
VisionLabs LUNA ID

v.1.5.0

Table of contents

51. Introduction

62. Overview

62.1 Supported operating systems and programming languages

72.2 Use cases

82.3 Key features

92.4 Interaction of LUNA ID with LUNA PLATFORM 5

102.5 Usage scenarios

102.5.1 Scenario 1: Getting images

112.5.2 Scenario 2: Complete face recognition cycle

142.6 Information about a recorded video stream

153. System and hardware requirements

153.1 Information about third-party software

153.1.1 LUNA SDK

153.1.2 Regula

164. Licensing

164.1 License activation

174.2 License parameters

174.3 Example license file

185. Glossary

196. API documentation

196.1 API documentation

206.2 API changes made in LUNA ID for Android v.1.5.0 in comparison to v.1.4.x

216.3 API changes made in LUNA ID for Android v.1.5.1 in comparison to v.1.5.0

227. Initial setup

227.1 Initial setup of LUNA ID for Android

227.1.1 Step 1. Get the .aar file

227.1.2 Step 2. Provide your user credentials

VisionLabs B.V. Page 2 of 79

237.1.3 Step 3. Add the .aar file as a dependency

247.1.4 Step 4. Initialize LUNA ID

247.1.5 Step 5. Call LUNA ID functions

267.2 Initial setup of LUNA ID for iOS

267.2.1 Step 1. Add XCFrameworks

277.2.2 Step 2. Enable OneShotLiveness estimation

277.2.3 Step 3. Specify license data

277.2.4 Step 4. Create a face recognition screen in your app

298. Working with LUNA ID

298.1 Working with best shots

298.1.1 Getting the best shot

328.1.2 Best shot estimations

388.2 Working with OneShotLiveness

388.2.1 About OneShotLiveness estimation

408.2.2 Enabling OneShotLiveness estimation

428.2.3 Disabling OneShotLiveness estimation

438.3 Working with Dynamic Liveness

438.3.1 Performing Dynamic Liveness estimation

468.3.2 Interception of Dynamic Liveness interaction events

478.3.3 Customizing Dynamic Liveness notifications

488.4 Working with video streams

488.4.1 Recording a video stream

508.4.2 Recording a video stream only with the face detected

518.5 Working with logs

518.5.1 Getting logs from mobile devices

588.5.2 Saving logs on an end user’s device

598.6 Changing detection settings

598.6.1 In LUNA ID for Android

598.6.2 In LUNA ID for iOS

609. Neural networks used in LUNA ID

VisionLabs B.V. Page 3 of 79

6410. Best practices

6410.1 Measuring the size that LUNA ID adds to your app

6410.1.1 In LUNA ID for Android

6510.1.2 In LUNA ID for iOS

7310.2 Reducing your app size by excluding .plan files

7310.2.1 In LUNA ID for Android

7410.2.2 In LUNA ID for iOS

7511. Release notes

7511.1 LUNA ID v. 1.5.1

7511.2 LUNA ID v. 1.5.0

7511.3 LUNA ID v. 1.4.5

7511.4 LUNA ID v. 1.4.4

7511.5 LUNA ID v. 1.4.3

7611.6 LUNA ID v. 1.4.2

7611.7 LUNA ID v. 1.4.1

7611.8 LUNA ID v. 1.4.0

7611.9 LUNA ID v.1.3.3

7611.10 LUNA ID v.1.3.2

7611.11 LUNA ID v.1.3.1

7711.12 LUNA ID v. 1.3.0

7711.13 LUNA ID v. 1.2.0-1.2.4

7711.14 LUNA ID v. 1.1.0

7912. Documentation download page

VisionLabs B.V. Page 4 of 79

1. Introduction

This page includes documentation for LUNA ID.

We recommend that you read the glossary and system requirements before reading the

documentation.

About LUNA ID

LUNA ID is a set of development tools that includes libraries and neural networks for face

recognition and analysis in a mobile app.

For detailed information about LUNA ID, its key features, and usage scenarios, see Overview.

API documentation

The table below provides links to the API reference manuals.

Initial setup

To learn how to start using LUNA ID in your app, see:

OS Module Link

Android - API reference manual

iOS LunaCamera LunaCamera Reference

iOS LunaCore LunaCore Reference

iOS LunaWeb LunaWeb Reference

Initial setup of LUNA ID for Android•

Initial setup of LUNA ID for iOS•

VisionLabs B.V. Page 5 of 79

2. Overview

LUNA ID is a set of development tools that includes libraries and neural networks for face

recognition and analysis in a mobile app. It also supports OCR (Optical Character Recognition)

for document scanning and recognition.

Document scanning and recognition by means of OCR is provided by Regula. Regula is a

third-party vendor and using the feature requires a license. For details, please refer to the

Regula documentation.

Embedding LUNA ID in your mobile app allows you to use LUNA ID key features, as well as

take advantage of LUNA PLATFORM 5 functionality to perform OneShotLiveness estimation

and descriptor matching. For details, see Interaction of LUNA ID with LUNA PLATFORM 5.

2.1 Supported operating systems and programming languages

LUNA ID is compatible with the Android and iOS operating systems. For details, see System

and hardware requirements.

The supported programming languages are:

Kotlin for Android app development•

Swift for iOS app development•

VisionLabs B.V. Page 6 of 79

https://regulaforensics.com/
https://support.regulaforensics.com/hc/en-us/articles/115000916306-Documentation

2.2 Use cases

Embedding LUNA ID in your mobile app allows you to implement the following use cases:

Client enrollment

Flow: Registration

The process of creating a new user account, which includes face recognition and,

optionally, document recognition.

•

User authentication

Flow: Verification (1:1)

The process of verifying a user when logging into an app account against the authorized

biometry for the specified login. Available after registration.

The use case does not involve the use of OCR.

•

User recognition

Flow: Identification (1:N)

The process of user identification when a user's face is compared with all the faces in

the database to recognize the user among the existing ones and to match the detected

face with an existing user account.

You can use OCR in this use case.

•

VisionLabs B.V. Page 7 of 79

2.3 Key features

LUNA ID provides the following features:

Getting the best shot:•

Estimating the best shot by the following criteria:•

Number of faces in the frame•

Face detection bounding box size•

Frame edges offset•

Eyes state (open, closed, or occluded)•

Head pose (pitch, yaw, and roll)•

Average garbage score (AGS)•

Image quality (lightness, darkness, and blurriness)•

Medical mask presence (in LUNA ID for iOS only)

For details, see Best shot estimations.

•

Sending images with the detected face to LUNA PLATFORM 5 to perform

OneShotLiveness estimation on the backend. OneShotLiveness estimation enables

you to confirm whether a person in the image is "real" or a fraudster using a fake ID

(printed face photo, video, paper, or 3D mask). For details, see Performing

OneShotLiveness estimation.

•

Dynamic Liveness estimation to determine whether a person is alive by interacting

with a camera. The estimation is performed on your device without processing it on

the backend. For details, see Performing Dynamic Liveness estimation

•

Video stream recording and face detection in the video stream. For details, see

Information about a recorded video stream. You can record either full video sessions or

only video sessions in which a face was detected in at least one frame.

•

Optional document scanning and recognition by means of OCR.

The feature is provided by Regula. For details, please refer to the Regula

documentation.

•

Sending source images to LUNA PLATFORM 5 for descriptor matching on the backend. It

allows you to perform the following tasks:

•

Verify that the face in an image belongs to a person from a client list (1:N

identification).

•

Match the detected face with the face that corresponds to the client ID in a global

database (1:1 verification).

•

VisionLabs B.V. Page 8 of 79

https://regulaforensics.com/
https://support.regulaforensics.com/hc/en-us/articles/115000916306-Documentation

2.4 Interaction of LUNA ID with LUNA PLATFORM 5

Interaction between LUNA ID and LUNA PLATFORM 5 extends LUNA ID functionality and allows

you to perform the following tasks:

LUNA ID interacts with LUNA PLATFORM 5 via REST API.

LUNA PLATFORM 5 functions as the backend and lets you create and use handlers. Handlers

are sets of rules or policies that describe how to process the received images. For details on

how to create and use handlers, see the LUNA PLATFORM 5 documentation.

The below diagram shows how LUNA ID interacts with LUNA PLATFORM 5. We recommend

that you use it to integrate LUNA ID into your app.

Interaction of LUNA ID with LUNA PLATFORM 5 through a middleware

As the diagram shows, the process of interaction between LUNA ID and LUNA PLATFORM 5 is a

back-and-forth communication between the frontend and backend.

Perform OneShotLiveness estimation to determine whether a person’s face is real

or fake, for example, a photo or printed image.

•

Send the best shot for descriptor matching to compare a set of properties and

helper parameters, which describe a person’s face, with the source image to determine

the similarity of represented objects. The result is a similarity score, where 1 means

completely identical, and 0 means completely different.

•

VisionLabs B.V. Page 9 of 79

https://docs.visionlabs.ai/luna/v.5.45.1/ReferenceManuals/APIReferenceManual.html#tag/handlers

Your mobile app runs on the frontend and embeds LUNA ID to use its key features. LUNA ID

sends requests to LUNA PLATFORM 5 that functions as the backend.

But, when your production system is deployed, an interaction between LUNA ID and LUNA

PLATFORM 5 is not realized directly. The interaction occurs via a secure channel through a

middleware service that provides encryption and protection of the data being transferred.

Important. This document describes an example of direct interaction between LUNA ID

and LUNA PLATFORM 5. VisionLabs does not provide security solutions for data transfer.

You need to provide data protection by yourself.

We recommend that you use security best practices to protect data transfer. You should pay

attention to the following security aspects:

2.5 Usage scenarios

This section describes sample LUNA ID usage scenarios.

These are only examples. You need to change them according to your business logic.

2.5.1 Scenario 1: Getting images

Scenario description

You want to get a photo with a person's face, and then implement your own business logic for

processing the image.

Scenario realization stages

Applying this scenario in your mobile app proceeds in stages:

If you want to use the HTTPS protocol, then you need to add NGINX or other similar

software to the backend.

•

If you want to use the TLS cryptographic protocol, then you need to implement it at

your mobile app.

•

You might need to configure a firewall correctly.•

To restrict access, you can use LUNA PLATFORM 5 tokens, which can be transferred to a

request header from LUNA ID.

•

Getting the best shot with the detected face for best shot estimation.•

Getting a warp or source image with the face on a mobile device to transfer it to an

external system.

•

VisionLabs B.V. Page 10 of 79

https://docs.visionlabs.ai/luna/latest/standard-distribution/admin-manual/general-concepts/#authorization-system

Scenario realization steps

The scenario has the following steps:

1․ Video stream processing and face detection.

2․ Getting the best shot based on standard best shot estimations. In some cases, the best

shot is an image that also successfully passed OneShotLiveness estimation.

3․ Getting a warp.

4․ Saving the warp on the device. You can then send it to a middleware for further processing.

The diagram below shows the steps of this scenario:

Scenario realization steps

2.5.2 Scenario 2: Complete face recognition cycle

Scenario description

You want to run a full face recognition cycle using frontend and backend.

Scenario realization stages

Applying a full face recognition cycle in your mobile app proceeds in stages:

Getting the best shot with the detected face for best shot and OneShotLiveness

estimation.

•

Identifying that the face in the image belongs to a person from a client list (1:N

identification).

•

Matching the detected face with the face corresponding to the client ID in a global

database (1:1 verification).

•

VisionLabs B.V. Page 11 of 79

Prerequisites

To use this scenario, you need to configure LUNA PLATFORM 5 for it to work with LUNA ID. For

details on how LUNA PLATFORM 5 works, see the LUNA PLATFORM 5 documentation.

The preliminary steps are:

1․ Create a LUNA PLATFORM 5 account. For details, see Create account.

2․ Create a list of faces in LUNA PLATFORM 5 for further identification and verification. For

details, see Create list.

3․ Add faces to the list by generating a handler event with the link_to_lists_policy enabled.

4․ Create handlers for the following operations:

Scenario realization steps

The scenario has the following steps:

You should perform some of the scenario realization steps in LUNA PLATFORM 5.

1․ Video stream processing and face detection.

2․ Getting the best shot.

3․ Sending the selected best shot for OneShotLiveness estimation in the backend.

4․ Performing OneShotLiveness estimation at the LUNA PLATFORM 5 /liveness resource. The

source image is required for the estimation.

5․ Creating a warp for further face recognition, if the previous steps were successfully passed.

6․ Saving the video stream with the detected face on the mobile device.

7․ Sending the best shot to LUNA PLATFORM 5 for identification according to the existing list.

8․ Performing the identification at the LUNA PLATFORM 5 /handlers/handler_id/events resource.

This step creates a temporary attribute that will be used in step 11.

9․ Receiving the results.

10․ Sending a request for verification according to the existing list to LUNA PLATFORM 5.

Identification•

Verification•

VisionLabs B.V. Page 12 of 79

https://docs.visionlabs.ai/luna/latest/
https://docs.visionlabs.ai/luna/v.5.45.1/ReferenceManuals/APIReferenceManual.html#tag/accounts/operation/createAccount
https://docs.visionlabs.ai/luna/v.5.45.1/ReferenceManuals/APIReferenceManual.html#tag/lists/operation/createList
https://docs.visionlabs.ai/luna/v.5.45.1/ReferenceManuals/APIReferenceManual.html#tag/handlers/operation/createHandler
https://docs.visionlabs.ai/luna/v.5.45.1/ReferenceManuals/APIReferenceManual.html#tag/verifiers/operation/createVerifier
https://docs.visionlabs.ai/luna/v.5.45.1/ReferenceManuals/APIReferenceManual.html#tag/liveness
https://docs.visionlabs.ai/luna/v.5.45.1/ReferenceManuals/APIReferenceManual.html#tag/liveness
https://docs.visionlabs.ai/luna/v.5.45.1/ReferenceManuals/APIReferenceManual.html#tag/events/operation/generateEvents
https://docs.visionlabs.ai/luna/v.5.45.1/ReferenceManuals/APIReferenceManual.html#tag/events/operation/generateEvents

11․ Performing the verification at the LUNA PLATFORM 5 /verifiers/verifier_id/verification resource.

The resource does not create event objects in LUNA PLATFORM 5 with information about

image processing.

12․ Returning the attribute ID.

When implementing the scenario, you can either perform identification (step 8) or

verification (step 10), not necessarily perform the both.

The diagram below shows the steps of this scenario:

Scenario realization steps

VisionLabs B.V. Page 13 of 79

https://docs.visionlabs.ai/luna/v.5.45.1/ReferenceManuals/APIReferenceManual.html#tag/verifiers/operation/postVerifier
https://docs.visionlabs.ai/luna/v.5.45.1/ReferenceManuals/APIReferenceManual.html#tag/verifiers/operation/postVerifier

2.6 Information about a recorded video stream

LUNA ID saves video stream to file with the following parameters:

As LUNA ID does not limit a duration of a video stream, we recommend that you limit it at

the client app level. This will help you minimize the size of the video file and possible

security issues.

Parameters Android iOS

Duration limits None None

Resolution 320x240 pixels 1280x720 pixels

Frame rate 30 fps 30 fps

File format .mp4 .mov

Video

compression

standard

.H264 .H264

Audio recording None None

Video stream re-

recording

Yes

The file with the recorded video

stream is overwritten when a new

video session starts.

Yes

The file with the recorded video

stream is overwritten when a new

video session starts.

VisionLabs B.V. Page 14 of 79

3. System and hardware requirements

To use LUNA ID, the following system and hardware requirements must be met:

3.1 Information about third-party software

3.1.1 LUNA SDK

LUNA ID is based on LUNA SDK:

3.1.2 Regula

Regula is third-party vendor that provides the document and scanning feature by means of

OCR (Object Character Recognition). Using the feature requires a license. For details, please

refer to the Regula documentation.

Requirement Android iOS

OS version 5.0 or later 13 or later

CPU architecture arm64-v8a, armeabi-v7a, x86_64, x86 arm64

Developments tools Android SDK 21 XCode 13.2 or later

Free RAM 400 MB or more 400 MB or more

LUNA ID for Android uses LUNA SDK v.5.9.1.•

LUNA ID for iOS uses LUNA SDK v.5.12.0.•

VisionLabs B.V. Page 15 of 79

https://regulaforensics.com/
https://support.regulaforensics.com/hc/en-us/articles/115000916306-Documentation

4. Licensing

To integrate LUNA ID with your project and use its features, you need to activate the license.

4.1 License activation

To activate the license:

1) Request Server, EID, and ProductID from VisionLabs. For details, see License

parameters.

2) Specify the received parameters in the license.conf file and save the changes.

3) Place the file in the following directories of your project:

The license key will be generated and saved to the specified directory. The license file has a

binary format. At the next launch of the product on the same device, the license will be read

from this file.

Now you can use LUNA ID.

Android: assets/data/license.conf•

iOS: fsdk.framework/data/license.conf•

VisionLabs B.V. Page 16 of 79

4.2 License parameters

License parameters and further processing requires the following parameter:

4.3 Example license file

Below is a sample content of the "license.conf" file:

Parameter Description Type Default

value

Required

Server Activation server URL Value::String Not set Yes

EID Entitlement ID Value::String Not set Yes

ProductID Product ID Value::String Not set Yes

Filename The default name of the file

to save the license to after

activation. The maximum

length of the file name is 64

symbols. We do not

recommend that you change

this name.

Value::String Not set No

ContainerMode If run in container. "Value::Int1" 0 No

ConnectionTimeout The maximum time, in

seconds, for the transfer

operation to take. Setting

the timeout to 0 means that

it never times out during

transfer. You can't set the

parameter to a negative

value. The maximum value

is 300 seconds.

Value::Int1 15 No

<section name="Licensing::Settings">
 <param name="Server" type="Value::String" text=""/>
 <param name="EID" type="Value::String" text=""/>
 <param name="ProductID" type="Value::String" text=""/>
 <param name="Filename" type="Value::String" text="license.dat"/>
 <param name="ContainerMode" type="Value::Int1" x="0"/>
 <param name="ConnectionTimeout" type="Value::Int1" x="15"/>
</section>

VisionLabs B.V. Page 17 of 79

5. Glossary

Term Description

Average

garbage score

(AGS)

A BestShotQuality estimator component that determined the source image score

for further descriptor extraction and matching. Estimation output is a float score

which is normalized in range [0..1]. The closer score to 1, the better matching

result is received for the image.

Best shot The frame of the video stream on which the face is fixed in the optimal angle for

further processing.

Descriptor Data set in closed, binary format prepared by recognition system based on the

characteristic being analyzed.

Estimator Neural network used to estimate a certain parameter of the face in the source

image.

Eye estimation Estimator that determines an eye status (open, closed, occluded) and precise

eye iris and eyelid location as an array of landmarks.

Face Changeable objects that include information about a human face.

Handler Set of rules or policies that describe how to process the received images.

Landmarks Reference points on the face used by recognition algorithms to localize the face.

Liveness Software method that enables you to confirm whether a person in one or more

images is "real" or a fraudster using a fake ID (printed face photo, video, paper,

or 3D mask).

LUNA

PLATFORM

Automated face and body recognition system that allows you to perform face

detection, Liveness check biometric template extraction, descriptor extraction,

quality and attribute estimation, such as gender, age, and so on, on images

using neural networks.

Matching The process of descriptors comparison. Matching is usually implemented as a

distance function applied to the feature sets and distances comparison later on.

The smaller the distance, the closer are descriptors, hence, the more similar are

the objects.

Occlusion State of an object (eye, mouth) when it is hidden by any other object.

Samples,

Warps

Normalized (centered and cropped) image obtained after face detection, prior to

descriptor extraction.

Verification Comparison of two photo images of a face in order to determine belonging to the

same face.

Verifier Specifies a list of rules for processing and verifying incoming images. Unlike

handlers, it not only processes, but also verifies the images.

VisionLabs B.V. Page 18 of 79

6. API documentation

6.1 API documentation

This section includes links to LUNA ID for iOS and LUNA ID for Android RESTful API reference

manuals. You can use these documents to find out about LUNA ID features and their

implementation.

The table below provides links to the API reference manuals.

Important: Please note, that significant API changes were made in LUNA ID for Android

API v.1.5.0 in comparison to v.1.4.x. For details, see API changes made in LUNA ID for

Android v.1.5.0 in comparison to v.1.4.x.

OS Module Link

Android - API reference manual

iOS LunaCamera LunaCamera Reference

iOS LunaCore LunaCore Reference

iOS LunaWeb LunaWeb Reference

VisionLabs B.V. Page 19 of 79

/docs/api/api-changes-in-1-5-0.md
/docs/api/api-changes-in-1-5-0.md

6.2 API changes made in LUNA ID for Android v.1.5.0 in
comparison to v.1.4.x

This topic lists API changes that were made in LUNA ID for Android v.1.5.0 in comparison to v.

1.4.x.

The changes are:

1․ The whole flow of a LUNA ID camera is now exposed via LunaID.allEvents() . You can

subscribe to it to catch all events or subscribe to specific events, for example:

- LunaID.finishStates()

- LunaID.detectionCoordinates()

- LunaID.detectionErrors()

- LunaID.interactions()

2․ All callbacks were replaced with the native Flow API:

3․ LunaID.showCamera() now accepts a list of interactions to be run.

The detection coordinates API was changed. The CameraOverlayDelegateOut class was

removed. Instead, use LunaID.detectionCoordinates() .

•

The CameraUIDelegate class was removed. Instead, use LunaID.finishStates() . That is,

CameraUIDelegate#bestShot , CameraUIDelegate#canceled , CameraUIDelegate#error are no

longer supported.

•

LunaID.showCamera() does not require CameraUIDelegate anymore.•

LunaID.unregisterListener() was removed.•

LunaID.popLastCameraState() and LunaID.getLastCameraState() were removed.•

LunaError and its descendants were replaced with the DetectionError enumeration. For

example, instead of LunaError.messageResId , use DetectionError.messageResId .

•

Interaction parameters moved from LunaConfig . Now, to setup a blink interaction,

provide its parameters to LunaID.showCamera() . For example, instead of

LunaConfig.interactionEnabled or LunaConfig.interactionTimeout , use BlinkInteraction() .

•

VisionLabs B.V. Page 20 of 79

6.3 API changes made in LUNA ID for Android v.1.5.1 in
comparison to v.1.5.0

This topic lists API changes that were made in LUNA ID for Android v.1.5.1 in comparison to v.

1.5.0.

The changes apply to OneShotLiveness estimation configuration.

Prior to the API changes, LunaID.init() accepted an argument of the LivenessSettings type to

specify how the estimation will be performed. This argument no longer exists. Instead, the

estimation is set in LunaConfig .

For details, see Enabling OneShotLiveness estimation and Disabling OneShotLiveness

estimation.

VisionLabs B.V. Page 21 of 79

7. Initial setup

7.1 Initial setup of LUNA ID for Android

This topic describes how to perform the initial setup of LUNA ID to start using it in your

Android projects.

7.1.1 Step 1. Get the .aar file

To download the .aar file:

1․ Specify the file repository.

2․ Provide user credentials in the local.properties file.

3․ Add the following code fragment to the repositories block in the settings.gradle.kts file:

The settings.gradle.kts file is located in the root directory of your project and defines

which projects and libraries you need to add to your build script classpath.

7.1.2 Step 2. Provide your user credentials

Only authorized users can download artifacts from https://download.visionlabs.ru/.

To provide your user credentials, in the local.properties file:

 repositories {
 ...

 ivy {
 url = java.net.URI.create("https://download.visionlabs.ru/")
 patternLayout {
 artifact ("[organisation]/[artifact]-[revision].[ext]")
 setM2compatible(false)
 }
 credentials {
 username = getLocalProperty("vl.login") as String
 password = getLocalProperty("vl.pass") as String
 }
 metadataSources { artifact() }
 }
 }

VisionLabs B.V. Page 22 of 79

1․ Specify your user credentials:

2․ Add a function for getting your login and password:

We recommend that you add the local.properties file to .gitignore for the version control

system does not track the file.

7.1.3 Step 3. Add the .aar file as a dependency

To initialize LUNA ID with your project, you need to add the .aar file as a dependency in the

build.gradle.kts file. The build.gradle.kts file defines various build settings such as

dependencies, plugins, library versions, compilation and testing settings, and so on. All these

settings affect how the project is build and what functionality it contains.

To add the .aar file as a dependency, add the following piece of code to the dependencies

block of the build.gradle.kts file:

For example, implementation("ai.visionlabs.lunaid:core:1.2.3@aar") .

You need to update the {VERSION} parameter when a new version of LUNA ID is released.

 vl.login=YOUR_LOGIN
 vl.pass=YOUR_PASSWORD

 fun getLocalProperty(key: String, file: String = "local.properties"): Any {
 val properties = java.util.Properties()
 val localProperties = File(file)
 if (localProperties.isFile) {
 java.io.InputStreamReader(java.io.FileInputStream(localProperties), Charsets.UTF_8).use
{ reader ->
 properties.load(reader)
 }
 } else error("File from not found: '$file'")

 if (!properties.containsKey(key)) {
 error("Key not found '$key' in file '$file'")
 }
 return properties.getProperty(key)
 }

dependencies {
 ...
 implementation("ai.visionlabs.lunaid:core:{VERSION}@aar")
}

VisionLabs B.V. Page 23 of 79

7.1.4 Step 4. Initialize LUNA ID

To initialize LUNA ID in your project, specify the Application base class and the LunaID.init()

function in the build.gradle.kts file:

7.1.5 Step 5. Call LUNA ID functions

To use LUNA ID functionality, such as open a camera, send a request to LUNA PLATFORM 5,

and so on, import LUNA ID libraries and specify the required functions in the build.gradle.kts

file. Consider the following example:

class App : Application() {

 override fun onCreate() {
 super.onCreate()

 LunaID.init(
 app = this@App,
 lunaConfig = LunaConfig.create(),
 areDescriptorsEnabled = true
)
 }
}

import android.app.Application
import ru.visionlabs.sdk.lunacore.LunaConfig
import ru.visionlabs.sdk.lunacore.LunaCoreConfig
import ru.visionlabs.sdk.lunacore.LunaID

class DemoApp : Application () {
 override fun onCreate() {
 super.onCreate()

 LunaID.init(
 app = this@App,
 lunaConfig = LunaConfig.create(),
 areDescriptorsEnabled = true
)

 LunaID.showCamera()

 LunaID.apiHuman

 // specify the URL to LUNA PLATFORM
 val baseUrl = "http://luna-platform.com/api/6/"
 }
}

VisionLabs B.V. Page 24 of 79

The example has the following components:

For detailed examples, see:

Component Description

LunaID.init() Function. Initializes the LUNA ID library.

LunaID.showCamera() Method. Opens a mobile device camera.

LunaID.apiHuman Property. Provides access to the LUNA PLATFORM API and allows sending

requests.

baseUrl Variable. Specifies the LUNA PLATFORM URL that is used by the

LunaID.apiHuman() function.

https://github.com/VisionLabs/LunaID-Android-Examples/blob/

62ff3ff1b7ed18fb0f816ac3c18f4231f73a6fc5/CameraExample/src/main/java/ai/

visionlabs/examples/camera/MainActivity.kt

•

https://github.com/VisionLabs/LunaID-Android-Examples/blob/master/

PlatformAPIExample/src/main/java/ai/visionlabs/examples/platformapi/MainActivity.kt

•

VisionLabs B.V. Page 25 of 79

https://github.com/VisionLabs/LunaID-Android-Examples/blob/62ff3ff1b7ed18fb0f816ac3c18f4231f73a6fc5/CameraExample/src/main/java/ai/visionlabs/examples/camera/MainActivity.kt
https://github.com/VisionLabs/LunaID-Android-Examples/blob/62ff3ff1b7ed18fb0f816ac3c18f4231f73a6fc5/CameraExample/src/main/java/ai/visionlabs/examples/camera/MainActivity.kt
https://github.com/VisionLabs/LunaID-Android-Examples/blob/62ff3ff1b7ed18fb0f816ac3c18f4231f73a6fc5/CameraExample/src/main/java/ai/visionlabs/examples/camera/MainActivity.kt
https://github.com/VisionLabs/LunaID-Android-Examples/blob/master/PlatformAPIExample/src/main/java/ai/visionlabs/examples/platformapi/MainActivity.kt
https://github.com/VisionLabs/LunaID-Android-Examples/blob/master/PlatformAPIExample/src/main/java/ai/visionlabs/examples/platformapi/MainActivity.kt

7.2 Initial setup of LUNA ID for iOS

This topic describes how to perform an initial setup of LUNA ID to start using it in your iOS

projects.

7.2.1 Step 1. Add XCFrameworks

To embed XCFrameworks into your app:

1․ Drag and drop the following .xcframework files from the LUNA ID installation package to

the Frameworks, Libraries, and Embedded Content section of Xcode:

2․ Make sure that all the files have the Embed label so that they will be bundled with your

final app. Otherwise, your app will crash at start.

flower.xcframework

File location: luna-id-sdk_ios_v.X.X.X\build\Release-

iphoneos\frameworks\flower.framework\

•

fsdk.xcframework

File location: luna-id-sdk_ios_v.X.X.X\build\Release-

iphoneos\frameworks\fsdk.framework\

•

LunaAuth.xcframework

File location: luna-id-sdk_ios_v.X.X.X\build\Release-

iphoneos\frameworks\LunaAuth.framework\

•

LunaCamera.xcframework

File location: luna-id-sdk_ios_v.X.X.X\build\Release-

iphoneos\frameworks\LunaCamera.framework\

•

LunaCore.xcframework

File location: luna-id-sdk_ios_v.X.X.X\build\Release-

iphoneos\frameworks\LunaCore.framework\

•

LunaWeb.xcframework

File location: luna-id-sdk_ios_v.X.X.X\build\Release-

iphoneos\frameworks\LunaWeb.framework\

•

tsdk.xcframework

File location: luna-id-sdk_ios_v.X.X.X\build\Release-

iphoneos\frameworks\tsdk.framework\

•

VisionLabs B.V. Page 26 of 79

7.2.2 Step 2. Enable OneShotLiveness estimation

To enable OneShotLiveness estimation, specify the the following parameters in the

LCLunaConfiguration object at the app start:

For example:

7.2.3 Step 3. Specify license data

To specify LUNA ID license data:

1․ Request Server, EID, and ProductID from VisionLabs.

2․ In the fsdk.framework/data/license.conf file, specify the following parameters:

For more information about LUNA ID license activation, see Licensing.

7.2.4 Step 4. Create a face recognition screen in your app

To create a face recognition screen on which the video stream from the camera is displayed:

Parameter Description

verifyID The ID of a verifier used to roll out LUNA PLATFORM 5.

lunaServerURL Specifies the LUNA PLATFORM 5 host URL. The URL should not have the slash at the

end. For example: https://LUNA_PLATFORM_HOST/6 .

func application(_ application: UIApplication, didFinishLaunchingWithOptions launchOptions:
[UIApplication.LaunchOptionsKey: Any]?) -> Bool {
...
 let configuration = LCLunaConfiguration.defaultConfig()
 configuration.identifyHandlerID = "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX"
 configuration.registrationHandlerID = "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX"
 configuration.verifyID = "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX"
 configuration.lunaAccountID = "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX"
 configuration.lunaServerURL = URL(string: "https://LUNA_PLATFORM_HOST/6")
...
 return true
 }

Parameter Description

Server Activation server URL.

EID Entitlement ID.

ProductID Product ID.

VisionLabs B.V. Page 27 of 79

1․ Add the LMCameraBuilder.viewController() method in the required part of your app.

2․ Specify the LCLunaConfiguration object as an input parameter. It allows you to set various

threshold values that affect the resulting recognition screen.

VisionLabs B.V. Page 28 of 79

8. Working with LUNA ID

8.1 Working with best shots

8.1.1 Getting the best shot

With LUNA ID, you can capture video stream and get the best shot on which the face is fixed

in the optimal angle for further processing.

In LUNA ID for Android

To get the best shot, call the LunaID.showCamera() method.

To receive a result, subscribe to LunaID.finishStates() for the StateFinished(val result: FinishResult)

events.

A value of the result field depends on a best shot search result. Possible values are:

ResultSuccess

When the best shot was found, data: FinishSuccessData will contain the found best shot and an

optional path to the recorded video.

ResultFailed

Search for the best shot can fail for various reasons. In case the search fails, the data:

FinishFailedData type will define a reason.

 class ResultSuccess(val data: FinishSuccessData) : FinishResult()

 class ResultFailed(val data: FinishFailedData) : FinishResult()

 // when camera closed before bestshot was found
 class ResultCancelled(val data: FinishCancelledData) : FinishResult()

 class FinishSuccessData(
 val bestShot: BestShot,
 val videoPath: String?,
)

 sealed class FinishFailedData {

 class InteractionFailed() : FinishFailedData()

VisionLabs B.V. Page 29 of 79

ResultCancelled

If a user closes camera screen before the best shot was found, data: FinishCancelledData will

contain an optional path to the recorded video.

Since for getting the best shot, you open a camera in a new Activity class, pay special

attention to the lifecycle of your code components. For example, the calling Activity class may

be terminated or a presenter or view model may be recreated while searching for the best

shot. In these cases, subscribe to any of the flows exposed via the LunaID class (.allEvents() ,

interactions() , and so on) with respect to a component's lifecycle. To do this, consider using the

flowWithLifecycle() and launchIn() extension functions available for the Flow class in Kotlin.

EXAMPLE

The example below shows how to subscribe to the StateFinished events with respect to

compontents' lifecycles:

 class LivenessCheckFailed() : FinishFailedData()

 class LivenessCheckError(val cause: Throwable?) : FinishFailedData()

 class UnknownError(val cause: Throwable?) : FinishFailedData()

 }

 LunaID.finishStates()
 .flowOn(Dispatchers.IO)
 .flowWithLifecycle(lifecycleOwner.lifecycle, Lifecycle.State.STARTED)
 .onEach {
 when (it.result) {
 is LunaID.FinishResult.ResultSuccess -> {
 val image = (it.result as LunaID.FinishResult.ResultSuccess).data.bestShot
 }
 is LunaID.FinishResult.ResultCancelled -> {

 }
 is LunaID.FinishResult.ResultFailed -> {
 val failReason = (it.result as LunaID.FinishResult.ResultFailed).data
 }
 }
 }
 .launchIn(viewModelScope)

VisionLabs B.V. Page 30 of 79

In LUNA ID for iOS

To get the best shots, pass a value to the delegate parameter of the

LMCameraBuilder.viewController camera controller instance creation function that conforms to

the LMCameraDelegate protocol.

With the implementation of the LMCameraDelegate protocol, the camera controller will interact

with the user application. In the implemented methods, you will receive the best shot or the

corresponding error.

let controller = LMCameraBuilder.viewController(delegate: LMCameraDelegate,
 configuration: LCLunaConfiguration,
 livenessAPI: livenessAPI)

public protocol LMCameraDelegate: AnyObject {

 func bestShot(_ bestShot: LunaCore.LCBestShot, _ videoFile: String?)

 func error(_ error: LMCameraError, _ videoFile: String?)

}

VisionLabs B.V. Page 31 of 79

8.1.2 Best shot estimations

This topic describes estimations that LUNA ID performs to evaluate image quality and

determine whether the given image is the best shot or not.

How it works

LUNA ID searches for a face in each frame of a video stream recorded with your device's

camera. The frame must contain only one face for LUNA ID to perform a series of estimations.

Only frames with faces that pass these estimations are considered the best shots.

In LUNA ID for Android, the LunaID.allEvents() event (or more specialized LunaID.finishStates())

will emit the ResultSuccess event with the best shot found and an optional path to the

recorded video.

In LUNA ID for iOS, the CameraUIDelegate.bestShot() callback receives the best shot.

If an estimation fails, the corresponding error message is returned.

In LUNA ID for Android, the best shot estimations are specified in LunaConfig.kt.

In LUNA ID for iOS, you can change values of best shot estimations' parameters in the

LCLunaConfiguration structure.

Estimations

LUNA ID performs the following estimations to determine whether an image is the best shot:

FACE DETECTION BOUNDING BOX SIZE

Description

The estimation determines that a bounding box size with the detected face corresponds to

the specified size. The estimation helps to check if a face is far from the camera.

The minimum recommended size of the face bounding box is 200x200 pixels.

The default value is 200 pixels.

LUNA ID for Android LUNA ID for iOS

public const val DEFAULT_MIN_DETECT_FRAME_SIZE: Int

= 200

LCLunaConfiguration → bestShotConfiguration →

minDetSize = 200;

VisionLabs B.V. Page 32 of 79

Implementation

FRAME EDGES OFFSET

Description

The estimation determines the distance from the frame edges and is based on the face

detection bounding box size estimation.

The minimal border distance for best shot estimation without further OneShotLiveness

estimation is 0 pixels.

For OneShotLiveness estimation, the minimal border distance is 10 pixels.

The default value is 24 pixels in LUNA ID for Android and 10 pixels in LUNA ID for iOS.

Implementation

EYES STATE

Description

The estimation determines an eye state: open, closed, occluded.

The frames in which one or both eyes are closed are skipped.

If Dynamic Liveness is enabled, all frames can be considered the best shots, despite the eyes

status.

Implementation

LUNA ID for Android LUNA ID for iOS

public val detectFrameSize: Int =

DEFAULT_MIN_DETECT_FRAME_SIZE

@property (nonatomic, assign) NSInteger

minDetSize;

LUNA ID for Android LUNA ID for iOS

public val DEFAULT_BORDER_DISTANCE: Int =

8.dpToPx

LCLunaConfiguration → bestShotConfiguration →

borderDistance = 10;

LUNA ID for Android LUNA ID for iOS

public val borderDistance: Int =

DEFAULT_BORDER_DISTANCE

@property (nonatomic, assign) NSInteger

borderDistance;

LUNA ID for Android LUNA ID for iOS

The estimation is performed only if eye

interaction is enabled.

@property (nonatomic, assign) BOOL checkEyes;

If set to true , the best shot with closed eyes

will be skipped.

VisionLabs B.V. Page 33 of 79

HEAD POSE

Description

The estimation determines a person’s head rotation angles in 3D space, that is pitch, yaw,

and roll.

The pitch rotation angle limits the head rotation along the X axis.

The yaw rotation angle limits the head rotation along the Y axis.

The roll rotation angle limits the head rotation along the Z axis.

Head pose

Acceptable angle ranges, in degrees, are 0-45.

The pitch, yaw, and roll values must be between the minimal and maximum valid head

position values.

The default values are:

Angle LUNA ID for Android LUNA ID for iOS

Pitch public const val

DEFAULT_HEAD_PITCH: Float = 25F

LCLunaConfiguration → bestShotConfiguration →

estimationThreshold → headPitch = 25;

Yaw public const val DEFAULT_HEAD_YAW:

Float = 25F

LCLunaConfiguration → bestShotConfiguration →

estimationThreshold → headYaw = 25;

Roll public const val

DEFAULT_HEAD_ROLL: Float = 25F

LCLunaConfiguration → bestShotConfiguration →

estimationThreshold → headRoll = 25;

VisionLabs B.V. Page 34 of 79

Implementation

AGS (AVERAGE GARBAGE SCORE)

Description

The estimation determines the source image score for further descriptor extraction and

matching.

An estimation output is a float score which is normalized in range [0..1]. The closer score to 1,

the better matching result is received for the image.

The AGS estimation value must be between the minimal and maximum values:

The default value is 0.5.

Implementation

Angle LUNA ID for Android LUNA ID for iOS

Pitch public val headPitch: Float =

DEFAULT_HEAD_PITCH

@property (nonatomic) CGFloat

headPitch;

Yaw public val headYaw: Float = DEFAULT_HEAD_YAW @property (nonatomic) CGFloat

headYaw;

Roll public val headRoll: Float = DEFAULT_HEAD_ROLL @property (nonatomic) CGFloat

headRoll;

LUNA ID for Android LUNA ID for iOS

public const val AGS_MIN: Float =

0F

LCLunaConfiguration → bestShotConfiguration → estimationThreshold → ags

= 0;

public const val AGS_MAX: Float =

1F

LCLunaConfiguration → bestShotConfiguration → estimationThreshold → ags

= 1;

LUNA ID for Android LUNA ID for iOS

public const val DEFAULT_AGS: Float =

0.5F

LCLunaConfiguration → bestShotConfiguration → estimationThreshold →

ags = 0.5;

LUNA ID for Android LUNA ID for iOS

public val ags: Float = DEFAULT_AGS @property (nonatomic) CGFloat ags;

VisionLabs B.V. Page 35 of 79

IMAGE QUALITY ESTIMATION

Description

The estimation determines an image quality by the following criteria:

To perform the estimation, LUNA ID uses the LUNA SDK SubjectiveQuality estimator. For details,

see Image Quality Estimation.

The default values are:

MEDICAL MASK ESTIMATION

Description

The estimation determines whether a person is currently wearing a medical mask on the face.

The estimation is performed only in LUNA ID for iOS.

BEST SHOT CAPTURE PERIOD

Description

The estimation determines that the frame was received in the time interval allotted for the

best shot.

The estimation is performed only in LUNA ID for iOS.

The default value is 5.

The image is blurred.•

The image is underexposed, that is, too dark.•

The image is overexposed, that is, too light.•

The face in the image is illuminated unevenly and there is a great difference between

dark and light regions.

•

The image contains flares on face, that is, too specular.•

Parameter Default value

Blurriness 0.61

Lightness 0.57

Darkness 0.50

Illumination 0.1

Specularity 0.1

VisionLabs B.V. Page 36 of 79

https://docs.visionlabs.ai/sdk/v.5.15.0/sdk/handbookcompilation/parameter-estimation-facility/#image-quality-estimation

Implementation

@property (nonatomic, assign) NSTimeInterval interactionTimeout;

VisionLabs B.V. Page 37 of 79

8.2 Working with OneShotLiveness

8.2.1 About OneShotLiveness estimation

OneShotLiveness is an algorithm for determining whether a person in one or more images is

"real" or a fraudster using a fake ID (printed face photo, video, paper, or 3D mask).

OneShotLiveness is used as a pre-check before performing face detection.

To perform the OneShotLiveness estimation, LUNA ID sends a request to the LUNA PLATFORM

5 /liveness endpoint. For more details about LUNA ID and LUNA PLATFORM 5 interaction, see

the Interaction of LUNA ID with LUNA PLATFORM 5 section of LUNA ID overview.

Image requirements

An image that LUNA ID takes as input must be a source image and meet the following

requirements:

Parameters Requirements

File format PNG, RGB color model

Resolution FullHD

Minimum acceptable dimensions: 720x960 pixels

Maximum acceptable dimensions: 1080x1920 pixels

Compression No

Image cropping No

Effects overlay No

Number of faces in the frame 1

Face detection bounding box

size

More than 200 pixels

Frame edges offset More than 10 pixels

Head pose -20 to +20 degrees for head pitch, yaw, and roll

Image quality The face in the frame should not be overexposed, underexposed,

or blurred.

VisionLabs B.V. Page 38 of 79

OneShotLiveness thresholds

By default, two thresholds are used for OneShotLiveness estimation:

QUALITY THRESHOLD

Quality threshold estimates the input image by the following parameters:

The table below has the default threshold values. These values are set to optimal:

For details on image quality estimation, see Image Quality Estimation and Quality estimator

settings.

LIVENESS THRESHOLD

Liveness threshold is the threshold lower which the system will consider the result as a

presentation attack.

For images received from mobile devices, the default liveness threshold value is 0.5. For

details, see Liveness threshold.

Quality threshold•

Liveness threshold•

Lightness (overexposure)•

Darkness (underexposure)•

Blurriness•

Illumination•

Specularity•

Threshold Value

blurThreshold 0.61

darknessThreshold 0.50

lightThreshold 0.57

illuminationThreshold 0.1

specularityThreshold 0.1

VisionLabs B.V. Page 39 of 79

https://docs.visionlabs.ai/sdk/v.5.15.0/sdk/handbookcompilation/parameter-estimation-facility/#image-quality-estimation
https://docs.visionlabs.ai/sdk/v.5.14.0/sdk/configurationguide/settings/#quality-estimator-settings
https://docs.visionlabs.ai/sdk/v.5.14.0/sdk/configurationguide/settings/#quality-estimator-settings
https://docs.visionlabs.ai/luna/v.5.45.4/standard-distribution/admin-manual/additional-information/#liveness-threshold

8.2.2 Enabling OneShotLiveness estimation

You can automatically perform the OneShotLiveness estimation, that is to determine if the

person in the image is a living person or a photograph. You can then validate the received

images with LUNA PLATFORM 5.

In LUNA ID for Android

To enable the OneShotLiveness estimation:

1․ Specify the livenessType: LivenessType field in LunaConfig . The field accepts one of the

following values:

2․ Specify the required LUNA PLATFORM 5 server parameters in ApiHumanConfig .

The example below shows how to enable the OneShotLiveness estimation:

Value Description

None Disables the estimation. The default value.

Online Enables the estimation by sending a request to the LUNA PLATFORM 5 /liveness

endpoint.

val apiConfig = ApiHumanConfig("http://luna-platform.com/api/6/")
 LunaID.init(
 ...
 apiHumanConfig = apiConfig,
 lunaConfig = LunaConfig.create(
 livenessType = LivenessType.Online,
),
)

VisionLabs B.V. Page 40 of 79

In LUNA ID for iOS

To enable the OneShotLiveness estimation, you need to pass appropriate values for the

livenessAPI and configuration parameters to the camera controller instance creation function

LMCameraBuilder.viewController :

The API accepts the configuration parameter, which contains all the necessary settings for

checking liveness.

let controller = LMCameraBuilder.viewController(delegate: self,
 configuration: LCLunaConfiguration,
 livenessAPI: livenessAPI)

Parameter Description

configuration The parameter is represented by the LCLunaConfiguration structure.

livenessAPI The API should be of type LunaWeb.LivenessAPIv6 .

VisionLabs B.V. Page 41 of 79

8.2.3 Disabling OneShotLiveness estimation

If you want to skip a liveness estimation over the best shot, you can disable the

OneShotLiveness estimation.

In LUNA ID for Android

To disable the OneShotLiveness estimation, set the livenessType: LivenessType field to None in

LunaConfig .

If livenessType: LivenessType is not specified, the OneShotLiveness estimation is disabled by

default.

The example below shows how to disable the OneShotLiveness estimation:

In LUNA ID for iOS

To disable the OneShotLiveness estimation, disable sending of OneShotLiveness estimation

requests to LUNA PLATFORM 5 by setting livenessType to .none . For example:

val apiConfig = ApiHumanConfig("http://luna-platform.com/api/6/")
 LunaID.init(
 ...
 apiHumanConfig = apiConfig,
 lunaConfig = LunaConfig.create(
 livenessType = LivenessType.None,
),
)

private lazy var configuration: LCLunaConfiguration = {
 let configuration = LCLunaConfiguration.defaultConfig()
 ...
 configuration.bestShotConfiguration.livenessType = .none
 ...
 return configuration
}()

VisionLabs B.V. Page 42 of 79

8.3 Working with Dynamic Liveness

8.3.1 Performing Dynamic Liveness estimation

Dynamic Liveness estimation aims to determine whether a person is alive by interacting with

a camera in your app.

Interaction types

To perform the Dynamic Liveness estimation, you can implement the following user

interaction types:

The picture below shows head rotation angles.

Head pose

In LUNA ID for Android

By default, all user interactions with a camera are disabled.The Dynamic Liveness estimation

does not start.

Blinking.•

Head rotation to the left along the Y axis.•

Head rotation to the right along the Y axis.•

Head pitch up along the X axis.•

Head pitch down along the X axis.•

VisionLabs B.V. Page 43 of 79

To enable the estimation, pass the Interactions argument to LunaID.showCamera() . For example:

Interactions is a container for interaction parameters. You can add the following interactions to

it:

Important notes:

Each interaction type has the timeoutMs parameter. It determines the time during which this

interaction must be completed.

The YawLeftInteraction , YawRightInteraction , PitchUpInteraction , and PitchDownInteraction

interactions have the startAngleDeg and endAngleDeg parameters. The parameters determine

the angle at which the user must rotate their head for the interaction to be considered

successful.

If an interaction fails, the flow of getting the best shot finishes, and LunaID.allEvents() receives

the InteractionFailed event.

public fun showCamera(
...
 interactions: Interactions = Interactions()
)

Parameter Description

YawLeftInteraction Enables user interaction via rotating the head to the left along the Y axis.

YawRightInteraction Enables user interaction via rotating the head to the right along the Y axis.

PitchUpInteraction Enables user interaction via pitching the head up along the X axis.

PitchDownInteraction Enables user interaction via pitching the head down along the X axis.

BlinkInteraction Enables user interaction via blinking.

You can specify each parameter only once.•

The interaction parameters will be launched in the order you specify them in your code.•

VisionLabs B.V. Page 44 of 79

In LUNA ID for iOS

To implement user interactions with a camera, pass appropriate values for the livenessAPI and

configuration parameters to the LMCameraBuilder.viewController camera controller instance

creation function:

The API accepts the configuration parameter, which contains all the necessary settings for

checking Dynamic Liveness.

The interaction generator produces a random sequence of interactions. It selects only two

interactions from the interaction types list.

let controller = LMCameraBuilder.viewController(delegate: self,
 configuration: LCLunaConfiguration,
 livenessAPI: livenessAPI)

Parameter Description

configuration The parameter is represented by the LCLunaConfiguration structure. The

LCLunaConfiguration → InteractionEnabled = true parameter is responsible for interaction

with the camera.

livenessAPI The API should be of type LunaWeb.LivenessAPIv6 .

VisionLabs B.V. Page 45 of 79

8.3.2 Interception of Dynamic Liveness interaction events

You can intercept interaction events via LunaID.detectionCoordinates() .

Note. This feature is available in LUNA ID for Android only.

You will receive structure similar to the "error" and "detection" events:

Where state is an object of the LunaInteraction class.

Just like with errors based on this state, you can control how interaction messages will look

like.

{
 "action": "interaction",
 "state": ...
}

public enum class LunaInteraction {
 INTERACTION_FAILED,
 INTERACTION_STARTED,

 INTERACTION_EYES_OPENED,
 INTERACTION_EYES_CLOSED,
 INTERACTION_EYES_OPENED_AGAIN,

 INTERACTION_SUCCESS
}

VisionLabs B.V. Page 46 of 79

8.3.3 Customizing Dynamic Liveness notifications

You can customize messages that are shown when a user performs blinking to fulfill the

Dynamic Liveness estimation. For example, you can change:

In LUNA ID for Android

To customize Dynamic Liveness notifications:

1․ Call LunaID.showCamera() with ShowCameraParams (disableInteractionTips=true) .

2․ Subscribe to CameraOverlayDelegateOut.receive to receive interaction events.

3․ Implement your own camera overlay. For an example of creating an overlay, see LUNA ID

Android Examples.

4․ Use the overlay to implement any logic to show or hide customized interaction tips

wherever you like.

In LUNA ID for iOS

To customize Dynamic Liveness notifications, use the

func showNotificationMessage(_ newMessage: String) method of LMVideoStreamNotificationViewProtocol .

Notification language•

Fonts•

Font colors•

Background colors•

VisionLabs B.V. Page 47 of 79

https://github.com/VisionLabs/LunaID-Android-Examples
https://github.com/VisionLabs/LunaID-Android-Examples

8.4 Working with video streams

8.4.1 Recording a video stream

Recording a video stream is a task you may need to perform for further processing of images

and getting the best shot.

In LUNA ID for Android

To record a video stream, open a camera by using recordVideo = true . For example:

When the camera finishes its work, LunaID.allEvents() (or more specialized LunaID.finishStates())

will emit the ResultSuccess event with the best shot found and an optional path to the

recorded video. The entire process of getting the best shot is written to this video file.

LUNA ID does not manage the video file. This means, that file management, that is

deletion, copying, sending to a server, and so on, is performed on your side.

The recording stops when the best shot is captured or when a user closes the camera before

LUNA ID gets the best shot.

In LUNA ID for iOS

To record a video stream:

1․ Define the recordVideo parameter as true in:

2․ Find the video file path in the bestShot function in the LMCameraDelegate protocol.

LunaID.showCamera(
 ...
 recordVideo = true,
)

let controller = LMCameraBuilder.viewController(delegate: self,
 recordVideo: true)

public protocol LMCameraDelegate: AnyObject {

 func bestShot(_ bestShot: LunaCore.LCBestShot, _ videoFile: String?)

 func error(_ error: LMCameraError, _ videoFile: String?)

VisionLabs B.V. Page 48 of 79

}

VisionLabs B.V. Page 49 of 79

8.4.2 Recording a video stream only with the face detected

With LUNA ID, you can record either entire video sessions or only video sessions in which a

face was detected in at least one frame.

In LUNA ID for Android

To do this, call LunaID.showCamera() with ShowCameraParams(recordVideo=true,

ignoreVideoWithoutFace=true) .

In LUNA ID for iOS

To do this, pass appropriate values for the recordVideo and configuration parameters to the

LMCameraBuilder.viewController camera controller instance creation function:

You can find the video file path in the bestShot function in the LMCameraDelegate protocol.

let controller = LMCameraBuilder.viewController(delegate: self,
 configuration: LCLunaConfiguration,
 recordVideo: true)

Parameter Description

configuration The parameter is represented by the LCLunaConfiguration structure. The

LCLunaConfiguration → saveOnlyFaceVideo = true parameter is responsible for saving

video files only with a face detected.

recordVideo The parameter is responsible for saving the video file.

public protocol LMCameraDelegate: AnyObject {

 func bestShot(_ bestShot: LunaCore.LCBestShot, _ videoFile: String?)

 func error(_ error: LMCameraError, _ videoFile: String?)

}

VisionLabs B.V. Page 50 of 79

8.5 Working with logs

8.5.1 Getting logs from mobile devices

LUNA ID writes service information to the logging system of the corresponding platform -

Android and iOS. You can use this information diagnose and debug both the user application

that uses LUNA ID and to debug and fix LUNA ID.

A common problem that requires getting logs is related to the image that LUNA ID takes as

input. Before you start collecting logs, make sure that the image meets the requirements and

the thresholds are correctly configured to pass the OneShotLiveness estimation. For more

information on image requirements and thresholds, see About OneShotLiveness estimation.

Data to be provided to VisionLabs Technical support

Along with the collected logs, provide the following data to Technical Support:

Prerequisites

To successfully receive logs from mobile devices, the following prerequisites must be met:

Device model on which the issue was detected•

MUI•

OS version•

LUNA ID version•

Detailed playback steps•

Video recording of the issue•

Make sure that the necessary values for FaceEngine and TrackEngine logging are set in

the configuration files. For details on the required values and configuration files, see the

FaceEngine and TrackEngine logging section.

•

Before collecting logs, uninstall the app for which you are going to collect logs, and then

reinstall it. Start collecting logs after the first launch of the app.

•

The log file should contain entries from the moment the app was started until the

problem occurred.

•

Put the mobile device in developer or debug mode.•

VisionLabs B.V. Page 51 of 79

FaceEngine and TrackEngine logging

For detailed logging of FaceEngine and TrackEngine, the following values must be set in

configuration files:

Getting logs from Android devices

There are several ways to get logs from Android devices. To do this, we recommend that you

use the Logcat window in Android Studio.

To get logs from an Android device:

1․ Put your mobile device in developer mode:

Depending on the manufacturer of the Android device, the instruction may vary slightly.

1.1 In settings, select About phone or About tablet.

1.2 Find the Build Number or Android Version section and repeatedly tap it.

1.3 Confirm the transition of the device to developer mode.

1.4 Go to Settings > System > For Developers.

1.5 Set the USB Debugging switch to on.

1.6 Allow USB debugging.

2․ In Android Studio, open the Logcat tab. To do this, select View > Tool Windows >

Logcat from the Android Studio menu.

3․ In the upper-left corner, select the device from which you want to receive logs.

4․ In the next field, select the logs of the required app. If you want to get logs of all apps, do

not change this field.

5․ Select the logging level VERBOSE.

With the VERBOSE logging level, you can see records from all previous levels and get the

most useful information.

File Value

Faceengine.conf <param name=”verboseLogging” type=”Value::Int1” x=«4» />

runtime.conf <param name=”verboseLogging” type=”Value::Int1” x=«4» />

trackengine.conf <param name=”mode” type=”Value::String” text=”l2b” />

<param name=”severity” type=”Value::Int1” x=”0” />

VisionLabs B.V. Page 52 of 79

6․ In the search box, enter the required information to filter the results. For example, you can

include a package name, a part like fatal, and so on.

Android Studio Logcat

7․ Configure the display of logs:

7․1 Go to Logcat tab settings.

7․2 Select Logcat Header, check the following boxes and click OK:

Show date and time (required)•

Show process and thread IDs•

Show package name•

Show tag•

VisionLabs B.V. Page 53 of 79

Configuting the display of logs

The resulting logs contain the following data:

Android device logs

Getting logs from iOS devices

The main tool for getting logs from iOS devices is XCode. Xcode is a software development

environment for macOS and iOS platforms.

To get logs from an iOS device:

1․ Put your mobile device in developer mode:

1․1 Go to Settings > Privacy and Security.

1․2 Find the Developer Mode section and activate the option.

1․3 Restart your device.

2․ Connect your iOS device to your Mac.

3․ From the Xcode menu, select the menu item Window > Devices and Simulators.

Date and time of entry.•

Logging level (for example, D is Debug).•

The name of the tool, utility, package from which the message is received, as well as a

decoding of the ongoing action.

•

VisionLabs B.V. Page 54 of 79

Devices and Simulators

4․ Select the connected device.

5․ Click the View Device Logs button. If you want to view the logs in real time, click the

Open Console button.

View Device Logs

6․ In the search box, enter the required information to filter the results.

7․ Find the needed log file and copy it to a text file.

VisionLabs B.V. Page 55 of 79

Logs for iOS device

Tip: To pause the log stream, click the Pause button.

The resulting logs contain the following data:

iOS device logs

Getting logs for OneShotLiveness estimation from Android devices

If OneShotLiveness is enabled, you can find the corresponding data in logs.

Here is an example of logs for LUNA ID sending a request for OneShotLiveness estimation

when getting the best shot:

Date and time of entry.•

The name of the part of the system or application from which the message came.•

Event description, service information.•

 I --> POST https://luna-api-aws.visionlabs.ru/6/liveness?aggregate=1
 D Deallocating scratch [101632 bytes]
 I Content-Type: multipart/form-data; boundary=d9fb08cd-a74a-4d22-b596-c9d1810c7470
 I Content-Length: 2510479
 I Luna-Account-Id: 12ed7399-xxxx-xxxx-xxxx-bbc45e6017af
 I --> END POST (binary 2510479-byte body omitted)

VisionLabs B.V. Page 56 of 79

The response returns the following status codes:

Getting logs for OneShotLiveness estimation from iOS devices

Currently, you cannot collect logs for OneShotLiveness estimation by using iOS features.

Status code 200

If the request has reached the server and the server was able to process it, it returns

status code 200 . For example:

I <-- 200 https://luna-api-aws.visionlabs.ru/6/liveness?aggregate=1 (5895ms)

 I server: nginx/1.19.2

 I date: Tue, 08 Aug 2023 23:30:51 GMT

 I content-type: application/json

 I vary: Accept-Encoding

 I luna-request-id: 1691548250,d70bca42-b40c-4c69-ae71-c3ce8207d3d3

 I strict-transport-security: max-age=15724800; includeSubDomains

 I access-control-allow-origin: *

 I access-control-allow-credentials: true

 I access-control-allow-methods: GET, PUT, POST, DELETE, PATCH, OPTIONS

 I access-control-allow-headers: Authorization,Cache-Control,Content-Type,luna-account-id

 I {"images":[{"filename":"0","status":1,"liveness":{"prediction":1,"estimations":{"probability":

0.9960508346557617,"quality":1.0}},"error":{"error_code":

0,"desc":"Success","detail":"Success","link":"https:\/\/docs.visionlabs.ai\/info\/luna\/troubleshooting\/

errors-description\/code-0"}}],"aggregate_estimations":{"liveness":{"prediction":1,"estimations":

{"probability":0.9960508346557617,"quality":1.0}}}}

 I <-- END HTTP (404-byte body)

•

Status code other than 200

For details on status codes other than 200 , please refer to the LUNA PLATFORM API

documentation.

•

VisionLabs B.V. Page 57 of 79

https://docs.visionlabs.ai/luna/v.5.28.0/ReferenceManuals/APIReferenceManual.html#tag/liveness
https://docs.visionlabs.ai/luna/v.5.28.0/ReferenceManuals/APIReferenceManual.html#tag/liveness

8.5.2 Saving logs on an end user’s device

With LUNA ID, you can optionally save log files on an end user’s device. This feature is

available in LUNA ID for Android v. 1.3.3 and later.

Note. This feature is available in LUNA ID for Android only.

To get log files and save them on your device:

1․ Enable logging in LUNA ID: LunaID.showCamera(logToFile = true) .

Every call of showCamera with logToFile set to true will create a log file with a session of

getting the best shot on your mobile device.

2․ Get the log files by calling Context#getFilesDir() . The files are stored in the logs folder inside

your app’s private folder. For details, see getFileDir.

We do not provide a solution for getting log files from your device. You need to realize it in

your code by yourself. That is, you will need to add logic for getting these log files and

sending them, for example, to your endpoint or to your mail.

We recommend that you do the following to get logs from your device:

1․ In your app, realize hidden camera launching with collecting of logs. For example, you can

do it by long-tapping the camera button or via the hidden developer menu in the release

build.

2․ When a user has a problem getting the best shot, you get the logs and forward them to our

Support Team.

VisionLabs B.V. Page 58 of 79

https://developer.android.com/reference/android/content/Context#getFilesDir()

8.6 Changing detection settings

8.6.1 In LUNA ID for Android

The LunaCore.aar file uses default detection settings. These settings are stored in the .conf

files inside LunaCore.aar and you cannot change them directly. However, you can change

them if you put the files of the same name in your app along the assets/data path.

For example, if you need to change the FaceEngine settings, then inside your app, where

LunaCore.aar is connected as a dependency, you need to create the assets/data/

faceengine.conf file, which will contain all the FaceEngine settings.

Your faceengine.conf must contain all the settings, not just the ones you want to change,

because your file will completely overwrite all the settings contained in LunaCore.aar.

8.6.2 In LUNA ID for iOS

To change detection settings, pass the required values for the parameters specified in the

table below:

Function Parameter Description

LCLunaConfiguration →

bestShotConfiguration →

estimationThreshold

headPitch Specifies the head rotation along the X axis.

LCLunaConfiguration →

bestShotConfiguration →

estimationThreshold

headYaw Specifies the head rotation along the Y axis.

LCLunaConfiguration →

bestShotConfiguration →

estimationThreshold

headRoll Specifies the head rotation along the Z axis.

LCLunaConfiguration →

bestShotConfiguration →

estimationThreshold

ags Specifies the source image score for further

descriptor extraction and matching.

LCLunaConfiguration →

bestShotConfiguration

borderDistance Specifies the distance from the frame edges

and is based on the face detection bounding

box size estimation.

LCLunaConfiguration →

bestShotConfiguration

minDetSize Specifies a bounding box size.

VisionLabs B.V. Page 59 of 79

9. Neural networks used in LUNA ID

In LUNA ID, neural networks provide efficient and accurate processing of faces in images and

video streams. Neural networks are stored in .plan files.

VisionLabs B.V. Page 60 of 79

The table below shows the .plan files used in LUNA ID for Android and iOS and functionality

that the files cover.

VisionLabs B.V. Page 61 of 79

.plan file Feature name Description More information

Android iOS

angle_estimation_flwr_arm.plan Head pose

estimation

Determines person head rotation

angles in 3D space, that is pitch,

yaw, and roll.

BestShotQuality

Estimation

BestShotQuality

Estimation

ags_angle_estimation_flwr_arm.plan BestShotQuality

estimation

Evaluates image quality to choose

the best image before descriptor

extraction. The BestShotQuality

estimator consists of two

components - AGS (garbage store)

and Head Pose.

ags_estimation_flwr_arm.plan AGS estimation Determines the source image score

for further descriptor extraction and

matching.

eye_status_estimation_flwr_arm.plan Eye state Determines the eye state: open,

closed, occluded.

Eyes Estimation Eyes Estimation

eyes_estimation_flwr8_arm.plan Eye state

estimation

Determines the following eye state

and keypoints:

FaceDet_v2_first_arm.plan Face detection Detects a face in an image and

shows a rectangular area around the

detected face.

The neural networks should be

launched consequently.

Face Detection Face Detection

FaceDet_v2_second_arm.plan

FaceDet_v2_third_arm.plan

glasses_estimation_flwr_arm.plan Image glasses

estimation

Determines whether a person is

currently wearing glasses.

Glasses

estimation

Glasses

estimation

mask_clf_v3_arm.plan Medical mask

estimation

Determines whether a person is

currently wearing a medical mask on

the face.

Medical Mask

Estimation

Functionality

Medical Mask

Estimation

Functionality

model_subjective_quality_v1_arm.plan Image quality

estimation

Determines an image quality by the

following criteria:

Image Quality

Estimation

Image Quality

Estimation

Eye state: open, closed,

occluded.

•

Precise eye iris location as an

array of landmarks.

•

Precise eyelid location as an

array of landmarks.

•

The image is blurred.•

The image is underexposed, that

is, too dark.

•

The image is overexposed, that

is, too light.

•

The face in the image is

illuminated unevenly and there

is a great difference between

dark and light regions.

•

The image contains flares on

face, that is, too specular.

•

VisionLabs B.V. Page 62 of 79

https://docs.visionlabs.ai/sdk/v.5.9.1/sdk-android/handbookcompilation/parameter-estimation-facility/#bestshotquality-estimation
https://docs.visionlabs.ai/sdk/v.5.9.1/sdk-android/handbookcompilation/parameter-estimation-facility/#bestshotquality-estimation
https://docs.visionlabs.ai/sdk/v.5.14.0/sdk-ios/handbookcompilation/parameter-estimation-facility/#bestshotquality-estimation
https://docs.visionlabs.ai/sdk/v.5.14.0/sdk-ios/handbookcompilation/parameter-estimation-facility/#bestshotquality-estimation
https://docs.visionlabs.ai/sdk/v.5.9.1/sdk-android/handbookcompilation/parameter-estimation-facility/#eyes-estimation
https://docs.visionlabs.ai/sdk/v.5.14.0/sdk-ios/handbookcompilation/parameter-estimation-facility/#best-shot-selection-functionality
https://docs.visionlabs.ai/sdk/v.5.9.1/sdk-android/handbookcompilation/detection-facility/#descriptor-batch
https://docs.visionlabs.ai/sdk/v.5.14.0/sdk/handbookcompilation/detection-facility/#face-detection
https://docs.visionlabs.ai/sdk/v.5.9.1/sdk-android/handbookcompilation/parameter-estimation-facility/#glasses-estimation
https://docs.visionlabs.ai/sdk/v.5.9.1/sdk-android/handbookcompilation/parameter-estimation-facility/#glasses-estimation
https://docs.visionlabs.ai/sdk/v.5.14.0/sdk-ios/handbookcompilation/parameter-estimation-facility/#glasses-estimation
https://docs.visionlabs.ai/sdk/v.5.14.0/sdk-ios/handbookcompilation/parameter-estimation-facility/#glasses-estimation
https://docs.visionlabs.ai/sdk/v.5.9.1/sdk-android/handbookcompilation/parameter-estimation-facility/#medical-mask-estimation-functionality
https://docs.visionlabs.ai/sdk/v.5.9.1/sdk-android/handbookcompilation/parameter-estimation-facility/#medical-mask-estimation-functionality
https://docs.visionlabs.ai/sdk/v.5.9.1/sdk-android/handbookcompilation/parameter-estimation-facility/#medical-mask-estimation-functionality
https://docs.visionlabs.ai/sdk/v.5.14.0/sdk-ios/handbookcompilation/parameter-estimation-facility/#medical-mask-estimation-functionality
https://docs.visionlabs.ai/sdk/v.5.14.0/sdk-ios/handbookcompilation/parameter-estimation-facility/#medical-mask-estimation-functionality
https://docs.visionlabs.ai/sdk/v.5.14.0/sdk-ios/handbookcompilation/parameter-estimation-facility/#medical-mask-estimation-functionality
https://docs.visionlabs.ai/sdk/v.5.9.1/sdk-android/handbookcompilation/parameter-estimation-facility/#image-quality-estimation
https://docs.visionlabs.ai/sdk/v.5.9.1/sdk-android/handbookcompilation/parameter-estimation-facility/#image-quality-estimation
https://docs.visionlabs.ai/sdk/v.5.14.0/sdk-ios/handbookcompilation/parameter-estimation-facility/#image-quality-estimation
https://docs.visionlabs.ai/sdk/v.5.14.0/sdk-ios/handbookcompilation/parameter-estimation-facility/#image-quality-estimation

model_subjective_quality_v2_arm.plan

Configuration options of the supported features are stored in the faceengine.conf file. The file

locates in "data/faceengine.conf" in current working directory.

Warning! We do not recommend that you change any configuration settings from default

ones as these settings affect performance and output results of your application.

For more information about the settings stored in the faceengine.conf file, see:

For Android: Settings•

For iOS: Settings•

VisionLabs B.V. Page 63 of 79

https://docs.visionlabs.ai/sdk/v.5.9.1/sdk-android/configurationguide/settings/
https://docs.visionlabs.ai/sdk/v.5.14.0/sdk-ios/configurationguide/settings/

10. Best practices

10.1 Measuring the size that LUNA ID adds to your app

You can measure the size that LUNA ID adds to your app.

10.1.1 In LUNA ID for Android

To measure the size that LUNA ID adds to your app, do the following:

1․ Update build files to build separate .apk files for different platforms:

2․ In Android Studio, run the Analyze APK utility.

In the build.gradle.kts file: •

android {
 ...
 splits {
 abi {
 isEnable = true
 reset()
 include("armeabi-v7a", "arm64-v8a", "x86", "x86_64")
 isUniversalApk = false
 }
 }
 ...
}

In the build.dragle file: •

 android {
 ...

 splits {
 abi {
 enable true
 reset()
 include "armeabi-v7a", "arm64-v8a", "x86", "x86_64"
 universalApk false
 }
 }

 ...
 }

VisionLabs B.V. Page 64 of 79

3․ Open the build platfrom-specific .apk file (for example, armeabi-v7a) and see the size of the

following files:

Important notes

10.1.2 In LUNA ID for iOS

Total size

The number of .plan files included in the SDK library depends on your particular case. The

app size depends on the selected .plan files.

After you select all the required .plan files for your app, sum their sizes to find the total size of

the .plan files.

You can find the .plan files in fsdk.framework/data.

In the picture below, you can see the .plan files selected for this example.

assets/data folder•

lib/{platform}/libTrackEngineSDK.so•

lib/{platform}/libBestShotMobile.so•

lib/{platform}/libflower.so•

lib/{platform}/libMatchingKernel.s•

lib/{platform}/libFaceEngineSDK.so•

lib/{platform}/libwrapper.so•

lib/{platform}/libc++_shared.so•

Any other files are not part of LUNA ID and are added by other dependencies of your

app.

•

In the Analyze APK utility, there should be only one platform in the lib folder (for

example, armeabi-v7a , arm64-v8a or any another). If there is more than one platform in

this folder, then you are looking at a universal .apk file that includes all platforms. Go

back a step and rebuild the app with splits.abi enabled.

•

VisionLabs B.V. Page 65 of 79

Android device logs

Application size

To find out the IOS application size, do the following:

1․ Open your project with added frameworks in Xcode.

2․ Go to Product > Archive.

Archiving

3․ Click the Distribute App button after archiving finishes.

VisionLabs B.V. Page 66 of 79

Distribute App

4․ Select a distribution method. For example, Development.

Method of distribution

5․ Select development distribution options.

VisionLabs B.V. Page 67 of 79

Development distribution options

6․ Select a device for distribution creation. For example, All compatible device variants.

VisionLabs B.V. Page 68 of 79

Development distribution options

7․ Re-sign your application. For example, by the developer signing.

VisionLabs B.V. Page 69 of 79

Re-signing

8․ View the information about the archive.

VisionLabs B.V. Page 70 of 79

Re-signing

9․ Export your app.

Export

10․ Open the App Thinning Size Report.txt file.

VisionLabs B.V. Page 71 of 79

Export

11․ Find necessary information about the application size.

The picture below shows the size of the application without additional swift frameworks from

this example.

Export

12․ Verify the size of the packed application.

VisionLabs B.V. Page 72 of 79

10.2 Reducing your app size by excluding .plan files

LUNA ID uses neural networks for face processing in images and video streams. Neural

networks are stored in the .plan files. You can reduce the size of your app by removing

unnecessary .plan files.

10.2.1 In LUNA ID for Android

To remove unnecessary .plan files, specify the .plan files to be excluded as shown in the

examples below:

In the build.gradle.kts file: •

 android {
 ...

 androidResources {
 ignoreAssetsPatterns.addAll(
 listOf(
 "!glasses_estimation_flwr_arm.plan",
 "!glasses_estimation_flwr_cpu.plan",
 "!mask_clf_v3_arm.plan",
 "!mask_clf_v3_cpu.plan",
 "!oslm_v4_model_1_arm.plan",
 "!oslm_v4_model_1_cpu.plan",
 "!oslm_v4_model_2_arm.plan",
 "!oslm_v4_model_2_cpu.plan",
 "!cnn59m_arm.plan",
 "!cnn59m_cpu.plan",
 "!cnndescriptor_59.conf",
)
)
 }

 ...
 }

In the build.dragle file: •

 android {
 ...

 androidResources {
 ignoreAssetsPatterns.addAll(
 [
 "!glasses_estimation_flwr_arm.plan",
 "!glasses_estimation_flwr_cpu.plan",

VisionLabs B.V. Page 73 of 79

If you use AGP v. 7.1 or earlier, replace androidResources with AaptOptions .

10.2.2 In LUNA ID for iOS

To reduce your app size, remove unnecessary .plan files from the sdk' directory.framework/

ios_arm64(or simulator)/fsdk.framework/data/ directory. The .plan files that you can remove are:

 "!mask_clf_v3_arm.plan",
 "!mask_clf_v3_cpu.plan",
 "!oslm_v4_model_1_arm.plan",
 "!oslm_v4_model_1_cpu.plan",
 "!oslm_v4_model_2_arm.plan",
 "!oslm_v4_model_2_cpu.plan",
 "!cnn59m_arm.plan",
 "!cnn59m_cpu.plan",
 "!cnndescriptor_59.conf",
]
)
 }

 ...
 }

glasses_estimation_flwr_arm.plan•

mask_clf_v3_arm.plan•

oslm_v4_model_1_arm.plan•

oslm_v4_model_2_arm.plan•

cnn59m_arm.plan•

VisionLabs B.V. Page 74 of 79

11. Release notes

11.1 LUNA ID v. 1.5.1

Implemented the following changes in LUNA ID for Android:

11.2 LUNA ID v. 1.5.0

11.3 LUNA ID v. 1.4.5

In LUNA ID for Android, fixed a regression bug. An occasional crash happened due to an

interaction flow bug even when interaction was disabled.

11.4 LUNA ID v. 1.4.4

In LUNA ID for Android, fixed an issue with a delay in the start of displaying the face detection

bounding box.

11.5 LUNA ID v. 1.4.3

Implemented the following bug fixes in LUNA ID for Android:

Fixed a regression bug related to OneShotLiveness estimation introduced in LUNA ID v.

1.5.0.

•

Changed API for setting up OneShotLiveness estimation. For details on changes, see API

changes made in LUNA ID for Android v.1.5.1 in comparison to v.1.5.0.

•

Implemented new Dynamic Liveness interactions in addition to blinking. Now, a user

can be asked to:

•

Rotate the head to the right.•

Rotate the head to the left.•

Pitch the head up.•

Pitch the head down.•

In LUNA ID for Android, implemented API changes. For details on changes, see API

changes made in LUNA ID for Android v.1.5.0 in comparison to v.1.4.x.

•

Fixed hanging-up during face detection on some Xiaomi devices.

Fixed occasional crashes on face detection start up.

VisionLabs B.V. Page 75 of 79

11.6 LUNA ID v. 1.4.2

11.7 LUNA ID v. 1.4.1

11.8 LUNA ID v. 1.4.0

11.9 LUNA ID v.1.3.3

Implemented optional saving of logs on an end user’s device in LUNA ID for Android.

11.10 LUNA ID v.1.3.2

Now, you can initialize LUNA ID only once during your app lifecycle in LUNA ID for Android.

11.11 LUNA ID v.1.3.1

In LUNA ID for Android, fixed occasional LUNA ID crashes.

In LUNA ID for iOS, removed the appearance of a progress indicator on the device screen

after turning on the front camera.

In LUNA ID for Android, fixed LUNA ID crash on some Xiaomi devices. The problem was due

to a bug in MIUI.

In LUNA ID for iOS, fixed an issue due to which the best shot could not be gotten and the

face detection bounding box did not appear. The issue occurred on iOS 15 and earlier.

Implemented recording of a video stream only with a detected face. Now, you can record

either full sessions or only those in which a face has been detected in at least one frame.

Expanded notification customization options.

In LUNA ID for Android, added interception of Dynamic Liveness interaction events.

In LUNA ID for Android, you can now enable Dynamic Liveness estimation for each best

shot detection session by using LunaID.showCamera() instead of LunaID.init().

In LUNA ID for Android, starting from this version, LunaID.showCamera() accepts

ShowCameraParams with all available parameters.

In LUNA ID for iOS, implemented disabling of OneShotLiveness estimation.

In LUNA ID for Android, fixed an aspect ratio of a recorded video stream.

VisionLabs B.V. Page 76 of 79

11.12 LUNA ID v. 1.3.0

11.13 LUNA ID v. 1.2.0-1.2.4

Both platforms

LUNA ID for Android

LUNA ID for iOS

11.14 LUNA ID v. 1.1.0

Video recording. The first iteration of the feature implies storing videos on a client’s side.

Account ID. The feature provides an opportunity to add tokens for end user sessions when

sending requests to LUNA PLATFORM 5.

Support of ARM simulators (only in LUNA ID for iOS).

Support of Android SDK 21. Prior to this, the minimum supported version was 23.

License update fix. From now on a license will be updated automatically after replacing

ProductID and EID in license.conf and releasing an updated application.

•

Support of optional interaction (a request to blink) for liveness in accordance with the

requirements by the National Bank of the Republic of Kazakhstan.

•

Support of optional descriptor generation on devices.•

Fix for an optional liveness check when getting the best shot.•

Refactoring of camera in order to make it independent of the calling code lifecycle.•

Fix of a crash when building apk from console. •

Improved SDK size: the size of models for neural networks has been reduced almost

twice. Now it requires 85 MB.

•

Fix for the display of multiple faces notification in UI.•

Fix of a crash when using the caching mechanism.•

Update of C++ SDK up to 5.9.1.•

Eyes status check.•

Customizable detection screen (a client can select color and thickness of a detection

frame, background, fonts, add custom notification texts for users, etc.)

•

Document recognition functionality by OCR provider Regula.•

VisionLabs B.V. Page 77 of 79

Improved size of LUNA ID for Android - now it requires around 30 MB for the main ARM

platforms.

•

VisionLabs B.V. Page 78 of 79

12. Documentation download page

Version Documentation (pdf)

v.1.5.0 LUNA_ID_v.1.5.0.pdf

VisionLabs B.V. Page 79 of 79

	VisionLabs LUNA ID
	1. Introduction
	About LUNA ID
	API documentation
	Initial setup

	2. Overview
	2.1 Supported operating systems and programming languages
	2.2 Use cases
	2.3 Key features
	2.4 Interaction of LUNA ID with LUNA PLATFORM 5
	2.5 Usage scenarios
	2.5.1 Scenario 1: Getting images
	Scenario description
	Scenario realization stages
	Scenario realization steps

	2.5.2 Scenario 2: Complete face recognition cycle
	Scenario description
	Scenario realization stages
	Prerequisites
	Scenario realization steps

	2.6 Information about a recorded video stream

	3. System and hardware requirements
	3.1 Information about third-party software
	3.1.1 LUNA SDK
	3.1.2 Regula

	4. Licensing
	4.1 License activation
	4.2 License parameters
	4.3 Example license file

	5. Glossary
	6. API documentation
	6.1 API documentation
	6.2 API changes made in LUNA ID for Android v.1.5.0 in comparison to v.1.4.x
	6.3 API changes made in LUNA ID for Android v.1.5.1 in comparison to v.1.5.0

	7. Initial setup
	7.1 Initial setup of LUNA ID for Android
	7.1.1 Step 1. Get the .aar file
	7.1.2 Step 2. Provide your user credentials
	7.1.3 Step 3. Add the .aar file as a dependency
	7.1.4 Step 4. Initialize LUNA ID
	7.1.5 Step 5. Call LUNA ID functions

	7.2 Initial setup of LUNA ID for iOS
	7.2.1 Step 1. Add XCFrameworks
	7.2.2 Step 2. Enable OneShotLiveness estimation
	7.2.3 Step 3. Specify license data
	7.2.4 Step 4. Create a face recognition screen in your app

	8. Working with LUNA ID
	8.1 Working with best shots
	8.1.1 Getting the best shot
	In LUNA ID for Android
	EXAMPLE

	In LUNA ID for iOS

	8.1.2 Best shot estimations
	How it works
	Estimations
	FACE DETECTION BOUNDING BOX SIZE
	Description
	Implementation

	FRAME EDGES OFFSET
	Description
	Implementation

	EYES STATE
	Description
	Implementation

	HEAD POSE
	Description
	Implementation

	AGS (AVERAGE GARBAGE SCORE)
	Description
	Implementation

	IMAGE QUALITY ESTIMATION
	Description

	MEDICAL MASK ESTIMATION
	Description

	BEST SHOT CAPTURE PERIOD
	Description
	Implementation

	8.2 Working with OneShotLiveness
	8.2.1 About OneShotLiveness estimation
	Image requirements
	OneShotLiveness thresholds
	QUALITY THRESHOLD
	LIVENESS THRESHOLD

	8.2.2 Enabling OneShotLiveness estimation
	In LUNA ID for Android
	In LUNA ID for iOS

	8.2.3 Disabling OneShotLiveness estimation
	In LUNA ID for Android
	In LUNA ID for iOS

	8.3 Working with Dynamic Liveness
	8.3.1 Performing Dynamic Liveness estimation
	Interaction types
	In LUNA ID for Android
	In LUNA ID for iOS

	8.3.2 Interception of Dynamic Liveness interaction events
	8.3.3 Customizing Dynamic Liveness notifications
	In LUNA ID for Android
	In LUNA ID for iOS

	8.4 Working with video streams
	8.4.1 Recording a video stream
	In LUNA ID for Android
	In LUNA ID for iOS

	8.4.2 Recording a video stream only with the face detected
	In LUNA ID for Android
	In LUNA ID for iOS

	8.5 Working with logs
	8.5.1 Getting logs from mobile devices
	Data to be provided to VisionLabs Technical support
	Prerequisites
	FaceEngine and TrackEngine logging
	Getting logs from Android devices
	Getting logs from iOS devices
	Getting logs for OneShotLiveness estimation from Android devices
	Getting logs for OneShotLiveness estimation from iOS devices

	8.5.2 Saving logs on an end user’s device

	8.6 Changing detection settings
	8.6.1 In LUNA ID for Android
	8.6.2 In LUNA ID for iOS

	9. Neural networks used in LUNA ID
	10. Best practices
	10.1 Measuring the size that LUNA ID adds to your app
	10.1.1 In LUNA ID for Android
	Important notes

	10.1.2 In LUNA ID for iOS
	Total size
	Application size

	10.2 Reducing your app size by excluding .plan files
	10.2.1 In LUNA ID for Android
	10.2.2 In LUNA ID for iOS

	11. Release notes
	11.1 LUNA ID v. 1.5.1
	11.2 LUNA ID v. 1.5.0
	11.3 LUNA ID v. 1.4.5
	11.4 LUNA ID v. 1.4.4
	11.5 LUNA ID v. 1.4.3
	11.6 LUNA ID v. 1.4.2
	11.7 LUNA ID v. 1.4.1
	11.8 LUNA ID v. 1.4.0
	11.9 LUNA ID v.1.3.3
	11.10 LUNA ID v.1.3.2
	11.11 LUNA ID v.1.3.1
	11.12 LUNA ID v. 1.3.0
	11.13 LUNA ID v. 1.2.0-1.2.4
	11.14 LUNA ID v. 1.1.0

	12. Documentation download page

