
VisionLabs LUNA ID

v.1.20.0

Table of contents

111. Introduction

152. General information

152.1 Overview

152.1.1 Supported operating systems and programming languages

152.1.2 Use cases

162.1.3 LUNA ID features

192.1.4 Usage scenarios

212.2 Getting LUNA ID

212.2.1 Download LUNA ID

212.2.2 Distribution kit

252.2.3 Next steps

252.2.4 See also

262.3 What's new in LUNA ID v.1.20.0

262.3.1 In LUNA ID for Android

272.4 Version history

272.4.1 LUNA ID v.1.19.4

272.4.2 LUNA ID v.1.19.3

272.4.3 LUNA ID v.1.19.2

282.4.4 LUNA ID v.1.19.1

282.4.5 LUNA ID v.1.19.0

292.4.6 LUNA ID v.1.18.1

302.4.7 LUNA ID v.1.18.0

312.4.8 LUNA ID v.1.17.2

312.4.9 LUNA ID v.1.17.1

312.4.10 LUNA ID v.1.17.0

322.4.11 In LUNA ID for iOS

322.4.12 LUNA ID v.1.16.2

322.4.13 LUNA ID v.1.16.1

VisionLabs B.V. Page 2 of 270

332.4.14 LUNA ID v.1.16.0

352.4.15 LUNA ID v.1.15.0

362.4.16 LUNA ID v.1.14.2

362.4.17 LUNA ID v.1.14.1

362.4.18 LUNA ID v.1.14.0

372.4.19 In LUNA ID for iOS

382.4.20 LUNA ID v. 1.13.3

382.4.21 LUNA ID v. 1.13.2

382.4.22 LUNA ID v. 1.13.1

382.4.23 LUNA ID v. 1.13.0

392.4.24 LUNA ID v. 1.12.1

392.4.25 LUNA ID v. 1.12.0

402.4.26 LUNA ID v. 1.11.5

402.4.27 LUNA ID v. 1.11.4

402.4.28 LUNA ID v. 1.11.3

402.4.29 LUNA ID v. 1.11.2

402.4.30 LUNA ID v. 1.11.1

402.4.31 LUNA ID v. 1.11.0

412.4.32 LUNA ID v. 1.10.1

412.4.33 LUNA ID v. 1.10.0

412.4.34 LUNA ID v. 1.9.7

412.4.35 LUNA ID v. 1.9.6

422.4.36 LUNA ID v. 1.9.5

422.4.37 LUNA ID v. 1.9.4

422.4.38 LUNA ID v. 1.9.3

422.4.39 LUNA ID v. 1.9.2

422.4.40 LUNA ID v. 1.9.1

432.4.41 LUNA ID v. 1.9.0

432.4.42 LUNA ID v. 1.8.7

432.4.43 LUNA ID v. 1.8.6

432.4.44 LUNA ID v. 1.8.5

VisionLabs B.V. Page 3 of 270

432.4.45 LUNA ID v. 1.8.4

432.4.46 LUNA ID v. 1.8.3

442.4.47 LUNA ID v. 1.8.2

442.4.48 LUNA ID v. 1.8.1

442.4.49 LUNA ID v. 1.8.0

442.4.50 LUNA ID v. 1.7.9

442.4.51 LUNA ID v. 1.7.8

442.4.52 LUNA ID v. 1.7.7

452.4.53 LUNA ID v. 1.7.6

452.4.54 LUNA ID v. 1.7.5

452.4.55 LUNA ID v. 1.7.4

452.4.56 LUNA ID v. 1.7.3

462.4.57 LUNA ID v. 1.7.2

462.4.58 LUNA ID v. 1.7.1

462.4.59 LUNA ID v. 1.7.0

472.4.60 LUNA ID v. 1.6.1

472.4.61 LUNA ID v. 1.6.0

472.4.62 LUNA ID v. 1.5.1

482.4.63 LUNA ID v. 1.5.0

482.4.64 LUNA ID v. 1.4.5

482.4.65 LUNA ID v. 1.4.4

482.4.66 LUNA ID v. 1.4.3

482.4.67 LUNA ID v. 1.4.2

482.4.68 LUNA ID v. 1.4.1

492.4.69 LUNA ID v. 1.4.0

492.4.70 LUNA ID v.1.3.3

492.4.71 LUNA ID v.1.3.2

492.4.72 LUNA ID v.1.3.1

492.4.73 LUNA ID v. 1.3.0

502.4.74 LUNA ID v. 1.2.0-1.2.4

502.4.75 LUNA ID v. 1.1.0

VisionLabs B.V. Page 4 of 270

512.5 System and hardware requirements

512.5.1 Information about third-party software

522.6 Getting LUNA ID version

522.6.1 In LUNA ID for Android

522.6.2 In LUNA ID for iOS

532.7 LUNA ID size

532.7.1 Total size

542.7.2 Measure LUNA ID size

622.7.3 Reduce your app size

632.8 Neural networks used in LUNA ID

672.9 Glossary

682.10 Technical Support and resources

682.10.1 Contact Technical Support

682.10.2 More resources

693. Licensing

693.1 Activating the license

693.1.1 In LUNA ID for Android

753.1.2 In LUNA ID for iOS

773.2 Updating the license

773.2.1 In LUNA ID for Android

783.2.2 In LUNA ID for iOS

803.3 Verifying license validity

803.3.1 Default method

803.3.2 Customized method

823.4 License expiration handling

823.4.1 LicenseExpired event

823.4.2 FeatureExpired error

833.5 License parameters

VisionLabs B.V. Page 5 of 270

853.6 Resetting the license cache

853.6.1 In LUNA ID for Android

853.6.2 In LUNA ID for iOS

873.7 Working with status code 1025

884. API documentation

884.1 API documentation

894.2 Changelog

89

4.2.1 API changes made in LUNA ID for Android v.1.5.0 in comparison to v.

1.4.x

90

4.2.2 API changes made in LUNA ID for Android v.1.5.1 in comparison to v.

1.5.0

91

4.2.3 API changes made in LUNA ID for Android v.1.6.0 in comparison to v.

1.5.1

93

4.2.4 API changes made in LUNA ID for Android v.1.8.4 in comparison to v.

1.6.0

94

4.2.5 API changes made in LUNA ID for Android v.1.9.4 in comparison to v.

1.8.4

95

4.2.6 API changes made in LUNA ID for Android v.1.16.0 in comparison to

earlier versions

105

4.2.7 API changes made in LUNA ID for Android v.1.16.1 in comparison to

earlier versions

1065. Integration guide

1065.1 Integration guide for LUNA ID for Android

1065.1.1 Prerequisites

1065.1.2 Step 1: Configure repository

1075.1.3 Step 2: Set up credentials

1075.1.4 Step 3: Add dependencies

1085.1.5 Step 4: Add permissions

1085.1.6 Step 5: Initialize LUNA ID

1085.1.7 Step 6: Launch the camera

1115.2 Integration guide for LUNA ID for iOS

1115.2.1 Step 1: Project setup

VisionLabs B.V. Page 6 of 270

1115.2.2 Step 2: ViewController setup

1125.2.3 Step 3: UI customization

1146. Initial setup

1146.1 Initial setup of LUNA ID for Android

1146.1.1 Step 1. Get the .aar file

1146.1.2 Step 2. Provide your user credentials

1156.1.3 Step 3. Add the .aar file as a dependency

1166.1.4 Step 4. Initialize LUNA ID and activate the license

1196.1.5 Step 5. Call LUNA ID functions

1196.1.6 Examples

1206.2 Initial setup of LUNA ID for iOS

1206.2.1 Step 1. Add XCFrameworks

1206.2.2 Step 2. Enable OneShotLiveness estimation

1216.2.3 Step 3. Specify license data

1216.2.4 Step 4. Create a face recognition screen in your app

1227. Working with LUNA ID

1227.1 Best shots

1227.1.1 Best shot estimations

1377.1.2 Getting the best shot

1417.1.3 Getting the best shot with an occluded face

1437.1.4 Getting the best shot with faces with closed eyes

1457.1.5 Getting the best shot with faces with occluded eyes

1477.1.6 Using aggregation

1507.1.7 Best shot error notifications

1547.2 Face tracking

1547.2.1 Tracking a face identity

1557.2.2 Fixing a face in the frame

1567.3 OneShotLiveness

1567.3.1 About OneShotLiveness estimation

1597.3.2 Performing Online OneShotLiveness estimation

VisionLabs B.V. Page 7 of 270

1617.3.3 Performing Offline OneShotLiveness estimation

1637.3.4 Disabling OneShotLiveness estimation

1657.4 Dynamic Liveness

1657.4.1 About Dynamic Liveness estimation

1687.4.2 Performing Dynamic Liveness estimation

1747.4.3 Getting Dynamic Liveness estimation results

1767.4.4 Interception of Dynamic Liveness interaction events

1777.4.5 Customizing Dynamic Liveness notifications

1787.5 Video streams

1787.5.1 About working with video streams

1807.5.2 Recording a video stream

1827.5.3 Recording a video stream only with the face detected

1847.5.4 Video stream settings

1917.6 Logs

1917.6.1 Getting logs from mobile devices

1997.6.2 Saving logs on an end user’s device

2017.6.3 Status codes and errors

2077.6.4 Device fingerprinting

2087.6.5 Enabling low-level logging

2097.7 Using descriptors

2097.7.1 In LUNA ID for Android

2127.7.2 In LUNA ID for iOS

2137.8 Using commands

2137.8.1 StartBestShotSearchCommand

2137.8.2 CloseCameraCommand

2137.8.3 Usage

2147.8.4 Example

2157.9 Using OCR

2157.9.1 Key considerations

2157.9.2 Step 1: Add the OCR dependency

VisionLabs B.V. Page 8 of 270

2157.9.3 Step 2: Activate the OCR license

2167.9.4 Step 3: Initialize OCR

2167.9.5 Step 4: Start the OCR

2177.9.6 Step 5: Handle results

2188. Configuring LUNA ID

2188.1 Best shot properties

2188.1.1 In LUNA ID for Android

2238.1.2 In LUNA ID for iOS

2278.2 Changing detection settings

2278.2.1 In LUNA ID for Android

2278.2.2 In LUNA ID for iOS

2288.3 Bulk editing LUNA ID parameters

2288.3.1 Configuration file

2318.3.2 Configuration parameters

2368.4 Setting up timeouts

2368.4.1 Face fixing timeout

2368.4.2 Best shot timeouts

2378.4.3 Dynamic Liveness estimation timeouts

2388.5 Configuring the camera

2388.5.1 Camera parameters

2418.5.2 Default configuration

2428.5.3 Pre-initializing camera availability

2438.5.4 Launching the camera with dynamic selection

2459. Interacting with LUNA PLATFORM

2459.1 Interaction of LUNA ID with LUNA PLATFORM 5

2489.2 Usage scenario: Complete face recognition cycle

2489.2.1 Scenario description

2489.2.2 Scenario realization stages

2489.2.3 Prerequisites

2499.2.4 Scenario realization steps

VisionLabs B.V. Page 9 of 270

2519.3 Specifying LUNA PLATFORM URL and handler IDs

2519.3.1 In LUNA ID for Android

2529.3.2 In LUNA ID for iOS

2539.4 Sending multiple frames for estimation aggregation to the backend

2539.4.1 In LUNA ID for Android

2559.4.2 In LUNA ID for iOS

25610. Best practices

25610.1 Security options

25610.1.1 Virtual camera usage check

25710.1.2 Jailbreak check

25810.2 Reducing your app size by excluding .plan files

25810.2.1 In LUNA ID for Android

25810.2.2 In LUNA ID for iOS

25910.3 Getting LUNA ID status after initialization

26010.4 Optimizing camera initialization with Camera Limiter

26010.4.1 Implementation

26110.5 Customizing UI with LUNA ID

26110.5.1 Customizing face recognition area borders

26510.5.2 Customizing UI with LUNA ID for iOS

26710.6 Performing 1:N face matching on device

26710.6.1 Overview

26710.6.2 Function specification

26910.6.3 Usage example

27011. Documentation download page

VisionLabs B.V. Page 10 of 270

1. Introduction

LUNA ID is a comprehensive suite of development tools designed for face recognition and

analysis in mobile applications. It includes libraries and neural networks that enable advanced

functionalities such as face detection, recognition, and Liveness estimation. By embedding

VisionLabs B.V. Page 11 of 270

LUNA ID into your mobile application, you can leverage its powerful face recognition

capabilities, enhance security measures, and provide seamless user experiences.

VisionLabs B.V. Page 12 of 270

 Start here

Licensing•

Initial setup •

Initial setup •

 Latest version

What's new•

LUNA ID for Android•

LUNA ID for iOS•

 Technical support

Support & resources•

Examples •

Examples •

Download docs •

 API docs

API Reference •

LunaCamera Reference •

LunaCore Reference •

LunaWeb Reference •

 Getting the best shot

Best shot estimations•

Getting the best shot•

Best shot properties•

 Protection & security

VisionLabs B.V. Page 13 of 270

https://github.com/VisionLabs/LunaID-Android-Examples
https://github.com/VisionLabs/LunaID-iOS-Examples
http://git.visionlabs.ru/65apps/lunaid/luna-id-android/-/blob/develop/API_DOCUMENTATION.md

Virtual camera usage•

Jailbreak•

Face identity tracking•

 Liveness

Offline OneShotLiveness•

Online OneShotLiveness•

Dynamic Liveness•

 Interaction with LUNA PLATFORM

Overview•

Usage scenario•

Configuration•

 More

Working with video streams•

Customizing UI •

Customizing UI •

VisionLabs B.V. Page 14 of 270

2. General information

2.1 Overview

LUNA ID is a set of development tools for face recognition and analysis in mobile applications.

It includes libraries and neural networks that enable advanced functionalities such as face

detection and recognition, image quality estimations, and liveness estimations to prevent

spoofing attacks. Additionally, LUNA ID supports OCR (Optical Character Recognition) for

document scanning and recognition.

By integrating LUNA ID into your mobile app, you can use its key features and integrate with

LUNA PLATFORM 5 for enhanced capabilities, including OneShotLiveness estimation and

descriptor matching. For details, see Interaction of LUNA ID with LUNA PLATFORM 5.

2.1.1 Supported operating systems and programming languages

LUNA ID is compatible with the Android and iOS operating systems.

The supported programming languages are:

For details, see System and hardware requirements.

2.1.2 Use cases

Embedding LUNA ID in your mobile app allows you to implement the following use cases:

Kotlin for Android app development•

Swift for iOS app development•

Client enrollment

Flow: Registration

Process: Creating a new user account with face recognition and optional document

recognition.

•

User authentication

Flow: Verification (1:1)

Process: Verifying a user during login against authorized biometric data. The use case is

available after registration. You can use OCR in this use case.

•

User recognition

Flow: Identification (1:N)

Process: Comparing a detected face against all faces in a database to recognize the

user. You can use OCR in this use case.

•

VisionLabs B.V. Page 15 of 270

The diagram below shows these processes, the LUNA ID key features required to implement

them, and the sequence in which we recommend using them. Depending on your business

logic, you may or may not use certain LUNA ID features.

LUNA ID use cases and features

2.1.3 LUNA ID features

Security checks

Video stream processing and face recognition

LUNA ID analyzes each frame of the video stream captured by your device's camera to detect

faces. To proceed with further estimations and get the best shot, each frame must contain

exactly one face.

Virtual camera usage check

Detects if the device's camera has been replaced with a virtual one. The check is only

available in LUNA ID for Android.

•

Jailbreak check

Determines if the device has been jailbroken.

•

VisionLabs B.V. Page 16 of 270

The following video recording options are available::

You can customize various settings for the recorded video:

Protection against face substitution

LUNA ID provides robust mechanisms to prevent face substitution by tracking the identity of a

detected face throughout the entire video session. This ensures that the system consistently

identifies the same person, mitigating potential security risks and guaranteeing the

authenticity of the detected face.

Key features:

Record entire video sessions

Capturing the full video stream without filtering frames.

•

Record only when a face is detected

Capturing video sessions only if at least one frame contains a detected face.

•

Setting Platform

Video stream quality

Timeout before starting recording

Video stream duration

Custom frame resolution

Autofocus

Compression

Face identity tracking

Enables you to continuously monitor the detected face in the video stream to confirm it

belongs to a single individual.

•

Event handling

Enables you to implement an event listener that triggers when a face appears in the

frame. This allows for immediate processing or additional checks once the face is

detected.

•

Timeout configuration

Enables you to set a timeout to react to the appearance of a face in the frame. This

ensures timely processing and enhances the overall security of the recognition process.

•

VisionLabs B.V. Page 17 of 270

Getting the best shot

To get the best shot, LUNA ID performs a number of estimations.

Protection against spoofing attacks

LUNA ID can perform a number of estimations to determine whether the person in the frame

is real or a fraudster using a fake ID (a printed photo of a face, a video, or a 3D mask).

Estimation Required Description

Number of faces in the

frame

Ensures there is only one face in the frame.

AGS Evaluates face quality using a normalized score (0–1).

Higher scores indicate better quality.

Head pose Measures head rotation angles (pitch, roll, yaw) in 3D

space.

Image quality Assesses criteria like blurriness and exposure.

Face detection

bounding box size

Verifies the size of the detected face relative to the

frame.

Frame edges offset Checks the distance of the face from the frame edges.

Eye state Detects whether eyes are open or closed.

Glasses Identifies if the eyes are occluded by glasses.

Face occlusion Determines whether the face is occluded by an object.

Medical mask Determines if the face is covered by a medical mask.

Estimation Description

Offline

OneShotLiveness

Allows you to perform the OneShotLiveness estimation directly on your

device.

Online

OneShotLiveness

Sends images with the detected face to LUNA PLATFORM 5 to perform the

estimation on the backend. For details, see Interaction of LUNA ID with LUNA

PLATFORM 5.

Dynamic Liveness Allows you to determine whether a person is alive by interacting with the

camera and is performed on your device without any backend processing.

VisionLabs B.V. Page 18 of 270

Identification and verification

With LUNA ID, you can send source images to LUNA PLATFORM 5 for descriptor matching on

the backend. It allows you to perform the following tasks:

For details, see Interaction of LUNA ID with LUNA PLATFORM 5.

OCR

LUNA ID supports OCR (Optical Character Recognition) for document scanning and

recognition. For details, see Using OCR.

2.1.4 Usage scenarios

This section describes sample LUNA ID usage scenarios.

These are only examples. You need to change them according to your business logic.

Scenario 1: Getting images

SCENARIO DESCRIPTION

You want to get a photo with a person's face, and then implement your own business logic for

processing the image.

SCENARIO REALIZATION STAGES

To apply this scenario in your mobile app, follow these stages:

SCENARIO REALIZATION STEPS

The scenario has the following steps:

1․ Video stream processing and face detection.

1:N identification

Verifies whether the face in an image matches a person in the client list.

•

1:1 verification

Matches the detected face with the face that corresponds to the client ID in a global

database.

•

Getting the best shot with the detected face by performing best shot estimations.•

Getting a warp or source image with the face on a mobile device to transfer it to an

external system.

•

VisionLabs B.V. Page 19 of 270

2․ Getting the best shot based on the standard best shot estimations. In some cases, the best

shot is an image that also successfully passed OneShotLiveness estimation.

3․ Getting a warp.

4․ Saving the warp on the device. You can then send it to a middleware for further processing.

The diagram below shows the steps of this scenario:

Scenario realization steps

Scenario 2: Complete face recognition cycle

SCENARIO DESCRIPTION

You want to run a full face recognition cycle using frontend and backend. This scenarios

involves interaction of LUNA ID with LUNA PLATFORM 5.

SCENARIO REALIZATION STAGES

Applying a full face recognition cycle in your mobile app proceeds in stages:

SCENARIO REALIZATION STEPS

For details on the scenario implementation and scenario realization steps, see Usage

scenario.

Getting the best shot with the detected face and performing the Online

OneShotLiveness estimation.

•

Identifying that the face in the image belongs to a person from a client list (1:N

identification).

•

Matching the detected face with the face corresponding to the client ID in a global

database (1:1 verification).

•

VisionLabs B.V. Page 20 of 270

2.2 Getting LUNA ID

2.2.1 Download LUNA ID

To start using LUNA ID, download it from our release portal. You can find the list of

downloadable artifacts in the Distribution kit section.

Contact your manager to get your login and password to download LUNA ID.

2.2.2 Distribution kit

LUNA ID is distributed as a set of modular archives that provide the necessary libraries, neural

networks, and frameworks to embed its functionality into mobile applications. Below is a

detailed description of the distribution kits for LUNA ID for Android and iOS.

VisionLabs B.V. Page 21 of 270

LUNA ID for Android

The following .aar files are available for integrating LUNA ID into Android applications. Each

archive serves a specific purpose and includes the required dependencies.

VisionLabs B.V. Page 22 of 270

Archive Required Description Neural networks

lunaid-

core-v.

1.20.0.aar

Contains the

minimum set of

files required to

embed LUNA ID in

your application.

None

lunaid-

common-

arm-v.

1.20.0.aar

Contains the

minimum set of

libraries and

neural networks

required for

embedding LUNA

ID. For details, see

an example

below.

ags_v3_arm.plan

eye_status_estimation_arm.plan

eyes_estimation_flwr8_arm.plan

face_occlusion_v1_arm.plan

FaceDet_v2_first_arm.plan

FaceDet_v2_second_arm.plan

FaceDet_v2_third_arm.plan

headpose_v3_arm.plan

model_subjective_quality_v1_arm.plan

model_subjective_quality_v2_arm.plan

sdc_rgb2gray_arm.plan

sdc_v1_arm.plan

vlTracker_detection_arm.plan

vlTracker_template_arm.plan

vlTracker_update_arm.plan

lunaid-

oslm-arm-

v.

1.20.0.aar

Contains neural

networks used for

Offline

OneShotLiveness

estimation.

oneshot_rgb_liveness_v12_model_4_arm.plan

oneshot_rgb_liveness_v12_model_5_arm.plan

oneshot_rgb_liveness_v12_model_6_arm.plan

lunaid-

security-

arm-v.

1.20.0.aar

Contains a

functionality for

checking virtual

camera usage.

None

lunaid-

mask-

arm-v.

1.20.0.aar

Contains a neural

network used to

define face

occlusion with a

medical mask.

mask_clf_v3_arm.plan

lunaid-

cnn60-

arm-v.

1.20.0.aar

Contains a neural

network used for

descriptor

generation from

an image. For

details, see Using

descriptors.

cnn60m_arm.plan

VisionLabs B.V. Page 23 of 270

EXAMPLE

The example below shows how to specify the core and common required dependencies:

The example below shows how to specify all the dependencies:

For a detailed example, see CameraExample.

Archive Required Description Neural networks

lunaid-

glasses-

arm-v.

1.20.0.aar

Contains a neural

network used to

define eye

occlusion with

glasses. For

details, see

Getting the best

shot with faces

with occluded

eyes.

glasses_estimation_v2_arm.plan

lunaid-

ocr-v.

1.20.0.aar

Contains the OCR

functionality.

None

implementation("ai.visionlabs.lunaid:core:X.X.X@aar")
implementation("ai.visionlabs.lunaid:common-arm:X.X.X@aar")

implementation("ai.visionlabs.lunaid:core:X.X.X@aar")
implementation("ai.visionlabs.lunaid:common-arm:X.X.X@aar")
implementation("ai.visionlabs.lunaid:security-arm:X.X.X@aar")
implementation("ai.visionlabs.lunaid:cnn60-arm:X.X.X@aar")
implementation("ai.visionlabs.lunaid:mask-arm:X.X.X@aar")
implementation("ai.visionlabs.lunaid:oslm-arm:X.X.X@aar")
implementation("ai.visionlabs.lunaid:glasses-arm:X.X.X@aar")
implementation("ai.company.product:ocr:X.X.X@aar")

VisionLabs B.V. Page 24 of 270

https://github.com/VisionLabs/LunaID-Android-Examples/blob/master/CameraExample/build.gradle.kts

LUNA ID for iOS

LUNA ID for iOS provides the following archives containing the necessary frameworks for

integration. Download the required frameworks and proceed with the integration.

2.2.3 Next steps

Perform initial setup of LUNA ID to embed it in your application. For details, see:

2.2.4 See also

Archive Description

flower Contains flower_v.5.31.0.xcframework.

tsdk Contains tsdk_v.5.31.0.xcframework.

fsdk Contains fsdk_v.5.31.0.xcframework.

LunaCore Contains LunaCore_v.1.19.3.

LunaCamera Contains LunaCamera_v.1.19.3.

LunaWeb Contains LunaWeb_v.1.19.3.

CryptoSwift Contains CryptoSwift.xcframework.

CheckJailBreakDevice Contains CheckJailBreakDevice.xcframework.

Initial setup of LUNA ID for Android•

Initial setup of LUNA ID for iOS•

System and hardware requirements

Describes the hardware and software requirements your computer must meet so that

you can use LUNA ID.

•

Licensing

Describes how to activate your LUNA ID license.

•

VisionLabs B.V. Page 25 of 270

https://download.visionlabs.ru/releases/flower_v.5.31.1.xcframework.zip
https://download.visionlabs.ru/releases/tsdk_v.5.31.1.xcframework.zip
https://download.visionlabs.ru/releases/fsdk_v.5.31.1.xcframework.zip
https://download.visionlabs.ru/releases/LunaCore_v.1.19.3.zip
https://download.visionlabs.ru/releases/LunaCamera_v.1.19.3.zip
https://download.visionlabs.ru/releases/LunaWeb_v.1.19.3.zip
https://download.visionlabs.ru/releases/CryptoSwift.xcframework.zip
https://download.visionlabs.ru/releases/CheckJailBreakDevice.xcframework.zip

2.3 What's new in LUNA ID v.1.20.0

Below are the changes made to LUNA ID v.1.20.0 relative to the previous version of the

product. For information on the changes made to other versions, see Version History.

2.3.1 In LUNA ID for Android

New features and improvements

Important notice

Updated the public API.•

Implemented OCR support.•

Implemented aggregation in TrackEngine.•

Implemented internal improvements for error handling.•

Enhanced the head rotation logic for Dynamic Liveness estimation.•

Enhanced license management and error handling:•

Added the LicenseExpired event which is emitted whenever a license validity issue

occurs.

•

Added detailed information about which licensed features have expired to logs.•

Implemented license expiration timestamps in logs.•

Implemented a new function to retrieve the expiration date of any licensed feature:

fun getExpirationLicenseDateAsDate(feature: LicenseFeature): java.util.Date?

•

Changed the default value of the checkSecurity parameter to false . If your

application requires security validations, you must explicitly enable this feature.

•

VisionLabs B.V. Page 26 of 270

2.4 Version history

2.4.1 LUNA ID v.1.19.4

In LUNA ID for Android

2.4.2 LUNA ID v.1.19.3

In LUNA ID for Android

In LUNA ID for iOS

2.4.3 LUNA ID v.1.19.2

In LUNA ID for Android

In LUNA ID for iOS

Enhanced virtual camera detection by adding support for identifying virtual cameras on

cloud (remote) devices.

•

Implemented support of VisionLabs LUNA SDK v.5.31.3.•

Added tags to improve log readability.•

Improved the license activation mechanism so you do not need to restart the

application after a failed initial license activation due to being offline.

•

Expanded virtual camera block list.•

Improved the error handling system.•

Implemented iPad support. Now, if during an active camera session the device's

orientation changes relative to the one set when the session was started, LUNA ID

automatically terminates the session and returns the

LMCameraError.deviceOrientationChangedError error.

•

Implemented the useDescriptors parameter to control whether descriptor-related

functionality is enabled.

•

Implemented low-level logging.•

Implemented internal license handling improvements.•

VisionLabs B.V. Page 27 of 270

2.4.4 LUNA ID v.1.19.1

In LUNA ID for Android

In LUNA ID for iOS

2.4.5 LUNA ID v.1.19.0

In LUNA ID for Android

Implemented support of VisionLabs LUNA SDK v.5.31.1.•

Improved logging of license initialization errors.•

Added logging of device information during license activation.•

Improved the license activation process. Now, LUNA ID automatically clears the local

cache and retries the activation if an error occurs. If the retry succeeds, activation

proceeds seamlessly. If it fails, the original error is returned, indicating an invalid or

expired license.

•

Added the LunaID.getFingerprint() function that returns a unique string identifier

representing the device's fingerprint.

•

Made the security module an optional one so you can exclude it from your project if you

do not use virtual camera detection.

•

Implemented support of VisionLabs LUNA SDK v.5.31.1.•

Added a new method to the LCLunaIDServiceProtocol protocol for comparing two UIImage

objects:

•

(BOOL)match:(UIImage *)firstImage second:(UIImage *)secondImage;•

Implemented support for landscape mode.•

Implemented support of VisionLabs LUNA SDK v.5.31.0.•

Improved the logging mechanism:•

Implemented an opportunity to save logs in the .logcat format.•

Implemented an opportunity to forcibly clear the license cash and update the

license.

•

Enhanced logging for OneShotLiveness mode switching and network selection.•

Improved initEngine logging.•

Implemented tablets support.•

Updated NDK to version 28.2.13676358, enabling support for 16 KB memory pages.•

VisionLabs B.V. Page 28 of 270

In LUNA ID for iOS

2.4.6 LUNA ID v.1.18.1

In LUNA ID for iOS

Resolved a critical issue where LUNA ID would crash due to unexpected changes in the device

fingerprint.

Renamed the LivenessNetVersion enum from V3_AND_V4 and V4 to LITE and MOBILE ,

respectively. The new names correspond to following neural networks:

•

MOBILE uses oneshot_rgb_liveness_v11_model_6.•

LITE uses oneshot_rgb_liveness_v11_model_4 and v11_model_5.•

Removed the following unused neural network files from the distribution package to

optimize its size:

•

nir_liveness_v3_model_2_arm.plan•

nir_liveness_v2_model_1_arm.plan•

mouth_estimator_v4_arm.plan•

depth_liveness_v2_arm.plan•

Added the CameraPermissionDenied event. This event is triggered and sent through the

event stream when the user denies camera access permission.

•

Implemented a number of API changes:•

Removed the acceptOccludedMouth and faceOcclusionEstimatorEnabled parameters.•

Added the acceptMask parameter. It controls whether faces wearing medical masks

are allowed in best shot selection. By default, the parameter is set to true .

•

Added the FaceWithMask error to DetectionError. This error is triggered when

acceptMask = false and a face is detected wearing a medical mask.

•

Added a configurable timeout parameter to the initEngine() function. The parameter

defaults to 30 seconds.

•

Implemented support of VisionLabs LUNA SDK v.5.31.0.•

Implemented logging to a file.•

Implemented passing LCLicenseConfig directly to the built-in camera UI via a new

licenseConfig parameter in LMCameraBuilder.viewController() .

•

Removed mouth_estimation_v4_arm.plan from the distribution package to optimize its

size.

•

VisionLabs B.V. Page 29 of 270

2.4.7 LUNA ID v.1.18.0

In LUNA ID for Android

In LUNA ID for iOS

Implemented support of VisionLabs LUNA SDK v.5.30.2.•

Declared deprecated cnn59m_arm.plan.•

Implemented support for the YUV image format for analysis on older devices.•

Expanded functionality of LUNA ID for Android Example with the following widgets: •

Override Start - Enables delayed frame pushing for more controlled processing.•

Override Close - Allows delayed camera closure, providing flexibility in session

management.

•

Find bestshot with frame - Opens the camera with borders for better

visualization during the best shot detection process.

•

Find bestshot and record video - Opens the camera with video recording

enabled, allowing simultaneous best shot detection and video capture.

•

Find bestshot with commands - Opens the camera while considering the states

of the Override Start and Override Close checkboxes, enabling fine-tuned control

over the camera session.

•

Removed unused parameters from the API: •

LunaConfig.onlineLivenessErrorTimeout•

ShowCameraParams.usePrimaryFaceTracking•

ShowCameraParams.livenessType•

Implemented an opportunity to optimize camera search time. For details, see

Optimizing camera initialization with Camera Limiter.

•

Improved the license activation mechanism. For details, see Activating the license.•

Starting from this version, CPU plan files have been removed from the distribution kit for

LUNA ID for Android.

•

Starting with the next release, the NDK version will be updated to version 28.•

Implemented support of VisionLabs LUNA SDK v.5.30.2.•

Updated the public API.•

VisionLabs B.V. Page 30 of 270

2.4.8 LUNA ID v.1.17.2

In LUNA ID for Android

In LUNA ID for iOS

2.4.9 LUNA ID v.1.17.1

In LUNA ID for Android

In LUNA ID for iOS

2.4.10 LUNA ID v.1.17.0

In LUNA ID for Android

Fixed issues related to incorrect face position recognition in the frame when using the

withDp parameter.

•

Fixed issues affecting the performance of the Offline OneShotLiveness estimation.•

Introduced a new configuration class, LWConfig , in the LunaWeb module: •

Moved all fields from LCLunaConfiguration that are required for LUNA PLATFORM

interaction into the LWConfig class.

•

Renamed the lunaPlatformToken field to platformToken .•

All other fields retain the same purpose as in LCLunaConfiguration .•

Implemented an opportunity to update the license without reissuing your application.•

Fixed miscellaneous bugs.•

Fixed miscellaneous bugs.•

Fixed a bug related to camera initialization.•

Fixed an issue specific to Redmi 5 devices.•

Implemented an opportunity to update the license without reissuing your application.•

Improved face occlusion estimation. Now the estimation detects occlusions not only in

the lower part of the face, but also in the upper part.

•

Implemented support of VisionLabs LUNA SDK v.5.26.0.•

Updated minFaceSideToMinScreenSide behavior. The aspect ratio of the detected face is

now calculated relative to the dimensions of the image displayed in the preview.

•

Removed cnn52m_arm.plan and cnn52m_cpu.plan from the distribution kit.•

VisionLabs B.V. Page 31 of 270

2.4.11 In LUNA ID for iOS

2.4.12 LUNA ID v.1.16.2

In LUNA ID for Android

2.4.13 LUNA ID v.1.16.1

In LUNA ID for Android

In LUNA ID for iOS

Fixed a bug related to slow camera opening.•

Fixed an issue with incorrect detection coordinates.•

Fixed a bug related to incorrect operation of the face detector on Android NDK 23.•

Fixed a bug where duplicate frames and interaction videos were created after detecting

two faces in a frame.

•

Fixed an issue related to license activation.•

Fixed a bug where the blink interaction would happen automatically without the user

actually doing it. This allowed for a better shot without having to go through the

interaction.

•

Improved face occlusion estimation. Now the estimation detects occlusions not only in

the lower part of the face, but also in the upper part.

•

Implemented support of VisionLabs LUNA SDK v.5.26.0.•

Fixed miscellaneous bugs.•

Fixed an issue where the face detector would stop working at certain resolutions on

Samsung Galaxy S23 and S20 FE devices.

•

Improved event utilization. All events are now utilized effectively, except for

UnknownError . Previously in version 1.16.0 , events such as InteractionStarted ,

InteractionFailed , Started , FaceFound , and UnknownError were not fully implemented or

ignored. This update ensures broader coverage of event types to improve system

responsiveness and debugging capabilities.

•

Reintroduced the following commands:•

CloseCameraCommand - Allows closing the camera session programmatically.•

StartBestShotSearchCommand - Initiates the best shot search process explicitly.•

Implemented an opportunity to change minDetSize .•

VisionLabs B.V. Page 32 of 270

2.4.14 LUNA ID v.1.16.0

In LUNA ID for Android

Implemented a number of API changes: •

Improved event handling and added the following event subscription flows: •

XML Fragment Implementation•

Jetpack Compose Implementation•

Shared ViewModel•

Removed the statusBarColorHex parameter from ShowCameraParams .•

Moved videoQuality from ShowCameraParams to LunaConfig and renamed it to

LunaVideoQuality .

•

Replaced customFrameResolution with preferredAnalysisFrameWidth and

preferredAnalysisFrameHeight . For details, see Custom frame resolution.

•

Added the aspectRatioStrategy parameter to explicitly set the screen aspect ratio.•

Renamed InitBorderDistanceStrategy to BorderDistanceStrategy .•

Renamed LunaID.activateLicense() to LunaID.initEngine() .•

Improved best shot retrieval.•

Implemented face occlusion estimation. The estimation determines whether the lower

part of the face in a frame is covered by an object.

•

Declared deprecated the mouth estimation. The estimation will be removed from LUNA

ID in the next release.

•

Implemented overall performance and stabilization enhancements.•

Implemented an opportunity to select versions of .plan files to be used in the Offline

OneShotLiveness estimation.

•

Implemented an opportunity to initialize a license via LunaConfig.licenseParams .•

Implemented a fallback mechanism. Now, for unsupported resolutions or configurations,

the system falls back to the nearest available option.

•

Replaced the detectFrameSize parameter with faceFramePerScreen . The faceFramePerScreen

parameter, unlike detectFrameSize , is suitable for all screens and is not tied to pixels.

•

Removed model_subjective_quality_v1_arm.plan and

model_subjective_quality_v1_cpu.plan from the distribution kit.

•

Optimized the primary face identity tracking feature. Tracking is now based on

TrackEngine.

•

Fixed a bug that led to the camera hanging.•

VisionLabs B.V. Page 33 of 270

Fixed a bug that caused LUNA ID to incorrectly identify frames containing only half of a

face as valid best shots.

•

Fixed a bug due to which interactions started without generating a best shot upon

reopening the camera.

•

Fixed a bug due to which the camera would unexpectedly close immediately after being

opened in detection and interaction modes.

•

Fixed a bug related to occasional faults of the mouth estimation.•

Fixed a bug related to Dynamic Liveness interaction messages.•

Fixed a bug related to Dynamic Liveness interactions via head rotation.•

Fixed performance slowdown on Samsung A13 devices during application usage.•

Fixed an issue where the StateFinished event was not consistently returned via both

LunaID.allEvents() and LunaID.finishStates() .

•

Fixed a bug related to the timeout logic during Dynamic Liveness interactions.•

Fixed a bug related to Offline OneShotLiveness estimation.•

Fixed an issue where the camera closed unexpectedly during when performing the blink

interaction.

•

Fixed issues related to displaying user messages.•

Fixed an issue where the "Primary face lost" error occurred when wearing sunglasses

during face tracking.

•

Fixed an issue where interactions were not recognized after the second face left the

camera frame.

•

Fixed a bug related to a memory leak when reopening the camera.•

Fixed a bug related to the medical mask estimation.•

Fixed a project build error related to the absence of the __emutls_get_address symbol in

the libFaceEngineSDK.so library.

•

Fixed an issue where the camera would close due to a timeout after losing face

detection.

•

Fixed an issue related to border distances.•

Fixed issues related to the size and duration of the recorded video.•

Fixed an issue where the best shot was incorrectly captured with two faces in the frame

when primary face tracking was enabled and interactions were disabled.

•

VisionLabs B.V. Page 34 of 270

In LUNA ID for iOS

2.4.15 LUNA ID v.1.15.0

In LUNA ID for Android

Implemented face occlusion estimation.The estimation determines whether the lower

part of the face in a frame is covered by an object.

•

Declared deprecated the mouth estimation. The estimation will be removed from LUNA

ID in the next release.

•

Implemented overall performance and stabilization enhancements.•

Implemented Swift Package Manager distribution support.•

Reduced the LUNA ID size to 77 MB by removing the following .plan files from the

distribution kit:

•

model_subjective_quality_v1_arm.plan•

eye_status_estimation_flwr_arm.plan•

Fixed a bug that caused a significant delay in the camera screen initialization.•

Fixed an issue that previously required the mandatory use of the cnn60m_arm.plan file,

regardless of the specific application requirements.

•

Fixed a bug where the session would not end if the mouth estimation was enabled.•

Fixed bugs that caused occasional crashes of LUNA ID.•

Fixed a bug related to the timeout logic not properly accounting for the presence of

multiple faces in the frame.

•

Fixed an issue related to license activation.•

Fixed an issue that caused best shot retrieval slowdown.•

Fixed an issue where the resulting video file was not saved.•

Fixed a bug related to OCR.•

Implemented an opportunity to receive frames of Dynamic Liveness estimation

interactions. You can then integrate these interaction frames into your final app reports.

For details, see Getting Dynamic Liveness estimation results.

•

Added parameters eyesAggregationEnabled and glassesAggregationEnabled to disable and

enable aggregation of eye status and glasses estimations, respectively. For details,

please refer to the LUNA ID documentation.

•

Enhanced logging. Logs now show the start and end of AGS, medical mask, and glasses

estimations.

•

VisionLabs B.V. Page 35 of 270

In LUNA ID for iOS

2.4.16 LUNA ID v.1.14.2

In LUNA ID for iOS, fixed a bug related to license activation.

2.4.17 LUNA ID v.1.14.1

In LUNA ID for iOS, fixed a bug due to which a video was recorded with two faces in the frame.

2.4.18 LUNA ID v.1.14.0

In LUNA ID for Android

Fixed an issue related to the virtual camera usage check.•

Fixed a bug due to which LUNA ID was prematurely throwing the FaceLost error when

exiting a frame without waiting for the set capture time.

•

Fixed a bug that lead to the camera hanging.•

Fixed an issue related to duplicate class names between obfuscated libraries in LUNA ID

v.1.14.0.

•

Fixed a bug related to Dynamic Liveness interactions via head rotation.•

Enhanced the aggregation mechanism:•

Added aggregations for mouth and medical mask estimations.•

Implemented a concurrent run of all aggregations instead of a sequential one.•

Implemented an opportunity to receive frames of Dynamic Liveness estimation

interactions. You can then integrate these interaction frames into your final app reports.

For details, see Getting Dynamic Liveness estimation results.

•

Fixed a bug that used a significant delay in the camera screen initialization.•

Fixed a bug that caused incorrect messages when performing mouth and medical mask

estimations.

•

Fixed a bug related to Dynamic Liveness interaction messages.•

Fixed issues that caused occasional LUNA ID crashes.•

Fixed a bug related to the aggregation mechanism.•

Implemented support of VisionLabs LUNA SDK v.5.25.0. This reduced the minimum size

of LUNA ID to 202 MB.

•

Implemented the mouth estimation. For details, see Mouth estimation.•

VisionLabs B.V. Page 36 of 270

2.4.19 In LUNA ID for iOS

Implemented an opportunity to send multiple frames for aggregation to the backend.

For details, see Sending multiple frames for estimation aggregation to the backend.

•

Moved the functionality for checking virtual camera usage to a separate module. The

module is mandatory and you need to specify this module as a dependency. For details,

see Virtual camera usage check.

•

Fixed a bug related to the Dynamic Liveness interaction via blinking.•

Fixed a bug related to successful performing of Dynamic Liveness interactions with the

occluded lower part of the face.

•

Fixed a bug related to performing Dynamic Liveness interactions with two faces in the

frame.

•

Fixed a bug due to which it was possible to get the best shot after passing the Online

OneShotLiveness estimation by photo.

•

Fixed a bug due to which a recorded video was damaged and could not be played if a

person in the video-stream is wearing a medical mask.

•

Fixed issues related to Android NDK 23.•

Implemented support of VisionLabs LUNA SDK v.5.25.0. This reduced the minimum size

of LUNA ID to 116.1 MB.

•

Implemented the mouth estimation. For details, For details, see Mouth estimation.•

Implemented an opportunity to send multiple frames for aggregation to the backend.

For details, see Sending multiple frames for estimation aggregation to the backend.

•

Implemented an opportunity to customize the UI of your final app. For details, see

Customizing UI with LUNA ID for iOS.

•

Fixed a bug that caused occasional crashes when the Dynamic Liveness interaction

timeout had expired and lead to the camera hanging.

•

Fixed an issue related to getting the best shot with the occluded lower part of the face.•

Fixed an issue related to license activation when transferring the client app to a new

device.

•

Fixed an issue due to which a video session stopped when tracking the primary face

identity.

•

Fixed a bug due to which a video was recorded with two faces in the frame.•

Fixed a bug related to slow camera opening.•

Fixed bugs related to biometric identification.•

VisionLabs B.V. Page 37 of 270

2.4.20 LUNA ID v. 1.13.3

In LUNA ID for Android, fixed an issue related to displaying errors.

2.4.21 LUNA ID v. 1.13.2

In LUNA ID for Android, fixed a bug due to which a recorded video was damaged and could

not be opened and the video duration did not correspond to the specified settings.

2.4.22 LUNA ID v. 1.13.1

In LUNA ID for Android, fixed an issue where a face would not be detected after successfully

getting the best shot several times.

2.4.23 LUNA ID v. 1.13.0

Fixed bugs related to cases when there are two faces in the frame and one of them

leaves the frame.

•

Fixed a bug that occurred during the Dynamic Liveness interaction when a part of the

face was covered by a dark object.

•

Implemented LUNA ID version encryption. For details, please refer to the LUNA ID

documentation.

•

In LUNA ID for iOS, implemented an opportunity to add a timeout after which the video

session will stop if a face has not appeared in the frame. For details, please refer to the

LUNA ID documentation.

•

In LUNA ID for iOS, implemented a check that determines whether the device has been

jailbroken. For details, please refer to the LUNA ID documentation.

•

In LUNA ID for iOS, improved a license migration mechanism. For details, please refer to

the LUNA ID documentation.

•

In LUNA ID for iOS, fixed a number of issues on iOS 12.•

In LUNA ID for Android, values for the detectFrameSize parameter should now be

specified in dp. For details, please refer to the LUNA ID documentation.

•

In LUNA ID for Android, implemented an opportunity to disable check for virtual camera

usage.

•

In LUNA ID for Android, implemented an opportunity to enable and disable aggregation.•

In LUNA ID for Android, changed the default threshold value of the AGS estimation to 0,2

to minimize the number of errors associated with low image quality.

•

VisionLabs B.V. Page 38 of 270

2.4.24 LUNA ID v. 1.12.1

In LUNA ID for Android, fixed an issue related to the integration of LUNA ID into the client SDK.

2.4.25 LUNA ID v. 1.12.0

In LUNA ID for Android, added the LunaID.Event.FaceFound event that is triggered when

a face is detected in the frame.

•

In LUNA ID for Android, implemented an opportunity to get the current LUNA ID status at

any time after initialization. For details, please refer to the LUNA ID documentation.

•

In LUNA ID for Android, fixed a bug related to closing the camera on Samsung A13.•

In LUNA ID for Android, fixed an issue related to memory leaks on PAX AF6.•

In LUNA ID for Android, fixed a bug related to the Offline OneShotLiveness estimation on

PAX AF6.

•

In LUNA ID for Android, fixed an issue related to occasional crashes when attempting to

invoke virtual method 'boolean android.view.View.post(java.lang.Runnable)' on a null

object reference.

•

Optimized the primary face identity tracking feature. Tracking is now based on

TrackEngine.

•

In LUNA ID for iOS, changed the default AGS estimation threshold value to 0.2.•

Implemented a new logic of presenting error notifications when getting the best shot.

For details, please refer to the LUNA ID documentation.

•

In LUNA ID for Android, implemented an opportunity to control the duration of the

recorded video. Now, you can set the number of milliseconds during which the video

recording should take place. For details, please refer to the LUNA ID documentation.

•

In LUNA ID for iOS, fixed a bug related to recording a video where a face appears in the

frame a few seconds after the session starts.

•

In LUNA ID for iOS, fixed a bug related to application crashes when the tracking face

identity feature was enabled.

•

In LUNA ID for iOS, fixed an issue with video duration settings.•

In LUNA ID for Android, fixed an issue related to checking the eye status during Dynamic

Liveness interactions.

•

In LUNA ID for Android, fixed a bug that caused wrong face detection when opening a

camera to perform Dynamic Liveness estimation interactions.

•

In LUNA ID for Android, fixed a bug caused face detection outside the face detection

bounding box

•

VisionLabs B.V. Page 39 of 270

2.4.26 LUNA ID v. 1.11.5

In LUNA ID for iOS, fixed a bug related to application crashes when the tracking face identity

feature was disabled.

2.4.27 LUNA ID v. 1.11.4

In LUNA ID for iOS, fixed an issue related to recorded video duration settings.

2.4.28 LUNA ID v. 1.11.3

2.4.29 LUNA ID v. 1.11.2

In LUNA ID for iOS, fixed an issue related to the customization of Dynamic Liveness

interaction texts.

2.4.30 LUNA ID v. 1.11.1

In LUNA ID for iOS, fixed an issue related to memory leak on iPhone 8 and X.

2.4.31 LUNA ID v. 1.11.0

In LUNA ID for iOS, optimized the logic for selecting the best shot with aggregation

enabled for eye status and glasses neural networks.

•

In LUNA ID for iOS, fixed issues related to primary face tracking.•

Implemented an opportunity to use aggregation to correctly determine eye statuses and

the presence of glasses to get the best shot. This eliminates occasional neural network

faults which eliminates the incorrect operation of neural networks. For details, Using

aggregation.

•

In LUNA ID for iOS, implemented the LCLunaConfiguration.resetLicenseCache() method

for clearing license cache when updating an app. This helped eliminate crashes in client

apps after updating on a number of devices. For details, see Catching an application

update and resetting the license cache.

•

In LUNA ID for iOS, implemented an opportunity to control the duration of the recorded

video. Now you can set the number of seconds during which the video recording should

take place. For details, see Limit video stream duration.

•

In LUNA ID for Android, implemented an opportunity to set a video stream quality. For

details, see Set video stream quality.

•

In LUNA ID for iOS, fixed a bug which affected the accuracy of estimating a single eye's

status.

•

VisionLabs B.V. Page 40 of 270

2.4.32 LUNA ID v. 1.10.1

In LUNA ID for iOS, fixed an issue related to the Apple privacy manifest.

2.4.33 LUNA ID v. 1.10.0

2.4.34 LUNA ID v. 1.9.7

2.4.35 LUNA ID v. 1.9.6

In LUNA ID for iOS, fixed a bug that caused crashes due to license naming.•

In LUNA ID for Android, fixed an issue related to primary face tracking.•

In LUNA ID for Android, improved the work of the Dynamic Liveness interaction via

blinking.

•

Implemented support of new neural networks that provide quicker and more precise

glasses and OneShotLiveness estimations:

•

glasses_estimation_v2_*.plan•

oneshot_rgb_liveness_v7_model_3_*.plan•

oneshot_rgb_liveness_v7_model_4_*.plan•

Implemented error messages that inform about LUNA ID initialization and license

activation failures. For details, see Status codes and errors.

•

In LUNA ID for iOS, implemented the LCLunaConfiguration.plist configuration file that

allows you to bulk edit various LUNA ID parameters in one place. For details, see Bulk

editing LUNA ID parameters.

•

In LUNA ID for Android, improved the work of border distance initialization strategies.•

In LUNA ID for Android, fixed an issue related to the QUERY_ALL_PACKAGES permission.

Now Google will not ask for information about checking the installed applications, since

this permission has been removed.

•

In LUNA ID for Android, implemented new ways of initializing border distances to specify

a face recognition area. Now, you can do this with the WithDp and WithViewId classes.

For details, see Face recognition area.

•

In LUNA ID for Android, implemented the usePrimaryFaceTracking and

faceSimilarityThreshold parameters. Now, you can explicitly configure tracking face

identity. For details, see Tracking face identity.

•

VisionLabs B.V. Page 41 of 270

2.4.36 LUNA ID v. 1.9.5

2.4.37 LUNA ID v. 1.9.4

In LUNA ID for Android, implemented new ways of initializing border distances to specify a

face recognition area. Now, you can do this with the Default and WithCustomView classes. For

details, see Face recognition area.

2.4.38 LUNA ID v. 1.9.3

2.4.39 LUNA ID v. 1.9.2

In LUNA ID for Android, fixed a bug related to best shot mirroring in POS terminals.

2.4.40 LUNA ID v. 1.9.1

In LUNA ID for Android, optimized overall and image processing performance.•

In LUNA ID for Android, implemented new error descriptions that are returned when

quality of an image is low. Now, they are more detailed.

•

In LUNA ID for Android, changed the AGS threshold value for best shot estimation. Now,

it defaults to 0.5.

•

In LUNA ID for Android, implemented an opportunity to set a status bar color so it

matches an overlay color.

•

In LUNA ID for Android, fixed a bug that caused the check for the presence of multiple

faces in a frame to work incorrectly.

•

In LUNA ID for Android, fixed a bug that prevented LUNA ID background processes from

stopping and led to rapid battery drain. This problem was most common on Google Pixel

devices.

•

In LUNA ID for Android, fixed a bug related to performing Dynamic Liveness interactions

in either sun or eyeglasses.

•

In LUNA ID for Android, fixed bugs related to the PrimaryFaceLost and TooManyFaces

errors.

•

In LUNA ID for Android, optimized Dynamic Liveness interactions so they work faster.•

In LUNA ID for Android, fixed bugs that caused occasional LUNA ID crashes on Samsung

S21 FE 5G and vivo V23E.

•

In LUNA ID for Android, fixed bugs related to frames with multiple faces.•

In LUNA ID for Android, fixed a bug related to the glasses estimation.•

VisionLabs B.V. Page 42 of 270

2.4.41 LUNA ID v. 1.9.0

2.4.42 LUNA ID v. 1.8.7

In LUNA ID for iOS, fixed a video compression issue relevant to iOS 16 or higher.

2.4.43 LUNA ID v. 1.8.6

In LUNA ID for iOS, fixed an issue related to a memory leak that causes occasional crashes of

LUNA ID and device slowdowns

2.4.44 LUNA ID v. 1.8.5

2.4.45 LUNA ID v. 1.8.4

2.4.46 LUNA ID v. 1.8.3

In LUNA ID for Android, fixed a bug related to checking a face presence in a frame.•

In LUNA ID for Android, implemented estimations that allow you to detect the use of a

virtual camera instead of the device’s native camera.

•

In LUNA ID for iOS, fixed a bug related to Offline OneShotLiveness.•

In LUNA ID for Android, implemented automatic switching to the device main camera, if

the front camera was not detected.

•

In LUNA ID for iOS, fixed an issue related to a memory leak that causes occasional

crashes of LUNA ID and device slowdowns.

•

In LUNA ID for Android, implemented the glassesChecks optional parameter. Now, you

can define the type of glasses in the image and whether the image can be the best

shot.

•

In LUNA ID for Android, implemented the borderDistance optional parameter that allows

you to specify a face recognition area for any device screens, including foldable screens

as in Samsung Galaxy Z Fold.

•

In LUNA ID for iOS, fixed a bug related to the face identity feature.•

In LUNA ID for Android, extended a glasses estimation. Now, images with eyeglasses

can be considered to be best shots. For details, see Glasses estimation.

•

In LUNA ID for iOS, fixed a bug related to the LCLunaConfiguration.trackFaceIdentity property.•

In LUNA ID for iOS, fixed a bug related to Dynamic Liveness interaction timeouts.•

VisionLabs B.V. Page 43 of 270

2.4.47 LUNA ID v. 1.8.2

2.4.48 LUNA ID v. 1.8.1

2.4.49 LUNA ID v. 1.8.0

Enhanced security and implemented protection against changing faces during user

identification. For details, see Tracking face identity.

2.4.50 LUNA ID v. 1.7.9

2.4.51 LUNA ID v. 1.7.8

In LUNA ID for iOS, fixed an aspect ratio for low resolution video files.

2.4.52 LUNA ID v. 1.7.7

In LUNA ID for iOS, reduced a video file size for iOS 15 and lower.

In LUNA ID for Android, separated the x86 and ARM files at the dependency package

level. Now, to work with LUNA ID, you need to specify the mandatory core and common

dependencies, where common indicates the required architecture. For details, see

Getting LUNA ID.

•

In LUNA ID for iOS, reduced resolution of a recorded stream video file. Now, it is

180×320 pixels.

•

In LUNA ID for iOS, fixed a bug related to timeout between Dynamic Liveness

interactions.

•

In LUNA ID for iOS, implemented an optional glasses estimation. It allows you to exclude

images with sunglasses from best shot candidates. For details, see Getting the best shot

with faces with occluded eyes.

•

In LUNA ID for Android, fixed a bug related to the acceptGlasses and acceptEyesclosed

parameters.

•

In LUNA ID for iOS, implemented a possibility to add delays between Dynamic Liveness

interactions. Now, if you specify a 2-second’s delay, 2 seconds will pass after the first

interaction ends and the next one starts.

•

In LUNA ID for iOS, implemented statuses that show the current Dynamic Liveness

interaction states — start, in progress, and end.

•

VisionLabs B.V. Page 44 of 270

2.4.53 LUNA ID v. 1.7.6

2.4.54 LUNA ID v. 1.7.5

2.4.55 LUNA ID v. 1.7.4

2.4.56 LUNA ID v. 1.7.3

In LUNA ID for Android, implemented an opportunity to add delays between Dynamic

Liveness interactions. Now, if you specify a 2000-millisecond’s delay, 2 seconds will

pass after the first interaction ends and the next one starts. For details, see Set a

timeout between interactions.

•

In LUNA ID for Android, implemented statuses that show the current Dynamic Liveness

interaction states — start and end. For details, see View interaction statuses.

•

In LUNA ID for Android, implemented the acceptEyesClosed optional parameter that

allows you to get the best shot if an image has closed eyes. For details, see Getting the

best shot with faces with closed eyes.

•

In LUNA ID for Android, implemented a glasses estimation.•

In LUNA ID for Android, fixed a bug related to a face detection bounding box size. Now,

the detected face must properly fit the box size.

•

In LUNA ID for Android, fixed bugs related to head pose and blinking Dynamic Liveness

interactions.

•

In LUNA ID for Android, fixed a bug related to Offline OneShotLiveness.•

In LUNA ID for iOS, fixed a bug related to the multiple call of the bestShot function.•

In LUNA ID for Android, implemented the LunaConfig.livenessFormat and

LunaConfig.compressionQuality parameters that you can use to reduce the size of the

image to be sent for Online OneShotLiveness estimation.

•

In LUNA ID for iOS, fixed a bug related to the LCLunaConfiguration::faceTime property.•

In LUNA ID for Android, fixed a bug due to which no notifications were sent when a face

was out of the face detection bounding box.

•

In LUNA ID for iOS, fixed a bug related to the LCLunaConfiguration::faceTime property.•

In LUNA ID for Android, implemented the LunaID.foundFaceDelayMs parameter that allows

you to define for how long a user's face should be placed in the face detection bounding

box before the best shot is taken.

•

In LUNA ID for Android, fixed a bug that caused occasional LUNA ID crashes.•

VisionLabs B.V. Page 45 of 270

2.4.57 LUNA ID v. 1.7.2

2.4.58 LUNA ID v. 1.7.1

2.4.59 LUNA ID v. 1.7.0

In LUNA ID for iOS, fixed a bug related to the LCLunaConfiguration::faceTime property.•

In LUNA ID for Android, implemented API changes that introduce the

StartBestShotSearchCommand and CloseCameraCommand commands for camera

management. For details on changes, see Using commands.

•

In LUNA ID for iOS, changed the license activation process. Now, you need to activate

the license explicitly in your final app. For details, see Licensing.

•

In LUNA ID for iOS, implemented the LCLunaConfiguration::faceTime property that allows

you to define for how long a user's face should be placed in the face detection bounding

box before the best shot is taken.

•

In LUNA ID for Android, changed the license activation process. Now, you need to

activate the license explicitly by calling the activateLicense() method. This allows you to

make sure that the activation has passed successfully before you start a camera.

•

In LUNA ID for iOS, you can now define your own sequence of Dynamic Liveness

interactions, as well as a number of interactions, interaction timeouts, and head rotation

angles.

•

In LUNA ID for Android, fixed an issue related to the face detection bounding box. Now,

the bounding box size is taken into account when performing Dynamic Liveness user

interactions.

•

In LUNA ID for Android, fixed an issue related to the use of the

mask_clf_\<version>_\<device>.plan files. Now, you do not need to specify the

dependencies if you are not going to estimate face occlusion.

•

In LUNA ID for iOS, fixed a bug related to detection of occluded faces.•

Implemented a new type of OneShotLiveness estimation – Offline OneShotLiveness

estimation. Now, you can perform the estimation directly on a mobile device without

sending the request to LUNA PLATFORM.

•

Implemented optional delay before the best shot search begins after camera start up.•

Implemented optional face occlusion estimation for further best shot selection.•

Implemented a parameter that allows you to perform blinking with one eye, rather than

two, for further best shot selection.

•

VisionLabs B.V. Page 46 of 270

2.4.60 LUNA ID v. 1.6.1

In LUNA ID for iOS, fixed an issue related to building of fat binary files in Xcode 15.

2.4.61 LUNA ID v. 1.6.0

2.4.62 LUNA ID v. 1.5.1

Implemented the following changes in LUNA ID for Android:

In LUNA ID for Android, implemented a parameter that allows to use images of a person

with one eye for further best shot selection.

•

In LUNA ID for Android, implemented a possibility to specify a face recognition area for

further best shot selection. This allows you to use your own UI and customize face

detection bounding box size.

•

In LUNA ID for Android, fixed an issue when no notifications were sent on start of a

OneShotLiveness estimation.

•

In LUNA ID for Android, fixed an issue with the Online OneShotLiveness estimation when

the request to the /liveness endpoint was sent multiple times instead of one.

•

Implemented support of VisionLabs LUNA SDK v. 5.16.0.•

Implemented support of CNN 52 descriptors.•

In LUNA ID for Android, implemented API changes. For details on changes API changes

made in LUNA ID for Android v.1.6.0 in comparison to v.1.5.1.

•

In LUNA ID for Android, reduced the distribution package size to 96 MB. Optional

packages for CNN 52 and CNN 59 descriptors will add 25 MB and 44 MB to a client's app

respectively.

•

In LUNA ID for iOS, the detected face is now being tracked all the time the camera is on.•

In LUNA ID for iOS, you can now specify a number of Dynamic Liveness interactions to

be performed, as well as timeouts for every interaction.

•

Fixed a regression bug related to OneShotLiveness estimation introduced in LUNA ID v.

1.5.0.

•

Changed API for setting up OneShotLiveness estimation. For details on changes, see API

changes made in LUNA ID for Android v.1.5.1 in comparison to v.1.5.0.

•

VisionLabs B.V. Page 47 of 270

2.4.63 LUNA ID v. 1.5.0

2.4.64 LUNA ID v. 1.4.5

In LUNA ID for Android, fixed a regression bug. An occasional crash happened due to an

interaction flow bug even when interaction was disabled.

2.4.65 LUNA ID v. 1.4.4

In LUNA ID for Android, fixed an issue with a delay in the start of displaying the face detection

bounding box.

2.4.66 LUNA ID v. 1.4.3

Implemented the following bug fixes in LUNA ID for Android:

2.4.67 LUNA ID v. 1.4.2

2.4.68 LUNA ID v. 1.4.1

Implemented new Dynamic Liveness interactions in addition to blinking. Now, a user

can be asked to:

•

Rotate the head to the right.•

Rotate the head to the left.•

Pitch the head up.•

Pitch the head down.•

In LUNA ID for Android, implemented API changes. For details on changes, see API

changes made in LUNA ID for Android v.1.5.0 in comparison to v.1.4.x.

•

Fixed hanging-up during face detection on some Xiaomi devices.

Fixed occasional crashes on face detection start up.

In LUNA ID for Android, fixed occasional LUNA ID crashes.

In LUNA ID for iOS, removed the appearance of a progress indicator on the device screen

after turning on the front camera.

In LUNA ID for Android, fixed LUNA ID crash on some Xiaomi devices. The problem was due

to a bug in MIUI.

In LUNA ID for iOS, fixed an issue due to which the best shot could not be gotten and the

face detection bounding box did not appear. The issue occurred on iOS 15 and earlier.

VisionLabs B.V. Page 48 of 270

2.4.69 LUNA ID v. 1.4.0

2.4.70 LUNA ID v.1.3.3

Implemented optional saving of logs on an end user’s device in LUNA ID for Android.

2.4.71 LUNA ID v.1.3.2

Now, you can initialize LUNA ID only once during your app lifecycle in LUNA ID for Android.

2.4.72 LUNA ID v.1.3.1

2.4.73 LUNA ID v. 1.3.0

Implemented recording of a video stream only with a detected face. Now, you can record

either full sessions or only those in which a face has been detected in at least one frame.

Expanded notification customization options.

In LUNA ID for Android, added interception of Dynamic Liveness interaction events.

In LUNA ID for Android, you can now enable Dynamic Liveness estimation for each best

shot detection session by using LunaID.showCamera() instead of LunaID.init().

In LUNA ID for Android, starting from this version, LunaID.showCamera() accepts

ShowCameraParams with all available parameters.

In LUNA ID for iOS, implemented disabling of OneShotLiveness estimation.

In LUNA ID for Android, fixed an aspect ratio of a recorded video stream.

Video recording. The first iteration of the feature implies storing videos on a client’s side.

Account ID. The feature provides an opportunity to add tokens for end user sessions when

sending requests to LUNA PLATFORM 5.

Support of ARM simulators (only in LUNA ID for iOS).

Support of Android SDK 21. Prior to this, the minimum supported version was 23.

VisionLabs B.V. Page 49 of 270

2.4.74 LUNA ID v. 1.2.0-1.2.4

Both platforms

LUNA ID for Android

LUNA ID for iOS

2.4.75 LUNA ID v. 1.1.0

License update fix. From now on a license will be updated automatically after replacing

ProductID and EID in license.conf and releasing an updated application.

•

Support of optional interaction (a request to blink) for liveness in accordance with the

requirements by the National Bank of the Republic of Kazakhstan.

•

Support of optional descriptor generation on devices.•

Fix for an optional liveness check when getting the best shot.•

Refactoring of camera in order to make it independent of the calling code lifecycle.•

Fix of a crash when building apk from console. •

Improved SDK size: the size of models for neural networks has been reduced almost

twice. Now it requires 85 MB.

•

Fix for the display of multiple faces notification in UI.•

Fix of a crash when using the caching mechanism.•

Update of C++ SDK up to 5.9.1.•

Eyes status check.•

Customizable detection screen (a client can select color and thickness of a detection

frame, background, fonts, add custom notification texts for users, etc.)

•

Document recognition functionality by OCR provider Regula.•

Improved size of LUNA ID for Android - now it requires around 30 MB for the main ARM

platforms.

•

VisionLabs B.V. Page 50 of 270

2.5 System and hardware requirements

To use LUNA ID, the following system and hardware requirements must be met:

2.5.1 Information about third-party software

LUNA SDK

LUNA ID is based on LUNA SDK:

Requirement Android iOS

OS version 5.0 or later 13 or later

CPU architecture arm64-v8a, armeabi-v7a arm64

Developments tools Android SDK 21 XCode 13.2 or later

Free RAM 400 MB or more 400 MB or more

Camera resolution 1280x720 pixels 1280x720 pixels

LUNA ID for Android uses LUNA SDK v.5.31.3.•

LUNA ID for iOS uses LUNA SDK v.5.31.1.•

VisionLabs B.V. Page 51 of 270

2.6 Getting LUNA ID version

To ensure more reliable version identification, the LUNA ID version is transmitted as the

SHA256 hash.

2.6.1 In LUNA ID for Android

To get the LUNA ID version, call the LunaID.getVersion() method. For example:

The method transmits the LUNA ID version in encrypted form when interacting with a server

or other system components where authentication or verification of the LUNA ID version is

required.

2.6.2 In LUNA ID for iOS

To get the LUNA ID version, call the LCLunaConfiguration::lunaIDSDKVersion() method.

val version = LunaID.getVersion()
println("version: $version")

VisionLabs B.V. Page 52 of 270

2.7 LUNA ID size

2.7.1 Total size

The maximum size of LUNA ID that includes all the dependencies is:

This size is the sum of the sizes of the required dependencies and neural networks used in

LUNA ID. Knowing this information is crucial for understanding how each component

influences the overall functionality and performance of LUNA ID.

The tables below provide the sizes of required dependencies, in MB.

IN LUNA ID FOR ANDROID

IN LUNA ID FOR IOS

LUNA ID for Android - 63,192 MB•

LUNA ID for iOS - 116,1 MB •

.so set .so arm64-v8a, MB armeabi-v7a, MB

FaceEngine libFaceEngineSDK.so

libMatchingKernel.so

4

0,0151

Total: 4,0151

3,5

0,0033

Total: 3,5033

Flower libflower.so 2,6 2,4

TrackEngine libvlTracker.so

libTrackEngineSDK.so

1,5

1

Total: 2,5

1,2

0,86

Total: 2,06

Total: 9,1151 Total: 7,9633

Dependency Size

fsdk 125.68 MB

Flower 9.29 MB

tsdk 3.1 MB

LunaCamera 720.68 KB

LunaCore 554.97 KB

LunaWEB 823.21 KB

CheckJailBreakDevice 101 KB

VisionLabs B.V. Page 53 of 270

The table below provides the sizes that .plan files add to LUNA ID. For details about each

.plan file and a functionality it covers, see Neural networks used in LUNA ID.

2.7.2 Measure LUNA ID size

You can measure the size that LUNA ID adds to your app.

.plan file OS Size, MB Required

ags_v3_arm.plan 0,62

cnn60m_arm.plan 18,54

eye_status_estimation_arm.plan 0,26

eyes_estimation_flwr8_arm.plan 0,94

face_occlusion_v1_arm.plan 0,17

FaceDet_v2_first_arm.plan 0,01

FaceDet_v2_second_arm.plan 0,11

FaceDet_v2_third_arm.plan 1,64

gaze_v2_arm.plan 0,91

glasses_estimation_v2_arm.plan 0,72

headpose_v3_arm.plan 0,28

mask_clf_v3_arm-int8.plan 2,64

model_subjective_quality_v1_arm.plan 0,05

model_subjective_quality_v2_arm.plan 0,38

mouth_estimation_v4_arm.plan 1,56

oneshot_rgb_liveness_v12_model_4_arm.plan 4

oneshot_rgb_liveness_v12_model_5_arm.plan 4

oneshot_rgb_liveness_v12_model_6_arm.plan 4,64

sdc_rgb2gray_arm.plan 0.002

sdc_v1_arm.plan 0.006

vlTracker_detection_arm.plan 0,61

vlTracker_template_arm.plan 0,57

vlTracker_update_arm.plan 0,13

VisionLabs B.V. Page 54 of 270

In LUNA ID for Android

1․ Update build files to build separate .apk files for different platforms:

2․ In Android Studio, run the Analyze APK utility.

In the build.gradle.kts file: •

android {
 ...
 splits {
 abi {
 isEnable = true
 reset()
 include("armeabi-v7a", "arm64-v8a")
 isUniversalApk = false
 }
 }
 ...
}

In the build.dragle file: •

 android {
 ...

 splits {
 abi {
 enable true
 reset()
 include "armeabi-v7a", "arm64-v8a"
 universalApk false
 }
 }

 ...
 }

VisionLabs B.V. Page 55 of 270

3․ Open the build platfrom-specific .apk file (for example, armeabi-v7a) and see the size of the

following files:

IMPORTANT NOTES

In LUNA ID for iOS

1․ Open your project with added frameworks in Xcode.

2․ Go to Product > Archive.

assets/data* folder•

lib/{platform}/libTrackEngineSDK.so•

lib/{platform}/libBestShotMobile.so•

lib/{platform}/libflower.so•

lib/{platform}/libMatchingKernel.s•

lib/{platform}/libFaceEngineSDK.so•

lib/{platform}/libwrapper.so•

lib/{platform}/libc++_shared.so•

Any other files are not parts of LUNA ID and are added by other dependencies of your

app.

•

In the Analyze APK utility, there should be only one platform in the lib folder (for

example, armeabi-v7a , arm64-v8a or any another). If there is more than one platform in

this folder, then you are looking at a universal .apk file that includes all platforms. Go

back a step and rebuild the app with splits.abi enabled.

•

VisionLabs B.V. Page 56 of 270

Archiving

3․ Click the Distribute App button after archiving finishes.

Distribute App

4․ Select a distribution method. For example, Development.

VisionLabs B.V. Page 57 of 270

Method of distribution

5․ Select development distribution options.

Development distribution options

VisionLabs B.V. Page 58 of 270

6․ Select a device for distribution creation. For example, All compatible device variants.

Development distribution options

7․ Re-sign your application. For example, by the developer signing.

VisionLabs B.V. Page 59 of 270

Re-signing

8․ View the information about the archive.

VisionLabs B.V. Page 60 of 270

Re-signing

9․ Export your app.

Export

10․ Open the App Thinning Size Report.txt file.

VisionLabs B.V. Page 61 of 270

Export

11․ Find necessary information about the application size.

The picture below shows the size of the application without additional swift frameworks from

this example.

Export

12․ Verify the size of the packed application.

2.7.3 Reduce your app size

You can reduce the size of your app by removing unnecessary .plan files. For details, see

Reducing your app size by excluding .plan files.

VisionLabs B.V. Page 62 of 270

2.8 Neural networks used in LUNA ID

In LUNA ID, neural networks efficiently and accurately process faces in both images and video

streams. These neural networks are stored in .plan files.

The table below lists all .plan files used in LUNA ID, along with the functionalities they

provide. Some of these files are required for integrating LUNA ID into your application.

VisionLabs B.V. Page 63 of 270

Note, that using the .plan files will add extra size to your app. To learn how to exclude extra

.plan files, see Reducing your app size by excluding .plan files.

VisionLabs B.V. Page 64 of 270

.plan file OS Size,

MB

Required Functionality

ags_v3_arm.plan 0,62 Best shot quality

estimation

cnn60m_arm.plan 18,54 Descriptor generation

from an image

See also:

: Descriptor

: Descriptor

eye_status_estimation_arm.plan 0,26 Eye state estimation

See also:

: Eyes estimation

: Eyes estimation

eyes_estimation_flwr8_arm.plan 0,94 Eye state estimation

See also:

: Eyes estimation

: Eyes estimation

face_occlusion_v1_arm.plan 0,17 Face occlusion

FaceDet_v2_first_arm.plan

FaceDet_v2_second_arm.plan

FaceDet_v2_third_arm.plan

0,01

0,11

1,64

Face detection

See also:

: Detection

facility

: Detection

facility

glasses_estimation_v2_arm.plan 0,72 Glasses estimation

See also:

: Glasses

estimation

: Glasses

estimation

Getting the best shot

with faces with

occluded eyes

headpose_v3_arm.plan 0,28 Head pose estimation

•

•

•

•

•

•

•

•

•

•

•

VisionLabs B.V. Page 65 of 270

https://docs.visionlabs.ai/sdk/LUNA%20SDK%20v.5.31.3/sdk-android/handbookcompilation/parameter-estimation-facility/#bestshotquality-estimation
https://docs.visionlabs.ai/sdk/LUNA%20SDK%20v.5.31.3/sdk-android/handbookcompilation/parameter-estimation-facility/#bestshotquality-estimation
https://docs.visionlabs.ai/sdk/LUNA%20SDK%20v.5.31.3/sdk-android/handbookcompilation/descriptor-processing-facility/#descriptor
https://docs.visionlabs.ai/sdk/LUNA%20SDK%20v.5.31.1/sdk-ios/handbookcompilation/descriptor-processing-facility/#descriptor
https://docs.visionlabs.ai/sdk/LUNA%20SDK%20v.5.31.3/sdk-android/handbookcompilation/parameter-estimation-facility/#eyes-estimation
https://docs.visionlabs.ai/sdk/LUNA%20SDK%20v.5.31.1/sdk-ios/handbookcompilation/parameter-estimation-facility/#eyes-estimation
https://docs.visionlabs.ai/sdk/LUNA%20SDK%20v.5.31.3/sdk-android/handbookcompilation/parameter-estimation-facility/#eyes-estimation
https://docs.visionlabs.ai/sdk/LUNA%20SDK%20v.5.31.1/sdk-ios/handbookcompilation/parameter-estimation-facility/#eyes-estimation
https://docs.visionlabs.ai/sdk/LUNA%20SDK%20v.5.31.3/sdk-android/handbookcompilation/detection-facility
https://docs.visionlabs.ai/sdk/LUNA%20SDK%20v.5.31.3/sdk-android/handbookcompilation/detection-facility
https://docs.visionlabs.ai/sdk/LUNA%20SDK%20v.5.31.1/sdk-ios/handbookcompilation/detection-facility
https://docs.visionlabs.ai/sdk/LUNA%20SDK%20v.5.31.1/sdk-ios/handbookcompilation/detection-facility
https://docs.visionlabs.ai/sdk/LUNA%20SDK%20v.5.31.3/sdk-android/handbookcompilation/parameter-estimation-facility/#glasses-estimation
https://docs.visionlabs.ai/sdk/LUNA%20SDK%20v.5.31.3/sdk-android/handbookcompilation/parameter-estimation-facility/#glasses-estimation
https://docs.visionlabs.ai/sdk/LUNA%20SDK%20v.5.31.1/sdk-ios/handbookcompilation/parameter-estimation-facility/#glasses-estimation
https://docs.visionlabs.ai/sdk/LUNA%20SDK%20v.5.31.1/sdk-ios/handbookcompilation/parameter-estimation-facility/#glasses-estimation

.plan file OS Size,

MB

Required Functionality

mask_clf_v3_arm-int8.plan 2,64 Medical mask

estimation

See also:

: Medical mask

estimation

functionality

Getting the best shot

with an occluded face

model_subjective_quality_v1_arm.plan

model_subjective_quality_v2_arm.plan

0,05

0,38

 Image quality

estimation

See also:

: Image quality

estimation

: Image quality

estimation

mouth_estimator_v4_arm.plan 1,56 Mouth estimation

oneshot_rgb_liveness_v12_model_4_arm.plan

oneshot_rgb_liveness_v12_model_5_arm.plan

oneshot_rgb_liveness_v12_model_6_arm.plan

4

4

4,64

Offline

OneShotLiveness

estimation

See also:

:

LivenessOneShotRGB

Estimation

:

LivenessOneShotRGB

Estimation

•

•

•

•

•

•

VisionLabs B.V. Page 66 of 270

https://docs.visionlabs.ai/sdk/LUNA%20SDK%20v.5.31.3/sdk-android/handbookcompilation/parameter-estimation-facility/#medical-mask-estimation-functionality
https://docs.visionlabs.ai/sdk/LUNA%20SDK%20v.5.31.3/sdk-android/handbookcompilation/parameter-estimation-facility/#medical-mask-estimation-functionality
https://docs.visionlabs.ai/sdk/LUNA%20SDK%20v.5.31.3/sdk-android/handbookcompilation/parameter-estimation-facility/#medical-mask-estimation-functionality
https://docs.visionlabs.ai/sdk/LUNA%20SDK%20v.5.31.3/sdk-android/handbookcompilation/parameter-estimation-facility/#image-quality-estimation
https://docs.visionlabs.ai/sdk/LUNA%20SDK%20v.5.31.3/sdk-android/handbookcompilation/parameter-estimation-facility/#image-quality-estimation
https://docs.visionlabs.ai/sdk/LUNA%20SDK%20v.5.31.1/sdk-ios/handbookcompilation/parameter-estimation-facility/#image-quality-estimation
https://docs.visionlabs.ai/sdk/LUNA%20SDK%20v.5.31.1/sdk-ios/handbookcompilation/parameter-estimation-facility/#image-quality-estimation
https://docs.visionlabs.ai/sdk/LUNA%20SDK%20v.5.31.3/sdk-android/handbookcompilation/parameter-estimation-facility/#livenessoneshotrgb-estimation
https://docs.visionlabs.ai/sdk/LUNA%20SDK%20v.5.31.3/sdk-android/handbookcompilation/parameter-estimation-facility/#livenessoneshotrgb-estimation
https://docs.visionlabs.ai/sdk/LUNA%20SDK%20v.5.31.1/sdk-ios/handbookcompilation/parameter-estimation-facility/#livenessoneshotrgb-estimation
https://docs.visionlabs.ai/sdk/LUNA%20SDK%20v.5.31.1/sdk-ios/handbookcompilation/parameter-estimation-facility/#livenessoneshotrgb-estimation

2.9 Glossary

Term Description

Approximate

Garbage Score

(AGS)

A BestShotQuality estimator component that determined the source image

score for further descriptor extraction and matching. Estimation output is a

float score which is normalized in range [0..1]. The closer score to 1, the better

matching result is received for the image.

Best shot The frame of the video stream on which the face is fixed in the optimal angle

for further processing.

Descriptor Data set in closed, binary format prepared by recognition system based on the

characteristic being analyzed.

Estimator Neural network used to estimate a certain parameter of the face in the source

image.

Eye estimation Estimator that determines an eye status (open, closed, occluded) and precise

eye iris and eyelid location as an array of landmarks.

Face Changeable objects that include information about a human face.

Handler Set of rules or policies that describe how to process the received images.

Landmarks Reference points on the face used by recognition algorithms to localize the

face.

Liveness Software method that enables you to confirm whether a person in one or more

images is "real" or a fraudster using a fake ID (printed face photo, video,

paper, or 3D mask).

LUNA PLATFORM Automated face and body recognition system that allows you to perform face

detection, Liveness check biometric template extraction, descriptor extraction,

quality and attribute estimation, such as gender, age, and so on, on images

using neural networks.

Matching The process of descriptors comparison. Matching is usually implemented as a

distance function applied to the feature sets and distances comparison later

on. The smaller the distance, the closer are descriptors, hence, the more

similar are the objects.

Occlusion State of an object (eye, mouth) when it is hidden by any other object.

Samples, Warps Normalized (centered and cropped) image obtained after face detection, prior

to descriptor extraction.

Verification Comparison of two photo images of a face in order to determine belonging to

the same face.

Verifier Specifies a list of rules for processing and verifying incoming images. Unlike

handlers, it not only processes, but also verifies the images.

VisionLabs B.V. Page 67 of 270

2.10 Technical Support and resources

If you have questions, problems or just need help with LUNA ID, you can either contact our

Technical Support or try to search for the needed information using other help resources.

2.10.1 Contact Technical Support

You can contact our Technical Support via email:

 support@visionlabs.ru

2.10.2 More resources

Downloadable documentation

Download the LUNA ID documentation:

 LUNA_ID_v.1.20.0.pdf

Examples

Check out LUNA ID examples to learn how to embed LUNA ID in your app:

LUNA ID for Android examples•

LUNA ID for iOS examples•

VisionLabs B.V. Page 68 of 270

https://github.com/VisionLabs/LunaID-Android-Examples
https://github.com/VisionLabs/LunaID-iOS-Examples

3. Licensing

3.1 Activating the license

To integrate LUNA ID with your project and use its features, you need to activate the license.

3.1.1 In LUNA ID for Android

Activating the license

The license activation mechanism is as follows:

Important: Since v.1.18.0, the licenseParams parameter has been removed from the

LunaConfig object.

To activate the license:

1․ Request license parameters

Obtain the following parameters from VisionLabs:

For details, see License parameters.

2․ Specify parameters in license.conf

Add the received parameters to the license.conf file and save the changes.

LUNA ID first checks if you provided a license file via the initEngine method.

If provided, the license is directly passed to the engine.

If not provided, the system attempts to read the license from the assets folder and passes

it to the engine.

If no license is found in either location, the activation process fails.

Parameter Description

Server The URL of the license server.

EID A unique identifier for your application.

ProductID The product identifier for LUNA ID.

VisionLabs B.V. Page 69 of 270

Below is an example structure of the file:

3․ Place license.conf in your project

Save the license.conf file in the assets/data/license.conf directory of your project.

The license key will be generated and saved to the specified directory. The license file has a

binary format. At the next launch of the mobile app on the same device, the license will be

read from this file.

4․ Activate the license

Call the initEngine() method to initialize LUNA ID and activate the license.

Below is an example implementation:

Example structure of license.conf

<?xml version="1.0"?>
<settings>
 <section name="Licensing::Settings">
 <param name="Server" type="Value::String" text="https://example-
license-server.com"/>
 <param name="EID" type="Value::String" text="your-eid-here"/>
 <param name="ProductID" type="Value::String" text="your-product-id-
here"/>
 <param name="Filename" type="Value::String" text="license.dat"/>
 <param name="ContainerMode" type="Value::Int1" x="0"/>
 <param name="ConnectionTimeout" type="Value::Int1" x="15"/>
 <param name="licenseModel" type="Value::Int1" x="2" />
 <param name="OCR" type="Value::String" text="ocrLicense" />
 </section>
</settings>

private fun initLunaSdk() {
 val baseUrl = "url"
 val token = "token"
 val headers = mapOf("Authorization" to token)
 val apiHumanConfig = ApiHumanConfig(baseUrl, headers)
 val lunaConfig = LunaConfig.create(
 acceptOccludedFaces = true,
 acceptOneEyed = false,
 acceptEyesClosed = false,
 detectFrameSize = 350,
 skipFrames = 36,

VisionLabs B.V. Page 70 of 270

Note: The parameters in the example are set to default values. Adjust them according to

your requirements.

 ags = 0.5f,
 bestShotInterval = 500,
 detectorStep = 7,
 usePrimaryFaceTracking = true,
 glassesChecks = setOf(GlassesCheckType.GLASSES_CHECK_SUN)
)

 LunaID.initEngine(
 app: Application,
 lunaConfig: LunaConfig,
 apiHumanConfig: ApiHumanConfig? = null,
 license : File? = null,
 timeoutMillis : Long = 30_000L
)
}

VisionLabs B.V. Page 71 of 270

Key components of the example code

VisionLabs B.V. Page 72 of 270

The example code has the following components:

VisionLabs B.V. Page 73 of 270

Component Description

baseUrl A variable that specifies the URL to LUNA PLATFORM 5. For details, see

Interaction of LUNA ID with LUNA PLATFORM 5.

token A variable that specifies a LUNA PLATFORM 5 token, which will be

transferred to a request header from LUNA ID.

headers A map that specifies headers that will be added to each request to be

sent to LUNA PLATFORM 5.

apiHumanConfig An optional configuration parameter for calling the LUNA PLATFORM 5

API. Can be set to null if no LUNA PLATFORM 5 API calls are required.

This will also disable the Online OneShotLiveness estimation, regardless

of the onlineLivenessSettings argument.

ApiHumanConfig A class required for configuration to call the LUNA PLATFORM 5 API.

lunaConfig An argument to be passed for best shot parameters.

LunaConfig A class that describes best shot parameters.

acceptOccludedFaces A parameter that specifies whether an image with an occluded face will

be considered the best shot. For details, see Getting the best shot with

an occluded face.

acceptOneEyed A parameter that specifies whether blinking with one eye is enabled.

acceptEyesClosed A parameter that specifies whether an image with two closed eyes will

be considered the best shot. For details, see Getting the best shot with

faces with closed eyes.

detectFrameSize A parameter that specifies a face detection bounding box size.

skipFrames A parameter that specifies a number of frames to wait until a face is

detected in the face recognition area before video recording is stopped.

ags A parameter that specifies a source image score for further descriptor

extraction and matching. For details, see AGS.

bestShotInterval A parameter that specifies a minimum time interval between best shots.

detectorStep A parameter that specifies a number of frames between frames with full

face detection.

usePrimaryFaceTracking A parameter that specifies whether to track the face that was detected

in the face recognition area first. For details, see Tracking face identity.

glassesChecks A parameter that specifies what images with glasses can be best shots.

For details, see Getting the best shot with faces with occluded eyes.

LunaID.initEngine A method that activates the LUNA ID license.

license An instance of java.io.File. If this parameter is not provided, the

system will use the default license.conf file located in the project.

VisionLabs B.V. Page 74 of 270

https://docs.visionlabs.ai/luna/latest/standard-distribution/admin-manual/general-concepts/#authorization-system

5․ Subscribe to initialization events

Subscribe to events from the LunaID.engineInitStatus flow to monitor the initialization process:

Now, you can start the camera and proceed with embedding LUNA ID functionality in your

app.

For a detailed example, see App.kt.

3.1.2 In LUNA ID for iOS

Activating license via vllicense.plist

To activate the license:

1․ Request license parameters

Obtain the following parameters from VisionLabs:

For details, see License parameters.

2․ Specify parameters in vllicense.plist

Add the received parameters to the vllicense.plist file and save the changes.

Component Description

timeoutMillis The timeout for license activation, with a default value of 30 seconds

(30,000 milliseconds).

LunaID.engineInitStatus.flowWithLifecycle(this.lifecycle, Lifecycle.State.STARTED)
.onEach {
 if(it is LunaID.engineInitStatus.InProgress) {
 // LUNA ID is loading
 }else if(it is LunaID.engineInitStatus.Success) {
 // LUNA ID is ready
 }
}.flowOn(Dispatchers.Main)
.launchIn(this.lifecycleScope)

Server - The URL of the license server.•

EID - A unique identifier for your application.•

ProductID - The product identifier for LUNA ID.•

VisionLabs B.V. Page 75 of 270

https://github.com/VisionLabs/LunaID-Android-Examples/blob/master/CameraExample/src/main/java/ai/visionlabs/examples/camera/App.kt

Below is an example structure of the file:

xml

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

<dict>

 <key>ContainerMode</key>

 <real>0</real>

 <key>ConnectionTimeout</key>

 <integer>15</integer>

 <key>Filename</key>

 <string>license.dat</string>

 <key>ProductID</key>

 <string>your-product-id-here</string>

 <key>EID</key>

 <string>your-eid-here</string>

 <key>Server</key>

 <string>https://example-license-server.com</string>

 <key>ServerRetriesCount</key>

 <integer>1</integer>

 <key>UseZeus</key>

 <true/>

</dict>

</plist>

3․ Add vllicense.plist to your app

The license key will be generated and saved to the specified directory. The license file has a

binary format. At the next launch of the mobile app on the same device, the license will be

read from this file.

Renaming vllicense.plist

You can optionally rename the vllicense.plist file. To do this, change the default value, which is

vllicense.plist , of the LCLunaConfiguration::plistLicenseFileName property.

Example structure of vllicense.plist

VisionLabs B.V. Page 76 of 270

3.2 Updating the license

This topic explains how to dynamically update the license in LUNA ID.

3.2.1 In LUNA ID for Android

To dynamically update the license, pass the license file to the LunaID.initEngine method. Below

is an example:

The example code has the following components:

Important notes:

val config = LunaConfig.create(
 // other configuration options...
)

LunaID.initEngine(
 app: Application,
 lunaConfig: LunaConfig,
 apiHumanConfig: ApiHumanConfig? = null,
 license : File? = null,
 timeoutMillis : Long = 30_000L
)

Key components of the example code

Component Description

lunaConfig An argument to be passed for best shot parameters.

license An instance of java.io.File. If this parameter is not provided, the system will use

the default license.conf file located in the project.

timeoutMillis The timeout for license activation, with a default value of 30 seconds (30,000

milliseconds).

The license must be updated before initializing LUNA ID.•

If changes are made after initialization, you must restart the app or re-initialize the

engine with the new configuration.

•

VisionLabs B.V. Page 77 of 270

3.2.2 In LUNA ID for iOS

<!-- You can dynamically update the license using the LCLicenseConfig class. Populate its fields

with the required data and pass it during the initialization of the LUNA ID engine.

Important: The responsibility for providing the required license data lies with the client

application, which retrieves the values from its server and populates the fields of the

configuration class.

Below is an example of how to configure and populate LCLicenseConfig class:

These values are then passed to the LunaConfig object during engine initialization:

Method 2: Programmatic configuration (basic approach)

Configure the license programmatically using LCLicenseConfig :

var newConfig = LunaCore.LCLicenseConfig()
newConfig.eid = "your_entitlement_id"
newConfig.productID = "your_product_id"

let config = LCLunaConfiguration()
config.licenseConfig = newConfig

LunaID.initEngine(config)
``` -->

LUNA ID for iOS provides multiple approaches for license management.

### Method 1: .plist file configuration

> **Tip:** This is the recommended approach for license configuration.

Store your license details in a *.plist* file within your application bundle:

```swift
let licenseConfiguration = LunaCore.LCLicenseConfig(
 plistFilePath: Bundle.main.path(forResource: "vllicense", ofType: "plist") ?? ""
)

let configuration = LCLunaConfiguration()
let licenseConfig = LCLicenseConfig()
licenseConfig.eid = "your_entitlement_id"
licenseConfig.productID = "your_product_id"

VisionLabs B.V. Page 78 of 270

Important: Call save() before using userDefaults() . Without calling save() , userDefaults()

will return an empty license.

Method 3: Using LCLunaIDServiceBuilder

You can update your license in the LCLunaIDServiceBuilder object by using the following

methods:

licenseConfig.save()

let lunaIDService = LunaCore.LCLunaIDServiceBuilder.buildLunaIDService(withConfig:
configuration)

if let error = lunaIDService.activateLicense(with: licenseConfig) {...}

buildLunaIDService(withConfig: LCLunaConfiguration)

Calling let lunaIDService = LunaCore.LCLunaIDServiceBuilder.buildLunaIDService(withConfig:

configuration) creates an engine object with the license specified in the

LCLunaConfiguration (config.plistLicenseFileName) object.

•

buildLunaIDService(withConfig: LCLunaConfiguration, license: LCLicenseConfig?)

Calling this method creates an object with the license passed in the license argument.

•

VisionLabs B.V. Page 79 of 270

3.3 Verifying license validity

Applies to LUNA ID for iOS only.

To verify the license validity in LUNA ID, you can use either the default method or a

customized approach depending on your requirements.

3.3.1 Default method

This approach checks the license in silent mode, meaning the license validation occurs

automatically during the LCLunaIDServiceBuilder.buildLunaIDService() call. Here's how it works:

In this method, the LunaCore.LCLunaConfiguration.plistLicenseFileName property specifies the name

of the .plist file where LUNA ID will look for license information. The system will attempt to

locate the file named "{LunaCore.LCLunaConfiguration.plistLicenseFileName}.plist" in the

main bundle.

3.3.2 Customized method

If you want to explicitly validate the license and ensure that the license data is correct, you

can use the following customized approach:

// Creating LunaID configuration
let configFilePath = Bundle.main.path(forResource: "luna_config", ofType: "plist") ?? ""
let lunaConfig: LunaCore.LCLunaConfiguration =

LunaCore.LCLunaConfiguration(plistFilePath: configFilePath)

// Creating LunaID service
let lunaIDService: LunaCore.LCLunaIDServiceProtocol =

LCLunaIDServiceBuilder.buildLunaIDService(withConfig: lunaConfig)

// Creating LunaID configuration
let configFilePath = Bundle.main.path(forResource: "luna_config", ofType: "plist") ?? ""
let lunaConfig = LunaCore.LCLunaConfiguration(plistFilePath: configFilePath)

// Creating LunaID service
let lunaIDService: LunaCore.LCLunaIDServiceProtocol =

LCLunaIDServiceBuilder.buildLunaIDService(withConfig: lunaConfig)

// Creating license configuration
let licenseFilePath = Bundle.main.path(forResource: "vllicense", ofType: "plist") ?? ""
let licenseConfig = LunaCore.LCLicenseConfig(plistFilePath: licenseFilePath)

VisionLabs B.V. Page 80 of 270

In this approach, although the silent license check is still performed when creating the LUNA

ID service, you gain additional control. You can create a LunaCore.LCLicenseConfig object from

any .plist file with a custom name and place it in any bundle. Afterward, you can explicitly

invoke LunaCore.LCLunaIDServiceProtocol.activateLicense() . This method returns nil if the license is

valid, or an Error object if the license is invalid.

// Checking license configuration
if let error = lunaIDService.activateLicense(with: licenseConfig) {
 debugPrint("Error while checking license on application startup: \(error)")
}

VisionLabs B.V. Page 81 of 270

3.4 License expiration handling

Applies to LUNA ID for Android only.

To retrieve the expiration date of any of the licensed features, use the following method:

The LicenseFeature enum defines the licensable components:

3.4.1 LicenseExpired event

The LicenseExpired event signals when the active license has expired or when a required

feature is no longer valid due to time constraints.

3.4.2 FeatureExpired error

When the FeatureExpired error occurs, LUNA ID logs detailed diagnostic information about the

expired features:

fun getExpirationLicenceDateAsDate(feature: LicenseFeature): java.util.Date?

enum class LicenseFeature {
 Detection,
 BestShot,
 Liveness,
 MedicalMaskDetection
}

Feature names that have expired.•

Exact expiration time (as a Unix timestamp in seconds, in the expiresAt field).•

Category Features logged

Always Detection

BestShot

Conditionally Liveness — if OneShotLiveness estimation is enabled in the session.

MedicalMaskDetection — if mask acceptance is disabled (acceptMask = false).

•

•

•

•

VisionLabs B.V. Page 82 of 270

3.5 License parameters

The table below outlines the parameters required for license activation and subsequent

processing in LUNA ID:

VisionLabs B.V. Page 83 of 270

Parameter Platform Required Default

value

Description

Server Not set The URL of the activation

server used to validate and

activate the license.

EID Not set A unique identifier

(Entitlement ID) assigned to

your application.

ProductID Not set The specific product

identifier for LUNA ID.

Filename license.dat The default name of the file

where the activated license

is saved.

Maximum length: 64

characters.

Changing this name is not

recommended.

ContainerMode 0 Indicates whether the

application is running in a

containerized environment.

ConnectionTimeout 15 Specifies the maximum time

(in seconds) allowed for the

license activation request.

Setting this value to 0

disables the timeout.

Negative values are not

allowed.

Maximum value: 300

seconds.

licenseModel 2 Defines the license to be

used.

Possible values:

1 - Thales

2 - Zeus

UseZeus true Defines the license to be

used.

Possible values:

true - Zeus

false - Thales

OCR ocrLicense Enables OCR.

•

•

•

•

VisionLabs B.V. Page 84 of 270

3.6 Resetting the license cache

3.6.1 In LUNA ID for Android

To reset the license cache:

3.6.2 In LUNA ID for iOS

We recommend that you reset license cache when you update your app. To do this:

1․ Create the LCLunaConfiguration.resetLicenseCache() function to check the application version

and reset the license cache:

2․ Call this function when the application starts:

Call the LunaID.resetLicenseCache(context) method.

Restart your app. LUNA ID will reinitialize and generate a fresh license cache.

 import Foundation

 func checkAndResetLicenseCache() {
 let currentAppVersion = Bundle.main.infoDictionary?
["CFBundleShortVersionString"] as? String
 let savedAppVersion = UserDefaults.standard.string(forKey: "AppVersion")

 if currentAppVersion != savedAppVersion {
 LCLunaConfiguration.resetLicenseCache()
 UserDefaults.standard.set(currentAppVersion, forKey: "AppVersion")
 }
 }

With UIKit in the AppDelegate.swift file:•

 @main
 class AppDelegate: UIResponder, UIApplicationDelegate {

 var window: UIWindow?

 func application(_ application: UIApplication, didFinishLaunchingWithOptions

launchOptions: [UIApplication.LaunchOptionsKey: Any]?) -> Bool {
 checkAndResetLicenseCache()

 ...
 return true

VisionLabs B.V. Page 85 of 270

 }
 }

With SwiftUI in the App.swift file:•

 @main
 struct YourApp: App {
 init() {
 checkAndResetLicenseCache()
 }

 var body: some Scene {
 WindowGroup {
 ContentView()
 }
 }
 }

VisionLabs B.V. Page 86 of 270

3.7 Working with status code 1025

Applies to LUNA ID for iOS only.

Status code 1025 applies to LUNA ID for iOS and informs about a license check failure.

To retrieve status code 1025 and its corresponding error message, do the following:

1․ Call the activateLicense method. Here is an example of how you might set this up:

2․ Get the error message by calling (error as NSError).localizedDescription . This will give you a

more detailed description of what went wrong.

3․ Get the error code by calling (error as NSError).code . This will help you identify and

troubleshoot specific issues related to the license activation process.

func application(_ application: UIApplication, didFinishLaunchingWithOptions launchOptions:
[UIApplication.LaunchOptionsKey: Any] ?)->Bool {
 AppAppearance.setupAppearance()

 let configuration = LCLunaConfiguration()
 configuration.identifyHandlerID = "xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx"
 configuration.registrationHandlerID = "xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx"
 configuration.verifyID = "xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx"
 configuration.lunaAccountID = "xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx"
 configuration.lunaServerURL = URL(string: "https://luna-api-aws.visionlabs.ru/6")
 configuration.plistLicenseFileName = "vllicense.plist"

 let error = configuration.activateLicense()debugPrint("error while license check \(error)")

 let viewController = LERootViewController()
 let navvc = UINavigationController(rootViewController: viewController)window = UIWindow(frame:
UIScreen.main.bounds)
 window?.backgroundColor = .white window?.rootViewController = navvc
 window?.makeKeyAndVisible()

 return true
}

VisionLabs B.V. Page 87 of 270

4. API documentation

4.1 API documentation

This section includes links to LUNA ID for iOS and LUNA ID for Android RESTful API reference

manuals. You can use these documents to find out about LUNA ID features and their

implementation.

The table below provides links to the API reference manuals.

OS Module Link

Android - API reference manual

iOS LunaCamera LunaCamera Reference

iOS LunaCore LunaCore Reference

iOS LunaWeb LunaWeb Reference

VisionLabs B.V. Page 88 of 270

http://git.visionlabs.ru/65apps/lunaid/luna-id-android/-/blob/develop/API_DOCUMENTATION.md

4.2 Changelog

4.2.1 API changes made in LUNA ID for Android v.1.5.0 in comparison to v.

1.4.x

This topic lists API changes that were made in LUNA ID for Android v.1.5.0 in comparison to v.

1.4.x.

The changes are:

1․ The whole flow of a LUNA ID camera is now exposed via LunaID.allEvents() . You can

subscribe to it to catch all events or subscribe to specific events, for example:

- LunaID.finishStates()

- LunaID.detectionCoordinates()

- LunaID.detectionErrors()

- LunaID.interactions()

2․ All callbacks were replaced with the native Flow API:

3․ LunaID.showCamera() now accepts a list of interactions to be run.

The detection coordinates API was changed. The CameraOverlayDelegateOut class was

removed. Instead, use LunaID.detectionCoordinates() .

•

The CameraUIDelegate class was removed. Instead, use LunaID.finishStates() . That is,

CameraUIDelegate#bestShot , CameraUIDelegate#canceled , CameraUIDelegate#error are no

longer supported.

•

LunaID.showCamera() does not require CameraUIDelegate anymore.•

LunaID.unregisterListener() was removed.•

LunaID.popLastCameraState() and LunaID.getLastCameraState() were removed.•

LunaError and its descendants were replaced with the DetectionError enumeration. For

example, instead of LunaError.messageResId , use DetectionError.messageResId .

•

Interaction parameters moved from LunaConfig . Now, to setup a blink interaction,

provide its parameters to LunaID.showCamera() . For example, instead of

LunaConfig.interactionEnabled or LunaConfig.interactionTimeout , use BlinkInteraction() .

•

VisionLabs B.V. Page 89 of 270

4.2.2 API changes made in LUNA ID for Android v.1.5.1 in comparison to v.

1.5.0

This topic lists API changes that were made in LUNA ID for Android v.1.5.1 in comparison to v.

1.5.0.

The changes apply to OneShotLiveness estimation configuration.

Prior to the API changes, LunaID.init() accepted an argument of the LivenessSettings type to

specify how the estimation will be performed. This argument no longer exists. Instead, the

estimation is set in LunaConfig .

For details, see Performing Online OneShotLiveness estimation and Disabling

OneShotLiveness estimation.

VisionLabs B.V. Page 90 of 270

4.2.3 API changes made in LUNA ID for Android v.1.6.0 in comparison to v.

1.5.1

This topic lists API changes that were made in LUNA ID for Android v.1.6.0 in comparison to v.

1.5.1.

The changes are:

In earlier versions of LUNA ID for Android, the main distribution package included all .plan

files. You could exclude unnecessary .plan files by using ignoreAssetsPatterns . Now, the

ai.visionlabs.lunaid:core:1.6.0 package includes only necessary .plan files. The files are:

Now, build.gradle does not require the following code block, so you need to remove it:•

androidResources(
 ignoreAssetsPatterns.addAll(
 ...
)
)

The BestShot class does not contain the pre-computed descriptor field. To get a

descriptor of a particular version, use LunaUtils . For details, see Using descriptors.

•

Now, LunaID.init() does not accept the areDescriptorsEnabled parameter. For details, see

Using descriptors.

•

FaceDet_v2_first_arm.plan•

FaceDet_v2_second_arm.plan•

FaceDet_v2_third_arm.plan•

ags_angle_estimation_flwr_arm.plan•

ags_v3_cpuplan•

eye_status_estimation_flwr•

eyes_estimation_flwr8•

headpose_v3•

model_subjective_quality_v1•

model_subjective_quality_v2•

VisionLabs B.V. Page 91 of 270

Additional .plan files are available in the following distribution packages:

For details on using descriptors, see Using descriptors.

ai.visionlabs.lunaid:cnn59:1.6.0 - Contains the following .plan files used for descriptor

generation from an image:

•

cnn59m_arm.plan•

cnn59m_cpu.plan•

ai.visionlabs.lunaid:cnn52:1.6.0 - Contains the following .plan files used for descriptor

generation from an image:

•

cnn52m_cpu.plan•

cnn52m_arm.plan•

VisionLabs B.V. Page 92 of 270

4.2.4 API changes made in LUNA ID for Android v.1.8.4 in comparison to v.

1.6.0

This topic lists API changes that were made in LUNA ID for Android v.1.8.4 in comparison to v.

1.6.0.

The changes are:

Deprecated the acceptGlasses parameter. Now, use the glassesChecks parameter to

restrict images of people in glasses from being best shots.

•

Deprecated the LunaConfig.border* parameters. Now, use the borderDistance parameter to

specify a face recognition area.

•

VisionLabs B.V. Page 93 of 270

4.2.5 API changes made in LUNA ID for Android v.1.9.4 in comparison to v.

1.8.4

This topic lists API changes that were made in LUNA ID for Android v.1.9.4 in comparison to v.

1.8.4.

The changes apply to strategies of initializing border distances to specify a face recognition

area. You can now do this with the following strategies:

InitBorderDistancesStrategy.Default() - Specifies a strategy when border distances are not

initialized.

•

InitBorderDistancesStrategy.WithCustomView() - Specifies a strategy when border distances

are initialized with an Android custom view.

•

VisionLabs B.V. Page 94 of 270

4.2.6 API changes made in LUNA ID for Android v.1.16.0 in comparison to

earlier versions

This document outlines the changes introduced in LUNA ID for Android v1.16.0 compared to

previous versions. Carefully review these updates to ensure a smooth migration and

continued functionality in your final application.

Configuration updates

REMOVED PARAMETERS

The statusBarColorHex parameter was removed from ShowCameraParams because the screen

format now uses Edge-to-Edge.

TRANSFERRED PARAMETERS

NEW PARAMETER

aspectRatioStrategy

An enum class (LunaAspectRatioStrategy) used to explicitly set the screen aspect ratio.

Possible values:

The checkSecurity parameter has been moved from LunaConfig to ShowCameraParams . If

the parameter is not specified, it is set to true by default.

•

The videoQuality parameter has been moved from ShowCameraParams to LunaConfig and

was renamed LunaVideoQuality .

•

Possible values: SD , HD .•

Default video quality: SD (~640x480 pixels).•

The customFrameResolution parameter has been replaced with: •

preferredAnalysisFrameWidth•

preferredAnalysisFrameHeight

Note: The prefix preferred indicates that the user specifies their preferred

resolution, which may not always be supported by the device's camera. If

unsupported, the system adjusts to the nearest available resolution.

The default frame resolution for analysis is 480x320.

•

RATIO_4_3_FALLBACK_AUTO_STRATEGY (default)•

RATIO_16_9_FALLBACK_AUTO_STRATEGY•

VisionLabs B.V. Page 95 of 270

NAMING CHANGES

Changes in best shot retrieval (multipartBestShotsEnabled)

The method of retrieving the list of best shots has been updated when

multipartBestShotsEnabled is active.

BEFORE

The list of best shots was located in the Event.BestShotFound data class:

AFTER

The list of best shots has been moved to a separate Event called BestShotsFound :

The new structure of BestShotFound is as follows:

To retrieve the list of best shots, use the bestShots Flow:

InitBorderDistanceStrategy is now BorderDistanceStrategy .•

LunaID.activateLicense(..) is now LunaID.initEngine(..) .•

data class BestShotFound(
 val bestShot: BestShot,
 val bestShots: List<BestShot>?,
 val videoPath: String?,
 val interactionFrames: List<InteractionFrame>?
) : Event()

data class BestShotsFound(
 val bestShots: List<BestShot>?
) : Event()

data class BestShotFound(
 val bestShot: BestShot,
 val videoPath: String?,
 val interactionFrames: List<InteractionFrame>?
) : Event()

VisionLabs B.V. Page 96 of 270

Changes in result retrieval

Previously, the result could be obtained through the LunaID.finishStates() Flow , which returned

Event.StateFinished .

Now, the result can be retrieved via the LunaID.bestShot Flow :

This Flow returns an object of the class Event.BestShotFound :

Usage example:

Changes in error retrieval

You can now obtain errors through errorFlow :

Usage example:

LunaID.bestShots.filterNotNull().onEach { bestShotsList ->
 Log.e(TAG, "bestShots: ${bestShotsList.bestShots}")
}.

val bestShot = MutableStateFlow<Event.BestShotFound?>(null)

data class BestShotFound(
 val bestShot: BestShot,
 val videoPath: String?,
 val interactionFrames: List<InteractionFrame>?
) : Event()

LunaID.bestShot
 .filterNotNull()
 .onEach { bestShotFound ->
 Log.e("BestShotFound", bestShotFound.toString())
 }
 .launchIn(viewModelScope)

val errorFlow: Flow<LunaID.Effect.Error>

VisionLabs B.V. Page 97 of 270

Event subscription updates

In LUNA ID for Android v.1.16.0, the single Flow handling multiple event types has been

replaced with separate Flows for each event category. This modular approach enhances

clarity and simplifies event handling.

LunaID.errorFlow
 .sample(1000)
 .onEach { effect ->
 when (effect.error) {
 DetectionError.PrimaryFaceLostCritical -> TODO("Handle critical primary face
loss")
 DetectionError.PrimaryFaceLost -> TODO("Handle primary face loss")
 DetectionError.FaceLost -> TODO("Handle face not detected")
 DetectionError.TooManyFaces -> TODO("Handle multiple faces detected")
 DetectionError.FaceOutOfFrame -> TODO("Handle face out of frame")
 DetectionError.FaceDetectSmall -> TODO("Handle small face detection")
 DetectionError.BadHeadPose -> TODO("Handle incorrect head pose")
 DetectionError.BadQuality -> TODO("Handle poor image quality")
 DetectionError.BlurredFace -> TODO("Handle blurred face")
 DetectionError.TooDark -> TODO("Handle underexposed image")
 DetectionError.TooMuchLight -> TODO("Handle overexposed image")
 DetectionError.GlassesOn -> TODO("Handle glasses on face")
 DetectionError.OccludedFace -> TODO("Handle partially occluded face")
 DetectionError.BadEyesStatus -> TODO("Handle closed or obstructed eyes")
 }
 }
 .launchIn(this.lifecycleScope)

VisionLabs B.V. Page 98 of 270

Event categories:

XML FRAGMENT IMPLEMENTATION

Below is an example of how to implement an event subscription using an XML fragment:

Category Description

errorFlow Captures errors from LUNA ID.

currentInteractionType Represents the current type of interaction (for example, blinking, head

rotation).

bestShot Contains the result of LUNA ID processing (best shot detection).

videoRecordingResult Provides outcomes of video recording operations.

engineInitStatus Indicates the status of engine activation.

faceDetectionChannel Emits face detection events.

eventChannel Captures all other events not included in the above Flows (for example,

liveness checks, interaction timeouts).

In future updates, this Channel will be further divided into more specific

categories.

bestShots Lists all best shots when multipartBestShotsEnabled is active.

class OverlayFragment : Fragment() {
 private val viewModel: OverlayViewModel by viewModels()
 private var _binding: FragmentOverlayBinding? = null
 private val binding get() = _binding!!

 companion object {
 private const val TAG = "OverlayFragment"
 }

 override fun onCreateView(
 inflater: LayoutInflater,
 container: ViewGroup?,
 savedInstanceState: Bundle?
): View {
 _binding = FragmentOverlayBinding.inflate(inflater, container, false)
 return binding.root
 }

 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
 super.onViewCreated(view, savedInstanceState)

 // Subscribe to current interaction events

VisionLabs B.V. Page 99 of 270

 viewModel.currentInteraction
 .onEach { interaction ->
 Log.d(TAG, "onViewCreated: collected interaction $interaction")
 _binding?.overlayInteraction?.text = interaction
 }
 .flowOn(Dispatchers.Main)
 .launchIn(lifecycleScope)

 // Subscribe to error state events
 viewModel.errorState.onEach { error ->
 binding.overlayError.text = error
 }.launchIn(this.lifecycleScope)

 // Handle other LunaID events
 LunaID.eventChannel.receiveAsFlow()
 .onEach { event ->
 when (event) {
 is LunaID.Event.SecurityCheck.Success -> {
 Log.d(TAG, "onViewCreated() collect security SUCCESS")
 }
 is LunaID.Event.SecurityCheck.Failure -> {
 Log.d(TAG, "onViewCreated() collect security FAILURE")
 }
 is LunaID.Event.FaceFound -> {
 Log.d(TAG, "onViewCreated() face found")
 }
 is LunaID.Event.InteractionEnded -> {
 Log.d(TAG, "onViewCreated() interaction ended")
 }
 is LunaID.Event.InteractionFailed -> {
 Log.d(TAG, "onViewCreated() interaction failed")
 }
 is LunaID.Event.InteractionTimeout -> {
 Log.d(TAG, "onViewCreated() interaction timeout")
 Toast.makeText(this.activity, "Interaction timeout",
Toast.LENGTH_LONG).show()
 activity?.finish()
 }
 is LunaID.Event.LivenessCheckError -> {
 Log.d(TAG, "onViewCreated() liveness check error ${event.cause}")
 }
 is LunaID.Event.LivenessCheckFailed -> {
 Log.d(TAG, "onViewCreated() Liveness Check Failed")
 activity?.finish()
 Toast.makeText(this.activity, "liveness check error",
Toast.LENGTH_LONG).show()
 }

VisionLabs B.V. Page 100 of 270

Compose implementation

Here’s an example of implementing an event subscription using Jetpack Compose:

 is LunaID.Event.LivenessCheckStarted -> {
 Log.d(TAG, "onViewCreated() liveness check started")
 }
 is LunaID.Event.Started -> {
 Log.d(TAG, "onViewCreated() started")
 }
 is LunaID.Event.UnknownError -> {
 Log.d(TAG, "onViewCreated() unknown error ${event.cause}")
 }
 else -> {
 Log.d(TAG, "onViewCreated() collected unknown event")
 }
 }
 }
 .launchIn(this.lifecycleScope)
 }

 override fun onDestroyView() {
 super.onDestroyView()
 _binding = null
 }
}

class OverlayComposeView @JvmOverloads constructor(
 context: Context,
 attrs: AttributeSet? = null,
 defStyleAttr: Int = 0
) : AbstractComposeView(context, attrs, defStyleAttr), MeasureBorderDistances {

 private var innerBoxPosition by mutableStateOf(Offset.Zero)

 @Composable
 override fun Content() {
 val viewModel: OverlayViewModel =
 ViewModelProvider(context as ViewModelStoreOwner)
[OverlayViewModel::class.java]
 val interactionState = viewModel.currentInteraction.onStart {
delay(1000) }.collectAsState("")
 val errorState = viewModel.errorState.onStart { delay(1000) }.collectAsState("")

 Box(
 modifier = Modifier.fillMaxSize(),

VisionLabs B.V. Page 101 of 270

 contentAlignment = Alignment.Center
) {
 if (true) {
 Box(
 modifier = Modifier
 .size(256.dp)
 .border(BorderStroke(4.dp, Color.White))
 .onGloballyPositioned { coordinates ->
 innerBoxPosition = coordinates.localToWindow(Offset.Zero)
 }
)
 }
 }

 Column(
 modifier = Modifier.fillMaxSize().padding(16.dp)
) {
 Spacer(modifier = Modifier.weight(4f))

 // Display error messages
 Text(
 modifier = Modifier.fillMaxWidth(),
 fontSize = 18.sp,
 fontWeight = FontWeight.Bold,
 textAlign = TextAlign.Center,
 text = errorState.value,
 color = MaterialTheme.colorScheme.error,
)

 Spacer(modifier = Modifier.size(8.dp))

 // Display interaction messages
 Text(
 modifier = Modifier.fillMaxWidth(),
 fontSize = 18.sp,
 fontWeight = FontWeight.Bold,
 textAlign = TextAlign.Center,
 text = interactionState.value,
 color = Color.Yellow,
)

 Spacer(modifier = Modifier.weight(1f))
 }
 }

 override fun measureBorderDistances(): BorderDistancesInPx {
 Log.d("OverlayComposeView", "x=${innerBoxPosition.x} y=$
{innerBoxPosition.y}")

VisionLabs B.V. Page 102 of 270

VIEWMODEL FOR BOTH UI VARIANTS

The following ViewModel can be used for both Compose and XML implementations:

 val fromLeft = innerBoxPosition.x.toInt()
 val fromTop = innerBoxPosition.y.toInt()
 val fromRight = fromLeft
 val fromBottom = fromTop

 Log.d(
 "OverlayComposeView",
 "fromLeft=$fromLeft fromTop=$fromTop fromRight=$fromRight
fromBottom=$fromBottom"
)

 return BorderDistancesInPx(
 fromLeft = fromLeft,
 fromTop = fromTop,
 fromRight = fromRight,
 fromBottom = fromBottom
)
 }
}

class OverlayViewModel(application: Application) : AndroidViewModel(application) {
 val currentInteraction = LunaID.currentInteractionType
 .filterNotNull()
 .map { Interaction.message(application.applicationContext, it) }
 .stateIn(viewModelScope, started = SharingStarted.WhileSubscribed(1000), "")

 private val _errorState = MutableStateFlow("")
 val errorState = _errorState.asStateFlow()

 var job: Job? = null

 init {
 LunaID.errorFlow
 .onEach { event ->
 val text =
application.applicationContext.getString(event.error.messageResId()!!)
 updateTextAndClearLater(text)
 }
 .launchIn(viewModelScope)
 }

 suspend fun updateTextAndClearLater(text: String) {

VisionLabs B.V. Page 103 of 270

 Log.d("OverlayViewModel", "updateTextAndClearLater: with text $text")
 job?.cancel()
 _errorState.update { text }
 job = viewModelScope.launch {
 delay(1000)
 _errorState.update { "" }
 }
 }
}

VisionLabs B.V. Page 104 of 270

4.2.7 API changes made in LUNA ID for Android v.1.16.1 in comparison to

earlier versions

This document outlines the changes introduced in LUNA ID for Android v.1.16.1 compared to

previous versions. Carefully review these updates to ensure a smooth migration and

continued functionality in your final application.

Enhanced event handling

All events are now utilized effectively, except for UnknownError . Previously in version 1.16.0 ,

events such as InteractionStarted , InteractionFailed , Started , FaceFound , and UnknownError were

not fully implemented or ignored. This update ensures broader coverage of event types to

improve system responsiveness and debugging capabilities.

Command API restoration

The following commands have been reintroduced:

A method for sending commands has been restored:

This method allows you to interact with LUNA ID more flexibly by triggering specific actions

(for example, starting or stopping processes) directly through the API.

CloseCameraCommand - Allows closing the camera session programmatically.•

StartBestShotSearchCommand - Initiates the best shot search process explicitly.•

sendCommand(command: Command)

VisionLabs B.V. Page 105 of 270

5. Integration guide

5.1 Integration guide for LUNA ID for Android

This guide provides a step-by-step overview of integrating LUNA ID into an Android

application.

5.1.1 Prerequisites

Before you begin, make sure you have:

5.1.2 Step 1: Configure repository

Add the repository to your settings.gradle.kts:

Android Studio•

Android project with minimum SDK version 21 or higher•

Valid credentials for https://download.visionlabs.ru/•

dependencyResolutionManagement {
 repositories {
 google()
 mavenCentral()

 ivy {
 url = java.net.URI.create("https://download.visionlabs.ru/")
 patternLayout {
 artifact("releases/lunaid-[artifact]-[revision].[ext]")
 setM2compatible(false)
 }
 credentials {
 username = getLocalProperty("vl.login") as String
 password = getLocalProperty("vl.pass") as String
 }
 metadataSources { artifact() }
 }
 }
}

fun getLocalProperty(key: String, file: String = "local.properties"): Any {
 val file = File(rootProject.projectDir, file)
 val properties = java.util.Properties()

 if (file.isFile) {

VisionLabs B.V. Page 106 of 270

5.1.3 Step 2: Set up credentials

Create or edit local.properties in your project root:

Important: Add local.properties to your .gitignore file to keep credentials secure.

5.1.4 Step 3: Add dependencies

In your app-level build.gradle.kts, add the required LUNA ID and CameraX dependencies:

 InputStreamReader(FileInputStream(file), Charsets.UTF_8).use {
 properties.load(it)
 }
 } else if (System.getenv("CI") != null) {
 return "nothing"
 } else {
 error("File not found: '$file'")
 }

 return properties.getProperty(key) ?: error("Key '$key' not found")
}

vl.login=YOUR_LOGIN
vl.pass=YOUR_PASSWORD

dependencies {
 // LUNA ID (replace {VERSION} with actual version, e.g., 1.20.0)
 implementation("ai.visionlabs.lunaid:core:{VERSION}@aar")
 implementation("ai.visionlabs.lunaid:common-arm:{VERSION}@aar")
 implementation("ai.visionlabs.lunaid:cnn60-arm:{VERSION}@aar")

 // CameraX (required)
 implementation("androidx.camera:camera-core:1.3.0")
 implementation("androidx.camera:camera-camera2:1.3.0")
 implementation("androidx.camera:camera-lifecycle:1.3.0")
 implementation("androidx.camera:camera-video:1.3.0")
 implementation("androidx.camera:camera-view:1.3.0")
}

VisionLabs B.V. Page 107 of 270

5.1.5 Step 4: Add permissions

Add the following permissions to your AndroidManifest.xml:

5.1.6 Step 5: Initialize LUNA ID

Initialize the SDK in your Application class:

Make sure your AndroidManifest.xml references this class:

5.1.7 Step 6: Launch the camera

Before launching the camera, request permission in your Activity :

<uses-permission android:name="android.permission.CAMERA" />
<uses-permission android:name="android.permission.INTERNET" />
<uses-feature android:name="android.hardware.camera" android:required="true" />

import android.app.Application
import ru.visionlabs.sdk.lunacore.LunaConfig
import ru.visionlabs.sdk.lunacore.LunaID

class MyApp : Application() {
 override fun onCreate() {
 super.onCreate()

 // Initialize with default configuration
 LunaID.initEngine(
 context = applicationContext,
 lunaConfig = LunaConfig.create()
)
 }
}

<application
 android:name=".MyApp"
 ... >

import android.Manifest
import android.content.pm.PackageManager
import androidx.activity.result.contract.ActivityResultContracts

VisionLabs B.V. Page 108 of 270

In your Activity , launch the camera and handle results:

import androidx.appcompat.app.AppCompatActivity
import androidx.core.content.ContextCompat

class MainActivity : AppCompatActivity() {
 private val requestPermission = registerForActivityResult(
 ActivityResultContracts.RequestPermission()
) { granted ->
 if (granted) {
 launchLunaCamera()
 }
 }

 private fun checkAndRequestCameraPermission() {
 if (ContextCompat.checkSelfPermission(
 this,
 Manifest.permission.CAMERA
) == PackageManager.PERMISSION_GRANTED
) {
 launchLunaCamera()
 } else {
 requestPermission.launch(Manifest.permission.CAMERA)
 }
 }

 private fun launchLunaCamera() {
 // Implementation in Step 7
 }
}

import androidx.lifecycle.lifecycleScope
import kotlinx.coroutines.flow.filter
import kotlinx.coroutines.flow.filterNotNull
import kotlinx.coroutines.flow.first
import kotlinx.coroutines.launch
import ru.visionlabs.sdk.lunacore.LunaID

class MainActivity : AppCompatActivity() {
 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContentView(R.layout.activity_main)

 // Wait for SDK initialization
 lifecycleScope.launch {
 LunaID.engineInitStatus

VisionLabs B.V. Page 109 of 270

LUNA ID is now integrated and ready to use. When you run your app, the camera will

automatically open and start detecting faces.

 .filter { it is LunaID.EngineInitStatus.Success }
 .first()

 // Request camera permission before launching
 checkAndRequestCameraPermission()
 }

 // Handle captured best shots
 lifecycleScope.launch {
 LunaID.bestShotResult
 .filterNotNull()
 .collect { event ->
 val bestShot = event.bestShot
 // Process the captured face image
 // e.g., display, save, or send to server
 }
 }
 }

 private fun launchLunaCamera() {
 LunaID.showCamera(this@MainActivity)
 }
}

VisionLabs B.V. Page 110 of 270

5.2 Integration guide for LUNA ID for iOS

This guide provides a step-by-step overview of integrating LUNA ID into an iOS application.

5.2.1 Step 1: Project setup

5.2.2 Step 2: ViewController setup

1․ Define pipeline estimations

Before presenting the camera interface, configure the estimations you want to include in the

LUNA ID pipeline. These estimations are managed using the LunaCore.LCLunaConfiguration class.

Create a new empty iOS application project in Xcode.

Get the vllicense.plist license file from your VisionLabs contact.

Add vllicense.plist to your Xcode project as a resource file.

Download the following required frameworks:

CheckJailBreakDevice.xcframework•

CryptoSwift.xcframework•

fsdk.xcframework•

tsdk.xcframework•

LunaCamera.xcframework•

LunaCore.xcframework•

LunaWeb.xcframework•

Place all .xcframework files in your application folder.

Drag and drop the frameworks into the General > Frameworks, Libraries, and

Embedded Content section of your application target in Xcode.

Set the embedding option for each framework to Embed & Sign to ensure they are

included in your application bundle.

Create an instance of LCLunaConfiguration .•

Customize its properties to match your requirements.•

VisionLabs B.V. Page 111 of 270

2․ Create the camera view controller

5.2.3 Step 3: UI customization

The LunaCamera.LMCameraBuilder.viewController() method gets as an input parameter object of

class LunaCamera.LMCustomization , which allows you to customize the UI.

The main customization object is the LunaCamera.LMCustomization class. To use it, create an

instance of the LunaCamera.LMCustomization class. It contains the uiCustomizer property of the

LunaCamera.LMUICustomizerProtocol protocol. You can create your own implementation of

LunaCamera.LMUICustomizerProtocol methods which will return your views implementation and

will be used as overlay for video feed.

LunaCamera.LMUICustomizerProtocol supports customization of the following components:

Face tracking frame

This method returns a custom view that tracks the position of the face in the video feed. The

returned view must conform to the LMFaceDetectionViewProtocol .

Required methods:

Important: LUNA ID can modify the LunaCamera.LMFaceDetectionViewProtocol frame at any

time. It affects size and position of view.

Use LunaCamera.LMCameraBuilder.viewController() to create an instance of

LMCameraViewControllerProtocol .

•

Pass the configured LCLunaConfiguration object as an input parameter.•

face tracking frame•

notification view•

root customization view•

func faceDetectionFrameView() -> LMFaceDetectionViewProtocol

switchToPositiveState() : Called when the face tracking process is successful.•

switchToNegativeState() : Called when there is an issue with the face in the video feed.•

VisionLabs B.V. Page 112 of 270

Notification view

This method returns a custom view for displaying notifications on top of the video feed.

Required methods:

The default implementation of LunaCamera.LMVideoStreamNotificationViewProtocol is the

LunaCamera.LMVideoStreamNotificationView class. You can use

LunaCamera.LMVideoStreamNotificationView class and customize font or text color:

Root customization view

This method returns a custom UIView that overlays the video feed. You can use it as a

container for additional UI elements.

func videoStreamNotificationView() -> LMVideoStreamNotificationViewProtocol

showNotificationMessage : Triggered when a notification needs to be displayed.

notificationMessage : Returns the current notification message.

•

Use applyFont(_ useFont: UIFont) to change the font.•

Use applyTextColor(_ color: UIColor) to change the text color.•

func rootCustomizationView() -> UIView

VisionLabs B.V. Page 113 of 270

6. Initial setup

6.1 Initial setup of LUNA ID for Android

This topic describes how to perform the initial setup of LUNA ID to start using it in your

Android projects.

6.1.1 Step 1. Get the .aar file

To download the .aar file:

1․ Specify the file repository.

2․ Provide user credentials in the local.properties file.

3․ Add the following code fragment to the repositories block in the settings.gradle.kts file:

The settings.gradle.kts file is located in the root directory of your project and defines

which projects and libraries you need to add to your build script classpath.

6.1.2 Step 2. Provide your user credentials

Important: Only authorized users can download artifacts from https://

download.visionlabs.ru/.

To provide your user credentials, in the local.properties file:

 repositories {
 ...

 ivy {
 url = java.net.URI.create("https://download.visionlabs.ru/")
 patternLayout {
 artifact ("releases/lunaid-[artifact]-[revision].[ext]")
 setM2compatible(false)
 }
 credentials {
 username = getLocalProperty("vl.login") as String
 password = getLocalProperty("vl.pass") as String
 }
 metadataSources { artifact() }
 }
 }

VisionLabs B.V. Page 114 of 270

1․ Specify your user credentials:

2․ Add a function for getting your login and password:

We recommend that you add the local.properties file to .gitignore for the version control

system does not track the file.

6.1.3 Step 3. Add the .aar file as a dependency

To initialize LUNA ID with your project, you need to add the .aar file as a dependency in the

build.gradle.kts file. The build.gradle.kts file defines various build settings such as

dependencies, plugins, library versions, compilation and testing settings, and so on. All these

settings affect how the project is build and what functionality it contains.

To add the .aar file as a dependency, add the following piece of code to the dependencies

block of the build.gradle.kts file:

 vl.login=YOUR_LOGIN
 vl.pass=YOUR_PASSWORD

fun getLocalProperty(key: String, file: String = "local.properties"): Any {
 val file = File(rootProject.projectDir, file)
 val properties = java.util.Properties()
 val localProperties = file
 if (localProperties.isFile) {
 java.io.InputStreamReader(java.io.FileInputStream(localProperties),
Charsets.UTF_8)
 .use { reader ->
 properties.load(reader)
 }
 } else if (System.getenv("CI") != null) {
 // on CI we dont really use it
 return "nothing"
 } else error("File from not found: '$file'")

 if (!properties.containsKey(key)) {
 error("Key not found '$key' in file '$file'")
 }
 return properties.getProperty(key)
}

VisionLabs B.V. Page 115 of 270

For example, implementation("ai.visionlabs.lunaid:core:X.X.X@aar") .

You need to update the {VERSION} parameter when a new version of LUNA ID is released.

6.1.4 Step 4. Initialize LUNA ID and activate the license

To initialize LUNA ID in your project and activate the license as shown in the example below:

Note: The parameters in the example are set to default values.

dependencies {
 ...
 implementation("ai.visionlabs.lunaid:core:{VERSION}@aar")
}

import android.app.Application
import ru.visionlabs.sdk.lunacore.LunaConfig
import ru.visionlabs.sdk.lunacore.LunaID
import ru.visionlabs.sdk.lunacore.liveness.GlassesCheckType
import ru.visionlabs.sdk.lunaweb.v6.ApiHumanConfig

class DemoApp : Application() {
 override fun onCreate() {
 super.onCreate()
 val baseUrl = "url"
 val token = "token"
 val headers = mapOf("Authorization" to token)
 val apiHumanConfig = ApiHumanConfig(baseUrl, headers)
 val lunaConfig = LunaConfig.create(
 acceptOccludedFaces = true,
 acceptOneEyed = false,
 acceptEyesClosed = false,
 detectFrameSize = 350,
 skipFrames = 36,
 ags = 0.5f,
 bestShotInterval = 500,
 detectorStep = 7,
 glassesChecks = setOf(GlassesCheckType.GLASSES_CHECK_SUN)
)
 LunaID.initEngine(
 app = this,
 lunaConfig = lunaConfig,
 apiHumanConfig = apiHumanConfig
)

VisionLabs B.V. Page 116 of 270

Important: For complete instructions on how to activate the LUNA ID license, see

Licensing.

 }
}

VisionLabs B.V. Page 117 of 270

The example has the following components:

Component Description

baseUrl A variable that specifies the URL to LUNA PLATFORM 5. For details, see

Interaction of LUNA ID with LUNA PLATFORM 5.

token A variable that specifies a LUNA PLATFORM 5 token, which will be transferred

to a request header from LUNA ID.

headers A map that specifies headers that will be added to each request to be sent to

LUNA PLATFORM 5.

apiHumanConfig An optional configuration parameter for calling the LUNA PLATFORM 5 API.

Can be set to null if no LUNA PLATFORM 5 API calls are required. This will also

disable the Online OneShotLiveness estimation, regardless of the

onlineLivenessSettings argument.

ApiHumanConfig A class required for configuration to call the LUNA PLATFORM 5 API.

lunaConfig An argument to be passed for best shot parameters.

LunaConfig A class that describes best shot parameters.

acceptOccludedFaces A parameter that specifies whether an image with an occluded face will be

considered the best shot. For details, see Getting the best shot with an

occluded face.

acceptOneEyed A parameter that specifies whether blinking with one eye is enabled.

acceptEyesClosed A parameter that specifies whether an image with two closed eyes will be

considered the best shot. For details, see Getting the best shot with faces

with closed eyes.

detectFrameSize A parameter that specifies a face detection bounding box size.

skipFrames A parameter that specifies a number of frames to wait until a face is detected

in the face recognition area before video recording is stopped.

ags A parameter that specifies a source image score for further descriptor

extraction and matching. For details, see AGS.

bestShotInterval A parameter that specifies a minimum time interval between best shots.

detectorStep A parameter that specifies a number of frames between frames with full face

detection.

glassesChecks Specifies what images with glasses can be best shots. For details, see Getting

the best shot with faces with occluded eyes.

LunaID.initEngine A method that activates the LUNA ID license.

faceFramePerScreen A parameter that specifies how much of the screen's width or height the

detected face occupies.

VisionLabs B.V. Page 118 of 270

https://docs.visionlabs.ai/luna/latest/standard-distribution/admin-manual/general-concepts/#authorization-system

6.1.5 Step 5. Call LUNA ID functions

To use LUNA ID functionality, such as open a camera, send a request to LUNA PLATFORM 5,

and so on, import LUNA ID libraries and specify the required functions in the build.gradle.kts

file. Consider the following example:

6.1.6 Examples

For detailed examples, see:

import android.app.Application
import ru.visionlabs.sdk.lunacore.LunaConfig
import ru.visionlabs.sdk.lunacore.LunaID
import ru.visionlabs.sdk.lunaweb.v6.ApiHumanConfig

class DemoApp : Application () {
 override fun onCreate() {
 super.onCreate()
 val token = "token"
 val headers = mapOf("Authorization" to token)
 LunaID.initEngine(
 app = this,
 lunaConfig = LunaConfig.create(),
 apiHumanConfig = ApiHumanConfig("url", headers)
)
 }
}
...

import android.os.Bundle
import androidx.appcompat.app.AppCompatActivity
import ru.visionlabs.lunademo.R
import ru.visionlabs.sdk.lunacore.LunaID

class MainActivity : AppCompatActivity(){
 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContentView(R.layout.activity_main)
 LunaID.showCamera(this)
 }
}

CameraExample•

PlatformAPIExample•

VisionLabs B.V. Page 119 of 270

https://github.com/VisionLabs/LunaID-Android-Examples/blob/master/CameraExample/src/main/java/ai/visionlabs/examples/camera/MainActivity.kt
https://github.com/VisionLabs/LunaID-Android-Examples/blob/master/PlatformAPIExample/src/main/java/ai/visionlabs/examples/platformapi/MainActivity.kt

6.2 Initial setup of LUNA ID for iOS

This topic describes how to perform an initial setup of LUNA ID to start using it in your iOS

projects.

6.2.1 Step 1. Add XCFrameworks

To embed XCFrameworks into your app:

1․ Drag and drop the following .xcframework files from the LUNA ID installation package to

the Frameworks, Libraries, and Embedded Content section of Xcode:

2․ Make sure that all the files have the Embed label so that they will be bundled with your

final app. Otherwise, your app will crash at start.

6.2.2 Step 2. Enable OneShotLiveness estimation

To enable OneShotLiveness estimation, specify the the following parameters in the LWConfig

class at the app start:

flower.xcframework •

fsdk.xcframework•

tsdk.xcframework•

LunaCamera.xcframework•

LunaCore.xcframework•

LunaWeb.xcframework•

Parameter Description

identifyHandlerID Specifies the ID of a handler that receives the best shot and identification

according to the existing list of faces.

registrationHandlerID Specifies the ID of a handler that registers a new user and receives the best

shot and user name.

verifyID Specifies the ID of a verifier used to roll out LUNA PLATFORM 5.

lunaAccountID Specifies the account_id generated after creating the LUNA PLATFORM 5

account for authorization by the Luna-Account-Id header.

lunaServerURL Specifies the LUNA PLATFORM 5 host URL. The URL should not have the slash

at the end. For example: https://LUNA_PLATFORM_HOST/6 .

VisionLabs B.V. Page 120 of 270

6.2.3 Step 3. Specify license data

Specify license data in the vllicense.plist file. For details, see Licensing.

6.2.4 Step 4. Create a face recognition screen in your app

To create a face recognition screen on which the video stream from the camera is displayed:

1․ Add the LMCameraBuilder.viewController() method in the required part of your app.

2․ Specify the LCLunaConfiguration object as an input parameter. It allows you to set various

threshold values that affect the resulting recognition screen.

You can also set up a delay, in seconds, to define when the face recognition will start after the

camera is displayed in the screen. To do this, use LCLunaConfiguration.startDelay .

VisionLabs B.V. Page 121 of 270

7. Working with LUNA ID

7.1 Best shots

7.1.1 Best shot estimations

About best shot estimations

This section explains how LUNA ID evaluates image quality to get the best shot from a video

stream.

HOW IT WORKS

LUNA ID analyzes each frame of a video stream captured by your device's camera, searching

for a face. For accurate evaluation, each frame must contain only one face. Frames with faces

that pass specific estimations are considered the best shots.

If an estimation fails, the corresponding error message is returned.

The minimum camera resolution required for optimal estimator performance is 720p

(1280x720 pixels).

In LUNA ID for Android

In LUNA ID for iOS

The LunaID.allEvents() event (or the more specialized LunaID.finishStates()) emits a

ResultSuccess event containing the best shot found and an optional path to the recorded

video.

•

You can adjust parameters for best shot estimations in LunaConfig.kt.•

The CameraUIDelegate.bestShot() callback receives the best shot.•

You can adjust parameters for best shot estimations in the LCLunaConfiguration structure.•

VisionLabs B.V. Page 122 of 270

ESTIMATIONS

LUNA ID performs several estimations to determine if an image qualifies as the best shot:

VisionLabs B.V. Page 123 of 270

Number of faces in the frame

The estimation ensures that the frame contains only one face. If multiple faces are

detected, the system returns a TooManyFacesError error message.

By default, no value is set for this estimation.

•

AGS estimation

The estimation calculates a score indicating the suitability of the source image for

descriptor extraction and matching. The output is a normalized float score ranging from

0 to 1. A score closer to 1 indicates better matching results for the image.

•

Head pose estimation

The estimation determines a person's head rotation angles in 3D space, specifically

along the pitch, yaw, and roll axes.

•

Image quality estimation

The estimation evaluates an image based on several key criteria to ensure it meets the

necessary standards. These criteria include:

•

Blurriness •

Underexposure •

Overexposure •

Face detection bounding box size

The estimation ensures that the detected face's bounding box matches a specified size.

This estimation helps determine if the subject is too far from the camera, affecting

image quality.

•

Frame edges offset

The estimation calculates the distance from the detected face's bounding box to the

edges of the image.

•

Eye state

The estimation determines whether the eyes in a detected face are open or closed.

•

Face occlusion

The estimation determines whether the lower part of the face in the frame is occluded

by an object. This feature allows you to define whether such frames can still be

considered as best shots. For details, see Getting the best shot with an occluded face.

•

Medical mask estimation

The estimation determines whether the face in a frame is partially covered by a medical

mask. This feature allows you to define whether such frames can still be considered as

best shots. For details, see Getting the best shot with an occluded face.

•

Mouth estimation

The estimation determines whether the mouth in a frame is occluded by an object, such

as a hand or other obstructions.

•

VisionLabs B.V. Page 124 of 270

Glasses estimation

The estimation determines whether the eyes in a frame are occluded by glasses.

•

VisionLabs B.V. Page 125 of 270

AGS estimation

The AGS (Approximate Garbage Score) estimation calculates a score indicating the suitability

of the source image for descriptor extraction and matching. The output is a normalized float

score ranging from 0 to 1. A score closer to 1 indicates better matching results for the image.

VALUE RANGE

The AGS estimation value must be between the minimal and maximum values:

DEFAULT VALUE

By default, the AGS threshold is set to 0.5 in LUNA ID for Android and 0.2 in LUNA ID for iOS.

We strongly do not recommend that you change the value.

IMPLEMENTATION

Platform Minimum value configuration Maximum value configuration

LUNA ID for

Android

public const val AGS_MIN: Float = 0F public const val AGS_MAX: Float = 1F

LUNA ID for

iOS

LCLunaConfiguration →

bestShotConfiguration →

estimationThreshold → ags = 0;

LCLunaConfiguration →

bestShotConfiguration →

estimationThreshold → ags = 1;

Platform Configuration

LUNA ID for Android public const val DEFAULT_AGS: Float = 0.5F

LUNA ID for iOS LCLunaConfiguration → bestShotConfiguration → estimationThreshold → ags = 0.2;

Platform Implementation

LUNA ID for Android public val ags: Float = DEFAULT_AGS

LUNA ID for iOS @property (nonatomic) CGFloat ags;

VisionLabs B.V. Page 126 of 270

Head pose estimation

The head pose estimation determines a person's head rotation angles in 3D space,

specifically along the pitch, yaw, and roll axes:

Head pose

ACCEPTABLE ANGLE RANGES

For optimal results, the acceptable ranges for these angles are as follows:

All pitch, yaw, and roll values must fall within the minimal and maximal valid head position

values specified by your system configuration.

DEFAULT VALES

By default, all rotation angles (pitch, yaw, and roll) are set to 25 degrees each side.

Pitch (X-axis): This angle measures the vertical tilt of the head. It limits the head

rotation along the X-axis.

•

Yaw (Y-axis): This angle measures the horizontal rotation of the head. It limits the head

rotation along the Y-axis.

•

Roll (Z-axis): This angle measures the lateral tilt of the head. It limits the head rotation

along the Z-axis.

•

Pitch: 0 to 45 degrees•

Yaw: 0 to 45 degrees•

Roll: 0 to 45 degrees•

VisionLabs B.V. Page 127 of 270

RECOMMENDED VALUES

We recommend that you specify the following values for the rotation angles:

IMPLEMENTATION

Angle LUNA ID for Android LUNA ID for iOS

Pitch public const val

DEFAULT_HEAD_PITCH: Float = 15F

LCLunaConfiguration → bestShotConfiguration →

estimationThreshold → headPitch = 15;

Yaw public const val DEFAULT_HEAD_YAW:

Float = 15F

LCLunaConfiguration → bestShotConfiguration →

estimationThreshold → headYaw = 15;

Roll public const val

DEFAULT_HEAD_ROLL: Float = 15F

LCLunaConfiguration → bestShotConfiguration →

estimationThreshold → headRoll = 15;

Angle LUNA ID for Android LUNA ID for iOS

Pitch public val headPitch: Float =

DEFAULT_HEAD_PITCH

@property (nonatomic) CGFloat

headPitch;

Yaw public val headYaw: Float = DEFAULT_HEAD_YAW @property (nonatomic) CGFloat

headYaw;

Roll public val headRoll: Float = DEFAULT_HEAD_ROLL @property (nonatomic) CGFloat

headRoll;

VisionLabs B.V. Page 128 of 270

Image quality estimation

The image quality estimation evaluates an image based on several key criteria to ensure it

meets the necessary standards. These criteria include:

To perform the estimation, LUNA ID uses the LUNA SDK SubjectiveQuality estimator. For

details, see Image Quality Estimation.

DEFAULT VALUES

Below are the default values for each criterion used in the image quality estimation:

Blurriness: The image appears out of focus.•

Underexposure: The image is too dark.•

Overexposure: The image is too bright.•

Parameter Default value

Blurriness 0.61

Lightness 0.57

Darkness 0.50

VisionLabs B.V. Page 129 of 270

https://docs.visionlabs.ai/sdk/v.5.31.0/sdk/handbookcompilation/parameter-estimation-facility/#image-quality-estimation

Face detection bounding box size estimation

The face detection bounding box size estimation ensures that the detected face's bounding

box matches a specified size. This estimation helps determine if the subject is too far from

the camera, affecting image quality.

RECOMMENDED MINIMUM SIZE

The minimum recommended size for the face bounding box is 200 x 200 pixels.

DEFAULT VALUES

CONFIGURATION DETAILS

Below are the configuration details for setting the minimum detectable frame size:

IMPLEMENTATION

LUNA ID for iOS: 200 pixels•

LUNA ID for Android: 350 dp (density-independent pixels)

If the converted pixel value is less than 100 pixels, the frame size will automatically

be set to 100 pixels to maintain a minimum acceptable quality.

•

Platform Configuration

LUNA ID for Android public const val DEFAULT_MIN_DETECT_FRAME_SIZE: Int = 350

LUNA ID for iOS LCLunaConfiguration → bestShotConfiguration → minDetSize = 200;

Platform Implementation

LUNA ID for Android public val detectFrameSize: Int = DEFAULT_MIN_DETECT_FRAME_SIZE

LUNA ID for iOS @property (nonatomic, assign) NSInteger minDetSize;

VisionLabs B.V. Page 130 of 270

Frame edges offset

The frame edges offset estimation calculates the distance from the detected face's bounding

box to the edges of the image.

MINIMAL BORDER DISTANCE

DEFAULT VALUES

IMPLEMENTATION

Without OneShotLiveness Estimation: The minimal border distance for best shot

estimation is 0 pixels. This means the face can be right at the edge of the frame.

•

With OneShotLiveness Estimation: The minimal border distance increases to 10

pixels to ensure sufficient space around the face for accurate OneShotLiveness

estimation.

•

LUNA ID for Android : The default value is set to 0 pixels.•

LUNA ID for iOS : The default value is set to 10 pixels.•

Platform Implementation

LUNA ID for Android public val borderDistance: Int = DEFAULT_BORDER_DISTANCE

LUNA ID for iOS @property (nonatomic, assign) NSInteger borderDistance;

VisionLabs B.V. Page 131 of 270

Eye state

The eye state estimation determines whether the eyes in a detected face are open or closed.

BEHAVIOR IN DIFFERENT PLATFORMS

In LUNA ID for Android

In LUNA ID for iOS

IMPLEMENTATION

Best shot with closed eyes: In some scenarios, a frame with a face that has closed

eyes can still be considered the best shot. For details, see Getting the best shot with

faces with closed eyes.

•

Dynamic Liveness: If Dynamic Liveness is enabled, all frames can be considered the

best shots regardless of the eye status.

•

Skipping frames with closed eyes: Frames where one or both eyes are closed are

automatically skipped.

•

Dynamic Liveness: If Dynamic Liveness is enabled, all frames can be considered the

best shots regardless of the eye status.

•

Platform Implementation

LUNA ID for Android The estimation is performed only if eye interaction is enabled.

LUNA ID for iOS @property (nonatomic, assign) BOOL checkEyes;

If set to true , the best shot with closed eyes will be skipped.

VisionLabs B.V. Page 132 of 270

Medical mask estimation

The medical mask estimation recognizes full or partial face coverage by a medical mask. This

feature allows you to define whether such frames can still be considered as best shots. For

details, see Getting the best shot with an occluded face.

DEPENDENCY ON FACE OCCLUSION ESTIMATION

For details, see Face occlusion estimation.

ERROR HANDLING

IMPLEMENTATION

ADDITIONAL NOTES

LUNA ID for Android: If acceptOccludedFaces or acceptMask are set to true , LUNA ID

skips the corresponding estimations for face occlusions or medical masks, respectively.

•

LUNA ID for iOS: Face occlusion and medical mask estimations are performed

independently. If both face occlusion and medical mask estimations are enabled, the

mask estimator runs first. When a medical mask is detected, the face occlusion

estimation is omitted.

•

LUNA ID for Android: Returns the FaceWithMask error message.•

LUNA ID for iOS: Returns error code 1010.•

Platform Implementation

LUNA ID for Android public val acceptMask: Boolean = true

LUNA ID for iOS @property (nonatomic, assign) BOOL occludeCheck;

LUNA ID for Android: By default, acceptMask is set to true , allowing frames with

occluded faces to be considered as potential best shots. Adjust this setting based on

your specific requirements.

•

LUNA ID for iOS: The occludeCheck parameter toggles the medical mask estimation.

Setting it to false disables this estimation, while setting it to true enables it. Ensure that

you adjust this parameter according to your application's needs.

•

VisionLabs B.V. Page 133 of 270

Face occlusion estimation

The face occlusion estimation determines whether the face in a frame is covered by an

object.

BEHAVIOR IN DIFFERENT PLATFORMS

In LUNA ID for Android

You can enable or disable via the LunaConfig.acceptOccludedFaces parameter. By default, this

parameter is set to true , meaning that no estimations for occluded faces are performed.

When acceptOccludedFaces = false , LUNA ID checks for occlusions of the nose, mouth, and lower

part of the face. If an occlusion is detected, it triggers the OccludedFace error.

Dependency on the medical mask estimation

If acceptOccludedFaces or acceptMask are set to true , LUNA ID skips the corresponding

estimations for face occlusions or medical masks, respectively.

In LUNA ID for iOS

The face occlusion estimation checks if the face in a frame are occluded by an object.

However, you can still perform the mouth and medical mask estimations separately.

The faceOcclusionEstimatorEnabled parameter controls whether the system should check one

face for an occlusion. Setting it to false disables this estimation, while setting it to true

enables it.

Dependency on mouth estimation

The face occlusion estimation is performed after the mouth estimation if both the estimations

are enabled.

ERROR HANDLING

val config = LunaConfig.create(
 ...
 acceptOccludedFaces = true
 ...
)

LUNA ID for Android: Returns the DetectionError.OccludedFace error message.•

VisionLabs B.V. Page 134 of 270

IMPLEMENTATION

LUNA ID for iOS: Returns the following error codes:•

1031•

1033•

1034•

1035•

1036•

Platform Implementation

LUNA ID for Android public val acceptOccludedFaces: Boolean = true

LUNA ID for iOS @property (nonatomic, assign) BOOL faceOcclusionEstimatorEnabled;

VisionLabs B.V. Page 135 of 270

Glasses estimation

The glasses estimation determines whether the eyes in a frame are occluded by glasses. This

feature allows you to define whether frames with occluded eyes can be considered as best

shot candidates.

ESTIMATION RULES

In LUNA ID for Android

You can specify detailed rules for eye occlusion:

In LUNA ID for iOS

For details, see Getting the best shot with faces with occluded eyes.

Images of people wearing sunglasses cannot be considered best shots.•

Images of people wearing eyeglasses cannot be considered best shots.•

Images of people wearing any type of glasses cannot be considered best shots.•

Frames containing faces with sunglasses will automatically be excluded from best shot

candidates.

•

Frames containing faces with regular eyeglasses can still be considered as best shots.•

VisionLabs B.V. Page 136 of 270

7.1.2 Getting the best shot

With LUNA ID, you can capture video stream and get the best shot on which the face is fixed

in the optimal angle for further processing.

Tip: In LUNA ID for Android you can specify a face recognition area for best shot selection.

In LUNA ID for Android

1․ Initialize the camera.

Call the LunaID.showCamera() method to start the camera session. This method initiates face

detection and analysis within the video stream.

2․ Get the list of best shots.

This step is optional. Implement it, if you want to get multiple best shots during a session.

You can then send the list of acquired best shot to the backend for estimation aggregation.

For details, see Sending multiple frames for estimation aggregation to the backend.

2.1. Set the LunaConfig.multipartBestShotsEnabled parameter to true to get multiple frames.

2.2. Specify the number of best shots to be returned by setting the LunaConfig.bestShotsCount

parameter. The valid range of values ​​for bestShotsCount is from 1 to 10.

When multipartBestShotsEnabled is active, the list of best shots will be returned in the

BestShotsFound event. Use the bestShots Flow to collect this list.

Structure of BestShotsFound :

Usage example:

This Flow continuously gets a list of best shots as they are detected during the session.

3․ Subscribe to the final best shot result.

data class BestShotsFound(
 val bestShots: List<BestShot>?
) : Event()

LunaID.bestShots.filterNotNull().onEach { bestShotsList ->
 Log.e(TAG, "bestShots: ${bestShotsList.bestShots}")
}.launchIn(viewModelScope)

VisionLabs B.V. Page 137 of 270

To retrieve the final best shot result (including metadata such as videoPath and

interactionFrames), subscribe to the LunaID.bestShot Flow.

Structure of BestShotFound :

Usage example:

4․ Handle best shot events.

The system gets events for both individual best shots (BestShotFound) and lists of best shots

(BestShotsFound). Depending on your use case, handle these events accordingly:

BestShotFound

Contains the final best shot and optional metadata.

Use this for single-best-shot scenarios.

BestShotsFound

Contains a list of all best shots detected during the session.

Use this for multi-best-shot scenarios.

data class BestShotFound(
 val bestShot: BestShot, // The selected best shot
 val videoPath: String?, // Path to the recorded video (if enabled)
 val interactionFrames: List<InteractionFrame>? // Frames with Dynamic Liveness
interactions (optional)
) : Event()

val bestShotFlow = MutableStateFlow<Event.BestShotFound?>(null)

LunaID.bestShot.filterNotNull().onEach { bestShotFound ->
 Log.e("BestShotFound", bestShotFound.toString())
 // Process the best shot or its associated metadata here
}.launchIn(viewModelScope)

VisionLabs B.V. Page 138 of 270

FACE RECOGNITION AREA

In some cases, you may need the best shot search to start only after a user places their face

in a certain area in the screen. You can specify face recognition area borders by implementing

one of the following strategies:

ADD A DELAY BEFORE STARTING FACE RECOGNITION

You can optionally set up a fixed delay or specific moment in time to define when the face

recognition will start after the camera is displayed in the screen. To do this, use the

StartBestShotSearchCommand command.

ADD A DELAY BEFORE GETTING THE BEST SHOT

You can optionally set up a delay, in milliseconds, to define for how long a user's face should

be placed in the face detection bounding box before the best shot is taken. To do this, use the

LunaID.foundFaceDelayMs parameter. The default value is 0.

In LUNA ID for iOS

To get the best shots, pass a value to the delegate parameter of the

LMCameraBuilder.viewController camera controller instance creation function that conforms to

the LMCameraDelegate protocol.

Border distances are not initialized

Border distances are initialized with an Android custom view

Border distances are initialized in dp

Border distances are initialized automatically

let controller = LMCameraBuilder.viewController(delegate: LMCameraDelegate,
 configuration: LCLunaConfiguration,
 livenessAPI: livenessAPI)

VisionLabs B.V. Page 139 of 270

With the implementation of the LMCameraDelegate protocol, the camera controller will interact

with the user application. In the implemented methods, you will receive the best shot or the

corresponding error.

FACE RECOGNITION AREA

The minDetSize parameter specifies the minimum size of a face (in pixels) that LUNA ID can

detect within a frame. For example, if a face fits into a square with a side length of 50 pixels

and minDetSize is set to 60, such a face will not be detected.

You can define minDetSize in either of the following ways:

Difference between minDetSize and minFaceSize :

ADD A DELAY BEFORE STARTING FACE RECOGNITION

You can optionally set up a delay, in seconds, to define when the face recognition will start

after the camera is displayed in the screen. To do this, use LCLunaConfiguration.startDelay .

ADD A DELAY BEFORE GETTING THE BEST SHOT

You can optionally set up a delay, in seconds, to define for how long a user's face should be

placed in the face detection bounding box before the best shot is taken. To do this, define the

LCLunaConfiguration::faceTime property. The default value is 5. In case, the face disappears from

the bounding box within the specified period, the BestShotError.FACE_LOST will be caught in the

LCBestShotDelegate::bestShotError delegate.

public protocol LMCameraDelegate: AnyObject {

 func bestShot(_ bestShot: LunaCore.LCBestShot, _ videoFile: String?)

 func error(_ error: LMCameraError, _ videoFile: String?)

}

Locate the LCLunaConfiguration class in the best shot configuration section and define the

minDetSize property with the required value.

•

Configure minDetSize via the LCLunaConfiguration.plist file.•

minDetSize determines the smallest detectable face size in the frame.•

minFaceSize specifies the minimum acceptable size, in pixels, for a detected face. Faces

smaller than this size will be ignored during the detection process.

This parameter does not affect face detection but rather ensures the quality of the

detected face.

•

VisionLabs B.V. Page 140 of 270

7.1.3 Getting the best shot with an occluded face

In LUNA ID, you can define whether images with occluded faces can be considered as best

shots. This feature allows you to customize the behavior based on your specific requirements.

In LUNA ID for Android

To determine whether an image with an occluded face will be considered the best shot, use

the LunaConfig.acceptOccludedFaces parameter.

The acceptOccludedFaces parameter has the following values:

Important: The acceptOccludedFaces parameter requires the lunaid-mask-X.X.X.aar

dependency. For details, see Distribution kit.

To define that images with occluded faces can be considered as best shots:

1․ Add the required .plan files to your project dependencies:

2․ Specify the acceptOccludedFaces parameter in LunaConfig :

In LUNA ID for iOS

To determine whether an image with an occluded face will be considered the best shot, use

the LCLunaConfiguration.occludeCheck parameter.

Value Description

true Default. An image with an occluded face can be considered the best shot.

false An image with an occluded face cannot be considered the best shot.

The BestShotsFound event will appear in LunaID.bestShots() with payload

DetectionError.OccludedFace every time an occluded face is recognized.

 implementation("ai.visionlabs.lunaid:mask:X.X.X@aar")

LunaConfig.create(
 acceptOccludedFaces = true
)

VisionLabs B.V. Page 141 of 270

The occludeCheck parameter has the following values:

Value Description

true Default. An image with an occluded face can be considered the best shot.

false An image with an occluded face cannot be considered the best shot.

If an occluded face is recognized, either of the following errors will be returned: 1008,

1009, 1010. For error descriptions, see Status codes and errors.

VisionLabs B.V. Page 142 of 270

7.1.4 Getting the best shot with faces with closed eyes

In LUNA ID, you can define whether images with faces with one or two closed eyes can be

considered best shots.

In LUNA ID for Android

ONE CLOSED EYE

To get the best shot with a closed eye, use the acceptOneEyeClose parameter. The parameter

has the following values:

Important: The acceptOneEyeClose parameter requires the acceptOneEyed parameter to be

enabled. For details, see Performing Dynamic Liveness estimation.

TWO CLOSED EYES

To get the best shot with two closed eyes, use the acceptEyesClosed parameter. The parameter

has the following values:

Consider an example below:

Important: The acceptEyesClosed parameter requires the lunaid-common-arm-X.X.X.aar

dependency. For details, see Distribution kit.

Value Description

true Default. Specifies that frames that contain faces with a closed eye can be best shots.

false Specifies that frames that contain faces with a closed eye cannot be best shots.

However, it is possible to get the best shot with an occluded eye. For details, see

Getting the best shot with faces with occluded eyes.

Value Description

true Specifies that frames that contain faces with closed eyes can be best shots.

false Default. Specifies that frames that contain faces with closed eyes cannot be best

shots.

LunaConfig.create(
acceptEyesClosed = false,
)

VisionLabs B.V. Page 143 of 270

In LUNA ID for iOS

ONE CLOSED EYE

To get the best shot with a closed eye, use the eyeInjury parameter. The parameter has the

following values:

TWO CLOSED EYES

In LUNA ID for iOS, it is impossible to get the best shot with two closed eyes.

Value Description

true Default. Specifies that frames that contain faces with a closed eye can be best shots.

false Specifies that frames that contain faces with a closed eye cannot be best shots.

However, it is possible to get the best shot with an occluded eye. For details, see

Getting the best shot with faces with occluded eyes.

VisionLabs B.V. Page 144 of 270

7.1.5 Getting the best shot with faces with occluded eyes

In LUNA ID, you can define whether an image in with occluded eyes can be considered the

best shot.

In LUNA ID for Android, you can specify the following eye occlusion rules:

In LUNA ID for iOS, images that contain faces with sunglasses will be excluded from best shot

candidates. Images that contain faces with eyeglasses can be best shots.

In LUNA ID for Android

To get best shots with faces with occluded eyes:

1․ Add the required .plan files to the dependency:

2․ Specify the glassesChecks parameter in LunaConfig to define the type of glasses in the

image and whether the image can be the best shot:

glassesChecks

Specifies what images with glasses can be best shots.

Possible values:

Images of people in sunglasses cannot be best shots.•

Images of people in eyeglasses cannot be best shots.•

Images of people in any glasses cannot be best shots.•

implementation("ai.visionlabs.lunaid:glasses:X.X.X@aar")

lunaConfig = LunaConfig.create(
 glassesChecks = setOf(GlassesCheckType.GLASSES_CHECK_SUN,
GlassesCheckType.GLASSES_CHECK_DIOPTER)
)

Value Description

GlassesCheckType.GLASSES_CHECK_SUN Defines that images with people in sunglasses cannot be

best shots.

GlassesCheckType.GLASSES_CHECK_DIOPTER Defines that images with people in eyeglasses cannot be

best shots.

VisionLabs B.V. Page 145 of 270

You can specify either one, none, or both possible values.

The default value is not set.

In LUNA ID for iOS

To get best shots with faces with occluded eyes, set the LCLunaConfiguration.glassesCheckEnabled

property to true . The default value is false . This will enable the glasses estimation. Only

images that contain faces in eyeglasses will be considered best shots.

Optionally, you can set the LCLunaConfiguration.advancedSunglasses property to true to prohibit

getting best shots with transparent sunglasses. The default value is false .

VisionLabs B.V. Page 146 of 270

7.1.6 Using aggregation

The aggregation mechanism in LUNA ID is designed to enhance the accuracy and reliability of

face recognition by analyzing multiple frames collectively. Aggregation helps mitigate

occasional neural network faults when performing the following best shot estimations:

How it works

LUNA ID uses an aggregation process to improve accuracy by analyzing multiple frames.

Here’s how it works.

IN LUNA ID FOR ANDROID

The aggregation mechanism operates as follows:

Estimation Platform

Eye state

Glasses

Mouth

Face occlusion

Frame collection: LUNA ID captures 10 consecutive frames.

Glasses detection: LUNA ID checks if any frame has glasses. If even one frame does, the

set is disqualified, and the user gets a "Take off the glasses" error message.

Eye status estimation: No more than two frames should show closed eyes. If more than

two frames have closed eyes, the system sends an "Eyes closed" error message.

Best shot determination : If none of the frames have glasses and no more than two

frames show closed eyes, LUNA ID selects this set as the best shot.

Final result formation:

The final result is generated only after accumulating the minimum required number of

best shots.

•

If the minimum threshold is not met, the result is not recorded or returned.•

VisionLabs B.V. Page 147 of 270

IN LUNA ID FOR IOS

For each specific aggregator, the mechanism operates as follows:

Enable aggregation

IN LUNA ID FOR ANDROID

You can selectively enable aggregation for either eye status, glasses estimation, or both,

depending on your specific needs.

To enable aggregation:

By default, eyesAggregationEnabled and glassesAggregationEnabled are set to true .

Performance optimization

For POS terminals, we recommend disabling aggregation by setting the

LunaConfig.eyesAggregationEnabled and LunaConfig.glassesAggregationEnabled parameters to false .

This adjustment will significantly boost processing speed and reduce system load.

IN LUNA ID FOR IOS

You can enable aggregation through code or a configuration file:

Through code

Frame collection: LUNA ID captures 20 consecutive frames.•

Initial estimation: If there are 14 or more successful frames (that is, at least 14 out of

20), the aggregation is considered successful.

•

Handling unsuccessful aggregations: If the initial evaluation is unsuccessful, LUNA

ID continues to add new frames one by one to the previously accumulated set. Each

time a new frame is added to the end of the queue, the first frame in the queue is

discarded. This creates a "sliding window" effect, where the aggregation score is

updated continuously with each new frame.

•

Termination criteria: Aggregation does not stop when it receives a positive response.

Instead, it continues until all active aggregations are successful. This ensures that all

criteria are met simultaneously before proceeding.

•

Simultaneous evaluation: All aggregations run in parallel. LUNA ID requires all checks

to be approved at the same moment for a best shot to be captured.

•

Set LunaConfig.eyesAggregationEnabled to true to enable eye status estimation

aggregation.

•

Set LunaConfig.glassesAggregationEnabled to true to enable glasses estimation

aggregation.

•

VisionLabs B.V. Page 148 of 270

Set the LCLunaConfiguration.glassesCheckEnabled and LCLunaConfiguration.aggregationEnabled

properties to true .

Through a configuration file

In the LCLunaConfiguration.plist configuration file, set glassesCheckEnabled and

aggregationEnabled parameters to true .

By default, glassesCheckEnabled and aggregationEnabled are set to false .

Aggregation in TrackEngine

HOW IT WORKS

In LUNA ID for Android

Aggregation in TrackEngine minimizes false alarms for PrimaryFaceLostCritical and FaceLost

errors that occur when a face is momentarily absent, thereby improving detection stability.

The mechanism operates as follows:

ENABLE AGGREGATION IN TRACKENGINE

In LUNA ID for Android

To enable aggregation in TrackEngine, set the trackAggregationEnabled parameter to true in

LunaConfig :

By default, the trackAggregationEnabled parameter is set to true .

The system monitors face detection results on a per-frame basis.

The PrimaryFaceLostCritical or FaceLost error is triggered only if a face is not detected in three

consecutive frames.

If a face is successfully detected in any of these three frames, the error is suppressed, and

the system considers the face to be present in the frame.

val config = LunaConfig.create(
 trackAggregationEnabled = true
)

VisionLabs B.V. Page 149 of 270

7.1.7 Best shot error notifications

In LUNA ID for Android

A best shot error notification is displayed as soon as an error occurs. The next notification

may not be sent earlier than in half a second. If half a second has passed, a new notification

will be displayed immediately.

When multiple errors occur within a second, notifications are sent simultaneously. The

number of notifications sent depends on the maxMessages parameter in the event-receiving

function.

The default parameter value is 0,5.

The maximum parameter value is 3.

If you need to hide a notification, you can link the hiding to the appropriate event, for

example, to bestShot .

fun allEvents(maxMessages: Int = 0,5)

VisionLabs B.V. Page 150 of 270

The table below lists best shot errors in descending order by their priority:

In case there are more than 3 errors, the first 3 highest priority ones are selected, the rest are

discarded.

In LUNA ID for iOS

The LMErrorPresenter class has an object that allows you to manage error notifications.

LMErrorPresenter accumulates an array of errors that occurred over the past second, and then

passes them out via the LMErrorPresenterDelegate protocol in the func send(errors: [Error])

method.

The error presenter object is contained in the LMBestShotService class and is not accessible

directly. It only works with the LMBestShotServiceDelegate delegate, which forwards the

LMErrorPresenterDelegate methods.

Error Description

PrimaryFaceLostCritical The primary face that was detected in the video stream has been lost.

PrimaryFaceLost The primary face was not detected in the video stream or has been lost.

FaceLost Unable to detect a face in the video stream.

TooManyFaces The frame must contain only one face for LUNA ID to perform a series of

estimations, and then select the best shot.

FaceOutOfFrame A face is too close to the camera and does not fit the face recognition area.

FaceDetectSmall The size of the detected face does not correspond to the specified bounding

box size size.

BadHeadPose Head rotation angles are not between the minimal and maximum valid head

position values.

BadQuality The input image does not meet the AGS estimation threshold.

BlurredFace The input image does not meet the blurriness threshold.

TooDark The input image does not meet the darkness threshold.

TooMuchLight The input image does not meet the lightness threshold.

GlassesOn The person in the input image is wearing sunglasses.

OccludedFace The face is not properly visible in the input image.

BadEyesStatus The eye state estimation failed.

VisionLabs B.V. Page 151 of 270

The errors: [Error] array can contain from 0 to 3 errors. You can specify the number of errors by

using the errorLimit: Int argument in the LMBestShotService constructor. The limit can take

values ​​from 0 to 3. The default value is 3.

Errors are sorted in descending order by two criteria:

Important: Even one critical error will be of a higher priority than a repeatedly occurring

non-critical one. In the absence of critical errors, errors will be displayed according to

priorities. The list of error priorities (in descending order) is given below.

CRITICAL ERRORS

The below errors lead to an immediate session termination.

The most common ones•

The most critical ones•

Error Code Description

INTERACTION_TIMEOUT 1007 The frame was not received in the time interval

allotted for the best shot.

PRIMARY_FACE_CRITICAL_LOST 1027 The primary face that was detected in the video

stream has been lost.

LIVENESS_ERROR 1004 The OneShotLiveness estimation failed.

VisionLabs B.V. Page 152 of 270

NON-CRITICAL ERRORS

Non-critical errors inform you that you are doing something wrong when trying to get the best

shot.

Other errors that are not listed above have a lower priority. For a full list of errors, see Status

codes and errors.

In case there are more than 3 errors, the first 3 highest priority ones are selected, the rest are

discarded.

Error Code Description

MULTIPLE_FACES 1003 The frame must contain only one face for LUNA ID to

perform a series of estimations, and then select the best

shot.

FACE_LOST 1022 The face that was detected in the video stream has been

lost. The session will not be terminated.

BORDERS 1017 The bounding box size with the detected face does not

correspond to the specified size.

TOO_FAR 1016 The bounding box size with the detected face does not

correspond to the specified size.

OCCLUDED_FACE 1010 The face is not properly visible in the input image.

BAD_HEAD_POSE 1002 Head rotation angles are not between the minimal and

maximum valid head position values.

IMAGE_IS_BLURRED 1011 The input image does not meet the blurriness threshold.

IMAGE_IS_UNDEREXPOSED 1012 The input image does not meet the darkness threshold.

IMAGE_IS_OVEREXPOSED 1013 The input image does not meet the lightness threshold.

SUNGLASSES_DETECTED 1024 The person in the input image is wearing sunglasses.

EYES_CHECK_FAILED 1026 The eye state estimation failed.

BAD_QUALITY 1001 The input image does not meet the AGS estimation

threshold.

VisionLabs B.V. Page 153 of 270

7.2 Face tracking

7.2.1 Tracking a face identity

In LUNA ID, you can track a face identity of the face detected in a video stream during the

entire session. This helps you avoid security issues and make sure that the detected face

belongs to one person.

In LUNA ID for Android

To implement face identity tracking, use the LunaConfig.usePrimaryFaceTracking and

LunaConfig.faceSimilarityThreshold parameters.

In LUNA ID for iOS

To implement face identity tracking, set the LCLunaConfiguration.trackFaceIdentity property to

true . By default, the parameter value is false .

Parameter Description Default

value

usePrimaryFaceTracking Determines whether to track the face that was detected

in the face recognition area first.

true

faceSimilarityThreshold Determines whether the face that was first detected in

the face recognition area remains the same.

0,5

VisionLabs B.V. Page 154 of 270

7.2.2 Fixing a face in the frame

In LUNA ID, you can implement an event (in LUNA ID for Android) or timeout (in LUNA ID for

iOS) which will react to the appearance of a face in the frame for further processing.

In LUNA ID for Android

The LunaID.faceDetectionChannel event is triggered when LUNA ID detects a face in the frame

for the first time and is used for further image processing.

Below is a usage example:

In LUNA ID for iOS

After a video session starts, LUNA ID waits for a face to appear in the frame for further

processing. You can set a timeout, in seconds, within which the face should appear in the

frame. If the face does not appear in the frame after this timeout, the session will be

terminated with the 1028 error.

To set the timeout, use the LCLunaConfiguration.emptyFrameTime property.

The default value is 0.

LunaID.faceDetectionChannel
 .receiveAsFlow()
 .onEach {
 Log.d(TAG,"face found ${it.data}")
 }.launchIn(lifecycleScope)

VisionLabs B.V. Page 155 of 270

7.3 OneShotLiveness

7.3.1 About OneShotLiveness estimation

OneShotLiveness is an algorithm for determining whether a person in one or more images is

"real" or a fraudster using a fake ID (printed face photo, video, paper, or 3D mask).

OneShotLiveness is used as a pre-check before performing face detection.

OneShotLiveness estimation types

With LUNA ID, you can perform the following types of OneShotLiveness estimation:

Online OneShotLiveness estimation

To perform Online OneShotLiveness estimation, LUNA ID sends a request to the LUNA

PLATFORM 5 /liveness endpoint. For more details about LUNA ID and LUNA PLATFORM 5

interaction, see the Interaction of LUNA ID with LUNA PLATFORM 5.

•

Offline OneShotLiveness estimation

To perform Offline OneShotLiveness estimation, you do not need to send requests to

LUNA PLATFORM 5. You can perform the estimation directly on your device.

•

VisionLabs B.V. Page 156 of 270

Image requirements

An image that LUNA ID takes as input must be a source image and meet the following

requirements:

OneShotLiveness thresholds

By default, two thresholds are used for OneShotLiveness estimation:

Parameters Requirements

Minimum resolution for mobile

devices

720x960 pixels

Maximum resolution for mobile

devices

1080x1920 pixels

Compression No

Image warping No

Image cropping No

Effects overlay No

Mask No

Number of faces in the frame 1

Face detection bounding box

width

More than 200 pixels

Frame edges offset More than 10 pixels

Head pose -20 to +20 degrees for head pitch, yaw, and roll

Image quality The face in the frame should not be overexposed,

underexposed, or blurred.

Quality threshold•

Liveness threshold•

VisionLabs B.V. Page 157 of 270

QUALITY THRESHOLD

Quality threshold estimates the input image by the following parameters:

The table below has the default threshold values. These values are set to optimal:

For details on image quality estimation, see Image Quality Estimation and Quality estimator

settings.

LIVENESS THRESHOLD

The LunaConfig.livenessQuality parameter specifies the threshold lower which the system will

consider the result as a presentation attack.

For images received from mobile devices, the default liveness threshold value is 0.5. For

details, see Liveness threshold.

Number of best shots

You can specify a number of best shot to be collected for a OneShotLiveness estimation. To do

this:

Lightness (overexposure)•

Darkness (underexposure)•

Blurriness•

Illumination•

Specularity•

Threshold Value

blurThreshold 0.61

darknessThreshold 0.50

lightThreshold 0.57

illuminationThreshold 0.1

specularityThreshold 0.1

In LUNA ID for Android, use the LunaConfig.bestShotsCount parameter.

The default value is 1.

•

In LUNA ID for iOS, use the LCBestShotConfiguration.numberOfBestShots property.

The default value is 3.

•

VisionLabs B.V. Page 158 of 270

https://docs.visionlabs.ai/sdk/v.5.31.0/sdk/handbookcompilation/parameter-estimation-facility/#image-quality-estimation
https://docs.visionlabs.ai/sdk/v.5.31.0/sdk/configurationguide/settings/#quality-estimator-settings
https://docs.visionlabs.ai/sdk/v.5.31.0/sdk/configurationguide/settings/#quality-estimator-settings
https://docs.visionlabs.ai/luna/v.5.103.0/lp-distribution/administrator-manual/additional-information/#liveness-threshold

7.3.2 Performing Online OneShotLiveness estimation

You can automatically perform Online OneShotLiveness estimation by sending a request to

the LUNA PLATFORM 5 /liveness endpoint. The estimation allows you determine if the person

in the image is a living person or a photograph. You can then validate the received images

with LUNA PLATFORM 5.

In LUNA ID for Android

To perform Online OneShotLiveness estimation:

1․ Specify the livenessType: LivenessType field in LunaConfig . The field accepts one of the

following values:

2․ Specify the required LUNA PLATFORM 5 server parameters in ApiHumanConfig .

The example below shows how to enable Online OneShotLiveness estimation:

Value Description

None Disables the estimation. The default value.

Online Enables the estimation by sending a request to the LUNA PLATFORM 5 /liveness

endpoint.

val apiConfig = ApiHumanConfig("http://luna-platform.com/api/6/")
 LunaID.init(
 ...
 apiHumanConfig = apiConfig,
 lunaConfig = LunaConfig.create(
 livenessType = LivenessType.Online,
),
)

VisionLabs B.V. Page 159 of 270

In LUNA ID for iOS

To perform Online OneShotLiveness estimation, you need to pass appropriate values for the

livenessAPI and configuration parameters to the camera controller instance creation function

LMCameraBuilder.viewController :

The API accepts the configuration parameter, which contains all the necessary settings for

checking liveness.

let controller = LMCameraBuilder.viewController(delegate: self,
 configuration: LCLunaConfiguration,
 livenessAPI: livenessAPI)

Parameter Description

configuration The parameter is represented by the LCLunaConfiguration structure.

livenessAPI The API should be of type LunaWeb.LivenessAPIv6 .

VisionLabs B.V. Page 160 of 270

7.3.3 Performing Offline OneShotLiveness estimation

With LUNA ID, you can perform liveness estimation directly on your device. Unlike Online

OneShotLiveness estimation, which sends requests to the LUNA PLATFORM 5 /liveness

endpoint, Offline OneShotLiveness estimation operates locally, ensuring faster processing and

reduced dependency on backend services.

This feature allows you to determine whether the person in the image is a living individual or

a spoof (for example, a photograph or mask).

In LUNA ID for Android

To perform Offline OneShotLiveness estimation:

1․ Add the required dependency.

Add the appropriate dependency to your build.gradle file based on your device's architecture.

This dependency includes the neural networks required for Offline OneShotLiveness

estimation.

2․ Specify the estimation type in LunaConfig :

implementation("ai.visionlabs.lunaid:oslm-arm:X.X.X@aar")

LunaConfig.create(
 livenessType = LivenessType.Offline
)

VisionLabs B.V. Page 161 of 270

3․ Specify the neural networks to be used for the estimation by using the

LunaConfig.livenessNetVersion parameter. This parameter is of type LivenessNetVersion and

supports two values:

Important: After changing the livenessNetVersion parameter, restart the final application

for the changes to take effect.

LOGGING

When configuring the livenessNetVersion parameter, you can now monitor which networks are

loaded directly from the logs:

In LUNA ID for iOS

To perform Offline OneShotLiveness estimation:

1․ Make sure that you have the following .plan files in your deployment directory:

2․ Enable the estimation:

Value Description

LITE Default. Loads the neural network models:

oneshot_rgb_liveness_v12_model_4_arm.plan

oneshot_rgb_liveness_v12_model_5_arm.plan

MOBILE Loads only the oneshot_rgb_liveness_v12_model_6_arm.plan model.

Recommended for devices with lower performance.

•

•

LunaConfig.create(
 livenessType = LivenessType.Offline,
 livenessNetVersion = LivenessNetVersion.LITE
)

livenessNetVersion = 1 - The system loads: oneshot_rgb_liveness_v12_model_6_arm.plan•

livenessNetVersion = 2 - The system loads: oneshot_rgb_liveness_v12_model_4_arm.plan

and oneshot_rgb_liveness_v12_model_5_arm.plan

•

fsdk.framework/data/oneshot_rgb_liveness_v12_model_4_arm.plan•

fsdk.framework/data/oneshot_rgb_liveness_v12_model_5_arm.plan•

fsdk.framework/data/oneshot_rgb_liveness_v12_model_6_arm.plan•

configuration.bestShotConfiguration.livenessType = LivenessType.Offline

VisionLabs B.V. Page 162 of 270

7.3.4 Disabling OneShotLiveness estimation

If you want to skip a liveness estimation over the best shot, you can disable a

OneShotLiveness estimation.

In LUNA ID for Android

To disable OneShotLiveness estimations, set the livenessType: LivenessType field to None in

LunaConfig .

If livenessType: LivenessType is not specified, OneShotLiveness estimations are disabled by

default.

The example below shows how to disable OneShotLiveness estimations:

In LUNA ID for iOS

DISABLE ONLINE ONESHOTLIVENESS ESTIMATION

To disable Online OneShotLiveness estimation, disable sending of OneShotLiveness

estimation requests to LUNA PLATFORM 5 by setting livenessType to .none . For example:

val apiConfig = ApiHumanConfig("http://luna-platform.com/api/6/")
 LunaID.init(
 ...
 apiHumanConfig = apiConfig,
 lunaConfig = LunaConfig.create(
 livenessType = LivenessType.None,
),
)

private lazy var configuration: LCLunaConfiguration = {
 let configuration = LCLunaConfiguration.defaultConfig()
 ...
 configuration.bestShotConfiguration.livenessType = .none
 ...
 return configuration
}()

VisionLabs B.V. Page 163 of 270

DISABLE OFFLINE ONESHOTLIVENESS ESTIMATION

To disable Offline OneShotLiveness estimation, set the useOfflineLiveness parameter to false in

the LCLunaConfiguration structure:

LCLunaConfiguration.useOfflineLiveness = false

VisionLabs B.V. Page 164 of 270

7.4 Dynamic Liveness

7.4.1 About Dynamic Liveness estimation

Dynamic Liveness estimation is a feature designed to verify whether a person is physically

present and alive by analyzing their interactions with a camera in your application. This

process is performed entirely on the user's device, ensuring privacy and security by

eliminating the need to send data to external servers.

Interaction types

To perform Dynamic Liveness estimation, users are prompted to perform specific interactions.

The supported interaction types include:

Implementation

IN LUNA ID FOR ANDROID

Blinking: The user can blink with either one eye or both eyes.•

Head rotations:•

Left rotation: Rotating the head to the left along the Y-axis.•

Right rotation: Rotating the head to the right along the Y-axis.•

Pitch up: Tilting the head upward along the X-axis.•

Pitch down: Tilting the head downward along the X-axis.•

By default, all user interactions with the camera are disabled, and Dynamic Liveness

estimation does not start automatically.

•

You must specify the order in which interactions will be performed. For details, see

Performing Dynamic Liveness estimation.

•

VisionLabs B.V. Page 165 of 270

IN LUNA ID FOR IOS

You need to do one of the following to initiate Dynamic Liveness estimation:

Dynamic Liveness defaults

INTERACTION TIMEOUT

Each interaction has a configurable timeout, which defaults to 5 seconds. This timeout

determines how long the user has to complete the requested action.

For details on setting the timeout, see:

TIMEOUT BETWEEN INTERACTIONS

You can configure a delay between consecutive interactions. By default, this timeout is set to

0 seconds.

For details on setting the timeout, see:

HEAD ROTATION ANGLES

Head rotation angles define the degree to which a user must turn their head for the

interaction to be successfully recognized.

Specify a number of interactions to be performed

The system generates a random sequence of interactions based on the number you

define. For details, see Specify a number of interactions or a sequence of interactions to

be performed.

•

Define a sequence of interactions to be performed

You can manually define the sequence of interactions to be performed. For details, see

Define an interaction sequence or a sequence of interactions to be performed.

•

Set an interaction timeout in LUNA ID for Android•

Set an interaction timeout in LUNA ID for iOS•

Set a timeout between interactions in LUNA ID for Android•

Set a timeout between interactions in LUNA ID for iOS•

VisionLabs B.V. Page 166 of 270

The default head rotation angles are:

Results

With LUNA ID, you can capture and integrate interaction frames into your reports. By doing

this, you can provide a more comprehensive and accurate record of the Dynamic Liveness

estimation interactions performed. This ensures that any discrepancies or issues can be easily

identified and addressed, enhancing the overall reliability and transparency of your biometric

verification system.

For details, see Getting Dynamic Liveness estimation results.

In LUNA ID for Android:•

Yaw (left and right rotation): 10–30 degrees.•

Pitch (up and down rotation): 5–20 degrees.•

In LUNA ID for iOS:•

The default head rotation angles are in the 10-25 degrees range.•

VisionLabs B.V. Page 167 of 270

7.4.2 Performing Dynamic Liveness estimation

This topic describes how to implement user interactions with a camera in your app to perform

the Dynamic Liveness estimation.

In LUNA ID for Android

To perform the Dynamic Liveness interaction, do the following:

ENABLE THE ESTIMATION

To enable the estimation, create a list of interactions. To do this, pass the Interactions

argument to LunaID.showCamera() . For example:

In cases, when you specify Interactions.Builder().build() or do not specify the interactions

parameters at all, an empty list of interactions will be created. This means no interactions will

be included.

Interactions is a container for interaction parameters. You can add the following interactions to

it:

Enable the estimation by creating a list of interactions.

Specify optional parameters, such as:

Interaction timeout•

Timeout between interactions•

Head rotation angles•

Blinking with one eye•

LunaID.showCamera(
 interactions = Interactions.Builder().build()
)

Parameter Description

YawLeftInteraction Enables user interaction via rotating the head to the left along the Y axis.

YawRightInteraction Enables user interaction via rotating the head to the right along the Y axis.

PitchUpInteraction Enables user interaction via pitching the head up along the X axis.

PitchDownInteraction Enables user interaction via pitching the head down along the X axis.

BlinkInteraction Enables user interaction via blinking. See also Enable blinking with one eye.

VisionLabs B.V. Page 168 of 270

Important notes:

The interactions that you add to the list will be performed either in a random order or in a

defined sequence.

Perform interactions in a random order

To perform interactions in a random order, add required interaction types with

Interactions.Builder() .

Define an interaction sequence

To define an interaction sequence, use the addInteraction method as shown in the example

below:

SET AN INTERACTION TIMEOUT

Each interaction has the timeoutMs parameter. It determines the time, in milliseconds, during

which this interaction must be completed.

By default, the parameter value is 5 seconds.

SET A TIMEOUT BETWEEN INTERACTIONS

You can set a timeout between interactions, in milliseconds. This means that a new

interaction will start after the preceding one ends after the specified timeout is passed.

To do this, use the LunaConfig.interactionDelayMs parameter.

By default, the parameter value is 0.

You can specify each parameter only once.•

The interaction parameters will be launched in the order you specify them in your code.

If you do not specify the order, no interactions will be performed.

•

LunaID.showCamera(
 interactions = Interactions.Builder()
 .addInteraction(YawLeftInteraction)
 .addInteraction(YawRightInteraction)
 .addInteraction(PitchUpInteraction)
 .addInteraction(PitchDownInteraction)
 .addInteraction(BlinkInteraction)
 .build()
)

VisionLabs B.V. Page 169 of 270

VIEW INTERACTION STATUSES

LUNA ID for Android has the StateInteractionStarted and StateInteractionEnded statuses. The

statuses inform you about an interaction start and successful end, respectively.

SPECIFY HEAD ROTATION ANGLES

Head pose interactions have the startAngleDeg and endAngleDeg parameters. If you do not

specify them, the default values will be used.

Parameter Interaction Default

value

Description

startAngleDeg YawLeftInteraction 10 Specifies the start angle at which the user must

rotate their head for the interaction to be

considered successful.YawRightInteraction 10

PitchUpInteraction 5

PitchDownInteraction 5

endAngleDeg YawLeftInteraction 30 Specifies the end angle at which the user must

rotate their head for the interaction to be

considered successful.YawRightInteraction 30

PitchUpInteraction 20

PitchDownInteraction 20

ENABLE BLINKING WITH ONE EYE

To enable blinking with one eye, set the acceptOneEyed parameter of the BlinkInteraction

interaction to true . This allows users to perform blinking with one eye, rather than two.

By default, the acceptOneEyed parameter is set to false .

Important: The acceptOneEyed parameter requires the lunaid-common-arm-X.X.X.aar

dependency. For details, see Distribution kit.

VisionLabs B.V. Page 170 of 270

In LUNA ID for iOS

To perform the Dynamic Liveness interaction, do the following:

ENABLE THE ESTIMATION

To enable user interactions with a camera, pass appropriate values for the livenessAPI and

configuration parameters to the LMCameraBuilder.viewController camera controller instance

creation function:

The API accepts the configuration parameter, which contains all the necessary settings for

performing Dynamic Liveness.

SPECIFY A NUMBER OF INTERACTIONS

The interaction generator produces a random sequence of interactions from the interaction

types list.

You can specify a number of interactions to be performed. To do this, pass the stepsNumber

parameter to the following property of the LCLunaConfiguration class:

Enable the estimation.

Specify a number of interactions.

Optional. Define an interaction sequence.

Specify optional parameters, such as:

Interaction timeout•

Timeout between interactions•

Head rotation angles •

let controller = LMCameraBuilder.viewController(delegate: self,
 configuration: LCLunaConfiguration,
 livenessAPI: livenessAPI)

Parameter Description

configuration The parameter is represented by the LCLunaConfiguration structure. The

LCLunaConfiguration → InteractionEnabled = true parameter is responsible for interaction

with the camera.

livenessAPI The API should be of type LunaWeb.LivenessAPIv6 .

VisionLabs B.V. Page 171 of 270

Important:The number of interactions must not exceed 5.

DEFINE AN INTERACTION SEQUENCE

To define a user interaction sequence, use the

LMCameraViewControllerProtocol::defineInteractionsStep method. For example:

You can define an array of LCStepConfigProtocol objects:

You can set a timeout for each interaction.

SET AN INTERACTION TIMEOUT

You can set a timeout for every interaction to be performed in a random sequence. It

determines the time, in seconds, during which an interaction must be completed.

To do this, pass the interactionTimeout parameter to the following property of the

LCLunaConfiguration class:

@property (nonatomic, strong) LCInteractionsConfig *interactionsConfig;

let cameraViewController = LMCameraBuilder.viewController(delegate: self,
 configuration: self.configuration,
 livenessAPI: self.livenessAPI)
cameraViewController.defineInteractionsStep([
 LunaCore.LCBlinkConfig(),
 LunaCore.LCDownHeadTrackConfig(),
 LunaCore.LCUpHeadTrackConfig()
])
cameraViewController.dismissHandler = { [weak self] in
 self?.closeViewController(animated: true)
}
cameraViewController.modalPresentationStyle = .fullScreen
self.present(cameraViewController, animated: true)

Object Description

LCBlinkConfig Enables user interaction via blinking.

LCUpHeadTrackConfig Enables user interaction via pitching the head up along the X axis.

LCDownHeadTrackConfig Enables user interaction via pitching the head down along the X axis.

LCLeftHeadTrackConfig Enables user interaction via rotating the head to the left along the Y axis.

LCRightHeadTrackConfig Enables user interaction via rotating the head to the right along the Y axis.

VisionLabs B.V. Page 172 of 270

By default, the parameter value is 5 seconds.

If an interaction was not completed within the allotted time, the "Interaction timeout" error

appears.

SET A TIMEOUT BETWEEN INTERACTIONS

You can set a timeout between interactions in seconds. This means that a new interaction will

start after the preceding one ends after the specified timeout is passed.

To do this, use the LCLunaConfiguration.interactionsConfig.timeoutBetweenInteractions property.

By default, the property value is set to 0.

VIEW INTERACTION STATUSES

You can find current interaction statuses from userInfo[NSStepStateKey] in the NSError object

which you will receive in the bestshotError() delegate method. For example:

The statuses inform you about an interaction start, being in progress, and successful end.

SPECIFY HEAD ROTATION ANGLES

For user interactions via head rotations, you can specify head rotation angles. For the default

values, see Head rotation angles.

@property (nonatomic, strong) LCInteractionsConfig *interactionsConfig;

 func bestShotError(_ error: Error) {
 if ((error as NSError).code == BestShotError.NEED_TO_BLINK.rawValue) {
 print("blink interaction state <\((error as NSError).userInfo[NSStepStateKey] ?? 0)>")
 }
 }

VisionLabs B.V. Page 173 of 270

7.4.3 Getting Dynamic Liveness estimation results

Dynamic Liveness estimation verifies the authenticity of a user's identity through real-time

interactions. This document outlines how to capture and integrate interaction frames into

your application results, ensuring comprehensive reporting.

In LUNA ID for Android

In LUNA ID for iOS

Enable interaction frame saving

Set the savingInteractionFrames parameter to true . By default, the parameter is set to false .

Capture interaction frames

Capture frames when specific statuses (HEADTRACK_STATE_IN_PROGRESS_BACKWARD or

INTERACTION_EYES_CLOSED) are achieved.

Store and pass interaction frames

Store the captured frames in the interactionFrames list and pass them to the result object.

Generate report

Use the captured frames and their corresponding interaction types to generate a detailed

report within your application.

Enable interaction frame saving

Implement the func interactionsFinish(with interactionFrames: [LCInteractionFrameInfo]) method in

your final application.

Generate report

Use the captured frames and their corresponding interaction types to generate a detailed

report within your application.

VisionLabs B.V. Page 174 of 270

The LCInteractionFrameInfo is used to pass information for report generation. It contains data

about interaction frames and interaction types:

LCInteractionsType - An enumeration that defines the interaction type:•

LCInteractionsType_Head_left - User interaction via rotating the head to the left along

the Y axis.

•

LCInteractionsType_Head_right - User interaction via rotating the head to the right along

the Y axis.

•

LCInteractionsType_Head_down - User interaction via pitching the head down along the

X axis.

•

LCInteractionsType_Head_up - User interaction via pitching the head up along the X

axis.

•

LCInteractionsType_Blink - User interaction via blinking.•

LCInteractionFrameInfo - A class containing information about the interaction frame:•

frame - The interaction frame as a UIImage object.•

interactionsType - The interaction type corresponding to one of the LCInteractionsType

values.

•

VisionLabs B.V. Page 175 of 270

7.4.4 Interception of Dynamic Liveness interaction events

Applies to LUNA ID for Android only.

You can intercept interaction events via LunaID.faceDetectionChannel() .

You will receive structure similar to the "error" and "detection" events:

Where state is an object of the LunaInteraction class.

Just like with errors based on this state, you can control how interaction messages will look

like.

{
 "action": "interaction",
 "state": ...
}

public enum class LunaInteraction {
 INTERACTION_FAILED,
 INTERACTION_STARTED,

 INTERACTION_EYES_OPENED,
 INTERACTION_EYES_CLOSED,
 INTERACTION_EYES_OPENED_AGAIN,

 INTERACTION_SUCCESS
}

VisionLabs B.V. Page 176 of 270

7.4.5 Customizing Dynamic Liveness notifications

You can customize messages that are shown when a user performs blinking to fulfill the

Dynamic Liveness estimation. For example, you can change:

In LUNA ID for Android

To customize Dynamic Liveness notifications, specify them in the LunaID.interactions() method

by implementing your own logic.

The default notification language is English.

In LUNA ID for iOS

To customize Dynamic Liveness notifications, use the

func showNotificationMessage(_ newMessage: String) method of LMVideoStreamNotificationViewProtocol .

Notification language•

Fonts•

Font colors•

Background colors•

VisionLabs B.V. Page 177 of 270

7.5 Video streams

7.5.1 About working with video streams

Recording a video stream is a task you may need to perform for further image processing.

The recorded video stream will subsequently be divided into individual frames. The most

appropriate still images will be later used for facial recognition and getting the best shot.

In LUNA ID, you can record:

Video stream settings

In LUNA ID, you can configure the following settings for video stream recording:

Entire video session•

Only video sessions in which a face was detected in at least one frame•

Setting Platform

Video stream quality

Timeout before starting recording

Video stream duration

Custom frame resolution

Autofocus

Compression

VisionLabs B.V. Page 178 of 270

Information about a recorded video stream

LUNA ID saves video stream to file with the following parameters:

Parameters LUNA ID for Android LUNA ID for iOS

Duration limits None None

Resolution 320×240 pixels 180×320 pixels

Frame rate 30 fps 30 fps

File format .mp4 .mov

Video

compression

standard

.H264 .H264

Audio recording None None

Video stream re-

recording

Yes

The file with the recorded video

stream is overwritten when a new

video session starts.

Yes

The file with the recorded video

stream is overwritten when a new

video session starts.

VisionLabs B.V. Page 179 of 270

7.5.2 Recording a video stream

Recording a video stream is a task you may need to perform for further processing of images.

The recorded video stream will then be divided into frames. The most suitable still images will

be later used for facial recognition and getting the best shot.

In LUNA ID for Android

To record a video stream, open a camera by using recordVideo = true . For example:

When the camera finishes its work, LunaID.allEvents() (or more specialized LunaID.finishStates())

will emit the ResultSuccess event with the best shot found and an optional path to the

recorded video. The entire process of getting the best shot is written to this video file.

LUNA ID does not manage the video file. This means, that file management, that is

deletion, copying, sending to a server, and so on, is performed on your side.

The recording stops when the best shot is captured or when a user closes the camera before

LUNA ID gets the best shot.

In LUNA ID for iOS

To record a video stream:

1․ Define the recordVideo parameter as true in:

2․ Find the video file path in the bestShot function in the LMCameraDelegate protocol.

LunaID.showCamera(
 ...
 recordVideo = true,
)

let controller = LMCameraBuilder.viewController(delegate: self,
 recordVideo: true)

public protocol LMCameraDelegate: AnyObject {

 func bestShot(_ bestShot: LunaCore.LCBestShot, _ videoFile: String?)

 func error(_ error: LMCameraError, _ videoFile: String?)

VisionLabs B.V. Page 180 of 270

The detected face in the frame is tracked all the time when the camera is on.

}

VisionLabs B.V. Page 181 of 270

7.5.3 Recording a video stream only with the face detected

With LUNA ID, you can record either entire video sessions or only video sessions in which a

face was detected in at least one frame.

In LUNA ID for Android

To record a video stream only with the face detected, call LunaID.showCamera() with

ShowCameraParams(recordVideo=true, ignoreVideoWithoutFace=true) .

You can optionally set up a fixed delay or specific moment in time to define when the face

recognition will start after the camera is displayed in the screen. To do this, use the

StartBestShotSearchCommand command.

In LUNA ID for iOS

To record a video stream only with the face detected, pass appropriate values for the

recordVideo and configuration parameters to the LMCameraBuilder.viewController camera

controller instance creation function:

You can find the video file path in the bestShot function in the LMCameraDelegate protocol.

let controller = LMCameraBuilder.viewController(delegate: self,
 configuration: LCLunaConfiguration,
 recordVideo: true)

Parameter Description

configuration The parameter is represented by the LCLunaConfiguration structure. The

LCLunaConfiguration → saveOnlyFaceVideo = true parameter is responsible for saving

video files only with a face detected.

recordVideo The parameter is responsible for saving the video file.

public protocol LMCameraDelegate: AnyObject {

 func bestShot(_ bestShot: LunaCore.LCBestShot, _ videoFile: String?)

 func error(_ error: LMCameraError, _ videoFile: String?)

}

VisionLabs B.V. Page 182 of 270

You can also set up a delay, in seconds, to define when the face recognition will start after the

camera is displayed in the screen. To do this, use LCLunaConfiguration.startDelay .

The detected face in the frame is tracked all the time when the camera is on.

VisionLabs B.V. Page 183 of 270

7.5.4 Video stream settings

In LUNA ID, you can configure the following parameters for video stream recording:

Video stream quality

Applies to LUNA ID for Android only.

To configure the video stream quality, pass the LunaVideoQuality parameter to the LunaConfig

method. The parameter has the following values:

Video stream quality is determined by the following parameters:

Timeout before starting recording

Applies to LUNA ID for iOS only.

Setting Platform

Video stream quality

Timeout before starting recording

Video stream duration

Custom frame resolution

Autofocus

Compression

SD - Default. Provides a lower resolution and smaller file size suitable for most use

cases (~640x480 pixels).

•

HD - Increases the resolution, frame rate, and bitrate, resulting in better video quality

but larger file sizes and potentially higher processing requirements.

•

Parameter SD (Low

quality)

SD (High

quality)

HD 720p HD 1080p

Video

resolution

640x480 px 720×480 px 1280×720

px

1920×1080

px

Video frame

rate

20 fps 30 fps 30 fps 30 fps

Video bitrate 384 Kbps 2 Mbps 4 Mbps 20 Mbps

VisionLabs B.V. Page 184 of 270

To configure a delay before starting video recording, use the LCLunaConfiguration.startDelay

parameter. This parameter allows you to specify the duration (in seconds) to wait before

initiating the recording process.

By default, the parameter value is set to 0.

Video stream duration

IN LUNA ID FOR ANDROID

To limit a video stream's duration, use the recordingTimeMillis parameter within the

LunaID.ShowCameraParams configuration. This parameter defines the video stream duration in

milliseconds. By default, this value is not set , meaning you must explicitly configure it when

enabling video recording.

Important: The recordingTimeMillis parameter is mandatory if recordVideo is set to true .

Failing to provide a valid positive value will result in the following exception:

LunaID.showCamera(
 activity,
 LunaID.ShowCameraParams(
 recordVideo = true,
 recordingTimeMillis = 10000 // Sets the video recording duration to 10 seconds
)
)

IllegalStateException, when param recordVideo is true -> param recordingTimeMillis
must be positive

VisionLabs B.V. Page 185 of 270

IN LUNA ID FOR IOS

To limit the duration of a video stream:

Custom frame resolution

Applies to LUNA ID for Android only.

To specify precise resolution requirements for your application, use the following parameters

of the ShowCameraParams class:

These parameters allow you to specify a preferred resolution for frame analysis. However,

note that the preferred prefix implies the specified resolution may not always be supported by

the device's camera. In such cases, the system automatically adjusts to the nearest available

resolution.

By configuring these parameters, you can optimize the frame resolution to better suit your

application's needs while ensuring compatibility with the device's hardware capabilities.

The default frame resolution for frame analysis is 480x320.

Autofocus

Applies to LUNA ID for Android only.

Enable face identity tracking

Set the LCLunaConfiguration.trackFaceIdentity property to true to enable face identity tracking

during the video stream.

Set video stream length

Use the LCLunaConfiguration::videoRecordLength parameter to specify the maximum duration

of the video stream in seconds.

Initialize the watchdog object

Call LMCameraCaptureManager::createVideoRecordWatchDog(LunaCore::LCBestShotDetectorProtocol) in

your ViewController .

This initializes a watchdog object that monitors the primary face search and starts the

video recording process. Once the time specified in videoRecordLength elapses, the

recording automatically stops.

The watchdog object lives inside the capture manager and is not available for public usage.

preferredAnalysisFrameWidth•

preferredAnalysisFrameHeight •

VisionLabs B.V. Page 186 of 270

To control whether the camera's autofocus feature will be enabled or disabled upon startup,

use the autofocus parameter of the ShowCameraParams class. The parameter has the following

values:

Compression

Applies to LUNA ID for Android only.

To compress a video, you need to integrate FFmpegKit into your Android project:

1․ Add the JitPack repository

In your settings.gradle.kts file, include the JitPack repository as follows:

2․ Add the FFmpegKit Dependency

In your module's build.gradle.kts file (for example, app/build.gradle.kts), add the following

dependency under dependencies :

true - Default. Disables the camera's autofocus functionality, allowing for a fixed focus

setting regardless of device capabilities.

•

false - Enables the camera’s autofocus feature if the device supports it. This aligns with

the default behavior of CameraX, which enables autofocus when supported by the

hardware.

•

pluginManagement {
 repositories {
 google()
 gradlePluginPortal()
 mavenCentral()
 maven("https://jitpack.io ")
 }
}

dependencyResolutionManagement {
 repositoriesMode.set(RepositoriesMode.FAIL_ON_PROJECT_REPOS)
 repositories {
 google()
 mavenCentral()
 maven("https://jitpack.io ")
 }
}

VisionLabs B.V. Page 187 of 270

3․ Sync your project

After adding the dependencies, sync your project with Gradle files.

In Android Studio, go to File > Sync Project with Gradle Files.

4․ Request permissions (if needed)

Add the necessary permissions to your AndroidManifest.xml file:

Note: If targeting Android 10 (API level 29) or higher, consider using the Storage Access

Framework (SAF) instead of requesting direct storage permissions.

5․ Add the FFmpegUtils utility class

Create a utility class named FFmpegUtils to handle FFmpeg operations. Here's an example

implementation:

dependencies {
 implementation("com.github.arthenica:ffmpeg-kit-min-gpl:6.0-2.LTS") // Minimal
GPL version
 // For the full version, use:
 // implementation("com.github.arthenica:ffmpeg-kit-full-gpl:6.0-2.LTS")
}

<uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE"/>
<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>

package ru.visionlabs.sdk.lunacore.utils

import com.arthenica.ffmpegkit.FFmpegKit
import com.arthenica.ffmpegkit.ReturnCode
import kotlinx.coroutines.CoroutineScope
import kotlinx.coroutines.Dispatchers
import kotlinx.coroutines.launch

object FFmpegUtils {

 /**
 * Compresses a video file using FFmpeg.
 *
 * @param inputPath The path to the input video file.
 * @param outputPath The path where the compressed video will be saved.
 * @param onSuccess Callback invoked on successful compression.

VisionLabs B.V. Page 188 of 270

6․ Use the utility in your activity or fragment

To compress a video, use the FFmpegUtils.compressWithFFmpeg method as shown below:

 * @param onFailure Callback invoked if an error occurs.
 */
 fun compressWithFFmpeg(
 inputPath: String,
 outputPath: String,
 onSuccess: () -> Unit,
 onFailure: (Throwable) -> Unit
) {
 val cmd = listOf(
 "-y", "-i", inputPath,
 "-vf", "scale=iw/2:ih/2", // Scale video resolution by half
 "-c:v", "libx264", "-b:v", "1M", "-preset", "fast", // Video codec settings
 "-c:a", "aac", "-b:a", "128k", // Audio codec settings
 outputPath
)

 CoroutineScope(Dispatchers.IO).launch {
 try {
 val session = FFmpegKit.execute(cmd.joinToString(" "))
 if (ReturnCode.isSuccess(session.returnCode)) {
 onSuccess()
 } else {
 onFailure(
 RuntimeException("FFmpeg failed: ${session.returnCode}\n$
{session.failStackTrace}")
)
 }
 } catch (e: Exception) {
 onFailure(e)
 }
 }
 }
}

val input = "/sdcard/DCIM/input.mp4" // Path to the input video file
val output = cacheDir.resolve("compressed.mp4").absolutePath // Path to save the
compressed video

FFmpegUtils.compressWithFFmpeg(
 inputPath = input,
 outputPath = output,
 onSuccess = {

VisionLabs B.V. Page 189 of 270

 // Handle success (e.g., show a Toast or notify the user)
 println("Compression successful!")
 },
 onFailure = { err ->
 // Handle failure (e.g., log the error or show a message)
 println("Compression failed: ${err.message}")
 }
)

VisionLabs B.V. Page 190 of 270

7.6 Logs

7.6.1 Getting logs from mobile devices

LUNA ID writes service information to the logging system of the corresponding platform -

Android and iOS. You can use this information diagnose and debug both the user application

that uses LUNA ID and to debug and fix LUNA ID.

A common problem that requires getting logs is related to the image that LUNA ID takes as

input. Before you start collecting logs, make sure that the image meets the requirements and

the thresholds are correctly configured to pass the OneShotLiveness estimation. For more

information on image requirements and thresholds, see About OneShotLiveness estimation.

Data to be provided to VisionLabs Technical support

Along with the collected logs, provide the following data to Technical Support:

Prerequisites

To successfully receive logs from mobile devices, the following prerequisites must be met:

Device model on which the issue was detected•

MUI•

OS version•

LUNA ID version•

Detailed playback steps•

Video recording of the issue•

Make sure that the necessary values for FaceEngine and TrackEngine logging are set in

the configuration files. For details on the required values and configuration files, see the

FaceEngine and TrackEngine logging section.

•

Before collecting logs, uninstall the app for which you are going to collect logs, and then

reinstall it. Start collecting logs after the first launch of the app.

•

The log file should contain entries from the moment the app was started until the

problem occurred.

•

Put the mobile device in developer or debug mode.•

VisionLabs B.V. Page 191 of 270

FaceEngine and TrackEngine logging

For detailed logging of FaceEngine and TrackEngine, the following values must be set in

configuration files:

Getting logs from Android devices

This guide outlines the process of getting logs from Android devices using Android Studio's

Logcat tool.

STEP 1: ENABLE DEVELOPER OPTIONS & USB DEBUGGING

Note: The exact path to these settings may vary slightly depending on your device

manufacturer and Android version.

STEP 2: OPEN LOGCAT IN ANDROID STUDIO

File Value

Faceengine.conf <param name=”verboseLogging” type=”Value::Int1” x=«4» />

runtime.conf <param name=”verboseLogging” type=”Value::Int1” x=«4» />

trackengine.conf <param name=”mode” type=”Value::String” text=”l2b” />

<param name=”severity” type=”Value::Int1” x=”0” />

On your Android device, open Settings.

Navigate to About phone or About tablet.

Locate the Build Number or Android Version section and tap it 7 times repeatedly.

Confirm the transition of the device to developer mode.

Go to Settings > System > For Developers.

Set the USB Debugging switch to on.

Allow USB debugging.

Connect your Android device to your computer via USB.

Open Android Studio.

Select View > Tool Windows > Logcat from the Android Studio menu.

VisionLabs B.V. Page 192 of 270

STEP 3: SELECT DEVICE AND CONFIGURE LOGCAT

In the Logcat window, configure the following filters and settings:

Android Studio Logcat

STEP 4: CONFIGURE THE LOGCAT LAYOUT

To make the logs more readable and informative, enable the following headers:

Device: In the upper-left corner, select the connected device.•

App/Process: In the adjacent field, select the app you want to monitor. To see logs

from all processes, do not change this field.

•

Log level: Set the logging level to VERBOSE. This ensures you capture log messages

from all levels.

•

Go to the Logcat tab settings.

Select Logcat Header.

Select the following options and click OK in the appeared dialog:

Show date and time (required)•

Show process and thread IDs•

Show package name•

Show tag•

VisionLabs B.V. Page 193 of 270

Configuring the display of logs

STEP 5: FILTER THE LOGS

Use the search bar to narrow down the log output. For example, you can:

UNDERSTANDING THE LOG OUTPUT

The resulting logs contain the following data:

Android device logs

Search by a package name: com.example.app•

Search by a log tag: •

tag:LunaID : Shows all LUNA ID logs.•

tag:LunaID level:info : Shows only info logs containing key operational data, results,

warnings, and errors.

•

tag:LunaID is:debug : Shows only debug log containing low-level, internal information

for debugging.

•

Search for specific keywords or error levels: fatal , E/AndroidRuntime•

Date and time of entry.•

Logging level (for example, D is Debug).•

The name of the tool, utility, package from which the message is received, as well as a

decoding of the ongoing action.

•

VisionLabs B.V. Page 194 of 270

Getting logs from iOS devices

This guide outlines the process of getting logs from Android devices using Xcode's built-in

console tools.

STEP 1: ENABLE DEVELOPER MODE

STEP 2: ACCESS DEVICE LOGS IN XCODE

Open Settings on your iOS device.

Navigate to Privacy & Security.

Toggle the Developer Mode switch on.

Restart your device.

Connect your iOS device to your Mac.

Open Xcode.

Select Window > Devices and Simulators.

Select the connected device.

VisionLabs B.V. Page 195 of 270

Devices and Simulators

STEP 3: VIEW AND CAPTURE LOGS

You have two option for viewing logs:

View Device Logs

To analyzing historical logs, click the View Device Logs button.•

To monitor logs in real-time, click the Open Console button.•

VisionLabs B.V. Page 196 of 270

STEP 4: FILTER AND EXPORT LOGS

For filtering, use the search bar in either thr Device Logs viewer or the Console app to narrow

down results.

For exporting, select specific log entries and copy them to a text file.

Logs for iOS device

Tip: To pause the log stream, click the Pause button.

UNDERSTANDING THE LOG OUTPUT

The resulting logs contain the following data:

iOS device logs

Getting logs for OneShotLiveness estimation from Android devices

If OneShotLiveness is enabled, you can find the corresponding data in logs.

Here is an example of logs for LUNA ID sending a request for OneShotLiveness estimation

when getting the best shot:

Date and time of entry.•

The name of the part of the system or application from which the message came.•

Event description, service information.•

 I --> POST https://luna-api-aws.visionlabs.ru/6/liveness?aggregate=1
 D Deallocating scratch [101632 bytes]
 I Content-Type: multipart/form-data; boundary=d9fb08cd-a74a-4d22-b596-c9d1810c7470
 I Content-Length: 2510479
 I Luna-Account-Id: 12ed7399-xxxx-xxxx-xxxx-bbc45e6017af
 I --> END POST (binary 2510479-byte body omitted)

VisionLabs B.V. Page 197 of 270

The response returns the following status codes:

Getting logs for OneShotLiveness estimation from iOS devices

Currently, you cannot collect logs for OneShotLiveness estimation by using iOS features.

Status code 200

If the request has reached the server and the server was able to process it, it returns

status code 200 . For example:

•

I <-- 200 https://luna-api-aws.visionlabs.ru/6/liveness?aggregate=1 (5895ms)
I server: nginx/1.19.2
I date: Tue, 08 Aug 2023 23:30:51 GMT
I content-type: application/json
I vary: Accept-Encoding
I luna-request-id: 1691548250,d70bca42-b40c-4c69-ae71-c3ce8207d3d3
I strict-transport-security: max-age=15724800; includeSubDomains
I access-control-allow-origin: *
I access-control-allow-credentials: true
I access-control-allow-methods: GET, PUT, POST, DELETE, PATCH, OPTIONS
I access-control-allow-headers: Authorization,Cache-Control,Content-Type,luna-account-id
I {"images":[{"filename":"0","status":1,"liveness":{"prediction":1,"estimations":{"probability":
0.9960508346557617,"quality":1.0}},"error":{"error_code":
0,"desc":"Success","detail":"Success","link":"https:\/\/docs.visionlabs.ai\/info\/luna\/
troubleshooting\/errors-description\/code-0"}}],"aggregate_estimations":{"liveness":
{"prediction":1,"estimations":{"probability":0.9960508346557617,"quality":1.0}}}}
I <-- END HTTP (404-byte body)

Status code other than 200

For details on status codes other than 200 , please refer to the LUNA PLATFORM API

documentation.

•

VisionLabs B.V. Page 198 of 270

https://docs.visionlabs.ai/luna/v.5.28.0/ReferenceManuals/APIReferenceManual.html#tag/liveness
https://docs.visionlabs.ai/luna/v.5.28.0/ReferenceManuals/APIReferenceManual.html#tag/liveness

7.6.2 Saving logs on an end user’s device

In LUNA ID for Android

AUTOMATIC SESSION LOGGING WITH SHOWCAMERA

To get log files and save them on your device:

1․ Enable logging in LUNA ID: LunaID.showCamera(logToFile = true) .

Every call of showCamera with logToFile set to true will create a log file with a session of

getting the best shot on your mobile device.

2․ Get the log files by calling Context#getFilesDir() . The files are stored in the logs folder inside

your app’s private folder. For details, see getFileDir.

We do not provide a solution for getting log files from your device. You need to realize it in

your code by yourself. That is, you will need to add logic for getting these log files and

sending them, for example, to your endpoint or to your mail.

We recommend that you do the following to get logs from your device:

1․ In your app, realize hidden camera launching with collecting of logs. For example, you can

do it by long-tapping the camera button or via the hidden developer menu in the release

build.

2․ When a user has a problem getting the best shot, you get the logs and forward them to our

Support Team.

SAVING LOGS IN THE .LOGCAT FORMAT

Starting from v.1.19.0, LUNA ID for Android provides the ability to save internal SDK logs into

a file on the device's internal storage in the .logcat format. This feature is particularly useful

for debugging issues in release builds, where direct access to real-time log output (for

example, via Android Studio) is not possible.

You can use the dumpLogs() function to explicitly write collected logs to a specified file.

If no output file is specified, logs are saved by default to \<app_private_directory>/files/

logs.logcat.

Usage example:

val file = File(application.filesDir, "logs.logcat")

dumpLogs(

VisionLabs B.V. Page 199 of 270

https://developer.android.com/reference/android/content/Context#getFilesDir()

After the logs are written, you can upload them to your preferred monitoring or analytics

service. For example, using Sentry:

In LUNA ID for iOS

When using a logging-enabled build, you can retrieve the log file path by calling

[LCLunaConfiguration logfile] and implement your own logic to collect or upload the logs. The

[LCLunaConfiguration logfile] method is especially useful for diagnosing critical issues such as

license activation failures. However, you cannot enable this functionality on your own — it

must be included in the build by VisionLabs.

 context = application,
 outputFile = file
)

uploadFileToSentry(file)

VisionLabs B.V. Page 200 of 270

7.6.3 Status codes and errors

LUNA ID responds with status codes and error messages to let you know how things are

going.

LUNA ID for Android

LUNA ID INITIALIZATION EXCEPTIONS

Exception Description

TRACK_ENGINE_CONFIG_CREATION_FAILED Failed to create the TrackEngine configuration

file.

TRACK_ENGINE_CREATION_FAILED Failed to create TrackEngine.

BESTSHOT_QUALITY_ESTIMATOR_CREATION_FAILED Failed to create BestShotQualityEstimator.

LIVENESS_ONE_SHOT_RGB_ESTIMATOR_CREATION_FAILED Failed to create

LivenessOneShotRGBEstimator.

MASK_ESTIMATOR_CREATION_FAILED Failed to create MedicalMaskEstimator.

QUALITY_ESTIMATOR_CREATION_FAILED Failed to create QualityEstimator.

GLASSES_ESTIMATOR_CREATION_FAILED Failed to create GlassesEstimator.

BESTSHOT_OBSERVER_CREATION_FAILED Failed to create a best shot observer.

FACE_ENGINE_CREATION_FAILED Failed to create FaceEngine.

LICENSE_PROVIDER_CREATION_FAILED Failed to create a license provider.

CACHE_PROVIDER_CREATION_FAILED Failed to create a cache provider.

LICENSE_FETCH_FAILED Failed to fetch the LUNA ID license.

LICENSE_ACTIVATION_FAILED Failed to activate the LUNA ID license.

WARPER_CREATION_FAILED Failed to create a warper.

FACE_DETECTOR_CREATION_FAILED Failed to create a face detector.

EYE_ESTIMATOR_CREATION_FAILED Failed to create EyeEstimator.

VisionLabs B.V. Page 201 of 270

https://docs.visionlabs.ai/sdk/v.5.31.0/sdk-android/trackengine-handbook/settings/
https://docs.visionlabs.ai/sdk/v.5.31.0/sdk-android/trackengine-handbook/settings/
https://docs.visionlabs.ai/sdk/v.5.31.0/sdk-android/trackengine-handbook/introduction/
https://docs.visionlabs.ai/sdk/v.5.31.0/sdk-android/handbookcompilation/parameter-estimation-facility/#bestshotquality-estimation
https://docs.visionlabs.ai/sdk/v.5.31.0/sdk-android/handbookcompilation/parameter-estimation-facility/#livenessoneshotrgb-estimation
https://docs.visionlabs.ai/sdk/v.5.31.0/sdk-android/handbookcompilation/parameter-estimation-facility/#medical-mask-estimation-functionality
https://docs.visionlabs.ai/sdk/v.5.31.0/sdk-android/handbookcompilation/parameter-estimation-facility/#image-quality-estimation
https://docs.visionlabs.ai/sdk/v.5.31.0/sdk-android/handbookcompilation/parameter-estimation-facility/#glasses-estimation
https://docs.visionlabs.ai/sdk/v.5.31.0/sdk-android/trackengine-handbook/observers/
https://docs.visionlabs.ai/sdk/v.5.31.0/sdk-android/handbookcompilation/introduction/
https://docs.visionlabs.ai/sdk/v.5.31.0/sdk-android/handbookcompilation/image-warping/
https://docs.visionlabs.ai/sdk/v.5.31.0/sdk-android/handbookcompilation/detection-facility/#face-detection
https://docs.visionlabs.ai/sdk/v.5.31.0/sdk-android/handbookcompilation/parameter-estimation-facility/#eyes-estimation

ONESHOTLIVENESS ESTIMATION STATUS CODES

Code Status Description

200 Success. The OneShotLiveness estimation request has reached

the server and the server was able to process it.

400 Bad request. The server cannot process the OneShotLiveness

estimation request due to a client error.

403 Forbidden. The server understands the OneShotLiveness

estimation request but refuses to authorize it due to an

error on the client side.

408 Request payload too large. The server is unable to process the OneShotLiveness

estimation request due to an error on the server side.

413 Service did not process the

request within the

specified period.

The OneShotLiveness estimation request payload

exceeds the maximum size limit defined by the server.

500 Internal server error. The server encountered an unexpected condition that

prevented it from fulfilling the OneShotLiveness

estimation request.

503 Service did not process the

request within the

specified period.

The server is currently unable to handle the

OneShotLiveness estimation request due to

maintenance or an overload of requests.

504 Server timeout error. The server did not receive a timely response from the

upstream server that it needed to complete the

OneShotLiveness estimation request.

VisionLabs B.V. Page 202 of 270

BEST SHOT ESTIMATION ERRORS

Error Description

BadEyesStatus Eyes in the frame are occluded or closed. For details, see Eye state estimation.

BadHeadPose Head rotation angles are not in the specified range. For details, see Head pose.

BadQuality Image quality is low. For details, see Image quality estimation.

BlurredFace A face in the frame is blurred. For details, see Image quality estimation.

FaceLost A face that has been tracked disappeared from the frame.

FaceOutOfFrame A face is too close to the camera and does not fit the face recognition area.

GlassesOn Eyes in the frame are occluded with glasses. For details, see Glasses estimation.

OccludedFace A face in the frame is covered with a medical mask. For details, see Medical mask

estimation.

PrimaryFaceLost The primary face has disappeared from the frame and another face has

appeared.

TooDark The image is underexposed, that is, too dark. For details, see Image quality

estimation.

TooManyFaces The frame has more than one face.

TooMuchLight The image is overexposed, that is, too light. For details, see Image quality

estimation.

VisionLabs B.V. Page 203 of 270

LUNA ID for iOS

The below status codes apply to LUNA ID for iOS.

VisionLabs B.V. Page 204 of 270

Code Error message Description

1000 LunaCore initialization error Failed to initialize the LunaCore module.

1001 Low image quality. Check filming

conditions

The input image does not meet the required

image quality thresholds.

1002 Wrong head pose. Turn your

head towards the camera and

keep it straight

Head rotation angles are not between the minimal

and maximum valid head position values.

1003 Multiple faces detected. A single

face is expected.

More than one face was detected in the frame.

Ensure only one face is visible to the camera.

1004 Liveness check failed OneShotLiveness estimation failed. The system

could not verify that a real person is present. This

may indicate a spoofing attempt.

1006 Please blink to continue The blink interaction for Dynamic Liveness

estimation was not detected or performed

incorrectly.

1007 Interaction timeout The frame was not received in the time interval

allotted for the best shot.

1010 Face is occluded. Make sure

there are no foreign objects

covering face

The face is not properly visible in the input image.

Remove any objects blocking facial features.

1011 Bad filming conditions: face is

blurred

The input image does not meet the blurriness

threshold.

1012 Bad filming conditions: too dark The input image does not meet the darkness

threshold.

1013 Bad filming conditions: too

much light

The input image does not meet the lightness

threshold.

1014 Bad filming conditions: too dark,

too much light, face is blurred

The input image does not meet the illumination

threshold.

1015 Bad filming conditions: too dark,

too much light, face is blurred

The input image does not meet the specularity

threshold.

1016 Face is too far. Move face closer

to the camera

The bounding box size with the detected face

does not correspond to the specified size. Move

closer to fill the recommended space.

1017 Face is out of frame or too close

to the border. Move face to the

center of the frame

The bounding box size with the detected face

does not correspond to the specified size. Center

your face in the frame.

1018 Rotate you head to the left The head rotation to the left was not detected or

was insufficient for Dynamic Liveness estimation.

VisionLabs B.V. Page 205 of 270

Code Error message Description

1019 Rotate you head to the right The head rotation to the right was not detected or

was insufficient for Dynamic Liveness estimation.

1020 Move your head down The downward head movement was not detected

or was insufficient for Dynamic Liveness

estimation.

1021 Move your head up The upward head movement was not detected or

was insufficient for Dynamic Liveness estimation.

1023 The face is lost. Please return

the original face back to frame

The primary face that was detected in the video

stream has been lost.

1024 Please take off your sunglasses Sunglasses are obstructing eye visibility, which is

required for estimation.

1025 License check failed LUNA ID failed to check the license. To use LUNA

ID, you must have a valid license.

1027 Face is lost. Please take a look at

camera again

The primary face that was detected in the video

stream has been lost. A video recording will be

forcibly terminated.

1028 Face was not found No face was detected within the allotted time

interval.

1029 Mouth is occluded. Make sure

there are no foreign objects

covering face

The mouth area is covered, preventing proper

facial analysis.

1031 Lower part of the face is

occluded

The chin, mouth, or lower cheek area is

obstructed by objects or clothing. The face

occlusion estimation failed.

1033 Nose is occluded The nose is covered. The face occlusion

estimation failed.

1034 Eyes are occluded Eyes are not visible. The face occlusion estimation

failed.

1035 Forehead is occluded The forehead area is covered. The face occlusion

estimation failed.

VisionLabs B.V. Page 206 of 270

7.6.4 Device fingerprinting

Applies to LUNA ID for Android only.

LUNA ID for Android provides a secure and reliable way to uniquely identify the device on

which the SDK is running through its device fingerprinting functionality.

To retrieve the device fingerprint, use the LunaID.getFingerprint(context) method:

val fingerPrint: String = LunaID.getFingerprint(context)

context : Pass the application context.•

Return value: A String containing the unique fingerprint of the device.•

VisionLabs B.V. Page 207 of 270

7.6.5 Enabling low-level logging

Applies to LUNA ID for iOS only.

Use the enableLowLevelLogs property of the LCLunaConfiguration class to enable low-level

logging during license verification.

By default, enableLowLevelLogs is set to false , meaning the fallback logging method is active,

and low-level LUNA ID logging is disabled.

Important: To modify this property, change its default value directly in the

LCLunaConfiguration class code and rebuild the application. The setting is not configurable

through the application's UI or .plist files.

VisionLabs B.V. Page 208 of 270

7.7 Using descriptors

Descriptors are compact, binary data sets generated by the recognition system based on the

analyzed facial characteristics. These descriptors serve as unique numerical representations

of faces and are used for tasks such as face matching, verification, and identification.

LUNA ID uses the cnn60m_arm.plan file that contains a pre-trained neural network model that

extracts these descriptors from source images. The file contains a compact set of properties

and helper parameters necessary for efficient descriptor generation.

Using the cnn60m_arm.plan file to generate descriptors will increase the size of your

application. To learn how to measure and manage the added size, see Measure LUNA ID

size.

7.7.1 In LUNA ID for Android

Required dependency

Descriptor-related functionality is provided through the following package:

Enabling descriptor-related functionality

The useDescriptors parameter controls whether descriptor-related functionality is enabled

within the SDK, allowing you to optimize your app’s size and performance based on actual

usage.

Set useDescriptors = true (default) if your application uses any of the following methods from

the LunaUtils class:

For details on the methods, see the Core methods section.

The useDescriptors parameter should be set during engine initialization as part of the

LunaConfig :

ai.visionlabs.lunaid:cnn60:X.X.X•

LunaUtils.getDescriptorFromWarped()•

LunaUtils.getDescriptor()•

LunaUtils.matchDescriptors()•

val config = LunaConfig(
 // other parameters...
 useDescriptors = true // default value

VisionLabs B.V. Page 209 of 270

If your application does not implement cnn60m_arm.plan or use descriptor functionality, you

can set useDescriptors = false to reduce SDK overhead and optimize app performance.

Core methods

To generate or compare descriptors, you can use methods from the LunaUtils class. Below are

examples of the available methods:

)

LunaID.initEngine(applicationContext, config, apiHumanConfig, licenseFile)

 public fun getDescriptorFromWrapped(
 warp: Bitmap,
 @DescriptorVersion descriptorVersion: Int = V60
): ByteArray {
 // Returns a descriptor generated from a wrapped image
}

public fun getDescriptor(
 image: Bitmap,
 @DescriptorVersion descriptorVersion: Int = V60
): ByteArray {
 // Returns a descriptor generated from a raw image
}

public fun matchDescriptors(
 first: ByteArray,
 second: ByteArray,
 @DescriptorVersion descriptorVersion: Int = V60
): Float {
 // Compares two descriptors and returns a similarity score
}

Component Description

descriptorVersion Determines the model version used for descriptor generation or

comparison.

getDescriptorFromWrapped Generates a descriptor from a preprocessed (wrapped) image.

getDescriptor Generates a descriptor directly from a raw image in Bitmap format.

matchDescriptors Compares two descriptors and returns a similarity score (Float) between

0 (no match) and 1 (perfect match).

VisionLabs B.V. Page 210 of 270

Usage example

Below is an example of extracting and comparing descriptors from two best shots.

Note: Descriptor extraction and comparison are not limited to best shots obtained

through LUNA ID. You can also use any bitmap image containing a single face.

The process involves three main steps:

STEP 1: GETTING BEST SHOTS FOR DESCRIPTOR EXTRACTION

To extract descriptors, first obtain the best shots using the LunaID.bestShot flow. The following

code demonstrates how to collect and assign the best shots for two faces:

STEP 2: EXTRACTING DESCRIPTORS FROM BITMAP IMAGES

Once the best shots are obtained, use the LunaUtils.getDescriptor method to extract descriptors

from the bitmap images. Specify the descriptor version as shown below:

STEP 3: COMPARING DESCRIPTORS

To compare the extracted descriptors, use the LunaUtils.matchDescriptors method. This method

calculates a similarity score between the two descriptors, where 1 indicates a perfect match

and 0 indicates no similarity:

LunaID.bestShot.collect { result ->
 result?.let {
 when (searchingFace) {
 SearchingFace.FIRST -> bitmapOfFirstFace = result.bestShot.warp
 SearchingFace.SECOND -> bitmapOfSecondFace = result.bestShot.warp
 }
 }
}

val firstDescriptor = LunaUtils.getDescriptor(
 bitmapOfFirstFace,
 descriptorVersion = V60
)

val secondDescriptor = LunaUtils.getDescriptor(
 bitmapOfSecondFace,
 descriptorVersion = V60
)

VisionLabs B.V. Page 211 of 270

The resulting similarityScore provides a quantitative measure of how similar the two faces are.

7.7.2 In LUNA ID for iOS

To calculate descriptors, LUNA ID for iOS uses the cnn60m_arm.plan file.

val similarityScore = LunaUtils.matchDescriptors(
 firstDescriptor,
 secondDescriptor,
 descriptorVersion = V60
)
Log.d("FaceSimilarity", "Similarity score: $similarityScore")

VisionLabs B.V. Page 212 of 270

7.8 Using commands

This topic applies to LUNA ID for Android only.

LUNA ID for Android provides controls to manage a camera:

7.8.1 StartBestShotSearchCommand

You can use the StartBestShotSearchCommand command to start a best shot search at any

specified moment, that is after some event or a fixed delay.

If specified in Commands , a call to LunaID.showCamera does not automatically start the best

shot search. To start the best shot search, you need to send the command with

LunaID.sendCommand(StartBestShotSearchCommand) .

7.8.2 CloseCameraCommand

You can use the CloseCameraCommand command you to specify when to close a camera after

the best shot was found.

If specified in Commands , the camera will not be closed automatically when the best shot

search finishes. Currently, this is the default behavior. You will still receive the LunaID.bestShot

finish event. You need to close the camera by calling

LunaID.sendCommand(CloseCameraCommand) .

7.8.3 Usage

To use the commands, you need to do the following:

1․ Create the Commands instance with commands that you want to use:

All the commands override the default behavior when specified. Only the specified

commands will be accepted. If you try to send unspecified commands, an exception will be

thrown.

StartBestShotSearchCommand•

CloseCameraCommand•

Commands.Builder().apply {
 override(StartBestShotSearchCommand)
 override(CloseCameraCommand)
 }.build()

VisionLabs B.V. Page 213 of 270

2․ Call the LunaID.showCamera() method with the Commands instance.

If you do not specify commands , you can expect the default behavior. Nothing will change

for you compared to the previous LUNA ID versions.

3․ Send any command with LunaID.sendCommand() .

7.8.4 Example

You can find a detailed example of how to use the StartBestShotSearchCommand and

CloseCameraCommand commands in CameraExample.

 LunaID.showCamera(
 ...
 commands = ...,
)

VisionLabs B.V. Page 214 of 270

https://github.com/VisionLabs/LunaID-Android-Examples/tree/v1.7.2

7.9 Using OCR

Applies to LUNA ID for Android only.

The OCR (Optical Character Recognition) module enables on-device scanning and recognition

of identity and official documents using the device’s built-in camera. It extracts both textual

and graphical data (for example, photos, signatures) from supported document types.

7.9.1 Key considerations

Memory usage

The OCR module may use up to 256 MB of RAM during initialization and recognition.

Consider this when:

Camera permission

The camera permission is required for OCR to function.

Errors

License and LUNA ID errors are always propagated and must be handled at the application

level.

7.9.2 Step 1: Add the OCR dependency

To use the OCR functionality, you must explicitly include the OCR module as a dependency in

you Android project. To do this, specify it in the build.gradle.kts file:

7.9.3 Step 2: Activate the OCR license

The OCR functionality requires a valid license entry in the license.conf file:

Running on devices with limited resources.•

Using OCR concurrently with other resource-intensive modules.•

Launching OCR in the background or within complex screen hierarchies.•

implementation("ai.company.product:ocr:X.X.X@aar")

VisionLabs B.V. Page 215 of 270

Important notes:

7.9.4 Step 3: Initialize OCR

After adding the dependency and confirming the license, initialize the OCR using:

The OCR initialization result is returned via Ocr.ocrInitStateFlow as the OcrInitStatus object. All

initialization statuses are defined in the OcrInitStatus class hierarchy:

In case of an error, the corresponding reason will be passed to the flow.

7.9.5 Step 4: Start the OCR

Use the following method to start the OCR:

<?xml version="1.0"?>
<settings>
 <section name="Licensing::Settings">
 <!-- Other license parameters -->
 <param name="OCR" type="Value::String" text="ocrLicense" />
 </section>
</settings>

If the OCR license parameter is missing, the OCR functionality is disabled.•

If the parameter is present but contains an invalid value, the OCR initialization fails with

an error.

•

If the parameter is present and valid, OCR is activated successfully.•

OCR licensing is independent of core LUNA ID licensing. Both can be enabled or disabled

separately.

•

Ocr.initialize(context, licenseFile)

ealed class OcrInitStatus {
 data object NotInitialized : OcrInitStatus()
 data object InProgress : OcrInitStatus()
 data object Success : OcrInitStatus()
 data object NotIncluded : OcrInitStatus()
 data class Failure(val cause: Throwable? = null) : OcrInitStatus()
}

VisionLabs B.V. Page 216 of 270

After calling the method, a new Activity and the device camera will be launched, and OCR

recognition will be started.

7.9.6 Step 5: Handle results

Once the process is completed, the result is sent to LunaID.eventChannel as an event:

Ocr.start(context)

sealed class OcrResult {
 data class Success(val data: OcrData) : OcrResult()
 data class Failure(val error: Throwable) : OcrResult()
}

Result Description

OcrResult.Success Recognition was successful. Contains the OcrData object, which includes:

Document type

Text fields

Graphical fields (for example, photo, signature)

OcrResult.Failure Recognition failed. Contains an error object (Throwable) which is an OcrError. All

possible OCR errors are defined in the sealed class OcrError .

•

•

•

VisionLabs B.V. Page 217 of 270

8. Configuring LUNA ID

8.1 Best shot properties

8.1.1 In LUNA ID for Android

This section describes properties that apply to the LunaConfig class. You can use them to

configure getting the best shot.

acceptEyesClosed

Specifies whether an image with two closed eyes will be considered the best shot.

Possible values:

 The acceptEyesClosed property requires the lunaid-common-arm-X.X.X.aar

dependency. For details, see Distribution kit.

acceptOccludedFaces

Specifies whether an image with an occluded face will be considered the best shot.

Possible values:

 The acceptOccludedFaces property requires the lunaid-mask-X.X.X.aar dependency.

For details, see Distribution kit.

true - Specifies that frames that contain faces with closed eyes can be best shots. For

details on getting the best shot with two closed eyes, see Getting the best shot with

faces with closed eyes.

•

false - Default. Specifies that frames that contain faces with closed eyes cannot be

best shots.

•

true - Default. Specifies that an image with an occluded face can be the best shot.

For details on getting the best shot with an occluded face, see Getting the best shot

with an occluded face.

•

false - Specifies that an image with an occluded face cannot be the best shot. The

NotificationDetectionError event will appear in LunaID.errorFlow() with payload

DetectionError.OccludedFace every time an occluded face is recognized.

•

VisionLabs B.V. Page 218 of 270

acceptOneEyeClose

Specifies whether frames that contain faces with one closed eye can be best shots.

Possible values:

 The acceptOneEyeClose property requires the acceptOneEyed property to be

enabled. For details, see Performing Dynamic Liveness estimation.

acceptOneEyed

Enables or disables the Dynamic Liveness estimation interaction via blinking with one

eye. Possible values:

 The acceptOneEyed property requires the lunaid-common-arm-X.X.X.aar

dependency. For details, see Distribution kit.

ags

Specifies an AGS threshold for further descriptor extraction and matching. For details, see

AGS estimation.

Non-public parameter. Do not change.

The default value is 0.5.

bestShotInterval

Specifies a minimum time interval between best shots.

The default value is 500.

bestShotsCount

Specifies a number of best shots that need to be collected for a OneShotLiveness

estimation.

The default value is 1.

blurThreshold

Specifies a threshold that determines whether the image is blurred.

true - Default. Specifies that frames that contain faces with a closed eye can be best

shots.

•

false - Specifies that frames that contain faces with a closed eye cannot be best

shots. However, it is possible to get the best shot with an occluded eye. For details,

see Getting the best shot with faces with occluded eyes.

•

true - Enables blinking with one eye.•

false - Default. Disables blinking with one eye.•

VisionLabs B.V. Page 219 of 270

Non-public parameter. Do not change.

The default value is 0.61.

darknessThreshold

Specifies a threshold that determines whether the image is underexposed, that is, too

dark.

Non-public parameter. Do not change.

The default value is 0.5.

detectFrameSize

Specifies a face detection bounding box size, in dp.

The default value is 350.

detectorStep

Specifies a number of frames between frames with full face detection.

The default value is 7.

faceFramePerScreen

Specifies how much of the screen's width or height the detected face occupies. The

smaller dimension between the screen's width and height is used for this calculation.

For example, if the screen width is 1000 pixels and the minFaceSideToMinScreenSide

parameter is set to 0.25, then the minimum acceptable width of the detected face must

be at least 25% of the screen width. In this case, the face width should be at least 250

pixels.

The parameter is a Float type, with values ranging from 0 to 1.

The default value is 0.3.

faceSimilarityThreshold

Specifies a threshold that determines whether the face that was first detected in the face

recognition area remains the same when tracking face identity.

The default value is 0.5.

foundFaceDelayMs

Specifies a delay, in milliseconds, to define for how long a user's face should be placed in

the face detection bounding box before the best shot is taken.

The default value is 0.

VisionLabs B.V. Page 220 of 270

glassesChecks

Specifies what images with glasses can be best shots. For details, see Getting the best

shot with faces with occluded eyes.

headPitch

Specifies the head rotation angle along the X axis.

The default value is 25.

headRoll

Specifies the head rotation angle along the Y axis.

The default value is 25.

headYaw

Specifies the head rotation angle along the Z axis.

The default value is 25.

interactionDelayMs

Specifies a timeout between Dynamic Liveness estimation interactions, in milliseconds.

This means that a new interaction will start after the preceding one ends after the

timeout has passed.

The default value is 0.

lightThreshold

Specifies a threshold that determines whether the image is overexposed, that is, too

light.

Non-public parameter. Do not change.

The default value is 0.57.

livenessCompressionQuality

Specifies a quality of the image to be sent to OneShotLiveness estimation. Value 0

represents the maximum compression.

The default value is 50.

livenessFormat

Specified the image compression format used for OneShotLiveness estimation.

The default value is CompressFormat.JPEG .

VisionLabs B.V. Page 221 of 270

livenessQuality

Specifies a OneShotLiveness estimation threshold lower which the system will consider

the result as a presentation attack.

The default value is 0.5.

livenessType

Specifies a OneShotLiveness estimation type. Possible values:

The default value is not set.

minFaceSideToMinScreenSide

Defines the minimum allowable size of a detected face , expressed as a proportion of the

smallest screen dimension. The face size is calculated relative to the preview image

dimensions, not the full-resolution frame.

The default value is 0.3.

minFaceSize

Specifies the minimum acceptable size, in pixels, for a detected face. Faces smaller than

this size will be ignored during the detection process.

The parameter values range from 20 to 350.

The default value is 50.

minimalTrackLength

Specifies the minimum number of detections to consider there is a real face in a video

track.

The default value is 1.

onlineLivenessErrorTimeout

Specifies a timeout within which a OneShotLiveness estimation should be performed.

LivenessType.Online - Enables the Online OneShotLiveness estimation.•

LivenessType.Offline - Enables the Offline OneShotLiveness estimation.•

When set to a higher value, it ensures that only larger, more prominent faces are

processed, which can improve performance and reduce noise from distant or small

faces.

•

When set to a lower value, it allows for the detection of smaller faces but may

increase processing time and the likelihood of detecting irrelevant faces.

•

VisionLabs B.V. Page 222 of 270

The default value is not set.

skipFrames

Specifies a number of frames to wait until a face is detected in the face recognition area

before video recording is stopped.

The default value is 36.

strictlyMinSize

Specifies whether the minFaceSize parameter will be considered during face detection.

Possible values:

usePrimaryFaceTracking

Specifies whether to track the face that was detected in the face recognition area first.

For details, see Tracking face identity. Possible values:

 The acceptOccludedFaces property requires the lunaid-cnn60-X.X.X.aar dependency.

For details, see Distribution kit.

8.1.2 In LUNA ID for iOS

This section describes properties that apply to the LCBestShotConfiguration configuration

instance. You can use them to configure getting the best shot.

estimationThreshold

Specifies a best shot estimation threshold.

The default value depends on a best shot estimation.

borderDistance

Specifies the distance, in pixels, from the frame edges and is based on the face detection

bounding box size estimation. For details, see Frame edges offset estimation.

true - The minFaceSize parameter is ignored, and all detected faces, regardless of

size, are considered for further processing.

•

false - Default. LUNA ID strictly enforces the minFaceSize threshold, ensuring that

only faces meeting or exceeding this size are detected and processed.

•

true - Default. Enables primary face tracking.•

false - Disables primary face tracking.•

LCLunaConfiguration → bestShotConfiguration → estimationThreshold → ags = 0.2;

VisionLabs B.V. Page 223 of 270

The default value is 10.

minDetSize

Specifies a bounding box size, in pixels. For details, see Face detection bounding box size

estimation.

The default value is 200.

detectorStep

Specifies a number of frames to be taken between face detections. The smaller the

number is, the more likely that TrackEngine will detect a new face as soon as it appears in

the frame. The higher the number is, the higher the overall performance is. You can use

the property to balance the performance and face detection frequency.

Accepted values vary from 0 to 30.

The default value is 7.

skipFrames

Specifies a number of frames to wait until a face is detected in the face recognition area

before video recording is stopped.

Accepted values vary from 0 to 50.

The default value is 36.

minimalTrackLength

Specifies the minimum number of detections to consider there is a real face in a video

track.

LCLunaConfiguration → bestShotConfiguration → borderDistance = 10;

LCLunaConfiguration → bestShotConfiguration → minDetSize = 200;

LCLunaConfiguration → bestShotConfiguration → detectorStep = 7;

LCLunaConfiguration → bestShotConfiguration → skipFrames = 36;

VisionLabs B.V. Page 224 of 270

The default value is 5.

numberOfBestShots

Specifies a number of best shots that need to be collected for a OneShotLiveness

estimation.

The default value is 3.

bestShotInterval

Specifies a minimum time interval between best shots.

The default value is 0.5.

similarityThreshold

Specifies a threshold that determines whether the face that was first detected in the face

recognition area remains the same when tracking face identity.

The default value is 0.01.

livenessQuality

Specifies a OneShotLiveness estimation threshold lower which the system will consider

the result as a presentation attack.

The default value is 0.

checkEyes

Enables the eye state estimation.

LCLunaConfiguration → bestShotConfiguration → minimalTrackLength = 5;

LCLunaConfiguration → bestShotConfiguration → numberOfBestShots = 3;

LCLunaConfiguration → bestShotConfiguration → bestShotInterval = 0.5;

LCLunaConfiguration → bestShotConfiguration → similarityThreshold = 0.01;

LCLunaConfiguration → bestShotConfiguration → livenessQuality = 0;

VisionLabs B.V. Page 225 of 270

If set to true , the best shot with closed eyes will be skipped.

LCLunaConfiguration → bestShotConfiguration → checkEyes = true;

VisionLabs B.V. Page 226 of 270

8.2 Changing detection settings

8.2.1 In LUNA ID for Android

The LunaCore.aar file uses default detection settings. These settings are stored in the .conf

files inside LunaCore.aar and you cannot change them directly. However, you can change

them if you put the files of the same name in your app along the assets/data path.

For example, if you need to change the FaceEngine settings, then inside your app, where

LunaCore.aar is connected as a dependency, you need to create the assets/data/

faceengine.conf file, which will contain all the FaceEngine settings.

Your faceengine.conf must contain all the settings, not just the ones you want to change,

because your file will completely overwrite all the settings contained in LunaCore.aar.

8.2.2 In LUNA ID for iOS

To change detection settings, pass the required values for the parameters specified in the

table below:

Function Parameter Description

LCLunaConfiguration →

bestShotConfiguration →

estimationThreshold

headPitch Specifies the head rotation along the X axis.

LCLunaConfiguration →

bestShotConfiguration →

estimationThreshold

headYaw Specifies the head rotation along the Y axis.

LCLunaConfiguration →

bestShotConfiguration →

estimationThreshold

headRoll Specifies the head rotation along the Z axis.

LCLunaConfiguration →

bestShotConfiguration →

estimationThreshold

ags Specifies the source image score for further

descriptor extraction and matching.

LCLunaConfiguration →

bestShotConfiguration

borderDistance Specifies the distance from the frame edges

and is based on the face detection bounding

box size estimation.

LCLunaConfiguration →

bestShotConfiguration

minDetSize Specifies a bounding box size.

LCLunaConfiguration startDelay Specifies a timeout, in seconds, before face

recognition begins.

VisionLabs B.V. Page 227 of 270

8.3 Bulk editing LUNA ID parameters

Applies to LUNA ID for iOS only.

LUNA ID allows you to configure runtime parameters in two ways:

Important: These approaches are mutually exclusive at runtime. Changing parameter

values in your code will not automatically change them in the LCLunaConfiguration.plist

file.

8.3.1 Configuration file

Using the the LCLunaConfiguration.plist file allows you to bulk edit all the LUNA ID parameters

in one place. The file is located in the following directory:

.\luna-id-sdk_ios_v.X.X.X\frameworks\LunaCore.xcframework\ios-

arm64\LunaCore.framework\LCLunaConfiguration.plist

To apply the parameters, pass them to the LCLunaConfiguration object:

Programmatically in your code•

Declaratively via the LCLunaConfiguration.plist file•

LCLunaConfiguration(plistFromDocuments: plist)

VisionLabs B.V. Page 228 of 270

Below is an example structure of the file:

Example structure of LCLunaConfiguration.plist

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/
PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>LCLunaConfiguration</key>
 <dict>
 <key>multipartBestShotsEnabled</key>
 <false/>
 <key>glassesCheckEnabled</key>
 <false/>
 <key>aggregationEnabled</key>
 <false/>
 <key>ocrEnabled</key>
 <false/>
 <key>interactionEnabled</key>
 <true/>
 <key>saveOnlyFaceVideo</key>
 <false/>
 <key>trackFaceIdentity</key>
 <false/>
 <key>occludeCheck</key>
 <true/>
 <key>advancedSunglasses</key>
 <false/>
 <key>eyeInjury</key>
 <true/>
 <key>startDelay</key>
 <integer>0</integer>
 <key>faceTime</key>
 <integer>0</integer>
 <key>compressionQuality</key>
 <real>0.8</real>
 <key>documentVerificationMatch</key>
 <real>0.7</real>
 <key>primaryFaceMatching</key>
 <real>0.7</real>
 <key>plistLicenseFileName</key>
 <string>vllicense.plist</string>
 <key>videoRecordLength</key>
 <integer>0</integer>
 <key>emptyFrameTime</key>
 <integer>0</integer>

VisionLabs B.V. Page 229 of 270

 </dict>
 <key>LCBestShotConfiguration</key>
 <dict>
 <key>livenessType</key>
 <integer>1</integer>
 <key>eyesCheck</key>
 <true/>
 <key>borderDistance</key>
 <integer>10</integer>
 <key>minDetSize</key>
 <integer>200</integer>
 <key>minFaceSize</key>
 <integer>200</integer>
 <key>numberOfBestShots</key>
 <integer>3</integer>
 <key>bestShotInterval</key>
 <integer>5</integer>
 <key>livenessQuality</key>
 <integer>0</integer>
 </dict>
 <key>LCInteractionsConfig</key>
 <dict>
 <key>stepsNumber</key>
 <integer>3</integer>
 <key>interactionTimeout</key>
 <integer>5</integer>
 <key>timeoutBetweenInteractions</key>
 <integer>0</integer>
 </dict>
 <key>LCEstimationThreshold</key>
 <dict>
 <key>headPitch</key>
 <integer>25</integer>
 <key>headYaw</key>
 <integer>25</integer>
 <key>headRoll</key>
 <integer>25</integer>
 <key>ags</key>
 <real>0.5</real>
 </dict>
</dict>
</plist>

VisionLabs B.V. Page 230 of 270

8.3.2 Configuration parameters

The parameters listed in LCLunaConfiguration.plist are as follows:

VisionLabs B.V. Page 231 of 270

LCLunaConfiguration section

VisionLabs B.V. Page 232 of 270

Parameter Default

value

Description

multipartBestShotsEnabled false Enables or disables the capture of multiple best shots

during a single session. For details, see Sending

multiple frames for estimation aggregation to the

backend.

emptyFrameTime 0 Specifies a timeout within which a face should appear

in the frame, otherwise the video session will be

terminated.

glassesCheckEnabled false Specifies whether the glasses estimation is enabled.

aggregationEnabled false Specifies whether aggregation for sunglasses and

eye state estimation is enabled.

ocrEnabled false Specifies whether OCR (Optical Character

Recognition) is enabled.

interactionEnabled true Specifies whether Dynamic Liveness interactions with

a camera are enabled.

saveOnlyFaceVideo false Specifies whether to save video files only with a face

detected.

trackFaceIdentity false Specifies whether face identity tracking is enabled.

occludeCheck true Specifies whether the face occlusion estimation is

enabled.

advancedSunglasses false Enables or disables advanced sunglasses detection

logic. For details, see Getting the best shot with faces

with occluded eyes.

videoRecordLength 5 Specifies a video stream length, in seconds.

eyeInjury true Specifies whether images with a closed eye can be

considered the best shots. For details, see Getting

the best shot with faces with closed eyes.

startDelay 0 Specifies a timeout, in seconds, before face

recognition begins.

faceTime 0 Specifies a delay, in seconds, to define for how long a

user's face should be placed in the face detection

bounding box before the best shot is taken.

plistLicenseFileName vllicense.plist Specifies the license file.

compressionQuality 0.8 Controls the JPEG compression quality of captured

best-shot images, with values typically ranging from

0.0 (lowest quality, smallest file size) to 1.0 (highest

quality, largest file size).

VisionLabs B.V. Page 233 of 270

LCBestShotConfiguration section

LCInteractionsConfig section

Parameter Default

value

Description

documentVerificationMatch 0.7 Determines the match threshold between a face and

a photo in a document (when using OCR).

primaryFaceMatching 0.7 Specifies the comparison threshold for 1:1 user

verification.

Parameter Default

value

Description

livenessType 1 Specifies the type of OneShotLiveness estimation.

eyesCheck true Enables or disables eye state estimation.

borderDistance 10 Specifies the distance from the frame edges and is based on

the face detection bounding box size estimation.

minDetSize 200 Specifies a bounding box size.

minFaceSize 200 Specifies the minimum face size in pixels.

numberOfBestShots 3 Specifies the number of frames from which the best shot will

be selected.

bestShotInterval 5 Specifies the time interval between attempts to obtain the

best shot.

livenessQuality 0 Defines the threshold below which the system will consider

the result to be an attempted spoofing attack.

Parameter Default

value

Description

stepsNumber 3 Specifies a number of Dynamic Liveness interactions

to be performed.

interactionTimeout 5 Specifies a timeout for every Dynamic Liveness

interaction to be performed in a random sequence.

timeoutBetweenInteractions 0 Specifies a timeout between Dynamic Liveness

interactions.

VisionLabs B.V. Page 234 of 270

LCEstimationThreshold section

Parameter Default

value

Description

headPitch 25 Specifies the head rotation along the X axis.

headYaw 25 Specifies the head rotation along the Y axis.

headRoll 25 Specifies the head rotation along the Z axis.

ags 0,2 Specifies the source image score for further descriptor

extraction and matching.

VisionLabs B.V. Page 235 of 270

8.4 Setting up timeouts

Adjusting timeouts in LUNA ID lets you maintain resource efficiency, enhance user

experience, and ensure security compliance.

8.4.1 Face fixing timeout

Applies to LUNA ID for iOS only.

After a video session starts, LUNA ID waits for a face to appear in the frame for further

processing. You can set a timeout, in seconds, within which the face should appear in the

frame. If the face does not appear in the frame after this timeout, the session will be

terminated with the 1028 error.

To set the timeout, use the LCLunaConfiguration.emptyFrameTime property. The default value is 0.

8.4.2 Best shot timeouts

You can set up timeouts to configure the process of getting the best shot.

Before starting face recognition

You can set an optional delay or specific moment in time to define when the face recognition

will start after the camera is displayed in the screen.

To do this in LUNA ID for Android, use the StartBestShotSearchCommand command.

To do this in LUNA ID for iOS, use LCLunaConfiguration.startDelay .

Before getting the best shot

You can an optional a delay, to define for how long a user's face should be placed in the face

detection bounding box before the best shot is taken.

To do this in LUNA ID for Android, use the LunaID.foundFaceDelayMs parameter. The default

value is 0 milliseconds.

To do this in LUNA ID for iOS, define the LCLunaConfiguration::faceTime property. The default

value is 5 seconds. In case, the face disappears from the bounding box within the specified

period, the BestShotError.FACE_LOST will be caught in the LCBestShotDelegate::bestShotError

delegate.

VisionLabs B.V. Page 236 of 270

8.4.3 Dynamic Liveness estimation timeouts

Interaction timeout

For each interaction, you can specify the time during which an interaction must be

completed. The timeout is specified in milliseconds in LUNA ID for Android and in seconds in

LUNA ID for iOS.

To do this in LUNA ID for Android, use the timeoutMs parameter. By default, the parameter

value is 5 seconds.

To do this in LUNA ID for iOS, pass the interactionTimeout parameter to the following property

of the LCLunaConfiguration class:

By default, the parameter value is 5 seconds.

If an interaction was not completed within the allotted time, the 1007 error appears.

Timeout between interactions

You can set a timeout between interactions, in milliseconds in LUNA ID for Android and in

seconds in LUNA ID for iOS. This means that a new interaction will start after the preceding

one ends after the specified timeout is passed.

To do this in LUNA ID for Android, use the LunaConfig.interactionDelayMs parameter. By default,

the parameter value is 0.

To do this in LUNA ID for iOS, use the

LCLunaConfiguration.interactionsConfig.timeoutBetweenInteractions property. By default, the property

value is set to 0.

@property (nonatomic, strong) LCInteractionsConfig *interactionsConfig;

VisionLabs B.V. Page 237 of 270

8.5 Configuring the camera

Applies to LUNA ID for Android only.

LUNA ID for Android uses Google's CameraX library to provide flexible and reliable camera

control, enabling you to customize key video capture parameters for optimal face detection

and analysis.

8.5.1 Camera parameters

The following parameters are part of ShowCameraParams and define how the camera operates

during a face capture session:

@Serializable(with = CameraSelectorSerializer::class)
val cameraSelector: CameraSelector = defaultCameraSelector(),

@Serializable(with = ResolutionSelectorSerializer::class)
val previewResolutionSelector: ResolutionSelector =
defaultPreviewResolutionSelector(),

@Serializable(with = ResolutionSelectorSerializer::class)
val analysisResolutionSelector: ResolutionSelector =
defaultAnalysisResolutionSelector(),

VisionLabs B.V. Page 238 of 270

@Serializable(with = QualitySelectorSerializer::class)
val videoQualitySelector: QualitySelector = defaultVideoQualitySelector(),

VisionLabs B.V. Page 239 of 270

Parameter Type Default Description

analysisResolutionSelector ResolutionSelector Not set Defines the resolution of

frames sent to the LUNA ID

detector for facial analysis

(for example, liveness,

attribute estimation).

autoFocus Boolean true Enables continuous

autofocus.

borderDistanceStrategy BorderDistancesStrategy Not set Defines the strategy to be

used to specify face

recognition area borders.

cameraSelector CameraSelector Not set Specifies which physical

camera to use: front

(DEFAULT_FRONT_CAMERA) or

rear

(DEFAULT_BACK_CAMERA).

checkSecurity Boolean false Enables or disables the

virtual camera usage check.

disableErrors Boolean true Enables or disables error

messages.

ignoreVideoWithoutFace Boolean true Specifies whether to record

a video stream only with

the face detected.

logToFile Boolean false Enables or disables saving

logs to a file.

minFaceSideToMinScreenSide Float 0.3f Defines the minimum face-

to-screen ratio [0.0..1.0].

previewResolutionSelector ResolutionSelector Not set Sets the resolution of the

video stream displayed on

the device screen (UI

preview).

recordingTimeMillis Long 0 Limits a video stream's

duration. The parameter is

mandatory if recordVideo is

set to true .

recordVideo Boolean false Enables or disables video

recording.

VisionLabs B.V. Page 240 of 270

8.5.2 Default configuration

LUNA ID applies the following defaults for camera operation:

These values are used in the corresponding functions:

Parameter Type Default Description

videoQualitySelector QualitySelector Not set Determines the quality of

the recorded video output.

Possible values: SD , HD ,

FHD , UHD .

Parameter Default value

Video quality SD (~640x480 pixels)

Analysis resolution 640×480 pixels

Review resolution 640×480 pixels

Default camera Front-facing

const val DEFAULT_ANALYSIS_FRAME_WIDTH = 640
const val DEFAULT_ANALYSIS_FRAME_HEIGHT = 480
const val DEFAULT_PREVIEW_FRAME_WIDTH = 640
const val DEFAULT_PREVIEW_FRAME_HEIGHT = 480

val DEFAULT_ANALYSIS_ASPECT_RATIO_STRATEGY =
AspectRatioStrategy.RATIO_16_9_FALLBACK_AUTO_STRATEGY
val DEFAULT_PREVIEW_ASPECT_RATIO_STRATEGY =
AspectRatioStrategy.RATIO_16_9_FALLBACK_AUTO_STRATEGY
val DEFAULT_VIDEO_QUALITY: Quality = Quality.SD

private fun defaultAnalysisResolutionSelector(): ResolutionSelector =
 ResolutionSelector.Builder()
 .setResolutionStrategy(
 ResolutionStrategy(
 Size(DEFAULT_ANALYSIS_FRAME_WIDTH,
DEFAULT_ANALYSIS_FRAME_HEIGHT),
 ResolutionStrategy.FALLBACK_RULE_CLOSEST_HIGHER
)
)
 .setAspectRatioStrategy(DEFAULT_ANALYSIS_ASPECT_RATIO_STRATEGY)
 .build()

VisionLabs B.V. Page 241 of 270

Note: The FALLBACK_RULE_CLOSEST_HIGHER strategy ensures that if the requested resolution

is not supported by the device, the system selects the closest higher available resolution.

8.5.3 Pre-initializing camera availability

On certain devices, particularly embedded systems like POS terminals, it may be necessary to

pre-initialize the camera provider to ensure timely access. You can proactively load the list of

available cameras, for example, within the MainActivity scope:

Getting available camera types

Use this function to retrieve available camera types:

private fun defaultPreviewResolutionSelector(): ResolutionSelector =
 ResolutionSelector.Builder()
 .setResolutionStrategy(
 ResolutionStrategy(
 Size(DEFAULT_PREVIEW_FRAME_WIDTH, DEFAULT_PREVIEW_FRAME_HEIGHT),
 ResolutionStrategy.FALLBACK_RULE_CLOSEST_HIGHER
)
)
 .setAspectRatioStrategy(ShowCameraParams.DEFAULT_PREVIEW_ASPECT_RATIO_STRATEGY
 .build()

private fun defaultVideoQualitySelector() =
 QualitySelector.from(ShowCameraParams.DEFAULT_VIDEO_QUALITY)

private fun defaultCameraSelector(): CameraSelector =
CameraSelector.DEFAULT_FRONT_CAMERA

CoroutineScope(Dispatchers.IO).launch {
 (this@MainActivity.application as App)
 .availableCameraTypes
 .update { getAvailableCameraTypes(this@MainActivity) }
}

@SuppressLint("RestrictedApi1")
@ExperimentalCamera2Interop
suspend fun getAvailableCameraTypes(context: Context): List<Int> =
withContext(Dispatchers.IO) {
 val provider = ProcessCameraProvider.getInstance(context).get()
 provider
 .availableCameraInfos

VisionLabs B.V. Page 242 of 270

This populates an observable state (availableCameraTypes) with the supported camera

directions (front or back).

8.5.4 Launching the camera with dynamic selection

Once camera availability is known, you can launch LunaID.showCamera() using the detected

camera type:

 .mapNotNull { info ->
 val characteristics = Camera2CameraInfo.from(info).cameraCharacteristicsMap
 Log.i("FacePayViewModel", "getAvailableCameraTypes: $characteristics")

 val lensFacing =
characteristics.values.firstOrNull()?.get(CameraCharacteristics.LENS_FACING)
 when (lensFacing) {
 CameraCharacteristics.LENS_FACING_BACK -> 1
 CameraCharacteristics.LENS_FACING_FRONT -> 0
 else -> null
 }
 }
 .distinct()
}

val cameras = (context.applicationContext as App).availableCameraTypes

cameras.filterNotNull().first { availableCameras ->
 val cameraSelector = getSelectorFor(availableCameras.first())

 val showCameraParams = settings.showCameraParams.copy(
 borderDistanceStrategy =
BorderDistancesStrategy.WithCustomView(R.id.faceCaptureOverlay),
 cameraSelector = cameraSelector,
 checkSecurity = false,
)

 LunaID.showCamera(
 context = context,
 params = showCameraParams,
 interactions = Interactions.Builder().build(),
 commands = Commands.Builder().build()
)
 true
}

fun getSelectorFor(type: Int): CameraSelector =
 CameraSelector.Builder()

VisionLabs B.V. Page 243 of 270

 .requireLensFacing(type)
 .build()

VisionLabs B.V. Page 244 of 270

9. Interacting with LUNA PLATFORM

9.1 Interaction of LUNA ID with LUNA PLATFORM 5

Interaction between LUNA ID and LUNA PLATFORM 5 extends LUNA ID functionality and allows

you to perform the following tasks:

LUNA ID interacts with LUNA PLATFORM 5 via REST API.

Important: If you are not going to use the LUNA PLATFORM 5 API, we recommend that

you disable OneShotLiveness estimation to avoid possible errors.

LUNA PLATFORM 5 functions as the backend and lets you create and use handlers. Handlers

are sets of rules or policies that describe how to process the received images. For details on

how to create and use handlers, see the LUNA PLATFORM 5 documentation.

The below diagram shows how LUNA ID interacts with LUNA PLATFORM 5. We recommend

that you use it to integrate LUNA ID into your app.

Perform OneShotLiveness estimation to determine whether a person’s face is real

or fake, for example, a photo or printed image.

•

Send the best shot for descriptor matching to compare a set of properties and

helper parameters, which describe a person’s face, with the source image to determine

the similarity of represented objects. The result is a similarity score, where 1 means

completely identical, and 0 means completely different.

•

VisionLabs B.V. Page 245 of 270

https://docs.visionlabs.ai/luna/v.5.45.1/ReferenceManuals/APIReferenceManual.html#tag/handlers

Interaction of LUNA ID with LUNA PLATFORM 5 through a middleware

As the diagram shows, the process of interaction between LUNA ID and LUNA PLATFORM 5 is a

back-and-forth communication between the frontend and backend.

Your mobile app runs on the frontend and embeds LUNA ID to use its key features. LUNA ID

sends requests to LUNA PLATFORM 5 that functions as the backend.

But, when your production system is deployed, an interaction between LUNA ID and LUNA

PLATFORM 5 is not realized directly. The interaction occurs via a secure channel through a

middleware service that provides encryption and protection of the data being transferred.

Important. This document describes an example of direct interaction between LUNA ID

and LUNA PLATFORM 5. VisionLabs does not provide security solutions for data transfer.

You need to provide data protection by yourself.

VisionLabs B.V. Page 246 of 270

We recommend that you use security best practices to protect data transfer. You should pay

attention to the following security aspects:

If you want to use the HTTPS protocol, then you need to add NGINX or other similar

software to the backend.

•

If you want to use the TLS cryptographic protocol, then you need to implement it at

your mobile app.

•

You might need to configure a firewall correctly.•

To restrict access, you can use LUNA PLATFORM 5 tokens, which can be transferred to a

request header from LUNA ID.

•

VisionLabs B.V. Page 247 of 270

https://docs.visionlabs.ai/luna/latest/standard-distribution/admin-manual/general-concepts/#authorization-system

9.2 Usage scenario: Complete face recognition cycle

This section describes a sample LUNA ID usage scenario, which involves interaction with LUNA

PLATFORM 5.

This is only an example. You need to change it according to your business logic.

9.2.1 Scenario description

You want to run a full face recognition cycle using frontend and backend.

9.2.2 Scenario realization stages

Applying a full face recognition cycle in your mobile app proceeds in stages:

9.2.3 Prerequisites

To use this scenario, you need to configure LUNA PLATFORM 5 for it to work with LUNA ID. For

details on how LUNA PLATFORM 5 works, see the LUNA PLATFORM 5 documentation.

The preliminary steps are:

1․ Create a LUNA PLATFORM 5 account. For details, see Create account.

2․ Create a list of faces in LUNA PLATFORM 5 for further identification and verification. For

details, see Create list.

3․ Add faces to the list by generating a handler event with the link_to_lists_policy enabled.

4․ Create handlers for the following operations:

Getting the best shot with the detected face for best shot and OneShotLiveness

estimation.

•

Identifying that the face in the image belongs to a person from a client list (1:N

identification).

•

Matching the detected face with the face corresponding to the client ID in a global

database (1:1 verification).

•

Identification•

Verification•

VisionLabs B.V. Page 248 of 270

https://docs.visionlabs.ai/luna/latest/
https://docs.visionlabs.ai/luna/v.5.45.1/ReferenceManuals/APIReferenceManual.html#tag/accounts/operation/createAccount
https://docs.visionlabs.ai/luna/v.5.45.1/ReferenceManuals/APIReferenceManual.html#tag/lists/operation/createList
https://docs.visionlabs.ai/luna/v.5.45.1/ReferenceManuals/APIReferenceManual.html#tag/handlers/operation/createHandler
https://docs.visionlabs.ai/luna/v.5.45.1/ReferenceManuals/APIReferenceManual.html#tag/verifiers/operation/createVerifier

9.2.4 Scenario realization steps

The scenario has the following steps:

You should perform some of the scenario realization steps in LUNA PLATFORM 5.

1․ Video stream processing and face detection.

2․ Getting the best shot.

3․ Sending the selected best shot for OneShotLiveness estimation in the backend.

4․ Performing OneShotLiveness estimation at the LUNA PLATFORM 5 /liveness resource. The

source image is required for the estimation.

5․ Creating a warp for further face recognition, if the previous steps were successfully passed.

6․ Saving the video stream with the detected face on the mobile device.

7․ Sending the best shot to LUNA PLATFORM 5 for identification according to the existing list.

8․ Performing the identification at the LUNA PLATFORM 5 /handlers/handler_id/events resource.

This step creates a temporary attribute that will be used in step 11.

9․ Receiving the results.

10․ Sending a request for verification according to the existing list to LUNA PLATFORM 5.

11․ Performing the verification at the LUNA PLATFORM 5 /verifiers/verifier_id/verification resource.

The resource does not create event objects in LUNA PLATFORM 5 with information about

image processing.

12․ Returning the attribute ID.

When implementing the scenario, you can either perform identification (step 8) or

verification (step 10), not necessarily perform the both.

The diagram below shows the steps of this scenario:

VisionLabs B.V. Page 249 of 270

https://docs.visionlabs.ai/luna/v.5.45.1/ReferenceManuals/APIReferenceManual.html#tag/liveness
https://docs.visionlabs.ai/luna/v.5.45.1/ReferenceManuals/APIReferenceManual.html#tag/liveness
https://docs.visionlabs.ai/luna/v.5.45.1/ReferenceManuals/APIReferenceManual.html#tag/events/operation/generateEvents
https://docs.visionlabs.ai/luna/v.5.45.1/ReferenceManuals/APIReferenceManual.html#tag/events/operation/generateEvents
https://docs.visionlabs.ai/luna/v.5.45.1/ReferenceManuals/APIReferenceManual.html#tag/verifiers/operation/postVerifier
https://docs.visionlabs.ai/luna/v.5.45.1/ReferenceManuals/APIReferenceManual.html#tag/verifiers/operation/postVerifier

Scenario realization steps

VisionLabs B.V. Page 250 of 270

9.3 Specifying LUNA PLATFORM URL and handler IDs

To guarantee interaction of LUNA ID with LUNA PLATFORM 5, you need to specify the URL to

LUNA PLATFORM 5. This URL will be used to send requests to LUNA PLATFORM 5.

Along with the the URL to LUNA PLATFORM 5, you need to specify IDs of LUNA PLATFORM 5

handlers so you can perform the required tasks.

9.3.1 In LUNA ID for Android

Specify the baseUrl variable to provide the URL to LUNA PLATFORM 5 in the build.gradle.kts

file. Consider the following example:

The example has the following components:

To specify LUNA PLATFORM 5 handler IDs, define variables that correspond to the required

handlers in constantHeaders . For details, see the PlatformAPIExample example.

class DemoApp : Application () {
 override fun onCreate() {
 super.onCreate()

 ...

 LunaID.apiHuman

 // specify the URL to LUNA PLATFORM
 val baseUrl = "http://luna-platform.com/api/6/"
 }
}

Component Description

LunaID.apiHuman Property. Provides access to the LUNA PLATFORM API and allows sending

requests.

baseUrl Variable. Specifies the LUNA PLATFORM URL that is used by the LunaID.apiHuman()

function.

VisionLabs B.V. Page 251 of 270

https://github.com/VisionLabs/LunaID-Android-Examples/blob/master/PlatformAPIExample/src/main/java/ai/visionlabs/examples/platformapi/App.kt#L17

9.3.2 In LUNA ID for iOS

Specify the following parameters in the LWConfig class at the app start:

Parameter Description

identifyHandlerID The ID of a handler that receives the best shot and identification according to

the existing list of faces.

registrationHandlerID The ID of a handler that registers a new user and receives the best shot and

user name.

verifyID The ID of a verifier used to roll out LUNA PLATFORM 5.

lunaServerURL The LUNA PLATFORM 5 host URL. The URL should not have the slash at the

end. For example: https://LUNA_PLATFORM_HOST/6 .

platformToken Access token to the LUNA PLATFORM server.

VisionLabs B.V. Page 252 of 270

9.4 Sending multiple frames for estimation aggregation to the
backend

In LUNA ID, you can send multiple frames to the backend for aggregation. This capability is

essential for certain resource-intensive estimations performed in LUNA PLATFORM 5, such as

DeepFake Detection and OneShotLiveness.

9.4.1 In LUNA ID for Android

Getting multiple frames

To enable the acquisition of multiple frames:

1․ Set the multipartBestShotsEnabled parameter of LunaConfig to true .

2․ Specify the number of best shots to be returned by setting the LunaConfig.bestShotsCount

parameter. The valid range of values ​​for bestShotsCount is from 1 to 10.

3․ Get the list of best shots by subscribing to the BestShotsFound event. Use the bestShots

Flow to collect this list.

Structure of BestShotsFound :

Usage example:

This Flow continuously gets a list of best shots as they are detected during the session.

Important: If multipartBestShotsEnabled is set to false , the bestShots field will be returned

as null .

Implementing online aggregation

To implement online aggregation for resource-intensive estimations:

data class BestShotsFound(
 val bestShots: List<BestShot>?
) : Event()

LunaID.bestShots.filterNotNull().onEach { bestShotsList ->
 Log.e(TAG, "bestShots: ${bestShotsList.bestShots}")
}.launchIn(viewModelScope)

VisionLabs B.V. Page 253 of 270

1․ Use the apiEventsStaticHandler method of the ApiHuman class.

The method generates and sends an HTTP request that returns the EventGenerateResponse

object. This object contains information about aggregated DeepFake and OneShotLiveness

estimations.

2․ Use the StaticEventRequest class, which represents a request model:

3․ Get results of aggregated estimations with the data class EventGenerateResponse object:

fun apiEventsStaticHandler(
 query: StaticEventRequest,
 consumer: Consumer<Result<EventGenerateResponse>>,
)

class StaticEventRequest(
 override val handlerId: String,
 override val extraHeaders: Map<String, String> = emptyMap(),
 override val externalId: String? = null,
 override val userData: String? = null,
 override val imageType: Int? = null,
 override val aggregateAttributes: Int? = null,
 override val source: String? = null,
 override val tags: List<String>? = null,
 override val trackId: String? = null,
 override val useExifInfo: Int? = null,
 val requestBody: RequestBody
) : AbsEventRequest(
 handlerId,
 extraHeaders,
 externalId,
 userData,
 imageType,
 aggregateAttributes,
 source,
 tags,
 trackId,
 useExifInfo,
)

// Getting the aggregated OneShotLiveness estimation
eventGenerateResponse().aggregateEstimations?.face?.attributes?.liveness

VisionLabs B.V. Page 254 of 270

9.4.2 In LUNA ID for iOS

Getting multiple frames

To enable multiple frame acquisition:

1․ Set the multipartBestShotsEnabled to true . You will receive several best shots instead of one

through the following method:

Note that the method previously used to get a single best shot will no longer be called:

2․ Specify the number of best shots to be returned by setting the numberOfBestShots

parameter.

Getting aggregated data

To obtain aggregated OneShotLiveness and DeepFake estimation data, execute the following

query:

Query parameters:

The aggregated data will be available in the aggregateEstimations section in the query

response.

// Getting the aggregated DeepFake estimation
eventGenerateResponse().aggregateEstimations?.face?.attributes?.deepfake

func multipartBestShots(_ bestShots: [LCBestShot], _ videoFile: String?)

func bestShot(_ bestShot: LunaCore.LCBestShot, _ videoFile: String?)

generateEvents(handlerID: String, query: EventQuery, handler: @escaping (Result<EventsResponse,
Error>) -> Void)

Parameter Description

handlerID Your custom handler.

query An array of received images. Set the following values:

imageType = .rawImage

aggregateAttributes = true

•

•

VisionLabs B.V. Page 255 of 270

10. Best practices

10.1 Security options

LUNA ID provides protection measures against the use of potentially dangerous devices.

10.1.1 Virtual camera usage check

Applies to LUNA ID for Android only.

The virtual camera protection feature enhances security by detecting if the device's physical

camera has been replaced by a virtual one.

Implementation

STEP 1: ADD DEPENDENCY

To use the feature, include the security module in your project. Add the following dependency

to your build.gradle.kts file:

STEP 2: PERFORM THE CHECK

The following example demonstrates how to run the check:

The detect() method is a suspend function and must be called from a coroutine.

UNDERSTANDING THE RESULT

dependencies {
 ...
 implementation("ai.visionlabs.lunaid:security:X.X.X.aar")
}

securityCheck = SuspiciousDeviceDetector.Impl(this)
someCoroutineScope.launch {
 Log.e("SuspiciousDetector", "result: ${securityCheck.detect()}")
}

The SecurityCheck.Failure result indicates that at least one sign of a virtual camera was

detected.

•

The SecurityCheck.Success result indicates that no signs were found.•

VisionLabs B.V. Page 256 of 270

Enabling the check

The virtual camera usage check is disabled by default. To enable the check, set the

checkSecurity property to true when launching the camera. For example:

If the checkSecurity property is not specified, it is set to false by default.

10.1.2 Jailbreak check

Applies to LUNA ID for iOS only.

LUNA ID can tell you if your device has been jailbroken. If there has been an attempt to

jailbreak your device, the LMCameraCaptureManagerDelegate::deviceIsJailbroken() method will be

returned.

LunaID.showCamera(
 activity,
 LunaID.ShowCameraParams(
 checkSecurity = true // Explicitly enables the security check
)
)

VisionLabs B.V. Page 257 of 270

10.2 Reducing your app size by excluding .plan files

LUNA ID uses neural networks for face processing in images and video streams. Neural

networks are stored in the .plan files. You can reduce the size of your app by removing

unnecessary .plan files.

10.2.1 In LUNA ID for Android

You do not need to remove any .plan files as they are distributed separately. For details, see

Distribution kit.

10.2.2 In LUNA ID for iOS

To reduce your app size, remove unnecessary .plan files from the fsdk.framework/

ios_arm64(or simulator)/fsdk.framework/data/ directory. The .plan files that you can remove

are:

glasses_estimation_v2_arm.plan•

oneshot_rgb_liveness_v9_model_3_arm.plan•

oneshot_rgb_liveness_v9_model_4_arm.plan•

cnn60m_arm.plan•

VisionLabs B.V. Page 258 of 270

10.3 Getting LUNA ID status after initialization

Applies to LUNA ID for Android only.

This topic provides an instruction how to use StateFlow to track LUNA ID initialization status.

1․ Prepare the environment. Make sure you are in a ViewModel or CoroutineScope context to

use coroutines and StateFlow .

2․ Launch the coroutine using viewModelScope.launch to start collecting engine initialization

status changes.

3․ Handle the statuses. Use the when construct to handle different initialization statuses.

Depending on the current status, perform appropriate actions.

4․ Use StateFlow . engineInitStatus is a StateFlow object that stores the current initialization

state of the engine. This allows you to subscribe to status changes and get the latest state at

any time after activation.

StateFlow ensures that all subscribers always get the latest state value, even if they

subscribed after a change. This makes it a convenient tool for tracking states in your app.

viewModelScope.launch {
engineInitStatus.collect { status ->
// Handle each initialization status change
}
}

when (status) {
EngineInitStatus.NotInitialized -> {
// Actions before initialization
}
EngineInitStatus.InProgress -> {
// Actions during initialization
}
EngineInitStatus.Success -> {
// Actions after initialization is complete
}
EngineInitStatus.Failure -> {
// Actions if initialization fails
}
}

VisionLabs B.V. Page 259 of 270

10.4 Optimizing camera initialization with Camera Limiter

Applies to LUNA ID for Android only.

To improve the performance of your app's camera features, you can optimize the camera

initialization process using the Camera Limiter feature in CameraX . During the first

invocation of ProcessCameraProvider.getInstance() , CameraX enumerates and queries the

characteristics of all available cameras on the device. This process can be time-consuming,

especially on low-end devices, as it involves communication with hardware components.

If your app only uses specific cameras (for example, the default front or back camera), you

can configure CameraX to ignore unnecessary cameras. By limiting the available cameras,

you can significantly reduce startup latency for the cameras your app uses.

10.4.1 Implementation

To restrict CameraX to a specific camera, use the CameraSelector class with

CameraXConfig.Builder.setAvailableCamerasLimiter() . For example, the following code limits the app

to only use the device's default back camera:

class MainApplication : Application(), CameraXConfig.Provider {
 override fun getCameraXConfig(): CameraXConfig {
 return CameraXConfig.Builder.fromConfig(Camera2Config.defaultConfig())
 .setAvailableCamerasLimiter(CameraSelector.DEFAULT_BACK_CAMERA)
 .build()
 }
}

VisionLabs B.V. Page 260 of 270

https://developer.android.com/reference/androidx/camera/core/CameraXConfig.Builder?spm=a2ty_o01.29997173.0.0.737bc921dTbm44#setAvailableCamerasLimiter(androidx.camera.core.CameraSelector)
https://developer.android.com/reference/androidx/camera/core/CameraXConfig.Builder?spm=a2ty_o01.29997173.0.0.737bc921dTbm44#setAvailableCamerasLimiter(androidx.camera.core.CameraSelector)

10.5 Customizing UI with LUNA ID

10.5.1 Customizing face recognition area borders

Applies to LUNA ID for Android only.

In some cases, you may need the best shot search to start only after a user places their face

in a certain area in the screen. You can specify face recognition area borders by implementing

one of the following strategies:

Border distances are not initialized

This strategy is useful if the border distances should be 0 pixels. This is the default strategy.

To implement the strategy, use the Default object of the InitBorderDistancesStrategy class.

Consider the code below for the strategy implementation:

Border distances are initialized with an Android custom view

This strategy allows you to define how to calculate distances to the face recognition area

inside an Android custom view. The custom view can stretch to fill the entire screen and

contain different elements, one of which is a circle that corresponds to the face recognition

area. The custom view must implement the MeasureBorderDistances interface. The interface

result value is a child object with custom view border distances. Implementation of this

interface is required due to impossibility to get the distances outside the custom view and

allows you to comply with the encapsulation principle.

Border distances are not initialized

Border distances are initialized with an Android custom view

Border distances are initialized in dp

Border distances are initialized automatically

LunaID.showCamera(
 activity,
 LunaID.ShowCameraParams(
 disableErrors = true,
 borderDistanceStrategy = InitBorderDistancesStrategy.Default
)
)

VisionLabs B.V. Page 261 of 270

Consider the example code below for the MeasureBorderDistances interface implementation. It

also shows how to implement a business logic according to which a chin and forehead must

be inside the face recognition area.

To implement the strategy, use the InitBorderDistancesStrategy.WithCustomView class. You also

need to pass an argument with the ID of the custom view on the XML markup to the object of

the WithCustomView class.

Consider the example code below for the strategy implementation:

override fun measureBorderDistances(): BorderDistancesInPx {
 val radius = minOf(right - left, bottom - top) / 2f
 val diameter = radius * 2

 val distanceFromLeftToCircle = (width - diameter) / 2f
 val distanceFromTopToCircle = (height - diameter) / 2f

 // business logic
 val foreheadZone = 64
 val chinZone = 36
 val horizontalMargin = 16

 val distanceFromTopWithForehead = distanceFromTopToCircle.toInt() +
foreheadZone
 val distanceFromBottomWithChin = distanceFromTopToCircle.toInt() + chinZone
 val distanceHorizontalToCircle = distanceFromLeftToCircle.toInt() + horizontalMargin
 // business logic ends

 return BorderDistancesInPx(
 fromLeft = distanceHorizontalToCircle,
 fromTop = distanceFromTopWithForehead,
 fromRight = distanceHorizontalToCircle,
 fromBottom = distanceFromBottomWithChin,
)
}

VisionLabs B.V. Page 262 of 270

Border distances are initialized in dp

This strategy allows you to specify distances to the face recognition area in density-

independent pixels.

To implement the strategy, use the InitBorderDistancesStrategy.WithDp class.

Consider the example code below for the strategy implementation:

Border distances are initialized automatically

This strategy allows you to automatically calculate distances to the face recognition area on

the XML markup by using its ID:

LunaID.showCamera(
 context,
 LunaID.ShowCameraParams(
 disableErrors = true,
 borderDistanceStrategy = InitBorderDistancesStrategy.WithCustomView(
 R.id.overlay_viewport
)
)
)

LunaID.showCamera(
 context,
 LunaID.ShowCameraParams(
 disableErrors = false,
 borderDistanceStrategy = InitBorderDistancesStrategy.WithDp(
 topPaddingInDp = 150,
 bottomPaddingInDp = 250,
 leftPaddingInDp = 8,
 rightPaddingInDp = 8
)
)
)

<View
 android:id="@+id/faceZone"
 android:layout_width="200dp"
 android:layout_height="300dp"
 android:background="#1D000000"

VisionLabs B.V. Page 263 of 270

To implement the strategy, use the InitBorderDistancesStrategy.WithViewId class.

Consider the example code below for the strategy implementation:

 android:layout_gravity="top|center"
 android:layout_marginTop="150dp"/>

LunaID.showCamera(
 context,
 LunaID.ShowCameraParams(
 disableErrors = false,
 borderDistanceStrategy = InitBorderDistancesStrategy.WithViewId(R.id.faceZone)
)
)

VisionLabs B.V. Page 264 of 270

10.5.2 Customizing UI with LUNA ID for iOS

Applies to LUNA ID for iOS only.

This topic provides information about LUNA ID protocols and methods that you can use to

customize the UI of your app.

LMUICustomizerProtocol

The LMUICustomizerProtocol protocol realizes the following interface elements:

Important: videoStreamNotificationView and faceDetectionFrameView cannot exist separately

from each other.

LMRootCustomizationViewProtocol

The LMRootCustomizationViewProtocol protocol inherits from UIView and is responsible for the UI

rooted view. The protocol defines two mandatory methods:

LMDefaultUICustomizer

LMDefaultUICustomizer is the default implementation of the default interface builder.

LMDefaultRootCustomizationView

The LMDefaultRootCustomizationView object implements the LMRootCustomizationViewProtocol

protocol and represents the rooted view with the standard camera interface.

Element Description

videoStreamNotificationView Shows user notifications.

faceDetectionFrameView Specifies a face detection bounding box.

rootCustomizationView Specifies the rooted view of the UI and returns the

LMRootCustomizationViewProtocol object. The rootCustomizationView()

method must contain videoStreamNotificationView and

faceDetectionFrameView and can contain all user elements that are used

in the UI as subviews. In rootCustomizationView , you can specify as many

camera UI elements as you need.

Method Description

unlockUI() Unlocks the interface.

lockUI() Locks the interface or displays elements such as a progress bar when saving a

video.

VisionLabs B.V. Page 265 of 270

LMCameraViewController

The creation of a UI is possible through the use of LMCameraViewController , to which the

LMCustomization protocol object is passed.

VisionLabs B.V. Page 266 of 270

10.6 Performing 1:N face matching on device

Applies to LUNA ID for Android only.

This guide demonstrates how to perform 1:N face matching directly on an Android device

using LUNA ID. The example shows how to search for a face in a pre-existing database of

facial descriptors.

10.6.1 Overview

The findFaceInDatabase function compares a facial image against a database of enrolled face

descriptors. It returns the first match that exceeds a specified similarity threshold, providing a

boolean result, similarity score, and the index of the matched face.

10.6.2 Function specification

Method signature

Parameters

fun findFaceInDatabase(
 image: Bitmap,
 descriptorDb: List<ByteArray>,
 scoreThreshold: Float = 0.7f
): Triple<Boolean, Float, Int>

Parameter Type Description

image Bitmap The facial image to identify.

descriptorDb List<ByteArray> Database of enrolled face descriptors.

scoreThreshold Float Minimum similarity score for a valid match (default: 0.7f).

VisionLabs B.V. Page 267 of 270

Return value

Returns Triple<Boolean, Float, Int> containing:

Implementation

Component Type Description

First Boolean true if a match exceeds the threshold, otherwise false .

Second Float Similarity score of the best match.

Third Int Index of the matched descriptor in the database, or -1 if no match

found.

import android.graphics.Bitmap
import ru.visionlabs.sdk.lunacore.utils.LunaUtils

/**
 * Searches for the given face (image) in a database of face descriptors.
 *
 * @param image The input face image (Bitmap) to identify.
 * @param descriptorDb The database of face descriptors. Each entry is a ByteArray
descriptor.
 * @param scoreThreshold Similarity score threshold to consider a match. Must be >
0.7f by spec.
 *
 * @return Triple(found, score, index)
 * - found: true if a descriptor scoring strictly above [scoreThreshold] was found.
 * - score: the score returned by LunaUtils.matchDescriptors for the winning candidate.
 * If no match is found, this is the best score observed (or 0f if nothing was
compared).
 * - index: zero-based index of the matched descriptor in [descriptorDb], or -1 if not
found.
 */
fun findFaceInDatabase(
 image: Bitmap,
 descriptorDb: List<ByteArray>,
 scoreThreshold: Float = 0.7f
): Triple<Boolean, Float, Int> {
 // 1. Extract the query descriptor from the input image
 // If descriptor extraction fails or returns empty, we cannot proceed.
 val queryDescriptor: ByteArray = LunaUtils.getDescriptor(image)
 if (queryDescriptor.isEmpty()) {
 return Triple(false, 0f, -1)
 }

 // 2. Iterate over the database and compare descriptors

VisionLabs B.V. Page 268 of 270

10.6.3 Usage example

 // We keep track of the best score/index in case nothing crosses the threshold.
 var bestScore = 0f
 var bestIndex = -1

 for (i in descriptorDb.indices) {
 val candidate = descriptorDb[i]
 if (candidate.isEmpty()) continue // Skip empty/invalid entries

 // Compare using the provided native-backed matcher.
 val score = LunaUtils.matchDescriptors(queryDescriptor, candidate)

 // Early exit: as soon as the score is strictly greater than the threshold,
 // we consider the face found and return immediately.
 if (score > scoreThreshold) {
 return Triple(true, score, i)
 }

 // Track the best score seen so far (useful to return diagnostics when not found).
 if (score > bestScore) {
 bestScore = score
 bestIndex = i
 }
 }

 // 3. No candidate passed the threshold; return the best observed score and its
index (-1 if none)
 return Triple(false, bestScore, bestIndex)
}

val (found, score, index) = findFaceInDatabase(faceBitmap, userRepository.getUsers())

Log.i("FaceSearch", "Face found: $found, score: $score, index: $index")

VisionLabs B.V. Page 269 of 270

11. Documentation download page

Version Documentation (pdf)

v.1.20.0 LUNA_ID_v.1.20.0.pdf

VisionLabs B.V. Page 270 of 270

	VisionLabs LUNA ID
	1. Introduction
	2. General information
	2.1 Overview
	2.1.1 Supported operating systems and programming languages
	2.1.2 Use cases
	2.1.3 LUNA ID features
	Security checks
	Video stream processing and face recognition
	Protection against face substitution
	Getting the best shot
	Protection against spoofing attacks
	Identification and verification
	OCR

	2.1.4 Usage scenarios
	Scenario 1: Getting images
	SCENARIO DESCRIPTION
	SCENARIO REALIZATION STAGES
	SCENARIO REALIZATION STEPS

	Scenario 2: Complete face recognition cycle
	SCENARIO DESCRIPTION
	SCENARIO REALIZATION STAGES
	SCENARIO REALIZATION STEPS

	2.2 Getting LUNA ID
	2.2.1 Download LUNA ID
	2.2.2 Distribution kit
	LUNA ID for Android
	EXAMPLE

	LUNA ID for iOS

	2.2.3 Next steps
	2.2.4 See also

	2.3 What's new in LUNA ID v.1.20.0
	2.3.1 In LUNA ID for Android
	New features and improvements
	Important notice

	2.4 Version history
	2.4.1 LUNA ID v.1.19.4
	In LUNA ID for Android

	2.4.2 LUNA ID v.1.19.3
	In LUNA ID for Android
	In LUNA ID for iOS

	2.4.3 LUNA ID v.1.19.2
	In LUNA ID for Android
	In LUNA ID for iOS

	2.4.4 LUNA ID v.1.19.1
	In LUNA ID for Android
	In LUNA ID for iOS

	2.4.5 LUNA ID v.1.19.0
	In LUNA ID for Android
	In LUNA ID for iOS

	2.4.6 LUNA ID v.1.18.1
	In LUNA ID for iOS

	2.4.7 LUNA ID v.1.18.0
	In LUNA ID for Android
	In LUNA ID for iOS

	2.4.8 LUNA ID v.1.17.2
	In LUNA ID for Android
	In LUNA ID for iOS

	2.4.9 LUNA ID v.1.17.1
	In LUNA ID for Android
	In LUNA ID for iOS

	2.4.10 LUNA ID v.1.17.0
	In LUNA ID for Android

	2.4.11 In LUNA ID for iOS
	2.4.12 LUNA ID v.1.16.2
	In LUNA ID for Android

	2.4.13 LUNA ID v.1.16.1
	In LUNA ID for Android
	In LUNA ID for iOS

	2.4.14 LUNA ID v.1.16.0
	In LUNA ID for Android
	In LUNA ID for iOS

	2.4.15 LUNA ID v.1.15.0
	In LUNA ID for Android
	In LUNA ID for iOS

	2.4.16 LUNA ID v.1.14.2
	2.4.17 LUNA ID v.1.14.1
	2.4.18 LUNA ID v.1.14.0
	In LUNA ID for Android

	2.4.19 In LUNA ID for iOS
	2.4.20 LUNA ID v. 1.13.3
	2.4.21 LUNA ID v. 1.13.2
	2.4.22 LUNA ID v. 1.13.1
	2.4.23 LUNA ID v. 1.13.0
	2.4.24 LUNA ID v. 1.12.1
	2.4.25 LUNA ID v. 1.12.0
	2.4.26 LUNA ID v. 1.11.5
	2.4.27 LUNA ID v. 1.11.4
	2.4.28 LUNA ID v. 1.11.3
	2.4.29 LUNA ID v. 1.11.2
	2.4.30 LUNA ID v. 1.11.1
	2.4.31 LUNA ID v. 1.11.0
	2.4.32 LUNA ID v. 1.10.1
	2.4.33 LUNA ID v. 1.10.0
	2.4.34 LUNA ID v. 1.9.7
	2.4.35 LUNA ID v. 1.9.6
	2.4.36 LUNA ID v. 1.9.5
	2.4.37 LUNA ID v. 1.9.4
	2.4.38 LUNA ID v. 1.9.3
	2.4.39 LUNA ID v. 1.9.2
	2.4.40 LUNA ID v. 1.9.1
	2.4.41 LUNA ID v. 1.9.0
	2.4.42 LUNA ID v. 1.8.7
	2.4.43 LUNA ID v. 1.8.6
	2.4.44 LUNA ID v. 1.8.5
	2.4.45 LUNA ID v. 1.8.4
	2.4.46 LUNA ID v. 1.8.3
	2.4.47 LUNA ID v. 1.8.2
	2.4.48 LUNA ID v. 1.8.1
	2.4.49 LUNA ID v. 1.8.0
	2.4.50 LUNA ID v. 1.7.9
	2.4.51 LUNA ID v. 1.7.8
	2.4.52 LUNA ID v. 1.7.7
	2.4.53 LUNA ID v. 1.7.6
	2.4.54 LUNA ID v. 1.7.5
	2.4.55 LUNA ID v. 1.7.4
	2.4.56 LUNA ID v. 1.7.3
	2.4.57 LUNA ID v. 1.7.2
	2.4.58 LUNA ID v. 1.7.1
	2.4.59 LUNA ID v. 1.7.0
	2.4.60 LUNA ID v. 1.6.1
	2.4.61 LUNA ID v. 1.6.0
	2.4.62 LUNA ID v. 1.5.1
	2.4.63 LUNA ID v. 1.5.0
	2.4.64 LUNA ID v. 1.4.5
	2.4.65 LUNA ID v. 1.4.4
	2.4.66 LUNA ID v. 1.4.3
	2.4.67 LUNA ID v. 1.4.2
	2.4.68 LUNA ID v. 1.4.1
	2.4.69 LUNA ID v. 1.4.0
	2.4.70 LUNA ID v.1.3.3
	2.4.71 LUNA ID v.1.3.2
	2.4.72 LUNA ID v.1.3.1
	2.4.73 LUNA ID v. 1.3.0
	2.4.74 LUNA ID v. 1.2.0-1.2.4
	2.4.75 LUNA ID v. 1.1.0

	2.5 System and hardware requirements
	2.5.1 Information about third-party software
	LUNA SDK

	2.6 Getting LUNA ID version
	2.6.1 In LUNA ID for Android
	2.6.2 In LUNA ID for iOS

	2.7 LUNA ID size
	2.7.1 Total size
	IN LUNA ID FOR ANDROID
	IN LUNA ID FOR IOS

	2.7.2 Measure LUNA ID size
	In LUNA ID for Android
	IMPORTANT NOTES

	In LUNA ID for iOS

	2.7.3 Reduce your app size

	2.8 Neural networks used in LUNA ID
	2.9 Glossary
	2.10 Technical Support and resources
	2.10.1 Contact Technical Support
	2.10.2 More resources
	Downloadable documentation
	Examples

	3. Licensing
	3.1 Activating the license
	3.1.1 In LUNA ID for Android
	Activating the license

	3.1.2 In LUNA ID for iOS
	Activating license via vllicense.plist
	Renaming vllicense.plist

	3.2 Updating the license
	3.2.1 In LUNA ID for Android
	3.2.2 In LUNA ID for iOS
	Method 2: Programmatic configuration (basic approach)
	Method 3: Using LCLunaIDServiceBuilder

	3.3 Verifying license validity
	3.3.1 Default method
	3.3.2 Customized method

	3.4 License expiration handling
	3.4.1 LicenseExpired event
	3.4.2 FeatureExpired error

	3.5 License parameters
	3.6 Resetting the license cache
	3.6.1 In LUNA ID for Android
	3.6.2 In LUNA ID for iOS

	3.7 Working with status code 1025

	4. API documentation
	4.1 API documentation
	4.2 Changelog
	4.2.1 API changes made in LUNA ID for Android v.1.5.0 in comparison to v.1.4.x
	4.2.2 API changes made in LUNA ID for Android v.1.5.1 in comparison to v.1.5.0
	4.2.3 API changes made in LUNA ID for Android v.1.6.0 in comparison to v.1.5.1
	4.2.4 API changes made in LUNA ID for Android v.1.8.4 in comparison to v.1.6.0
	4.2.5 API changes made in LUNA ID for Android v.1.9.4 in comparison to v.1.8.4
	4.2.6 API changes made in LUNA ID for Android v.1.16.0 in comparison to earlier versions
	Configuration updates
	REMOVED PARAMETERS
	TRANSFERRED PARAMETERS
	NEW PARAMETER
	NAMING CHANGES

	Changes in best shot retrieval (multipartBestShotsEnabled)
	BEFORE
	AFTER

	Changes in result retrieval
	Changes in error retrieval
	Event subscription updates
	XML FRAGMENT IMPLEMENTATION

	Compose implementation
	VIEWMODEL FOR BOTH UI VARIANTS

	4.2.7 API changes made in LUNA ID for Android v.1.16.1 in comparison to earlier versions
	Enhanced event handling
	Command API restoration

	5. Integration guide
	5.1 Integration guide for LUNA ID for Android
	5.1.1 Prerequisites
	5.1.2 Step 1: Configure repository
	5.1.3 Step 2: Set up credentials
	5.1.4 Step 3: Add dependencies
	5.1.5 Step 4: Add permissions
	5.1.6 Step 5: Initialize LUNA ID
	5.1.7 Step 6: Launch the camera

	5.2 Integration guide for LUNA ID for iOS
	5.2.1 Step 1: Project setup
	5.2.2 Step 2: ViewController setup
	5.2.3 Step 3: UI customization
	Face tracking frame
	Notification view
	Root customization view

	6. Initial setup
	6.1 Initial setup of LUNA ID for Android
	6.1.1 Step 1. Get the .aar file
	6.1.2 Step 2. Provide your user credentials
	6.1.3 Step 3. Add the .aar file as a dependency
	6.1.4 Step 4. Initialize LUNA ID and activate the license
	6.1.5 Step 5. Call LUNA ID functions
	6.1.6 Examples

	6.2 Initial setup of LUNA ID for iOS
	6.2.1 Step 1. Add XCFrameworks
	6.2.2 Step 2. Enable OneShotLiveness estimation
	6.2.3 Step 3. Specify license data
	6.2.4 Step 4. Create a face recognition screen in your app

	7. Working with LUNA ID
	7.1 Best shots
	7.1.1 Best shot estimations
	About best shot estimations
	HOW IT WORKS
	In LUNA ID for Android
	In LUNA ID for iOS

	ESTIMATIONS

	AGS estimation
	VALUE RANGE
	DEFAULT VALUE
	IMPLEMENTATION

	Head pose estimation
	ACCEPTABLE ANGLE RANGES
	DEFAULT VALES
	RECOMMENDED VALUES
	IMPLEMENTATION

	Image quality estimation
	DEFAULT VALUES

	Face detection bounding box size estimation
	RECOMMENDED MINIMUM SIZE
	DEFAULT VALUES
	CONFIGURATION DETAILS
	IMPLEMENTATION

	Frame edges offset
	MINIMAL BORDER DISTANCE
	DEFAULT VALUES
	IMPLEMENTATION

	Eye state
	BEHAVIOR IN DIFFERENT PLATFORMS
	In LUNA ID for Android
	In LUNA ID for iOS

	IMPLEMENTATION

	Medical mask estimation
	DEPENDENCY ON FACE OCCLUSION ESTIMATION
	ERROR HANDLING
	IMPLEMENTATION
	ADDITIONAL NOTES

	Face occlusion estimation
	BEHAVIOR IN DIFFERENT PLATFORMS
	In LUNA ID for Android
	In LUNA ID for iOS

	ERROR HANDLING
	IMPLEMENTATION

	Glasses estimation
	ESTIMATION RULES
	In LUNA ID for Android
	In LUNA ID for iOS

	7.1.2 Getting the best shot
	In LUNA ID for Android
	FACE RECOGNITION AREA
	ADD A DELAY BEFORE STARTING FACE RECOGNITION
	ADD A DELAY BEFORE GETTING THE BEST SHOT

	In LUNA ID for iOS
	FACE RECOGNITION AREA
	ADD A DELAY BEFORE STARTING FACE RECOGNITION
	ADD A DELAY BEFORE GETTING THE BEST SHOT

	7.1.3 Getting the best shot with an occluded face
	In LUNA ID for Android
	In LUNA ID for iOS

	7.1.4 Getting the best shot with faces with closed eyes
	In LUNA ID for Android
	ONE CLOSED EYE
	TWO CLOSED EYES

	In LUNA ID for iOS
	ONE CLOSED EYE
	TWO CLOSED EYES

	7.1.5 Getting the best shot with faces with occluded eyes
	In LUNA ID for Android
	glassesChecks

	In LUNA ID for iOS

	7.1.6 Using aggregation
	How it works
	IN LUNA ID FOR ANDROID
	IN LUNA ID FOR IOS

	Enable aggregation
	IN LUNA ID FOR ANDROID
	Performance optimization

	IN LUNA ID FOR IOS

	Aggregation in TrackEngine
	HOW IT WORKS
	In LUNA ID for Android

	ENABLE AGGREGATION IN TRACKENGINE
	In LUNA ID for Android

	7.1.7 Best shot error notifications
	In LUNA ID for Android
	In LUNA ID for iOS
	CRITICAL ERRORS
	NON-CRITICAL ERRORS

	7.2 Face tracking
	7.2.1 Tracking a face identity
	In LUNA ID for Android
	In LUNA ID for iOS

	7.2.2 Fixing a face in the frame
	In LUNA ID for Android
	In LUNA ID for iOS

	7.3 OneShotLiveness
	7.3.1 About OneShotLiveness estimation
	OneShotLiveness estimation types
	Image requirements
	OneShotLiveness thresholds
	QUALITY THRESHOLD
	LIVENESS THRESHOLD

	Number of best shots

	7.3.2 Performing Online OneShotLiveness estimation
	In LUNA ID for Android
	In LUNA ID for iOS

	7.3.3 Performing Offline OneShotLiveness estimation
	In LUNA ID for Android
	LOGGING

	In LUNA ID for iOS

	7.3.4 Disabling OneShotLiveness estimation
	In LUNA ID for Android
	In LUNA ID for iOS
	DISABLE ONLINE ONESHOTLIVENESS ESTIMATION
	DISABLE OFFLINE ONESHOTLIVENESS ESTIMATION

	7.4 Dynamic Liveness
	7.4.1 About Dynamic Liveness estimation
	Interaction types
	Implementation
	IN LUNA ID FOR ANDROID
	IN LUNA ID FOR IOS

	Dynamic Liveness defaults
	INTERACTION TIMEOUT
	TIMEOUT BETWEEN INTERACTIONS
	HEAD ROTATION ANGLES

	Results

	7.4.2 Performing Dynamic Liveness estimation
	In LUNA ID for Android
	ENABLE THE ESTIMATION
	Perform interactions in a random order
	Define an interaction sequence

	SET AN INTERACTION TIMEOUT
	SET A TIMEOUT BETWEEN INTERACTIONS
	VIEW INTERACTION STATUSES
	SPECIFY HEAD ROTATION ANGLES
	ENABLE BLINKING WITH ONE EYE

	In LUNA ID for iOS
	ENABLE THE ESTIMATION
	SPECIFY A NUMBER OF INTERACTIONS
	DEFINE AN INTERACTION SEQUENCE
	SET AN INTERACTION TIMEOUT
	SET A TIMEOUT BETWEEN INTERACTIONS
	VIEW INTERACTION STATUSES
	SPECIFY HEAD ROTATION ANGLES

	7.4.3 Getting Dynamic Liveness estimation results
	In LUNA ID for Android
	In LUNA ID for iOS

	7.4.4 Interception of Dynamic Liveness interaction events
	7.4.5 Customizing Dynamic Liveness notifications
	In LUNA ID for Android
	In LUNA ID for iOS

	7.5 Video streams
	7.5.1 About working with video streams
	Video stream settings
	Information about a recorded video stream

	7.5.2 Recording a video stream
	In LUNA ID for Android
	In LUNA ID for iOS

	7.5.3 Recording a video stream only with the face detected
	In LUNA ID for Android
	In LUNA ID for iOS

	7.5.4 Video stream settings
	Video stream quality
	Timeout before starting recording
	Video stream duration
	IN LUNA ID FOR ANDROID
	IN LUNA ID FOR IOS

	Custom frame resolution
	Autofocus
	Compression

	7.6 Logs
	7.6.1 Getting logs from mobile devices
	Data to be provided to VisionLabs Technical support
	Prerequisites
	FaceEngine and TrackEngine logging
	Getting logs from Android devices
	STEP 1: ENABLE DEVELOPER OPTIONS & USB DEBUGGING
	STEP 2: OPEN LOGCAT IN ANDROID STUDIO
	STEP 3: SELECT DEVICE AND CONFIGURE LOGCAT
	STEP 4: CONFIGURE THE LOGCAT LAYOUT
	STEP 5: FILTER THE LOGS
	UNDERSTANDING THE LOG OUTPUT

	Getting logs from iOS devices
	STEP 1: ENABLE DEVELOPER MODE
	STEP 2: ACCESS DEVICE LOGS IN XCODE
	STEP 3: VIEW AND CAPTURE LOGS
	STEP 4: FILTER AND EXPORT LOGS
	UNDERSTANDING THE LOG OUTPUT

	Getting logs for OneShotLiveness estimation from Android devices
	Getting logs for OneShotLiveness estimation from iOS devices

	7.6.2 Saving logs on an end user’s device
	In LUNA ID for Android
	AUTOMATIC SESSION LOGGING WITH SHOWCAMERA
	SAVING LOGS IN THE .LOGCAT FORMAT

	In LUNA ID for iOS

	7.6.3 Status codes and errors
	LUNA ID for Android
	LUNA ID INITIALIZATION EXCEPTIONS
	ONESHOTLIVENESS ESTIMATION STATUS CODES
	BEST SHOT ESTIMATION ERRORS

	LUNA ID for iOS

	7.6.4 Device fingerprinting
	7.6.5 Enabling low-level logging

	7.7 Using descriptors
	7.7.1 In LUNA ID for Android
	Required dependency
	Enabling descriptor-related functionality
	Core methods
	Usage example
	STEP 1: GETTING BEST SHOTS FOR DESCRIPTOR EXTRACTION
	STEP 2: EXTRACTING DESCRIPTORS FROM BITMAP IMAGES
	STEP 3: COMPARING DESCRIPTORS

	7.7.2 In LUNA ID for iOS

	7.8 Using commands
	7.8.1 StartBestShotSearchCommand
	7.8.2 CloseCameraCommand
	7.8.3 Usage
	7.8.4 Example

	7.9 Using OCR
	7.9.1 Key considerations
	Memory usage
	Camera permission
	Errors

	7.9.2 Step 1: Add the OCR dependency
	7.9.3 Step 2: Activate the OCR license
	7.9.4 Step 3: Initialize OCR
	7.9.5 Step 4: Start the OCR
	7.9.6 Step 5: Handle results

	8. Configuring LUNA ID
	8.1 Best shot properties
	8.1.1 In LUNA ID for Android
	8.1.2 In LUNA ID for iOS

	8.2 Changing detection settings
	8.2.1 In LUNA ID for Android
	8.2.2 In LUNA ID for iOS

	8.3 Bulk editing LUNA ID parameters
	8.3.1 Configuration file
	8.3.2 Configuration parameters
	LCLunaConfiguration section
	LCBestShotConfiguration section
	LCInteractionsConfig section
	LCEstimationThreshold section

	8.4 Setting up timeouts
	8.4.1 Face fixing timeout
	8.4.2 Best shot timeouts
	Before starting face recognition
	Before getting the best shot

	8.4.3 Dynamic Liveness estimation timeouts
	Interaction timeout
	Timeout between interactions

	8.5 Configuring the camera
	8.5.1 Camera parameters
	8.5.2 Default configuration
	8.5.3 Pre-initializing camera availability
	Getting available camera types

	8.5.4 Launching the camera with dynamic selection

	9. Interacting with LUNA PLATFORM
	9.1 Interaction of LUNA ID with LUNA PLATFORM 5
	9.2 Usage scenario: Complete face recognition cycle
	9.2.1 Scenario description
	9.2.2 Scenario realization stages
	9.2.3 Prerequisites
	9.2.4 Scenario realization steps

	9.3 Specifying LUNA PLATFORM URL and handler IDs
	9.3.1 In LUNA ID for Android
	9.3.2 In LUNA ID for iOS

	9.4 Sending multiple frames for estimation aggregation to the backend
	9.4.1 In LUNA ID for Android
	Getting multiple frames
	Implementing online aggregation

	9.4.2 In LUNA ID for iOS
	Getting multiple frames
	Getting aggregated data

	10. Best practices
	10.1 Security options
	10.1.1 Virtual camera usage check
	Implementation
	STEP 1: ADD DEPENDENCY
	STEP 2: PERFORM THE CHECK
	UNDERSTANDING THE RESULT

	Enabling the check

	10.1.2 Jailbreak check

	10.2 Reducing your app size by excluding .plan files
	10.2.1 In LUNA ID for Android
	10.2.2 In LUNA ID for iOS

	10.3 Getting LUNA ID status after initialization
	10.4 Optimizing camera initialization with Camera Limiter
	10.4.1 Implementation

	10.5 Customizing UI with LUNA ID
	10.5.1 Customizing face recognition area borders
	Border distances are not initialized
	Border distances are initialized with an Android custom view
	Border distances are initialized in dp
	Border distances are initialized automatically

	10.5.2 Customizing UI with LUNA ID for iOS
	LMUICustomizerProtocol
	LMRootCustomizationViewProtocol
	LMDefaultUICustomizer
	LMDefaultRootCustomizationView
	LMCameraViewController

	10.6 Performing 1:N face matching on device
	10.6.1 Overview
	10.6.2 Function specification
	Method signature
	Parameters
	Return value
	Implementation

	10.6.3 Usage example

	11. Documentation download page

