExample example.

VisionLabs B.V. Page 251 of 270

https://github.com/VisionLabs/LunaID-Android-Examples/blob/master/PlatformAPIExample/src/main/java/ai/visionlabs/examples/platformapi/App.kt#L17

9.3.2 In LUNA ID for iOS

Specify the following parameters in the LwConfig class at the app start:

Parameter

identifyHandlerlD

registrationHandlerID

verifylD

lunaServerURL

platformToken

VisionLabs B.V.

Description

The ID of a handler that receives the best shot and identification according to
the existing list of faces.

The ID of a handler that registers a new user and receives the best shot and
user name.

The ID of a verifier used to roll out LUNA PLATFORM 5.

The LUNA PLATFORM 5 host URL. The URL should not have the slash at the
end. For example: https://LUNA_PLATFORM_HOST/6 .

Access token to the LUNA PLATFORM server.

Page 252 of 270

9.4 Sending multiple frames for estimation aggregation to the
backend

In LUNA ID, you can send multiple frames to the backend for aggregation. This capability is
essential for certain resource-intensive estimations performed in LUNA PLATFORM 5, such as
DeepFake Detection and OneShotLiveness.

9.4.1 In LUNA ID for Android
Getting multiple frames

To enable the acquisition of multiple frames:

1. Set the multipartBestShotsEnabled parameter of LunaConfig to true.

2. Specify the number of best shots to be returned by setting the LunaConfig.bestShotsCount
parameter. The valid range of values for bestShotsCount is from 1 to 10.

3. Get the list of best shots by subscribing to the BestShotsFound event. Use the bestShots
Flow to collect this list.

Structure of BestShotsFound :
data class BestShotsFound(

val bestShots: List<BestShot>?
) : Event()

Usage example:

LunalD.bestShots.filterNotNull().onEach { bestShotsList ->
Log.e(TAG, "bestShots: ${bestShotsList.bestShots}")
}.launchin(viewModelScope)

This Flow continuously gets a list of best shots as they are detected during the session.

Important: If multipartBestShotsEnabled is set to false, the bestShots field will be returned

as null.

Implementing online aggregation

To implement online aggregation for resource-intensive estimations:

VisionLabs B.V. Page 253 of 270

1. Use the apiEventsStaticHandler method of the ApiHuman class.

fun apiEventsStaticHandler(
query: StaticEventRequest,
consumer: Consumer<Result<EventGenerateResponse>>,

The method generates and sends an HTTP request that returns the EventGenerateResponse
object. This object contains information about aggregated DeepFake and OneShotLiveness
estimations.

2. Use the staticEventRequest class, which represents a request model:

class StaticEventRequest(
override val handlerld: String,
override val extraHeaders: Map<String, String> = emptyMap(),
override val externalld: String? = null,
override val userData: String? = null,
override val imageType: Int? = null,
override val aggregateAttributes: Int? = null,
override val source: String? = null,
override val tags: List<String>? = null,
override val trackld: String? = null,
override val useExifinfo: Int? = null,
val requestBody: RequestBody

) : AbsEventRequest(
handlerld,
extraHeaders,
externalld,
userData,
imageType,
aggregateAttributes,
source,
tags,
trackld,
useExiflnfo,

3. Get results of aggregated estimations with the data class EventGenerateResponse object:

// Getting the aggregated OneShotLiveness estimation
eventGenerateResponse().aggregateEstimations?.face?.attributes?.liveness

VisionLabs B.V. Page 254 of 270

// Getting the aggregated DeepFake estimation
eventGenerateResponse().aggregateEstimations?.face?.attributes?.deepfake

9.4.2 In LUNA ID for iOS
Getting multiple frames
To enable multiple frame acquisition:

1. Set the multipartBestShotsEnabled to true . You will receive several best shots instead of one
through the following method:

func multipartBestShots(_ bestShots: [LCBestShot], _ videoFile: String?)

Note that the method previously used to get a single best shot will no longer be called:

func bestShot(_ bestShot: LunaCore.LCBestShot, _ videoFile: String?)

2. Specify the number of best shots to be returned by setting the numberOfBestShots
parameter.

Getting aggregated data

To obtain aggregated OneShotLiveness and DeepFake estimation data, execute the following
query:

generateEvents(handlerlID: String, query: EventQuery, handler: @escaping (Result<EventsResponse,
Error>) -> Void)

Query parameters:

Parameter Description
handlerID Your custom handler.
query An array of received images. Set the following values:

* imageType = .rawlmage

* aggregateAttributes = true

The aggregated data will be available in the aggregateEstimations section in the query
response.

VisionLabs B.V. Page 255 of 270

10. Best practices

10.1 Security options

LUNA ID provides protection measures against the use of potentially dangerous devices.

10.1.1 Virtual camera usage check

Applies to LUNA ID for Android only.

The virtual camera protection feature enhances security by detecting if the device's physical
camera has been replaced by a virtual one.

Implementation

STEP 1: ADD DEPENDENCY

To use the feature, include the security module in your project. Add the following dependency
to your build.gradle.kts file:

dependencies {

implementation("ai.visionlabs.lunaid:security:X.X.X.aar")

}

STEP 2: PERFORM THE CHECK

The following example demonstrates how to run the check:

securityCheck = SuspiciousDeviceDetector.Impl(this)
someCoroutineScope.launch {

Log.e("SuspiciousDetector", "result: ${securityCheck.detect()}")

}

The detect() method is a suspend function and must be called from a coroutine.

UNDERSTANDING THE RESULT

* The SecurityCheck.Failure result indicates that at least one sign of a virtual camera was
detected.

* The SecurityCheck.Success result indicates that no signs were found.

VisionLabs B.V. Page 256 of 270

Enabling the check

The virtual camera usage check is disabled by default. To enable the check, set the
checkSecurity property to true when launching the camera. For example:

LunalD.showCamera(
activity,
LunalD.ShowCameraParams(

checkSecurity = true // Explicitly enables the security check
)

If the checkSecurity property is not specified, it is set to false by default.

10.1.2 Jailbreak check

Applies to LUNA ID for iOS only.

LUNA ID can tell you if your device has been jailbroken. If there has been an attempt to

jailbreak your device, the LMCameraCaptureManagerDelegate::devicelsjailbroken() method will be
returned.

VisionLabs B.V. Page 257 of 270

10.2 Reducing your app size by excluding .plan files

LUNA ID uses neural networks for face processing in images and video streams. Neural

networks are stored in the .plan files. You can reduce the size of your app by removing
unnecessary .plan files.

10.2.1 In LUNA ID for Android

You do not need to remove any .plan files as they are distributed separately. For details, see
Distribution kit.

10.2.2 In LUNA ID for iOS

To reduce your app size, remove unnecessary .plan files from the fsdk.framework/

ios_armé4(or simulator)/fsdk.framework/data/ directory. The .plan files that you can remove
are:

glasses_estimation_v2_arm.plan

oneshot rgb_liveness v9_model 3 arm.plan

oneshot _rgb_liveness v9_model 4 arm.plan

cnn60m_arm.plan

VisionLabs B.V. Page 258 of 270

10.3 Getting LUNA ID status after initialization

Applies to LUNA ID for Android only.
This topic provides an instruction how to use StateFlow to track LUNA ID initialization status.

1. Prepare the environment. Make sure you are in a ViewModel or CoroutineScope context to
use coroutines and StateFlow .

2. Launch the coroutine using viewModelScope.launch to start collecting engine initialization
status changes.

viewModelScope.launch {
enginelnitStatus.collect { status ->

// Handle each initialization status change
}

}

3. Handle the statuses. Use the when construct to handle different initialization statuses.
Depending on the current status, perform appropriate actions.

when (status) {
EnginelnitStatus.Notlnitialized -> {
// Actions before initialization

}
EnginelnitStatus.InProgress -> {
// Actions during initialization

}
EnginelnitStatus.Success -> {
// Actions after initialization is complete

}
EnginelnitStatus.Failure -> {
// Actions if initialization fails
}
}

4. Use StateFlow . enginelnitStatus iS a StateFlow object that stores the current initialization

state of the engine. This allows you to subscribe to status changes and get the latest state at
any time after activation.

StateFlow ensures that all subscribers always get the latest state value, even if they
subscribed after a change. This makes it a convenient tool for tracking states in your app.

VisionLabs B.V. Page 259 of 270

10.4 Optimizing camera initialization with Camera Limiter

Applies to LUNA ID for Android only.

To improve the performance of your app's camera features, you can optimize the camera
initialization process using the Camera Limiter feature in CameraX . During the first
invocation of ProcessCameraProvider.getinstance() , CameraX enumerates and queries the
characteristics of all available cameras on the device. This process can be time-consuming,
especially on low-end devices, as it involves communication with hardware components.

If your app only uses specific cameras (for example, the default front or back camera), you
can configure CameraX to ignore unnecessary cameras. By limiting the available cameras,
you can significantly reduce startup latency for the cameras your app uses.

10.4.1 Implementation

To restrict CameraX to a specific camera, use the CameraSelector class with
CameraXConfig.Builder.setAvailableCamerasLimiter() . For example, the following code limits the app
to only use the device's default back camera:

class MainApplication : Application(), CameraXConfig.Provider {
override fun getCameraXConfig(): CameraXConfig {
return CameraXConfig.Builder.fromConfig(Camera2Config.defaultConfig())
.setAvailableCamerasLimiter(CameraSelector.DEFAULT_BACK_CAMERA)
.build()

VisionLabs B.V. Page 260 of 270

https://developer.android.com/reference/androidx/camera/core/CameraXConfig.Builder?spm=a2ty_o01.29997173.0.0.737bc921dTbm44#setAvailableCamerasLimiter(androidx.camera.core.CameraSelector)
https://developer.android.com/reference/androidx/camera/core/CameraXConfig.Builder?spm=a2ty_o01.29997173.0.0.737bc921dTbm44#setAvailableCamerasLimiter(androidx.camera.core.CameraSelector)

10.5 Customizing Ul with LUNA ID

10.5.1 Customizing face recognition area borders

Applies to LUNA ID for Android only.

In some cases, you may need the best shot search to start only after a user places their face
in a certain area in the screen. You can specify face recognition area borders by implementing
one of the following strategies:

Border distances are not initialized
Border distances are initialized with an Android custom view
Border distances are initialized in dp

Border distances are initialized automatically

Border distances are not initialized
This strategy is useful if the border distances should be 0 pixels. This is the default strategy.
To implement the strategy, use the Default object of the InitBorderDistancesStrategy class.

Consider the code below for the strategy implementation:

LunalD.showCamera(
activity,
LunalD.ShowCameraParams(
disableErrors = true,
borderDistanceStrategy = InitBorderDistancesStrategy.Default
)

Border distances are initialized with an Android custom view

This strategy allows you to define how to calculate distances to the face recognition area
inside an Android custom view. The custom view can stretch to fill the entire screen and
contain different elements, one of which is a circle that corresponds to the face recognition
area. The custom view must implement the MeasureBorderDistances interface. The interface
result value is a child object with custom view border distances. Implementation of this
interface is required due to impossibility to get the distances outside the custom view and
allows you to comply with the encapsulation principle.

VisionLabs B.V. Page 261 of 270

Consider the example code below for the MeasureBorderDistances interface implementation. It
also shows how to implement a business logic according to which a chin and forehead must
be inside the face recognition area.

override fun measureBorderDistances(): BorderDistancesInPx {
val radius = minOf(right - left, bottom - top) / 2f
val diameter = radius * 2

val distanceFromLeftToCircle = (width - diameter) / 2f
val distanceFromTopToCircle = (height - diameter) / 2f

// business logic

val foreheadZone = 64
val chinZone = 36

val horizontalMargin = 16

val distanceFromTopWithForehead = distanceFromTopToCircle.tolnt() +
foreheadZone

val distanceFromBottomWithChin = distanceFromTopToCircle.tolnt() + chinZone

val distanceHorizontalToCircle = distanceFromLeftToCircle.tolnt() + horizontalMargin

// business logic ends

return BorderDistancesInPx(
fromLeft = distanceHorizontalToCircle,
fromTop = distanceFromTopWithForehead,
fromRight = distanceHorizontalToCircle,
fromBottom = distanceFromBottomWithChin,

To implement the strategy, use the InitBorderDistancesStrategy.WithCustomView class. You also
need to pass an argument with the ID of the custom view on the XML markup to the object of
the withCustomView class.

Consider the example code below for the strategy implementation:

VisionLabs B.V. Page 262 of 270

LunalD.showCamera(
context,
LunalD.ShowCameraParams(
disableErrors = true,
borderDistanceStrategy = InitBorderDistancesStrategy.WithCustomView(
R.id.overlay viewport

)

Border distances are initialized in dp

This strategy allows you to specify distances to the face recognition area in density-
independent pixels.

To implement the strategy, use the InitBorderDistancesStrategy.WithDp class.

Consider the example code below for the strategy implementation:

LunalD.showCamera(
context,
LunalD.ShowCameraParams(
disableErrors = false,
borderDistanceStrategy = InitBorderDistancesStrategy.WithDp(
topPaddingIlnDp = 150,
bottomPaddingIinDp = 250,
leftPaddingInDp = 8,
rightPaddinginDp = 8

Border distances are initialized automatically

This strategy allows you to automatically calculate distances to the face recognition area on
the XML markup by using its ID:

<View
android:id="@+id/faceZone"
android:layout_width="200dp"
android:layout_height="300dp"
android:background="#1D000000"

VisionLabs B.V. Page 263 of 270

android:layout_gravity="top|center"
android:layout_marginTop="150dp"/>

To implement the strategy, use the InitBorderDistancesStrategy.WithViewld class.
Consider the example code below for the strategy implementation:
LunalD.showCamera(
context,
LunalD.ShowCameraParams(

disableErrors = false,
borderDistanceStrategy = InitBorderDistancesStrategy.WithViewld(R.id.faceZone)

VisionLabs B.V. Page 264 of 270

10.5.2 Customizing Ul with LUNA ID for iOS
Applies to LUNA ID for iOS only.
This topic provides information about LUNA ID protocols and methods that you can use to
customize the Ul of your app.
LMUICustomizerProtocol

The LMUICustomizerProtocol protocol realizes the following interface elements:

Element Description

videoStreamNotificationView Shows user notifications.

faceDetectionFrameView Specifies a face detection bounding box.
rootCustomizationView Specifies the rooted view of the Ul and returns the

LMRootCustomizationViewProtocol object. The rootCustomizationView()
method must contain videoStreamNotificationView and
faceDetectionFrameView and can contain all user elements that are used
in the Ul as subviews. In rootCustomizationView , you can specify as many
camera Ul elements as you need.

Important: videoStreamNotificationView and faceDetectionFrameView cannot exist separately
from each other.
LMRootCustomizationViewProtocol

The LMRootCustomizationViewProtocol protocol inherits from Ulview and is responsible for the Ul
rooted view. The protocol defines two mandatory methods:

Method Description

unlockUI() Unlocks the interface.

lockUI() Locks the interface or displays elements such as a progress bar when saving a
video.

LMDefaultUICustomizer

LMDefaultUICustomizer is the default implementation of the default interface builder.

LMDefaultRootCustomizationView

The LMDefaultRootCustomizationView object implements the LMRootCustomizationViewProtocol
protocol and represents the rooted view with the standard camera interface.

VisionLabs B.V. Page 265 of 270

LMCameraViewController

The creation of a Ul is possible through the use of LMCameraViewController, to which the
LMCustomization protocol object is passed.

VisionLabs B.V. Page 266 of 270

10.6 Performing 1:N face matching on device

Applies to LUNA ID for Android only.

This guide demonstrates how to perform 1:N face matching directly on an Android device

using LUNA ID. The example shows how to search for a face in a pre-existing database of
facial descriptors.

10.6.1 Overview

The findFacelnDatabase function compares a facial image against a database of enrolled face
descriptors. It returns the first match that exceeds a specified similarity threshold, providing a
boolean result, similarity score, and the index of the matched face.

10.6.2 Function specification

Method signature

fun findFacelnDatabase(
image: Bitmap,
descriptorDb: List<ByteArray>,
scoreThreshold: Float = 0.7f

): Triple<Boolean, Float, Int>

Parameters
Parameter Type Description
image Bitmap The facial image to identify.
descriptorDb List<ByteArray> Database of enrolled face descriptors.
scoreThreshold Float

Minimum similarity score for a valid match (default: 0.7f).

VisionLabs B.V. Page 267 of 270

Return value

Returns Triple<Boolean, Float, Int> containing:

Component Type Description
First Boolean true if a match exceeds the threshold, otherwise false .
Second Float Similarity score of the best match.
Third Int Index of the matched descriptor in the database, or -1 if no match
found.
Implementation

import android.graphics.Bitmap
import ru.visionlabs.sdk.lunacore.utils.LunaUtils

/**
* Searches for the given face (image) in a database of face descriptors.
*
* @param image The input face image (Bitmap) to identify.
* @param descriptorDb The database of face descriptors. Each entry is a ByteArray
descriptor.
* @param scoreThreshold Similarity score threshold to consider a match. Must be >
0.7f by spec.
%
* @return Triple(found, score, index)
* - found: true if a descriptor scoring strictly above [scoreThreshold] was found.
* - score: the score returned by LunaUtils.matchDescriptors for the winning candidate.
* If no match is found, this is the best score observed (or Of if nothing was
compared).
* - index: zero-based index of the matched descriptor in [descriptorDb], or -1 if not
found.
*/
fun findFacelnDatabase(

image: Bitmap,

descriptorDb: List<ByteArray>,

scoreThreshold: Float = 0.7f
): Triple<Boolean, Float, Int> {

// 1. Extract the query descriptor from the input image

// If descriptor extraction fails or returns empty, we cannot proceed.

val queryDescriptor: ByteArray = LunaUtils.getDescriptor(image)

if (queryDescriptor.isEmpty()) {

return Triple(false, Of, -1)
}

// 2. lterate over the database and compare descriptors

VisionLabs B.V. Page 268 of 270

/I We keep track of the best score/index in case nothing crosses the threshold.
var bestScore = 0f
var bestindex = -1

for (i in descriptorDb.indices) {
val candidate = descriptorDDbli]
if (candidate.isEmpty()) continue // Skip empty/invalid entries

/I Compare using the provided native-backed matcher.
val score = LunaUtils.matchDescriptors(queryDescriptor, candidate)

// Early exit: as soon as the score is strictly greater than the threshold,
// we consider the face found and return immediately.
if (score > scoreThreshold) {

return Triple(true, score, i)

}

// Track the best score seen so far (useful to return diagnostics when not found).
if (score > bestScore) {
bestScore = score
bestindex =i
}
}

// 3. No candidate passed the threshold; return the best observed score and its
index (-1 if none)
return Triple(false, bestScore, bestindex)

}

10.6.3 Usage example

val (found, score, index) = findFacelnDatabase(faceBitmap, userRepository.getUsers())

Log.i("FaceSearch", "Face found: $found, score: $score, index: $index")

VisionLabs B.V. Page 269 of 270

11. Documentation download page

Version Documentation (pdf)

v.1.20.0 LUNA_ID_v.1.20.0.pdf

VisionLabs B.V. Page 270 of 270

	VisionLabs LUNA ID
	1. Introduction
	2. General information
	2.1 Overview
	2.1.1 Supported operating systems and programming languages
	2.1.2 Use cases
	2.1.3 LUNA ID features
	Security checks
	Video stream processing and face recognition
	Protection against face substitution
	Getting the best shot
	Protection against spoofing attacks
	Identification and verification
	OCR

	2.1.4 Usage scenarios
	Scenario 1: Getting images
	SCENARIO DESCRIPTION
	SCENARIO REALIZATION STAGES
	SCENARIO REALIZATION STEPS

	Scenario 2: Complete face recognition cycle
	SCENARIO DESCRIPTION
	SCENARIO REALIZATION STAGES
	SCENARIO REALIZATION STEPS

	2.2 Getting LUNA ID
	2.2.1 Download LUNA ID
	2.2.2 Distribution kit
	LUNA ID for Android
	EXAMPLE

	LUNA ID for iOS

	2.2.3 Next steps
	2.2.4 See also

	2.3 What's new in LUNA ID v.1.20.0
	2.3.1 In LUNA ID for Android
	New features and improvements
	Important notice

	2.4 Version history
	2.4.1 LUNA ID v.1.19.4
	In LUNA ID for Android

	2.4.2 LUNA ID v.1.19.3
	In LUNA ID for Android
	In LUNA ID for iOS

	2.4.3 LUNA ID v.1.19.2
	In LUNA ID for Android
	In LUNA ID for iOS

	2.4.4 LUNA ID v.1.19.1
	In LUNA ID for Android
	In LUNA ID for iOS

	2.4.5 LUNA ID v.1.19.0
	In LUNA ID for Android
	In LUNA ID for iOS

	2.4.6 LUNA ID v.1.18.1
	In LUNA ID for iOS

	2.4.7 LUNA ID v.1.18.0
	In LUNA ID for Android
	In LUNA ID for iOS

	2.4.8 LUNA ID v.1.17.2
	In LUNA ID for Android
	In LUNA ID for iOS

	2.4.9 LUNA ID v.1.17.1
	In LUNA ID for Android
	In LUNA ID for iOS

	2.4.10 LUNA ID v.1.17.0
	In LUNA ID for Android

	2.4.11 In LUNA ID for iOS
	2.4.12 LUNA ID v.1.16.2
	In LUNA ID for Android

	2.4.13 LUNA ID v.1.16.1
	In LUNA ID for Android
	In LUNA ID for iOS

	2.4.14 LUNA ID v.1.16.0
	In LUNA ID for Android
	In LUNA ID for iOS

	2.4.15 LUNA ID v.1.15.0
	In LUNA ID for Android
	In LUNA ID for iOS

	2.4.16 LUNA ID v.1.14.2
	2.4.17 LUNA ID v.1.14.1
	2.4.18 LUNA ID v.1.14.0
	In LUNA ID for Android

	2.4.19 In LUNA ID for iOS
	2.4.20 LUNA ID v. 1.13.3
	2.4.21 LUNA ID v. 1.13.2
	2.4.22 LUNA ID v. 1.13.1
	2.4.23 LUNA ID v. 1.13.0
	2.4.24 LUNA ID v. 1.12.1
	2.4.25 LUNA ID v. 1.12.0
	2.4.26 LUNA ID v. 1.11.5
	2.4.27 LUNA ID v. 1.11.4
	2.4.28 LUNA ID v. 1.11.3
	2.4.29 LUNA ID v. 1.11.2
	2.4.30 LUNA ID v. 1.11.1
	2.4.31 LUNA ID v. 1.11.0
	2.4.32 LUNA ID v. 1.10.1
	2.4.33 LUNA ID v. 1.10.0
	2.4.34 LUNA ID v. 1.9.7
	2.4.35 LUNA ID v. 1.9.6
	2.4.36 LUNA ID v. 1.9.5
	2.4.37 LUNA ID v. 1.9.4
	2.4.38 LUNA ID v. 1.9.3
	2.4.39 LUNA ID v. 1.9.2
	2.4.40 LUNA ID v. 1.9.1
	2.4.41 LUNA ID v. 1.9.0
	2.4.42 LUNA ID v. 1.8.7
	2.4.43 LUNA ID v. 1.8.6
	2.4.44 LUNA ID v. 1.8.5
	2.4.45 LUNA ID v. 1.8.4
	2.4.46 LUNA ID v. 1.8.3
	2.4.47 LUNA ID v. 1.8.2
	2.4.48 LUNA ID v. 1.8.1
	2.4.49 LUNA ID v. 1.8.0
	2.4.50 LUNA ID v. 1.7.9
	2.4.51 LUNA ID v. 1.7.8
	2.4.52 LUNA ID v. 1.7.7
	2.4.53 LUNA ID v. 1.7.6
	2.4.54 LUNA ID v. 1.7.5
	2.4.55 LUNA ID v. 1.7.4
	2.4.56 LUNA ID v. 1.7.3
	2.4.57 LUNA ID v. 1.7.2
	2.4.58 LUNA ID v. 1.7.1
	2.4.59 LUNA ID v. 1.7.0
	2.4.60 LUNA ID v. 1.6.1
	2.4.61 LUNA ID v. 1.6.0
	2.4.62 LUNA ID v. 1.5.1
	2.4.63 LUNA ID v. 1.5.0
	2.4.64 LUNA ID v. 1.4.5
	2.4.65 LUNA ID v. 1.4.4
	2.4.66 LUNA ID v. 1.4.3
	2.4.67 LUNA ID v. 1.4.2
	2.4.68 LUNA ID v. 1.4.1
	2.4.69 LUNA ID v. 1.4.0
	2.4.70 LUNA ID v.1.3.3
	2.4.71 LUNA ID v.1.3.2
	2.4.72 LUNA ID v.1.3.1
	2.4.73 LUNA ID v. 1.3.0
	2.4.74 LUNA ID v. 1.2.0-1.2.4
	2.4.75 LUNA ID v. 1.1.0

	2.5 System and hardware requirements
	2.5.1 Information about third-party software
	LUNA SDK

	2.6 Getting LUNA ID version
	2.6.1 In LUNA ID for Android
	2.6.2 In LUNA ID for iOS

	2.7 LUNA ID size
	2.7.1 Total size
	IN LUNA ID FOR ANDROID
	IN LUNA ID FOR IOS

	2.7.2 Measure LUNA ID size
	In LUNA ID for Android
	IMPORTANT NOTES

	In LUNA ID for iOS

	2.7.3 Reduce your app size

	2.8 Neural networks used in LUNA ID
	2.9 Glossary
	2.10 Technical Support and resources
	2.10.1 Contact Technical Support
	2.10.2 More resources
	Downloadable documentation
	Examples

	3. Licensing
	3.1 Activating the license
	3.1.1 In LUNA ID for Android
	Activating the license

	3.1.2 In LUNA ID for iOS
	Activating license via vllicense.plist
	Renaming vllicense.plist

	3.2 Updating the license
	3.2.1 In LUNA ID for Android
	3.2.2 In LUNA ID for iOS
	Method 2: Programmatic configuration (basic approach)
	Method 3: Using LCLunaIDServiceBuilder

	3.3 Verifying license validity
	3.3.1 Default method
	3.3.2 Customized method

	3.4 License expiration handling
	3.4.1 LicenseExpired event
	3.4.2 FeatureExpired error

	3.5 License parameters
	3.6 Resetting the license cache
	3.6.1 In LUNA ID for Android
	3.6.2 In LUNA ID for iOS

	3.7 Working with status code 1025

	4. API documentation
	4.1 API documentation
	4.2 Changelog
	4.2.1 API changes made in LUNA ID for Android v.1.5.0 in comparison to v.1.4.x
	4.2.2 API changes made in LUNA ID for Android v.1.5.1 in comparison to v.1.5.0
	4.2.3 API changes made in LUNA ID for Android v.1.6.0 in comparison to v.1.5.1
	4.2.4 API changes made in LUNA ID for Android v.1.8.4 in comparison to v.1.6.0
	4.2.5 API changes made in LUNA ID for Android v.1.9.4 in comparison to v.1.8.4
	4.2.6 API changes made in LUNA ID for Android v.1.16.0 in comparison to earlier versions
	Configuration updates
	REMOVED PARAMETERS
	TRANSFERRED PARAMETERS
	NEW PARAMETER
	NAMING CHANGES

	Changes in best shot retrieval (multipartBestShotsEnabled)
	BEFORE
	AFTER

	Changes in result retrieval
	Changes in error retrieval
	Event subscription updates
	XML FRAGMENT IMPLEMENTATION

	Compose implementation
	VIEWMODEL FOR BOTH UI VARIANTS

	4.2.7 API changes made in LUNA ID for Android v.1.16.1 in comparison to earlier versions
	Enhanced event handling
	Command API restoration

	5. Integration guide
	5.1 Integration guide for LUNA ID for Android
	5.1.1 Prerequisites
	5.1.2 Step 1: Configure repository
	5.1.3 Step 2: Set up credentials
	5.1.4 Step 3: Add dependencies
	5.1.5 Step 4: Add permissions
	5.1.6 Step 5: Initialize LUNA ID
	5.1.7 Step 6: Launch the camera

	5.2 Integration guide for LUNA ID for iOS
	5.2.1 Step 1: Project setup
	5.2.2 Step 2: ViewController setup
	5.2.3 Step 3: UI customization
	Face tracking frame
	Notification view
	Root customization view

	6. Initial setup
	6.1 Initial setup of LUNA ID for Android
	6.1.1 Step 1. Get the .aar file
	6.1.2 Step 2. Provide your user credentials
	6.1.3 Step 3. Add the .aar file as a dependency
	6.1.4 Step 4. Initialize LUNA ID and activate the license
	6.1.5 Step 5. Call LUNA ID functions
	6.1.6 Examples

	6.2 Initial setup of LUNA ID for iOS
	6.2.1 Step 1. Add XCFrameworks
	6.2.2 Step 2. Enable OneShotLiveness estimation
	6.2.3 Step 3. Specify license data
	6.2.4 Step 4. Create a face recognition screen in your app

	7. Working with LUNA ID
	7.1 Best shots
	7.1.1 Best shot estimations
	About best shot estimations
	HOW IT WORKS
	In LUNA ID for Android
	In LUNA ID for iOS

	ESTIMATIONS

	AGS estimation
	VALUE RANGE
	DEFAULT VALUE
	IMPLEMENTATION

	Head pose estimation
	ACCEPTABLE ANGLE RANGES
	DEFAULT VALES
	RECOMMENDED VALUES
	IMPLEMENTATION

	Image quality estimation
	DEFAULT VALUES

	Face detection bounding box size estimation
	RECOMMENDED MINIMUM SIZE
	DEFAULT VALUES
	CONFIGURATION DETAILS
	IMPLEMENTATION

	Frame edges offset
	MINIMAL BORDER DISTANCE
	DEFAULT VALUES
	IMPLEMENTATION

	Eye state
	BEHAVIOR IN DIFFERENT PLATFORMS
	In LUNA ID for Android
	In LUNA ID for iOS

	IMPLEMENTATION

	Medical mask estimation
	DEPENDENCY ON FACE OCCLUSION ESTIMATION
	ERROR HANDLING
	IMPLEMENTATION
	ADDITIONAL NOTES

	Face occlusion estimation
	BEHAVIOR IN DIFFERENT PLATFORMS
	In LUNA ID for Android
	In LUNA ID for iOS

	ERROR HANDLING
	IMPLEMENTATION

	Glasses estimation
	ESTIMATION RULES
	In LUNA ID for Android
	In LUNA ID for iOS

	7.1.2 Getting the best shot
	In LUNA ID for Android
	FACE RECOGNITION AREA
	ADD A DELAY BEFORE STARTING FACE RECOGNITION
	ADD A DELAY BEFORE GETTING THE BEST SHOT

	In LUNA ID for iOS
	FACE RECOGNITION AREA
	ADD A DELAY BEFORE STARTING FACE RECOGNITION
	ADD A DELAY BEFORE GETTING THE BEST SHOT

	7.1.3 Getting the best shot with an occluded face
	In LUNA ID for Android
	In LUNA ID for iOS

	7.1.4 Getting the best shot with faces with closed eyes
	In LUNA ID for Android
	ONE CLOSED EYE
	TWO CLOSED EYES

	In LUNA ID for iOS
	ONE CLOSED EYE
	TWO CLOSED EYES

	7.1.5 Getting the best shot with faces with occluded eyes
	In LUNA ID for Android
	glassesChecks

	In LUNA ID for iOS

	7.1.6 Using aggregation
	How it works
	IN LUNA ID FOR ANDROID
	IN LUNA ID FOR IOS

	Enable aggregation
	IN LUNA ID FOR ANDROID
	Performance optimization

	IN LUNA ID FOR IOS

	Aggregation in TrackEngine
	HOW IT WORKS
	In LUNA ID for Android

	ENABLE AGGREGATION IN TRACKENGINE
	In LUNA ID for Android

	7.1.7 Best shot error notifications
	In LUNA ID for Android
	In LUNA ID for iOS
	CRITICAL ERRORS
	NON-CRITICAL ERRORS

	7.2 Face tracking
	7.2.1 Tracking a face identity
	In LUNA ID for Android
	In LUNA ID for iOS

	7.2.2 Fixing a face in the frame
	In LUNA ID for Android
	In LUNA ID for iOS

	7.3 OneShotLiveness
	7.3.1 About OneShotLiveness estimation
	OneShotLiveness estimation types
	Image requirements
	OneShotLiveness thresholds
	QUALITY THRESHOLD
	LIVENESS THRESHOLD

	Number of best shots

	7.3.2 Performing Online OneShotLiveness estimation
	In LUNA ID for Android
	In LUNA ID for iOS

	7.3.3 Performing Offline OneShotLiveness estimation
	In LUNA ID for Android
	LOGGING

	In LUNA ID for iOS

	7.3.4 Disabling OneShotLiveness estimation
	In LUNA ID for Android
	In LUNA ID for iOS
	DISABLE ONLINE ONESHOTLIVENESS ESTIMATION
	DISABLE OFFLINE ONESHOTLIVENESS ESTIMATION

	7.4 Dynamic Liveness
	7.4.1 About Dynamic Liveness estimation
	Interaction types
	Implementation
	IN LUNA ID FOR ANDROID
	IN LUNA ID FOR IOS

	Dynamic Liveness defaults
	INTERACTION TIMEOUT
	TIMEOUT BETWEEN INTERACTIONS
	HEAD ROTATION ANGLES

	Results

	7.4.2 Performing Dynamic Liveness estimation
	In LUNA ID for Android
	ENABLE THE ESTIMATION
	Perform interactions in a random order
	Define an interaction sequence

	SET AN INTERACTION TIMEOUT
	SET A TIMEOUT BETWEEN INTERACTIONS
	VIEW INTERACTION STATUSES
	SPECIFY HEAD ROTATION ANGLES
	ENABLE BLINKING WITH ONE EYE

	In LUNA ID for iOS
	ENABLE THE ESTIMATION
	SPECIFY A NUMBER OF INTERACTIONS
	DEFINE AN INTERACTION SEQUENCE
	SET AN INTERACTION TIMEOUT
	SET A TIMEOUT BETWEEN INTERACTIONS
	VIEW INTERACTION STATUSES
	SPECIFY HEAD ROTATION ANGLES

	7.4.3 Getting Dynamic Liveness estimation results
	In LUNA ID for Android
	In LUNA ID for iOS

	7.4.4 Interception of Dynamic Liveness interaction events
	7.4.5 Customizing Dynamic Liveness notifications
	In LUNA ID for Android
	In LUNA ID for iOS

	7.5 Video streams
	7.5.1 About working with video streams
	Video stream settings
	Information about a recorded video stream

	7.5.2 Recording a video stream
	In LUNA ID for Android
	In LUNA ID for iOS

	7.5.3 Recording a video stream only with the face detected
	In LUNA ID for Android
	In LUNA ID for iOS

	7.5.4 Video stream settings
	Video stream quality
	Timeout before starting recording
	Video stream duration
	IN LUNA ID FOR ANDROID
	IN LUNA ID FOR IOS

	Custom frame resolution
	Autofocus
	Compression

	7.6 Logs
	7.6.1 Getting logs from mobile devices
	Data to be provided to VisionLabs Technical support
	Prerequisites
	FaceEngine and TrackEngine logging
	Getting logs from Android devices
	STEP 1: ENABLE DEVELOPER OPTIONS & USB DEBUGGING
	STEP 2: OPEN LOGCAT IN ANDROID STUDIO
	STEP 3: SELECT DEVICE AND CONFIGURE LOGCAT
	STEP 4: CONFIGURE THE LOGCAT LAYOUT
	STEP 5: FILTER THE LOGS
	UNDERSTANDING THE LOG OUTPUT

	Getting logs from iOS devices
	STEP 1: ENABLE DEVELOPER MODE
	STEP 2: ACCESS DEVICE LOGS IN XCODE
	STEP 3: VIEW AND CAPTURE LOGS
	STEP 4: FILTER AND EXPORT LOGS
	UNDERSTANDING THE LOG OUTPUT

	Getting logs for OneShotLiveness estimation from Android devices
	Getting logs for OneShotLiveness estimation from iOS devices

	7.6.2 Saving logs on an end user’s device
	In LUNA ID for Android
	AUTOMATIC SESSION LOGGING WITH SHOWCAMERA
	SAVING LOGS IN THE .LOGCAT FORMAT

	In LUNA ID for iOS

	7.6.3 Status codes and errors
	LUNA ID for Android
	LUNA ID INITIALIZATION EXCEPTIONS
	ONESHOTLIVENESS ESTIMATION STATUS CODES
	BEST SHOT ESTIMATION ERRORS

	LUNA ID for iOS

	7.6.4 Device fingerprinting
	7.6.5 Enabling low-level logging

	7.7 Using descriptors
	7.7.1 In LUNA ID for Android
	Required dependency
	Enabling descriptor-related functionality
	Core methods
	Usage example
	STEP 1: GETTING BEST SHOTS FOR DESCRIPTOR EXTRACTION
	STEP 2: EXTRACTING DESCRIPTORS FROM BITMAP IMAGES
	STEP 3: COMPARING DESCRIPTORS

	7.7.2 In LUNA ID for iOS

	7.8 Using commands
	7.8.1 StartBestShotSearchCommand
	7.8.2 CloseCameraCommand
	7.8.3 Usage
	7.8.4 Example

	7.9 Using OCR
	7.9.1 Key considerations
	Memory usage
	Camera permission
	Errors

	7.9.2 Step 1: Add the OCR dependency
	7.9.3 Step 2: Activate the OCR license
	7.9.4 Step 3: Initialize OCR
	7.9.5 Step 4: Start the OCR
	7.9.6 Step 5: Handle results

	8. Configuring LUNA ID
	8.1 Best shot properties
	8.1.1 In LUNA ID for Android
	8.1.2 In LUNA ID for iOS

	8.2 Changing detection settings
	8.2.1 In LUNA ID for Android
	8.2.2 In LUNA ID for iOS

	8.3 Bulk editing LUNA ID parameters
	8.3.1 Configuration file
	8.3.2 Configuration parameters
	LCLunaConfiguration section
	LCBestShotConfiguration section
	LCInteractionsConfig section
	LCEstimationThreshold section

	8.4 Setting up timeouts
	8.4.1 Face fixing timeout
	8.4.2 Best shot timeouts
	Before starting face recognition
	Before getting the best shot

	8.4.3 Dynamic Liveness estimation timeouts
	Interaction timeout
	Timeout between interactions

	8.5 Configuring the camera
	8.5.1 Camera parameters
	8.5.2 Default configuration
	8.5.3 Pre-initializing camera availability
	Getting available camera types

	8.5.4 Launching the camera with dynamic selection

	9. Interacting with LUNA PLATFORM
	9.1 Interaction of LUNA ID with LUNA PLATFORM 5
	9.2 Usage scenario: Complete face recognition cycle
	9.2.1 Scenario description
	9.2.2 Scenario realization stages
	9.2.3 Prerequisites
	9.2.4 Scenario realization steps

	9.3 Specifying LUNA PLATFORM URL and handler IDs
	9.3.1 In LUNA ID for Android
	9.3.2 In LUNA ID for iOS

	9.4 Sending multiple frames for estimation aggregation to the backend
	9.4.1 In LUNA ID for Android
	Getting multiple frames
	Implementing online aggregation

	9.4.2 In LUNA ID for iOS
	Getting multiple frames
	Getting aggregated data

	10. Best practices
	10.1 Security options
	10.1.1 Virtual camera usage check
	Implementation
	STEP 1: ADD DEPENDENCY
	STEP 2: PERFORM THE CHECK
	UNDERSTANDING THE RESULT

	Enabling the check

	10.1.2 Jailbreak check

	10.2 Reducing your app size by excluding .plan files
	10.2.1 In LUNA ID for Android
	10.2.2 In LUNA ID for iOS

	10.3 Getting LUNA ID status after initialization
	10.4 Optimizing camera initialization with Camera Limiter
	10.4.1 Implementation

	10.5 Customizing UI with LUNA ID
	10.5.1 Customizing face recognition area borders
	Border distances are not initialized
	Border distances are initialized with an Android custom view
	Border distances are initialized in dp
	Border distances are initialized automatically

	10.5.2 Customizing UI with LUNA ID for iOS
	LMUICustomizerProtocol
	LMRootCustomizationViewProtocol
	LMDefaultUICustomizer
	LMDefaultRootCustomizationView
	LMCameraViewController

	10.6 Performing 1:N face matching on device
	10.6.1 Overview
	10.6.2 Function specification
	Method signature
	Parameters
	Return value
	Implementation

	10.6.3 Usage example

	11. Documentation download page

