
VisionLabs LUNA ID

v.1.8.2

Table of contents

71. Introduction

82. General information

82.1 Overview

82.1.1 Supported operating systems and programming languages

92.1.2 Use cases

102.1.3 Key features

122.1.4 Usage scenarios

142.2 Getting LUNA ID

142.2.1 Download LUNA ID

152.2.2 Distribution kit

162.2.3 Next steps

172.2.4 See also

182.3 What's new in LUNA ID v.1.8.2

182.3.1 Improvements

182.3.2 Bug fixes

192.4 Version history

192.4.1 LUNA ID v. 1.8.1

192.4.2 LUNA ID v. 1.8.0

192.4.3 LUNA ID v. 1.7.9

192.4.4 LUNA ID v. 1.7.8

192.4.5 LUNA ID v. 1.7.7

192.4.6 LUNA ID v. 1.7.6

202.4.7 LUNA ID v. 1.7.5

202.4.8 LUNA ID v. 1.7.4

202.4.9 LUNA ID v. 1.7.3

202.4.10 LUNA ID v. 1.7.2

212.4.11 LUNA ID v. 1.7.1

212.4.12 LUNA ID v. 1.7.0

VisionLabs B.V. Page 2 of 123

222.4.13 LUNA ID v. 1.6.1

222.4.14 LUNA ID v. 1.6.0

222.4.15 LUNA ID v. 1.5.1

222.4.16 LUNA ID v. 1.5.0

232.4.17 LUNA ID v. 1.4.5

232.4.18 LUNA ID v. 1.4.4

232.4.19 LUNA ID v. 1.4.3

232.4.20 LUNA ID v. 1.4.2

232.4.21 LUNA ID v. 1.4.1

232.4.22 LUNA ID v. 1.4.0

242.4.23 LUNA ID v.1.3.3

242.4.24 LUNA ID v.1.3.2

242.4.25 LUNA ID v.1.3.1

242.4.26 LUNA ID v. 1.3.0

242.4.27 LUNA ID v. 1.2.0-1.2.4

252.4.28 LUNA ID v. 1.1.0

262.5 System and hardware requirements

262.5.1 Information about third-party software

272.6 Neural networks used in LUNA ID

332.7 Glossary

342.8 Technical Support and resources

342.8.1 Contact Technical Support

342.8.2 More resources

353. Licensing

353.1 License activation

353.1.1 In LUNA ID for Android

363.1.2 In LUNA ID for iOS

373.2 License parameters

384. API documentation

384.1 API documentation

VisionLabs B.V. Page 3 of 123

394.2 Changelog

39

4.2.1 API changes made in LUNA ID for Android v.1.5.0 in comparison to v.

1.4.x

40

4.2.2 API changes made in LUNA ID for Android v.1.5.1 in comparison to v.

1.5.0

41

4.2.3 API changes made in LUNA ID for Android v.1.6.0 in comparison to v.

1.5.1

435. Initial setup

435.1 Initial setup of LUNA ID for Android

435.1.1 Step 1. Get the .aar file

435.1.2 Step 2. Provide your user credentials

445.1.3 Step 3. Add the .aar file as a dependency

455.1.4 Step 4. Initialize LUNA ID

455.1.5 Step 5. Call LUNA ID functions

475.2 Initial setup of LUNA ID for iOS

475.2.1 Step 1. Add XCFrameworks

485.2.2 Step 2. Enable OneShotLiveness estimation

485.2.3 Step 3. Specify license data

485.2.4 Step 4. Create a face recognition screen in your app

506. Working with LUNA ID

506.1 Best shots

506.1.1 Best shot estimations

566.1.2 Changing best shot image quality estimation thresholds

586.1.3 Getting the best shot

626.1.4 Getting the best shot with an occluded face

636.1.5 Getting the best shot with faces with closed eyes

646.1.6 Getting the best shot with faces with occluded eyes

656.2 OneShotLiveness

656.2.1 About OneShotLiveness estimation

686.2.2 Performing Online OneShotLiveness estimation

706.2.3 Performing Offline OneShotLiveness estimation

VisionLabs B.V. Page 4 of 123

716.2.4 Disabling OneShotLiveness estimation

736.3 Dynamic Liveness

736.3.1 About Dynamic Liveness

756.3.2 Performing Dynamic Liveness estimation

816.3.3 Interception of Dynamic Liveness interaction events

826.3.4 Customizing Dynamic Liveness notifications

836.4 Video streams

836.4.1 Recording a video stream

856.4.2 Recording a video stream only with the face detected

876.4.3 Information about a recorded video stream

886.5 Logs

886.5.1 Getting logs from mobile devices

956.5.2 Saving logs on an end user’s device

966.5.3 Status codes

1006.6 Changing detection settings

1006.6.1 In LUNA ID for Android

1006.6.2 In LUNA ID for iOS

1016.7 Using descriptors

1016.7.1 In LUNA ID for Android

1026.7.2 In LUNA ID for iOS

1036.8 Using commands

1036.8.1 StartBestShotSearchCommand

1036.8.2 CloseCameraCommand

1036.8.3 Usage

1046.8.4 Example

1056.9 Tracking face identity

1056.9.1 In LUNA ID for Android

1056.9.2 In LUNA ID for iOS

1067. Interacting with LUNA PLATFORM

1067.1 Interaction of LUNA ID with LUNA PLATFORM 5

VisionLabs B.V. Page 5 of 123

1087.2 Usage scenario: Complete face recognition cycle

1087.2.1 Scenario description

1087.2.2 Scenario realization stages

1087.2.3 Prerequisites

1097.2.4 Scenario realization steps

1117.3 Specifying LUNA PLATFORM URL and handler IDs

1117.3.1 In LUNA ID for Android

1127.3.2 In LUNA ID for iOS

1138. Best practices

1138.1 Measuring the size that LUNA ID adds to your app

1138.1.1 In LUNA ID for Android

1148.1.2 In LUNA ID for iOS

1228.2 Reducing your app size by excluding .plan files

1228.2.1 In LUNA ID for Android

1228.2.2 In LUNA ID for iOS

1239. Documentation download page

VisionLabs B.V. Page 6 of 123

1. Introduction

This page includes documentation for LUNA ID.

We recommend that you read the glossary and system requirements before reading the

documentation.

About LUNA ID

LUNA ID is a set of development tools that includes libraries and neural networks for face

recognition and analysis in a mobile app.

For detailed information about LUNA ID, its key features, and usage scenarios, see Overview.

API documentation

The table below provides links to the API reference manuals.

Initial setup

To learn how to start using LUNA ID in your app, see:

Examples

We provide examples of how to embed LUNA ID in your app:

OS Module Link

Android - API reference manual

iOS LunaCamera LunaCamera Reference

iOS LunaCore LunaCore Reference

iOS LunaWeb LunaWeb Reference

Initial setup of LUNA ID for Android•

Initial setup of LUNA ID for iOS•

LUNA ID for Android examples•

LUNA ID for iOS examples•

VisionLabs B.V. Page 7 of 123

https://github.com/VisionLabs/LunaID-Android-Examples
https://github.com/VisionLabs/LunaID-iOS-Examples

2. General information

2.1 Overview

LUNA ID is a set of development tools that includes libraries and neural networks for face

recognition and analysis in a mobile app. It also supports OCR (Optical Character Recognition)

for document scanning and recognition.

Document scanning and recognition by means of OCR is provided by Regula. Regula is a

third-party vendor and using the feature requires a license. For details, please refer to the

Regula documentation.

Embedding LUNA ID in your mobile app allows you to use LUNA ID key features, as well as

take advantage of LUNA PLATFORM 5 functionality to perform OneShotLiveness estimation

and descriptor matching. For details, see Interaction of LUNA ID with LUNA PLATFORM 5.

2.1.1 Supported operating systems and programming languages

LUNA ID is compatible with the Android and iOS operating systems. For details, see System

and hardware requirements.

The supported programming languages are:

Kotlin for Android app development•

Swift for iOS app development•

VisionLabs B.V. Page 8 of 123

https://regulaforensics.com/
https://support.regulaforensics.com/hc/en-us/articles/115000916306-Documentation

2.1.2 Use cases

Embedding LUNA ID in your mobile app allows you to implement the following use cases:

Client enrollment

Flow: Registration

The process of creating a new user account, which includes face recognition and,

optionally, document recognition.

•

User authentication

Flow: Verification (1:1)

The process of verifying a user when logging into an app account against the authorized

biometry for the specified login. Available after registration.

The use case does not involve the use of OCR.

•

User recognition

Flow: Identification (1:N)

The process of user identification when a user's face is compared with all the faces in

the database to recognize the user among the existing ones and to match the detected

face with an existing user account.

You can use OCR in this use case.

•

VisionLabs B.V. Page 9 of 123

2.1.3 Key features

LUNA ID provides the following features:

VisionLabs B.V. Page 10 of 123

Getting the best shot:•

Estimating the best shot by the following criteria:•

Number of faces in the frame•

Face detection bounding box size•

Frame edges offset•

Eyes state (open, closed, or occluded)•

Head pose (pitch, yaw, and roll)•

Average garbage score (AGS)•

Image quality (lightness, darkness, and blurriness)•

Face occlusion

For details, see Best shot estimations.

•

Performing OneShotLiveness estimations. The estimations enable you to confirm

whether a person in the image is "real" or a fraudster using a fake ID (printed face

photo, video, paper, or 3D mask). The following types of OneShotLiveness

estimations are available:

•

Offline OneShotLiveness estimation

Allows you to perform the estimation directly on your device. For details, see

Performing Offline OneShotLiveness estimation.

•

Online OneShotLiveness estimation

Sends images with the detected face to LUNA PLATFORM 5 to perform the

estimation on the backend. For details, see Performing OneShotLiveness

estimation.

•

Dynamic Liveness estimation to determine whether a person is alive by interacting

with a camera. The estimation is performed on your device without processing it on

the backend. For details, see About Dynamic Liveness

•

Video stream recording and face detection in the video stream. For details, see

Information about a recorded video stream. You can record either full video sessions or

only video sessions in which a face was detected in at least one frame.

•

Optional document scanning and recognition by means of OCR.

The feature is provided by Regula. For details, please refer to the Regula

documentation.

•

VisionLabs B.V. Page 11 of 123

https://regulaforensics.com/
https://support.regulaforensics.com/hc/en-us/articles/115000916306-Documentation

2.1.4 Usage scenarios

This section describes sample LUNA ID usage scenarios.

These are only examples. You need to change them according to your business logic.

Scenario 1: Getting images

SCENARIO DESCRIPTION

You want to get a photo with a person's face, and then implement your own business logic for

processing the image.

SCENARIO REALIZATION STAGES

Applying this scenario in your mobile app proceeds in stages:

SCENARIO REALIZATION STEPS

The scenario has the following steps:

1․ Video stream processing and face detection.

2․ Getting the best shot based on standard best shot estimations. In some cases, the best

shot is an image that also successfully passed OneShotLiveness estimation.

3․ Getting a warp.

4․ Saving the warp on the device. You can then send it to a middleware for further processing.

The diagram below shows the steps of this scenario:

Sending source images to LUNA PLATFORM 5 for descriptor matching on the backend. It

allows you to perform the following tasks:
•

Verify that the face in an image belongs to a person from a client list (1:N

identification).

•

Match the detected face with the face that corresponds to the client ID in a global

database (1:1 verification).

•

Getting the best shot with the detected face for best shot estimation.•

Getting a warp or source image with the face on a mobile device to transfer it to an

external system.

•

VisionLabs B.V. Page 12 of 123

Scenario 2: Complete face recognition cycle

SCENARIO DESCRIPTION

You want to run a full face recognition cycle using frontend and backend. This scenarios

involves interaction of LUNA ID with LUNA PLATFORM 5.

SCENARIO REALIZATION STAGES

Applying a full face recognition cycle in your mobile app proceeds in stages:

SCENARIO REALIZATION STEPS

For details on the scenario implementation and scenario realization steps, see Usage

scenario.

Getting the best shot with the detected face for best shot and OneShotLiveness

estimation.

•

Identifying that the face in the image belongs to a person from a client list (1:N

identification).

•

Matching the detected face with the face corresponding to the client ID in a global

database (1:1 verification).

•

VisionLabs B.V. Page 13 of 123

2.2 Getting LUNA ID

2.2.1 Download LUNA ID

To start using LUNA ID, download it from our release portal:

Contact your manager to get your login and password to download LUNA ID.

LUNA ID for Android•

LUNA ID for iOS•

VisionLabs B.V. Page 14 of 123

https://download.visionlabs.ru/releases/lunaid-core-1.8.2.aar
https://download.visionlabs.ru/releases/luna-id-sdk_ios_v.1.8.2.zip

2.2.2 Distribution kit

LUNA ID for Android

LUNA ID for Android is distributed in an AAR file that contains the following archives:

EXAMPLES

The example below shows hot to specify the core and common required dependencies:

lunaid-core-X.X.X.aar

Required.

Contains the minimum set of files required to embed LUNA ID in your app.

•

lunaid-common-x86-X.X.X.aar, lunaid-common-arm-X.X.X.aar

Required.

Contains the minimum set of libraries and neural networks required to embed LUNA ID

in your app. You can specify the dependency for either or both, x86 and ARM

architectures. For details, see an examples below.

•

lunaid-oslm-X.X.X.aar

Optional.

Contains neural networks used for Offline OneShotLiveness estimation. For details, see

Performing Offline OneShotLiveness estimation.

•

lunaid-mask-X.X.X.aar

Optional.

Contains a neural network used to define face occlusion. For details, see Getting the

best shot with an occluded face.

•

lunaid-cnn59-1X.X.X.aar, lunaid-cnn52-X.X.X.aar

Optional.

Contain neural networks used for descriptor generation from an image. For details, see

Using descriptors.

•

lunaid-glasses-X.X.X.aar

Optional.

Contains neural networks used to define eye occlusion. For details, see Getting the best

shot with faces with occluded eyes.

•

implementation("ai.visionlabs.lunaid:core:1.8.2@aar")
implementation("ai.visionlabs.lunaid:common-arm:1.8.2@aar")
implementation("ai.visionlabs.lunaid:common-x86:1.8.2@aar")

VisionLabs B.V. Page 15 of 123

The example below shows how to specify the dependencies for either or both, x86 and ARM

architectures:

For a detailed example, see CameraExample.

LUNA ID for iOS

LUNA ID size

The minimum size of LUNA ID that includes the face detection and OneShotLiveness

estimation functionalities is:

To learn the size that LUNA ID adds to your app, see Measuring the size that LUNA ID adds to

your app.

2.2.3 Next steps

Perform initial setup of LUNA ID to embed it in your app. For details, see:

implementation("ai.visionlabs.lunaid:core:1.8.2@aar")

implementation("ai.visionlabs.lunaid:common-arm:1.8.2@aar")
implementation("ai.visionlabs.lunaid:cnn52-arm:1.8.2@aar")
implementation("ai.visionlabs.lunaid:cnn59-arm:1.8.2@aar")
implementation("ai.visionlabs.lunaid:mask-arm:1.8.2@aar")
implementation("ai.visionlabs.lunaid:oslm-arm:1.8.2@aar")
implementation("ai.visionlabs.lunaid:glasses-arm:1.8.2@aar")

implementation("ai.visionlabs.lunaid:common-x86:1.8.2@aar")
implementation("ai.visionlabs.lunaid:cnn52-x86:1.8.2@aar")
implementation("ai.visionlabs.lunaid:cnn59-x86:1.8.2@aar")
implementation("ai.visionlabs.lunaid:mask-x86:1.8.2@aar")
implementation("ai.visionlabs.lunaid:oslm-x86:1.8.2@aar")
implementation("ai.visionlabs.lunaid:glasses-x86:1.8.2@aar")

luna-id-sdk_ios_v.X.X.X.zip

Required.

Contains binary files and neural networks required to embed LUNA ID in your app.

•

LUNA ID for Android - 95 MB•

LUNA ID for iOS - 115 MB•

Initial setup of LUNA ID for Android•

Initial setup of LUNA ID for iOS•

VisionLabs B.V. Page 16 of 123

https://github.com/VisionLabs/LunaID-Android-Examples/blob/master/CameraExample/build.gradle.kts

2.2.4 See also

System and hardware requirements

Describes the hardware and software requirements your computer must meet so that

you can use LUNA ID.

•

Licensing

Describes how to activate your LUNA ID license.

•

VisionLabs B.V. Page 17 of 123

2.3 What's new in LUNA ID v.1.8.2

Below are the changes made to LUNA ID v.1.8.2 relative to the previous version of the

product. For information on the changes made to other versions, see Version History

2.3.1 Improvements

2.3.2 Bug fixes

In LUNA ID for iOS, fixed a bug related to timeout between Dynamic Liveness interactions.

In LUNA ID for Android, separated the x86 and ARM files at the dependency package level.

Now, to work with LUNA ID, you need to specify the mandatory core and common

dependencies, where common indicates the required architecture. For details, see Getting

LUNA ID.

In LUNA ID for iOS, reduced resolution of a recorded stream video file. Now, it is 180×320

pixels.

VisionLabs B.V. Page 18 of 123

2.4 Version history

2.4.1 LUNA ID v. 1.8.1

2.4.2 LUNA ID v. 1.8.0

Enhanced security and implemented protection against changing faces during user

identification. For details, see Tracking face identity.

2.4.3 LUNA ID v. 1.7.9

2.4.4 LUNA ID v. 1.7.8

In LUNA ID for iOS, fixed an aspect ratio for low resolution video files.

2.4.5 LUNA ID v. 1.7.7

In LUNA ID for iOS, reduced a video file size for iOS 15 and lower.

2.4.6 LUNA ID v. 1.7.6

In LUNA ID for iOS, implemented an optional glasses estimation. It allows you to exclude

images with sunglasses from best shot candidates. For details, see Getting the best shot

with faces with occluded eyes.

•

In LUNA ID for Android, fixed a bug related to the acceptGlasses and acceptEyesclosed

parameters.

•

In LUNA ID for iOS, implemented a possibility to add delays between Dynamic Liveness

interactions. Now, if you specify a 2-second’s delay, 2 seconds will pass after the first

interaction ends and the next one starts.

•

In LUNA ID for iOS, implemented statuses that show the current Dynamic Liveness

interaction states — start, in progress, and end.

•

In LUNA ID for Android, implemented an opportunity to add delays between Dynamic

Liveness interactions. Now, if you specify a 2000-millisecond’s delay, 2 seconds will

pass after the first interaction ends and the next one starts. For details, see Set a

timeout between interactions.

•

In LUNA ID for Android, implemented statuses that show the current Dynamic Liveness

interaction states — start and end. For details, see View interaction statuses.

•

VisionLabs B.V. Page 19 of 123

2.4.7 LUNA ID v. 1.7.5

2.4.8 LUNA ID v. 1.7.4

2.4.9 LUNA ID v. 1.7.3

2.4.10 LUNA ID v. 1.7.2

In LUNA ID for Android, implemented the acceptEyesClosed optional parameter that

allows you to get the best shot if an image has closed eyes. For details, see Getting the

best shot with faces with closed eyes.

•

In LUNA ID for Android, implemented a glasses estimation.•

In LUNA ID for Android, implemented an estimation that allows you to detect the use of

a virtual camera instead of the device’s native camera.

•

In LUNA ID for Android, fixed a bug related to a face detection bounding box size. Now,

the detected face must properly fit the box size.

•

In LUNA ID for Android, fixed bugs related to head pose and blinking Dynamic Liveness

interactions.

•

In LUNA ID for Android, fixed a bug related to Offline OneShotLiveness.•

In LUNA ID for iOS, fixed a bug related to the multiple call of the bestShot function.•

In LUNA ID for Android, implemented the LunaConfig.livenessFormat and

LunaConfig.compressionQuality parameters that you can use to reduce the size of the

image to be sent for Online OneShotLiveness estimation.

•

In LUNA ID for iOS, fixed a bug related to the LCLunaConfiguration::faceTime property.•

In LUNA ID for Android, fixed a bug due to which no notifications were sent when a face

was out of the face detection bounding box.

•

In LUNA ID for iOS, fixed a bug related to the LCLunaConfiguration::faceTime property.•

In LUNA ID for Android, implemented the LunaID.foundFaceDelayMs parameter that allows

you to define for how long a user's face should be placed in the face detection bounding

box before the best shot is taken.

•

In LUNA ID for Android, fixed a bug that caused occasional LUNA ID crashes.•

In LUNA ID for iOS, fixed a bug related to the LCLunaConfiguration::faceTime property.•

In LUNA ID for Android, implemented API changes that introduce the

StartBestShotSearchCommand and CloseCameraCommand commands for camera

management. For details on changes, see Using commands.

•

VisionLabs B.V. Page 20 of 123

2.4.11 LUNA ID v. 1.7.1

2.4.12 LUNA ID v. 1.7.0

In LUNA ID for iOS, changed the license activation process. Now, you need to activate

the license explicitly in your final app. For details, see Licensing.

•

In LUNA ID for iOS, implemented the LCLunaConfiguration::faceTime property that allows

you to define for how long a user's face should be placed in the face detection bounding

box before the best shot is taken.

•

In LUNA ID for Android, changed the license activation process. Now, you need to

activate the license explicitly by calling the activateLicense() method. This allows you to

make sure that the activation has passed successfully before you start a camera.

•

In LUNA ID for iOS, you can now define your own sequence of Dynamic Liveness

interactions, as well as a number of interactions, interaction timeouts, and head rotation

angles.

•

In LUNA ID for Android, fixed an issue related to the face detection bounding box. Now,

the bounding box size is taken into account when performing Dynamic Liveness user

interactions.

•

In LUNA ID for Android, fixed an issue related to the use of the

mask_clf_\<version>_\<device>.plan files. Now, you do not need to specify the

dependencies if you are not going to estimate face occlusion.

•

In LUNA ID for iOS, fixed a bug related to detection of occluded faces.•

Implemented a new type of OneShotLiveness estimation – Offline OneShotLiveness

estimation. Now, you can perform the estimation directly on a mobile device without

sending the request to LUNA PLATFORM.

•

Implemented optional delay before the best shot search begins after camera start up.•

Implemented optional face occlusion estimation for further best shot selection.•

Implemented a parameter that allows you to perform blinking with one eye, rather than

two, for further best shot selection.

•

In LUNA ID for Android, implemented a parameter that allows to use images of a person

with one eye for further best shot selection.

•

In LUNA ID for Android, implemented a possibility to specify a face recognition area for

further best shot selection. This allows you to use your own UI and customize face

detection bounding box size.

•

In LUNA ID for Android, fixed an issue when no notifications were sent on start of a

OneShotLiveness estimation.

•

VisionLabs B.V. Page 21 of 123

2.4.13 LUNA ID v. 1.6.1

In LUNA ID for iOS, fixed an issue related to building of fat binary files in Xcode 15.

2.4.14 LUNA ID v. 1.6.0

2.4.15 LUNA ID v. 1.5.1

Implemented the following changes in LUNA ID for Android:

2.4.16 LUNA ID v. 1.5.0

In LUNA ID for Android, fixed an issue with the Online OneShotLiveness estimation when

the request to the /liveness endpoint was sent multiple times instead of one.

•

Implemented support of VisionLabs LUNA SDK v. 5.16.0.•

Implemented support of CNN 52 descriptors.•

In LUNA ID for Android, implemented API changes. For details on changes API changes

made in LUNA ID for Android v.1.6.0 in comparison to v.1.5.1.

•

In LUNA ID for Android, reduced the distribution package size to 96 MB. Optional

packages for CNN 52 and CNN 59 descriptors will add 25 MB and 44 MB to a client's app

respectively.

•

In LUNA ID for iOS, the detected face is now being tracked all the time the camera is on.•

In LUNA ID for iOS, you can now specify a number of Dynamic Liveness interactions to

be performed, as well as timeouts for every interaction.

•

Fixed a regression bug related to OneShotLiveness estimation introduced in LUNA ID v.

1.5.0.

•

Changed API for setting up OneShotLiveness estimation. For details on changes, see API

changes made in LUNA ID for Android v.1.5.1 in comparison to v.1.5.0.

•

Implemented new Dynamic Liveness interactions in addition to blinking. Now, a user

can be asked to:

•

Rotate the head to the right.•

Rotate the head to the left.•

Pitch the head up.•

Pitch the head down.•

In LUNA ID for Android, implemented API changes. For details on changes, see API

changes made in LUNA ID for Android v.1.5.0 in comparison to v.1.4.x.

•

VisionLabs B.V. Page 22 of 123

2.4.17 LUNA ID v. 1.4.5

In LUNA ID for Android, fixed a regression bug. An occasional crash happened due to an

interaction flow bug even when interaction was disabled.

2.4.18 LUNA ID v. 1.4.4

In LUNA ID for Android, fixed an issue with a delay in the start of displaying the face detection

bounding box.

2.4.19 LUNA ID v. 1.4.3

Implemented the following bug fixes in LUNA ID for Android:

2.4.20 LUNA ID v. 1.4.2

2.4.21 LUNA ID v. 1.4.1

2.4.22 LUNA ID v. 1.4.0

Fixed hanging-up during face detection on some Xiaomi devices.

Fixed occasional crashes on face detection start up.

In LUNA ID for Android, fixed occasional LUNA ID crashes.

In LUNA ID for iOS, removed the appearance of a progress indicator on the device screen

after turning on the front camera.

In LUNA ID for Android, fixed LUNA ID crash on some Xiaomi devices. The problem was due

to a bug in MIUI.

In LUNA ID for iOS, fixed an issue due to which the best shot could not be gotten and the

face detection bounding box did not appear. The issue occurred on iOS 15 and earlier.

Implemented recording of a video stream only with a detected face. Now, you can record

either full sessions or only those in which a face has been detected in at least one frame.

Expanded notification customization options.

In LUNA ID for Android, added interception of Dynamic Liveness interaction events.

In LUNA ID for Android, you can now enable Dynamic Liveness estimation for each best

shot detection session by using LunaID.showCamera() instead of LunaID.init().

In LUNA ID for Android, starting from this version, LunaID.showCamera() accepts

ShowCameraParams with all available parameters.

VisionLabs B.V. Page 23 of 123

2.4.23 LUNA ID v.1.3.3

Implemented optional saving of logs on an end user’s device in LUNA ID for Android.

2.4.24 LUNA ID v.1.3.2

Now, you can initialize LUNA ID only once during your app lifecycle in LUNA ID for Android.

2.4.25 LUNA ID v.1.3.1

2.4.26 LUNA ID v. 1.3.0

2.4.27 LUNA ID v. 1.2.0-1.2.4

Both platforms

LUNA ID for Android

In LUNA ID for iOS, implemented disabling of OneShotLiveness estimation.

In LUNA ID for Android, fixed an aspect ratio of a recorded video stream.

Video recording. The first iteration of the feature implies storing videos on a client’s side.

Account ID. The feature provides an opportunity to add tokens for end user sessions when

sending requests to LUNA PLATFORM 5.

Support of ARM simulators (only in LUNA ID for iOS).

Support of Android SDK 21. Prior to this, the minimum supported version was 23.

License update fix. From now on a license will be updated automatically after replacing

ProductID and EID in license.conf and releasing an updated application.

•

Support of optional interaction (a request to blink) for liveness in accordance with the

requirements by the National Bank of the Republic of Kazakhstan.

•

Support of optional descriptor generation on devices.•

Fix for an optional liveness check when getting the best shot.•

Refactoring of camera in order to make it independent of the calling code lifecycle.•

Fix of a crash when building apk from console. •

VisionLabs B.V. Page 24 of 123

LUNA ID for iOS

2.4.28 LUNA ID v. 1.1.0

Improved SDK size: the size of models for neural networks has been reduced almost

twice. Now it requires 85 MB.

•

Fix for the display of multiple faces notification in UI.•

Fix of a crash when using the caching mechanism.•

Update of C++ SDK up to 5.9.1.•

Eyes status check.•

Customizable detection screen (a client can select color and thickness of a detection

frame, background, fonts, add custom notification texts for users, etc.)

•

Document recognition functionality by OCR provider Regula.•

Improved size of LUNA ID for Android - now it requires around 30 MB for the main ARM

platforms.

•

VisionLabs B.V. Page 25 of 123

2.5 System and hardware requirements

To use LUNA ID, the following system and hardware requirements must be met:

2.5.1 Information about third-party software

LUNA SDK

LUNA ID is based on LUNA SDK:

Regula

Regula is third-party vendor that provides the document and scanning feature by means of

OCR (Object Character Recognition). Using the feature requires a license. For details, please

refer to the Regula documentation.

Requirement Android iOS

OS version 5.0 or later 13 or later

CPU architecture arm64-v8a, armeabi-v7a, x86_64, x86 arm64

Developments tools Android SDK 21 XCode 13.2 or later

Free RAM 400 MB or more 400 MB or more

LUNA ID for Android uses LUNA SDK v.5.16.0.•

LUNA ID for iOS uses LUNA SDK v.5.16.0.•

VisionLabs B.V. Page 26 of 123

https://regulaforensics.com/
https://support.regulaforensics.com/hc/en-us/articles/115000916306-Documentation

2.6 Neural networks used in LUNA ID

In LUNA ID, neural networks provide efficient and accurate processing of faces in images and

video streams. The neural networks are stored in .plan files.

The table below shows all .plan files used in LUNA ID and functionality that the files cover.

Some of them are required for using LUNA ID in your app.

VisionLabs B.V. Page 27 of 123

Note, that using the .plan files will add extra size to your app. To learn how to exclude extra

.plan files, see Reducing your app size by excluding .plan files.

VisionLabs B.V. Page 28 of 123

.plan file Size Required Feature name Description

ags_angle_estimation_flwr_arm.plan

ags_angle_estimation_flwr_cpu.plan

(in LUNA ID for Android only)

1.6

MB

1.6

MB

Yes

Yes

Best shot quality

estimation

Evaluates image quality to

choose the best image for

further processing.

The BestShotQuality

estimator consists of two

components - AGS

(Approximate Garbage Store)

and Head Pose.

For details, see:

Android: Best shot quality

estimation

iOS: Best shot quality

estimation

ags_v3_arm.plan

(in LUNA ID for Android only)

ags_v3_cpu.plan

(in LUNA ID for Android only)

635

KB

608

KB

Yes

Yes

AGS estimation Evaluates the source image

score for further image

processing.

cnn52m_arm.plan

cnn52m_cpu.plan

(in LUNA ID for Android only)

cnn59m_arm.plan

cnn59m_cpu.plan

(in LUNA ID for Android only)

13

MB

13

MB

24

MB

24

MB

No

No

No

No

Descriptor

generation from

an image

Stores a compact set of

packed properties as well as

some helper parameters

used to extract these

properties from the source

image.

For details, see:

Android: Descriptor

iOS: Descriptor

eye_status_estimation_flwr_arm.plan

eye_status_estimation_flwr_cpu.plan

(in LUNA ID for Android only)

810

KB

810

KB

Yes

Yes

Eye state Determines the eye state:

open, closed, occluded.

For details, see:

Android: Eyes estimation

iOS: Eyes estimation

•

•

•

•

•

•

VisionLabs B.V. Page 29 of 123

https://docs.visionlabs.ai/sdk/v.5.16.0/sdk-android/handbookcompilation/parameter-estimation-facility/#bestshotquality-estimation
https://docs.visionlabs.ai/sdk/v.5.16.0/sdk-android/handbookcompilation/parameter-estimation-facility/#bestshotquality-estimation
https://docs.visionlabs.ai/sdk/v.5.16.0/sdk-ios/handbookcompilation/parameter-estimation-facility/#bestshotquality-estimation
https://docs.visionlabs.ai/sdk/v.5.16.0/sdk-ios/handbookcompilation/parameter-estimation-facility/#bestshotquality-estimation
https://docs.visionlabs.ai/sdk/v.5.16.0/sdk-android/handbookcompilation/descriptor-processing-facility/#descriptor
https://docs.visionlabs.ai/sdk/v.5.16.0/sdk-ios/handbookcompilation/descriptor-processing-facility/#descriptor
https://docs.visionlabs.ai/sdk/v.5.16.0/sdk-android/handbookcompilation/parameter-estimation-facility/#eyes-estimation
https://docs.visionlabs.ai/sdk/v.5.16.0/sdk-ios/handbookcompilation/parameter-estimation-facility/#eyes-estimation

.plan file Size Required Feature name Description

eyes_estimation_flwr8_arm.plan

eyes_estimation_flwr8_cpu.plan

(in LUNA ID for Android only)

963

KB

963

KB

Yes

Yes

Eye state

estimation

Determines the following eye

state and keypoints:

Eye state: open, closed,

occluded.

Precise eye iris location as an

array of landmarks.

Precise eyelid location as an

array of landmarks.

For details, see:

Android: Eyes estimation

iOS: Eyes estimation

FaceDet_v2_first_arm.plan

FaceDet_v2_first_cpu.plan

(in LUNA ID for Android only)

FaceDet_v2_second_arm.plan

FaceDet_v2_second_cpu.plan

(in LUNA ID for Android only)

FaceDet_v2_third_arm.plan

FaceDet_v2_third_cpu.plan

(in LUNA ID for Android only)

963

KB9.4

KB

9.4

KB

107

KB

107

KB

1.6

MB

1.6

MB

1.6

MB

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Face detection Detects a face in an image

and shows a rectangular area

around the detected face.

The neural networks should

be launched consequently.

For details, see:

Android: Detection facility

iOS: Detection facility

glasses_estimation_flwr_arm.plan

glasses_estimation_flwr_cpu.plan

(in LUNA ID for Android only)

1 MB

1 MB

No

No

Glasses

estimation

Detects glasses on the face

in the source image. You can

then define whether images

with occluded eyes can be

considered best shots.

For details, see:

Android: Glasses estimation

iOS: Glasses estimation

Getting the best shot with

faces with occluded eyes

•

•

•

•

•

•

•

•

•

•

VisionLabs B.V. Page 30 of 123

https://docs.visionlabs.ai/sdk/v.5.16.0/sdk-android/handbookcompilation/parameter-estimation-facility/#eyes-estimation
https://docs.visionlabs.ai/sdk/v.5.16.0/sdk-ios/handbookcompilation/parameter-estimation-facility/#eyes-estimation
https://docs.visionlabs.ai/sdk/v.5.16.0/sdk-android/handbookcompilation/detection-facility
https://docs.visionlabs.ai/sdk/v.5.16.0/sdk-ios/handbookcompilation/detection-facility
https://docs.visionlabs.ai/sdk/v.5.16.0/sdk-android/handbookcompilation/parameter-estimation-facility/#glasses-estimation
https://docs.visionlabs.ai/sdk/v.5.16.0/sdk-ios/handbookcompilation/parameter-estimation-facility/#glasses-estimation

.plan file Size Required Feature name Description

headpose_v3_arm.plan

(in LUNA ID for Android only)

headpose_v3_cpu.plan

(in LUNA ID for Android only)

628

KB

628

KB

Yes

Yes

Head pose

estimation

Determines a person’s head

rotation angles in 3D space,

that is pitch, yaw, and roll.

mask_clf_v3_arm.plan

mask_clf_v3_cpu.plan

(in LUNA ID for Android only)

22

MB

22

MB

No

No

Medical mask

estimation

Detects a medical mask on

the face in the source image.

You can then define whether

images with occluded faces

can be considered best shots.

For details, see:

Android: Medical mask

estimation functionality

iOS: Medical mask estimation

functionality

Getting the best shot with an

occluded face

model_subjective_quality_v1_arm.plan

model_subjective_quality_v1_cpu.plan

(in LUNA ID for Android only)

model_subjective_quality_v2_arm.plan

model_subjective_quality_v2_cpu.plan

(in LUNA ID for Android only)

263

KB

263

KB

1.0

MB

1.0

MB

Yes

Yes

Yes

Yes

Image quality

estimation

Determines an image quality

by the following criteria:

The image is blurred.

The image is underexposed,

that is, too dark.

The image is overexposed,

that is, too light.

The face in the image is

illuminated unevenly and

there is a great difference

between dark and light

regions.

The image contains flares on

face, that is, too specular.

For details, see:

Android: Image quality

estimation

iOS: Image quality estimation

•

•

•

•

•

•

•

•

•

•

VisionLabs B.V. Page 31 of 123

https://docs.visionlabs.ai/sdk/v.5.16.0/sdk-android/handbookcompilation/parameter-estimation-facility/#medical-mask-estimation-functionality
https://docs.visionlabs.ai/sdk/v.5.16.0/sdk-android/handbookcompilation/parameter-estimation-facility/#medical-mask-estimation-functionality
https://docs.visionlabs.ai/sdk/v.5.16.0/sdk-ios/handbookcompilation/parameter-estimation-facility/#medical-mask-estimation-functionality
https://docs.visionlabs.ai/sdk/v.5.16.0/sdk-ios/handbookcompilation/parameter-estimation-facility/#medical-mask-estimation-functionality
https://docs.visionlabs.ai/sdk/v.5.16.0/sdk-android/handbookcompilation/parameter-estimation-facility/#image-quality-estimation
https://docs.visionlabs.ai/sdk/v.5.16.0/sdk-android/handbookcompilation/parameter-estimation-facility/#image-quality-estimation
https://docs.visionlabs.ai/sdk/v.5.16.0/sdk-ios/handbookcompilation/parameter-estimation-facility/#image-quality-estimation

Configuration options of the supported features are stored in the faceengine.conf file. The file

is located in data/faceengine.conf in the current working directory.

Warning: We do not recommend that you change any configuration settings from default

ones as these settings affect performance and output results of your application.

For more information about the settings stored in the faceengine.conf file, see:

.plan file Size Required Feature name Description

oslm_v4_model_1_arm.plan

oslm_v4_model_1_cpu.plan

(in LUNA ID for Android only)

oslm_v4_model_2_arm.plan

oslm_v4_model_2_cpu.plan

(in LUNA ID for Android only)

26

MB

26

MB

10

MB

10

MB

No

No

No

No

Offline

OneShotLiveness

estimation

Determines whether a

person’s face is real or fake,

for example, a photo or

printed image.

For details, see:

Android:

LivenessOneShotRGB

Estimation

iOS: LivenessOneShotRGB

Estimation

•

•

For Android: Settings•

For iOS: Settings•

VisionLabs B.V. Page 32 of 123

https://docs.visionlabs.ai/sdk/v.5.9.1/sdk-android/handbookcompilation/parameter-estimation-facility/#livenessoneshotrgb-estimation
https://docs.visionlabs.ai/sdk/v.5.9.1/sdk-android/handbookcompilation/parameter-estimation-facility/#livenessoneshotrgb-estimation
https://docs.visionlabs.ai/sdk/v.5.14.0/sdk-ios/handbookcompilation/parameter-estimation-facility/#livenessoneshotrgb-estimation
https://docs.visionlabs.ai/sdk/v.5.14.0/sdk-ios/handbookcompilation/parameter-estimation-facility/#livenessoneshotrgb-estimation
https://docs.visionlabs.ai/sdk/v.5.16.0/sdk-android/configurationguide/settings/
https://docs.visionlabs.ai/sdk/v.5.16.0/sdk-ios/configurationguide/settings/

2.7 Glossary

Term Description

Approximate

Garbage Score

(AGS)

A BestShotQuality estimator component that determined the source image

score for further descriptor extraction and matching. Estimation output is a

float score which is normalized in range [0..1]. The closer score to 1, the better

matching result is received for the image.

Best shot The frame of the video stream on which the face is fixed in the optimal angle

for further processing.

Descriptor Data set in closed, binary format prepared by recognition system based on the

characteristic being analyzed.

Estimator Neural network used to estimate a certain parameter of the face in the source

image.

Eye estimation Estimator that determines an eye status (open, closed, occluded) and precise

eye iris and eyelid location as an array of landmarks.

Face Changeable objects that include information about a human face.

Handler Set of rules or policies that describe how to process the received images.

Landmarks Reference points on the face used by recognition algorithms to localize the

face.

Liveness Software method that enables you to confirm whether a person in one or more

images is "real" or a fraudster using a fake ID (printed face photo, video,

paper, or 3D mask).

LUNA PLATFORM Automated face and body recognition system that allows you to perform face

detection, Liveness check biometric template extraction, descriptor extraction,

quality and attribute estimation, such as gender, age, and so on, on images

using neural networks.

Matching The process of descriptors comparison. Matching is usually implemented as a

distance function applied to the feature sets and distances comparison later

on. The smaller the distance, the closer are descriptors, hence, the more

similar are the objects.

Occlusion State of an object (eye, mouth) when it is hidden by any other object.

Samples, Warps Normalized (centered and cropped) image obtained after face detection, prior

to descriptor extraction.

Verification Comparison of two photo images of a face in order to determine belonging to

the same face.

Verifier Specifies a list of rules for processing and verifying incoming images. Unlike

handlers, it not only processes, but also verifies the images.

VisionLabs B.V. Page 33 of 123

2.8 Technical Support and resources

If you have questions, problems or just need help with LUNA ID, you can either contact our

Technical Support or try to search for the needed information using other help resources.

2.8.1 Contact Technical Support

You can contact our Technical Support via email:

support@visionlabs.ru

2.8.2 More resources

Download the LUNA ID documentation:

LUNA_ID_v.1.8.2.pdf

•

Check out LUNA ID examples to learn how to embed LUNA ID in your app:•

LUNA ID for Android examples•

LUNA ID for iOS examples•

VisionLabs B.V. Page 34 of 123

https://github.com/VisionLabs/LunaID-Android-Examples
https://github.com/VisionLabs/LunaID-iOS-Examples

3. Licensing

To integrate LUNA ID with your project and use its features, you need to activate the license.

3.1 License activation

3.1.1 In LUNA ID for Android

To activate the license:

1․ Request Server, EID, and ProductID from VisionLabs. For details, see License

parameters.

2․ Specify the received parameters in the license.conf file and save the changes.

3․ Place the file in the assets/data/license.conf directory of your project.

The license key will be generated and saved to the specified directory. The license file has a

binary format. At the next launch of the mobile app on the same device, the license will be

read from this file.

4․ Activate the license by calling the activateLicense() method:

For a detailed example, see App.kt.

Example license file

Below is a sample content of the "license.conf" file:

if (LunaID.activateLicense(applicationContext)) {
 LunaID.init(
 app = this@App,
 lunaConfig = lunaConfig
)
} else {
 Log.e("@@@@", "activation failed")
}

<?xml version="1.0"?>
<settings>
 <section name="Licensing::Settings">
 <param name="Server" type="Value::String" text=""/>
 <param name="EID" type="Value::String" text=""/>
 <param name="ProductID" type="Value::String" text=""/>
 <param name="Filename" type="Value::String" text="license.dat"/>

VisionLabs B.V. Page 35 of 123

https://github.com/VisionLabs/LunaID-Android-Examples/blob/master/CameraExample/src/main/java/ai/visionlabs/examples/camera/App.kt

3.1.2 In LUNA ID for iOS

Important: Starting from v.1.7.2, you need to define the license in your final app in the

"vllicense.plist" file. The "data/license.conf" file must remain empty.

To activate the license:

1․ Request Server, EID, and ProductID from VisionLabs. For details, see License

parameters.

2․ Specify the received parameters in the "vllicense.plist" file and save the changes.

3․ Add the file to your final app.

The license key will be generated and saved to the specified directory. The license file has a

binary format. At the next launch of the mobile app on the same device, the license will be

read from this file.

You can optionally rename the "vllicense.plist" file. To do this, change the default value, which

is vllicense.plist , of the LCLunaConfiguration::plistLicenseFileName property.

Example license file

Below is a sample content of the "vllicense.plist" file:

 <param name="ContainerMode" type="Value::Int1" x="0"/>
 <param name="ConnectionTimeout" type="Value::Int1" x="15"/>
 </section>
</settings>

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/
PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>Server</key>
 <string></string>
 <key>ProductID</key>
 <string></string>
 <key>EID</key>
 <string></string>
 <key>ContainerMode</key>
 <real></real>
 <key>ConnectionTimeout</key>
 <integer></integer>
 <key>Filename</key>
 <string>license.dat</string>

VisionLabs B.V. Page 36 of 123

3.2 License parameters

License parameters and further processing requires the following parameter:

</dict>
</plist>

Parameter Description Type Default

value

Required

Server Activation server URL String Not set Yes

EID Entitlement ID String Not set Yes

ProductID Product ID String Not set Yes

Filename The default name of the file to

save the license to after

activation. The maximum length

of the file name is 64 symbols.

We do not recommend that you

change this name.

String Not set No

ContainerMode If run in container. Real 0 No

ConnectionTimeout The maximum time, in seconds,

for the transfer operation to take.

Setting the timeout to 0 means

that it never times out during

transfer. You can't set the

parameter to a negative value.

The maximum value is 300

seconds.

Integer 15 No

VisionLabs B.V. Page 37 of 123

4. API documentation

4.1 API documentation

This section includes links to LUNA ID for iOS and LUNA ID for Android RESTful API reference

manuals. You can use these documents to find out about LUNA ID features and their

implementation.

The table below provides links to the API reference manuals.

OS Module Link

Android - API reference manual

iOS LunaCamera LunaCamera Reference

iOS LunaCore LunaCore Reference

iOS LunaWeb LunaWeb Reference

VisionLabs B.V. Page 38 of 123

4.2 Changelog

4.2.1 API changes made in LUNA ID for Android v.1.5.0 in comparison to v.

1.4.x

This topic lists API changes that were made in LUNA ID for Android v.1.5.0 in comparison to v.

1.4.x.

The changes are:

1․ The whole flow of a LUNA ID camera is now exposed via LunaID.allEvents() . You can

subscribe to it to catch all events or subscribe to specific events, for example:

- LunaID.finishStates()

- LunaID.detectionCoordinates()

- LunaID.detectionErrors()

- LunaID.interactions()

2․ All callbacks were replaced with the native Flow API:

3․ LunaID.showCamera() now accepts a list of interactions to be run.

The detection coordinates API was changed. The CameraOverlayDelegateOut class was

removed. Instead, use LunaID.detectionCoordinates() .

•

The CameraUIDelegate class was removed. Instead, use LunaID.finishStates() . That is,

CameraUIDelegate#bestShot , CameraUIDelegate#canceled , CameraUIDelegate#error are no

longer supported.

•

LunaID.showCamera() does not require CameraUIDelegate anymore.•

LunaID.unregisterListener() was removed.•

LunaID.popLastCameraState() and LunaID.getLastCameraState() were removed.•

LunaError and its descendants were replaced with the DetectionError enumeration. For

example, instead of LunaError.messageResId , use DetectionError.messageResId .

•

Interaction parameters moved from LunaConfig . Now, to setup a blink interaction,

provide its parameters to LunaID.showCamera() . For example, instead of

LunaConfig.interactionEnabled or LunaConfig.interactionTimeout , use BlinkInteraction() .

•

VisionLabs B.V. Page 39 of 123

4.2.2 API changes made in LUNA ID for Android v.1.5.1 in comparison to v.

1.5.0

This topic lists API changes that were made in LUNA ID for Android v.1.5.1 in comparison to v.

1.5.0.

The changes apply to OneShotLiveness estimation configuration.

Prior to the API changes, LunaID.init() accepted an argument of the LivenessSettings type to

specify how the estimation will be performed. This argument no longer exists. Instead, the

estimation is set in LunaConfig .

For details, see Performing Online OneShotLiveness estimation and Disabling

OneShotLiveness estimation.

VisionLabs B.V. Page 40 of 123

4.2.3 API changes made in LUNA ID for Android v.1.6.0 in comparison to v.

1.5.1

This topic lists API changes that were made in LUNA ID for Android v.1.6.0 in comparison to v.

1.5.1.

The changes are:

In earlier versions of LUNA ID for Android, the main distribution package included all .plan

files. You could exclude unnecessary .plan files by using ignoreAssetsPatterns . Now, the

ai.visionlabs.lunaid:core:1.6.0 package includes only necessary .plan files. The files are:

Now, build.gradle does not require the following code block, so you need to remove it:•

androidResources(
 ignoreAssetsPatterns.addAll(
 ...
)
)

The BestShot class does not contain the pre-computed descriptor field. To get a

descriptor of a particular version, use LunaUtils . For details, see Using descriptors.

•

Now, LunaID.init() does not accept the areDescriptorsEnabled parameter. For details, see

Using descriptors.

•

FaceDet_v2_first_arm.plan•

FaceDet_v2_second_arm.plan•

FaceDet_v2_third_arm.plan•

ags_angle_estimation_flwr_arm.plan•

ags_v3_cpuplan•

eye_status_estimation_flwr•

eyes_estimation_flwr8•

headpose_v3•

model_subjective_quality_v1•

model_subjective_quality_v2•

VisionLabs B.V. Page 41 of 123

Additional .plan files are available in the following distribution packages:

For details on using descriptors, see Using descriptors.

ai.visionlabs.lunaid:cnn59:1.6.0 - Contains the following .plan files used for descriptor

generation from an image:

•

cnn59m_arm.plan•

cnn59m_cpu.plan•

ai.visionlabs.lunaid:cnn52:1.6.0 - Contains the following .plan files used for descriptor

generation from an image:

•

cnn52m_cpu.plan•

cnn52m_arm.plan•

VisionLabs B.V. Page 42 of 123

5. Initial setup

5.1 Initial setup of LUNA ID for Android

This topic describes how to perform the initial setup of LUNA ID to start using it in your

Android projects.

5.1.1 Step 1. Get the .aar file

To download the .aar file:

1․ Specify the file repository.

2․ Provide user credentials in the local.properties file.

3․ Add the following code fragment to the repositories block in the settings.gradle.kts file:

The settings.gradle.kts file is located in the root directory of your project and defines

which projects and libraries you need to add to your build script classpath.

5.1.2 Step 2. Provide your user credentials

Only authorized users can download artifacts from https://download.visionlabs.ru/.

To provide your user credentials, in the local.properties file:

 repositories {
 ...

 ivy {
 url = java.net.URI.create("https://download.visionlabs.ru/")
 patternLayout {
 artifact ("releases/lunaid-[artifact]-[revision].[ext]")
 setM2compatible(false)
 }
 credentials {
 username = getLocalProperty("vl.login") as String
 password = getLocalProperty("vl.pass") as String
 }
 metadataSources { artifact() }
 }
 }

VisionLabs B.V. Page 43 of 123

1․ Specify your user credentials:

2․ Add a function for getting your login and password:

We recommend that you add the local.properties file to .gitignore for the version control

system does not track the file.

5.1.3 Step 3. Add the .aar file as a dependency

To initialize LUNA ID with your project, you need to add the .aar file as a dependency in the

build.gradle.kts file. The build.gradle.kts file defines various build settings such as

dependencies, plugins, library versions, compilation and testing settings, and so on. All these

settings affect how the project is build and what functionality it contains.

To add the .aar file as a dependency, add the following piece of code to the dependencies

block of the build.gradle.kts file:

For example, implementation("ai.visionlabs.lunaid:core:1.2.3@aar") .

You need to update the {VERSION} parameter when a new version of LUNA ID is released.

 vl.login=YOUR_LOGIN
 vl.pass=YOUR_PASSWORD

 fun getLocalProperty(key: String, file: String = "local.properties"): Any {
 val properties = java.util.Properties()
 val localProperties = File(file)
 if (localProperties.isFile) {
 java.io.InputStreamReader(java.io.FileInputStream(localProperties), Charsets.UTF_8).use
{ reader ->
 properties.load(reader)
 }
 } else error("File from not found: '$file'")

 if (!properties.containsKey(key)) {
 error("Key not found '$key' in file '$file'")
 }
 return properties.getProperty(key)
 }

dependencies {
 ...
 implementation("ai.visionlabs.lunaid:core:{VERSION}@aar")
}

VisionLabs B.V. Page 44 of 123

5.1.4 Step 4. Initialize LUNA ID

To initialize LUNA ID in your project, specify the Application base class and the LunaID.init()

function in the build.gradle.kts file:

5.1.5 Step 5. Call LUNA ID functions

To use LUNA ID functionality, such as open a camera, send a request to LUNA PLATFORM 5,

and so on, import LUNA ID libraries and specify the required functions in the build.gradle.kts

file. Consider the following example:

class App : Application() {

 override fun onCreate() {
 super.onCreate()

 LunaID.init(
 app = this@App,
 lunaConfig = LunaConfig.create(),
 areDescriptorsEnabled = true
)
 }
}

import android.app.Application
import ru.visionlabs.sdk.lunacore.LunaConfig
import ru.visionlabs.sdk.lunacore.LunaCoreConfig
import ru.visionlabs.sdk.lunacore.LunaID

class DemoApp : Application () {
 override fun onCreate() {
 super.onCreate()

 LunaID.init(
 app = this@App,
 lunaConfig = LunaConfig.create(),
 areDescriptorsEnabled = true
)

 LunaID.showCamera()

 LunaID.apiHuman

 // specify the URL to LUNA PLATFORM
 val baseUrl = "http://luna-platform.com/api/6/"
 }
}

VisionLabs B.V. Page 45 of 123

The example has the following components:

For detailed examples, see:

Component Description

LunaID.init() Function. Initializes the LUNA ID library.

LunaID.showCamera() Method. Opens a mobile device camera.

LunaID.apiHuman Property. Provides access to the LUNA PLATFORM API and allows sending

requests.

baseUrl Variable. Specifies the LUNA PLATFORM URL that is used by the

LunaID.apiHuman() function.

CameraExample•

PlatformAPIExample•

VisionLabs B.V. Page 46 of 123

https://github.com/VisionLabs/LunaID-Android-Examples/blob/62ff3ff1b7ed18fb0f816ac3c18f4231f73a6fc5/CameraExample/src/main/java/ai/visionlabs/examples/camera/MainActivity.kt
https://github.com/VisionLabs/LunaID-Android-Examples/blob/master/PlatformAPIExample/src/main/java/ai/visionlabs/examples/platformapi/MainActivity.kt

5.2 Initial setup of LUNA ID for iOS

This topic describes how to perform an initial setup of LUNA ID to start using it in your iOS

projects.

5.2.1 Step 1. Add XCFrameworks

To embed XCFrameworks into your app:

1․ Drag and drop the following .xcframework files from the LUNA ID installation package to

the Frameworks, Libraries, and Embedded Content section of Xcode:

2․ Make sure that all the files have the Embed label so that they will be bundled with your

final app. Otherwise, your app will crash at start.

flower.xcframework

File location: luna-id-sdk_ios_v.X.X.X\build\Release-

iphoneos\frameworks\flower.framework\

•

fsdk.xcframework

File location: luna-id-sdk_ios_v.X.X.X\build\Release-

iphoneos\frameworks\fsdk.framework\

•

LunaAuth.xcframework

File location: luna-id-sdk_ios_v.X.X.X\build\Release-

iphoneos\frameworks\LunaAuth.framework\

•

LunaCamera.xcframework

File location: luna-id-sdk_ios_v.X.X.X\build\Release-

iphoneos\frameworks\LunaCamera.framework\

•

LunaCore.xcframework

File location: luna-id-sdk_ios_v.X.X.X\build\Release-

iphoneos\frameworks\LunaCore.framework\

•

LunaWeb.xcframework

File location: luna-id-sdk_ios_v.X.X.X\build\Release-

iphoneos\frameworks\LunaWeb.framework\

•

tsdk.xcframework

File location: luna-id-sdk_ios_v.X.X.X\build\Release-

iphoneos\frameworks\tsdk.framework\

•

VisionLabs B.V. Page 47 of 123

5.2.2 Step 2. Enable OneShotLiveness estimation

To enable OneShotLiveness estimation, specify the the following parameters in the

LCLunaConfiguration object at the app start:

For example:

5.2.3 Step 3. Specify license data

To specify LUNA ID license data:

1․ Request Server, EID, and ProductID from VisionLabs.

2․ In the fsdk.framework/data/license.conf file, specify the following parameters:

For more information about LUNA ID license activation, see Licensing.

5.2.4 Step 4. Create a face recognition screen in your app

To create a face recognition screen on which the video stream from the camera is displayed:

Parameter Description

verifyID The ID of a verifier used to roll out LUNA PLATFORM 5.

lunaServerURL Specifies the LUNA PLATFORM 5 host URL. The URL should not have the slash at the

end. For example: https://LUNA_PLATFORM_HOST/6 .

func application(_ application: UIApplication, didFinishLaunchingWithOptions launchOptions:
[UIApplication.LaunchOptionsKey: Any]?) -> Bool {
...
 let configuration = LCLunaConfiguration.defaultConfig()
 configuration.identifyHandlerID = "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX"
 configuration.registrationHandlerID = "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX"
 configuration.verifyID = "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX"
 configuration.lunaAccountID = "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX"
 configuration.lunaServerURL = URL(string: "https://LUNA_PLATFORM_HOST/6")
...
 return true
 }

Parameter Description

Server Activation server URL.

EID Entitlement ID.

ProductID Product ID.

VisionLabs B.V. Page 48 of 123

1․ Add the LMCameraBuilder.viewController() method in the required part of your app.

2․ Specify the LCLunaConfiguration object as an input parameter. It allows you to set various

threshold values that affect the resulting recognition screen.

You can also set up a delay, in seconds, to define when the face recognition will start after the

camera is displayed in the screen. To do this, use LCLunaConfiguration.startDelay .

VisionLabs B.V. Page 49 of 123

6. Working with LUNA ID

6.1 Best shots

6.1.1 Best shot estimations

This topic describes estimations that LUNA ID performs to evaluate image quality and

determine whether the given image is the best shot or not.

How it works

LUNA ID searches for a face in each frame of a video stream recorded with your device's

camera. The frame must contain only one face for LUNA ID to perform a series of estimations.

Only frames with faces that pass these estimations are considered the best shots.

In LUNA ID for Android, the LunaID.allEvents() event (or more specialized LunaID.finishStates())

will emit the ResultSuccess event with the best shot found and an optional path to the

recorded video.

In LUNA ID for iOS, the CameraUIDelegate.bestShot() callback receives the best shot.

If an estimation fails, the corresponding error message is returned.

In LUNA ID for Android, the best shot estimations are specified in LunaConfig.kt.

In LUNA ID for iOS, you can change values of best shot estimations' parameters in the

LCLunaConfiguration structure.

Estimations

LUNA ID performs the following estimations to determine whether an image is the best shot:

FACE DETECTION BOUNDING BOX SIZE

Description

The estimation determines that a bounding box size with the detected face corresponds to

the specified size. The estimation helps to check if a face is far from the camera.

The minimum recommended size of the face bounding box is 200x200 pixels.

VisionLabs B.V. Page 50 of 123

The default value is 200 pixels.

Implementation

FRAME EDGES OFFSET

Description

The estimation determines the distance from the frame edges and is based on the face

detection bounding box size estimation.

The minimal border distance for best shot estimation without further OneShotLiveness

estimation is 0 pixels.

For OneShotLiveness estimation, the minimal border distance is 10 pixels.

The default value is 24 pixels in LUNA ID for Android and 10 pixels in LUNA ID for iOS.

Implementation

EYE STATE

Description

The estimation determines an eye state: open, closed, occluded.

In LUNA ID for Android, a frame with a face with closed eyes can be considered to be the best

shot. For details, see Getting the best shot with faces with closed eyes.

In LUNA ID for iOS, the frames in which one or both eyes are closed are skipped.

LUNA ID for Android LUNA ID for iOS

public const val DEFAULT_MIN_DETECT_FRAME_SIZE: Int

= 200

LCLunaConfiguration → bestShotConfiguration →

minDetSize = 200;

LUNA ID for Android LUNA ID for iOS

public val detectFrameSize: Int =

DEFAULT_MIN_DETECT_FRAME_SIZE

@property (nonatomic, assign) NSInteger

minDetSize;

LUNA ID for Android LUNA ID for iOS

public val DEFAULT_BORDER_DISTANCE: Int =

8.dpToPx

LCLunaConfiguration → bestShotConfiguration →

borderDistance = 10;

LUNA ID for Android LUNA ID for iOS

public val borderDistance: Int =

DEFAULT_BORDER_DISTANCE

@property (nonatomic, assign) NSInteger

borderDistance;

VisionLabs B.V. Page 51 of 123

If Dynamic Liveness is enabled, all frames can be considered the best shots, despite the eyes

status.

Implementation

HEAD POSE

Description

The estimation determines a person’s head rotation angles in 3D space, that is pitch, yaw,

and roll.

The pitch rotation angle limits the head rotation along the X axis.

The yaw rotation angle limits the head rotation along the Y axis.

The roll rotation angle limits the head rotation along the Z axis.

Acceptable angle ranges, in degrees, are 0-45.

The pitch, yaw, and roll values must be between the minimal and maximum valid head

position values.

LUNA ID for Android LUNA ID for iOS

The estimation is performed only if eye

interaction is enabled.

@property (nonatomic, assign) BOOL checkEyes;

If set to true , the best shot with closed eyes

will be skipped.

VisionLabs B.V. Page 52 of 123

The default values are:

Implementation

AGS (APPROXIMATE GARBAGE SCORE)

Description

The estimation determines the source image score for further descriptor extraction and

matching.

An estimation output is a float score which is normalized in range [0..1]. The closer score to 1,

the better matching result is received for the image.

The AGS estimation value must be between the minimal and maximum values:

Angle LUNA ID for Android LUNA ID for iOS

Pitch public const val

DEFAULT_HEAD_PITCH: Float = 25F

LCLunaConfiguration → bestShotConfiguration →

estimationThreshold → headPitch = 25;

Yaw public const val DEFAULT_HEAD_YAW:

Float = 25F

LCLunaConfiguration → bestShotConfiguration →

estimationThreshold → headYaw = 25;

Roll public const val

DEFAULT_HEAD_ROLL: Float = 25F

LCLunaConfiguration → bestShotConfiguration →

estimationThreshold → headRoll = 25;

Angle LUNA ID for Android LUNA ID for iOS

Pitch public val headPitch: Float =

DEFAULT_HEAD_PITCH

@property (nonatomic) CGFloat

headPitch;

Yaw public val headYaw: Float = DEFAULT_HEAD_YAW @property (nonatomic) CGFloat

headYaw;

Roll public val headRoll: Float = DEFAULT_HEAD_ROLL @property (nonatomic) CGFloat

headRoll;

LUNA ID for Android LUNA ID for iOS

public const val AGS_MIN: Float =

0F

LCLunaConfiguration → bestShotConfiguration → estimationThreshold → ags

= 0;

public const val AGS_MAX: Float =

1F

LCLunaConfiguration → bestShotConfiguration → estimationThreshold → ags

= 1;

VisionLabs B.V. Page 53 of 123

The default value is 0.5.

Implementation

IMAGE QUALITY ESTIMATION

Description

The estimation determines an image quality by the following criteria:

To perform the estimation, LUNA ID uses the LUNA SDK SubjectiveQuality estimator. For details,

see Image Quality Estimation.

The default values are:

For details on how to change the default values, see Changing best shot image quality

estimation thresholds.

LUNA ID for Android LUNA ID for iOS

public const val DEFAULT_AGS: Float =

0.5F

LCLunaConfiguration → bestShotConfiguration → estimationThreshold →

ags = 0.5;

LUNA ID for Android LUNA ID for iOS

public val ags: Float = DEFAULT_AGS @property (nonatomic) CGFloat ags;

The image is blurred.•

The image is underexposed, that is, too dark.•

The image is overexposed, that is, too light.•

The face in the image is illuminated unevenly and there is a great difference between

dark and light regions.

•

The image contains flares on face, that is, too specular.•

Parameter Default value

Blurriness 0.61

Lightness 0.57

Darkness 0.50

Illumination 0.1

Specularity 0.1

VisionLabs B.V. Page 54 of 123

https://docs.visionlabs.ai/sdk/v.5.17.0/sdk/handbookcompilation/parameter-estimation-facility/#image-quality-estimation

BEST SHOT CAPTURE PERIOD

Description

The estimation determines that the frame was received in the time interval allotted for the

best shot.

The estimation is performed only in LUNA ID for iOS.

The default value is 5.

Implementation

@property (nonatomic, assign) NSTimeInterval interactionTimeout;

FACE OCCLUSION

Description

The estimation determines whether the face in the frame is occluded with something. You can

define whether such frames can be considered best shots. For details, see Getting the best

shot with an occluded face.

EYE OCCLUSION

Description

The estimation determines whether eyes in the frame are occluded with glasses. You can

define whether such frames can be considered best shots. For details, see Getting the best

shot with faces with occluded eyes.

VisionLabs B.V. Page 55 of 123

6.1.2 Changing best shot image quality estimation thresholds

In LUNA ID, you can change thresholds of the image quality estimation according to your

needs.

Important: The threshold values are set to optimal by default. We do not recommend

that you change the values, unless you are certain of what you are doing.

To change image quality estimation thresholds:

1․ Download the corresponding faceengine.conf file and open it in a text editor:

2․ Change the required parameter values in the QualityEstimator::Settings section.

Important: When editing the faceengine.conf file, make sure that you change only the

required values and do not remove any sections.

OS Download link

Android faceengine.conf

iOS (for devices) faceengine.conf

iOS (for simulators) faceengine.conf

Parameter Description Default

value

blurThreshold Determines whether the image is blurred. 0.61

lightThreshold Determines whether the image is overexposed, that is, too

light.

0.57

darknessThreshold Determines whether the image is is underexposed, that is,

too dark.

0.50

illuminationThreshold Determines whether the face in the image is illuminated

unevenly and there is a great difference between dark and

light regions.

0.1

specularityThreshold Determines whether the image contains flares on face, that

is, too specular.

0.1

VisionLabs B.V. Page 56 of 123

3․ Place the faceengine.conf file in the corresponding directory:

4․ Rebuild and reinstall your app.

OS Directory

Android assets/data/

iOS (for devices) fsdk.xcframework/ios-arm64/fsdk.framework/data

iOS (for simulators) fsdk.xcframework/ios-arm64_x86_64-simulator/fsdk.framework/data

VisionLabs B.V. Page 57 of 123

6.1.3 Getting the best shot

With LUNA ID, you can capture video stream and get the best shot on which the face is fixed

in the optimal angle for further processing.

Tip: In LUNA ID for Android you can specify a face recognition area for best shot selection.

In LUNA ID for Android

To get the best shot, call the LunaID.showCamera() method.

To receive a result, subscribe to LunaID.finishStates() for the StateFinished(val result: FinishResult)

events.

A value of the result field depends on a best shot search result. Possible values are:

ResultSuccess

When the best shot was found, data: FinishSuccessData will contain the found best shot and an

optional path to the recorded video.

ResultFailed

Search for the best shot can fail for various reasons. In case the search fails, the data:

FinishFailedData type will define a reason.

 class ResultSuccess(val data: FinishSuccessData) : FinishResult()

 class ResultFailed(val data: FinishFailedData) : FinishResult()

 // when the camera closed before the best shot was found
 class ResultCancelled(val data: FinishCancelledData) : FinishResult()

 class FinishSuccessData(
 val bestShot: BestShot,
 val videoPath: String?,
)

 sealed class FinishFailedData {

 class InteractionFailed() : FinishFailedData()

 class LivenessCheckFailed() : FinishFailedData()

VisionLabs B.V. Page 58 of 123

ResultCancelled

If a user closes a camera screen before the best shot was found, data: FinishCancelledData will

contain an optional path to the recorded video.

Since for getting the best shot, you open a camera in a new Activity class, pay special

attention to the lifecycle of your code components. For example, the calling Activity class may

be terminated or a presenter or view model may be recreated while searching for the best

shot. In these cases, subscribe to any of the flows exposed via the LunaID class (.allEvents() ,

interactions() , and so on) with respect to a component's lifecycle. To do this, consider using the

flowWithLifecycle() and launchIn() extension functions available for the Flow class in Kotlin.

EXAMPLE

The example below shows how to subscribe to the StateFinished events with respect to

components' lifecycles:

 class LivenessCheckError(val cause: Throwable?) : FinishFailedData()

 class UnknownError(val cause: Throwable?) : FinishFailedData()

 }

 LunaID.finishStates()
 .flowOn(Dispatchers.IO)
 .flowWithLifecycle(lifecycleOwner.lifecycle, Lifecycle.State.STARTED)
 .onEach {
 when (it.result) {
 is LunaID.FinishResult.ResultSuccess -> {
 val image = (it.result as LunaID.FinishResult.ResultSuccess).data.bestShot
 }
 is LunaID.FinishResult.ResultCancelled -> {

 }
 is LunaID.FinishResult.ResultFailed -> {
 val failReason = (it.result as LunaID.FinishResult.ResultFailed).data
 }
 }
 }
 .launchIn(viewModelScope)

VisionLabs B.V. Page 59 of 123

FACE RECOGNITION AREA

In some cases, you may need the best shot search to start only after a user places their face

in a certain area in the screen. You can specify this area in LunaConfig with the following

parameters:

For a detailed example, see CameraExample.

ADD A DELAY BEFORE STARTING FACE RECOGNITION

You can optionally set up a fixed delay or specific moment in time to define when the face

recognition will start after the camera is displayed in the screen. To do this, use the

StartBestShotSearchCommand command.

ADD A DELAY BEFORE GETTING THE BEST SHOT

You can optionally set up a delay, in milliseconds, to define for how long a user's face should

be placed in the face detection bounding box before the best shot is taken. To do this, use the

LunaID.foundFaceDelayMs parameter. The default value is 0.

In LUNA ID for iOS

To get the best shots, pass a value to the delegate parameter of the

LMCameraBuilder.viewController camera controller instance creation function that conforms to

the LMCameraDelegate protocol.

With the implementation of the LMCameraDelegate protocol, the camera controller will interact

with the user application. In the implemented methods, you will receive the best shot or the

corresponding error.

 borderDistanceLeft: Int
 borderDistanceTop: Int
 borderDistanceRight: Int
 borderDistanceBottom: Int

let controller = LMCameraBuilder.viewController(delegate: LMCameraDelegate,
 configuration: LCLunaConfiguration,
 livenessAPI: livenessAPI)

public protocol LMCameraDelegate: AnyObject {

 func bestShot(_ bestShot: LunaCore.LCBestShot, _ videoFile: String?)

 func error(_ error: LMCameraError, _ videoFile: String?)

VisionLabs B.V. Page 60 of 123

https://github.com/VisionLabs/LunaID-Android-Examples/blob/master/CameraExample/src/main/java/ai/visionlabs/examples/camera/App.kt

ADD A DELAY BEFORE STARTING FACE RECOGNITION

You can optionally set up a delay, in seconds, to define when the face recognition will start

after the camera is displayed in the screen. To do this, use LCLunaConfiguration.startDelay .

ADD A DELAY BEFORE GETTING THE BEST SHOT

You can optionally set up a delay, in seconds, to define for how long a user's face should be

placed in the face detection bounding box before the best shot is taken. To do this, define the

LCLunaConfiguration::faceTime property. The default value is 5. In case, the face disappears from

the bounding box within the specified period, the BestShotError.FACE_LOST will be caught in the

LCBestShotDelegate::bestShotError delegate.

}

VisionLabs B.V. Page 61 of 123

6.1.4 Getting the best shot with an occluded face

In LUNA ID, you can define whether images with occluded faces can be considered best shots.

In LUNA ID for Android

To define whether an image with an occluded face will be considered the best shot, use the

LunaConfig.acceptOccludedFaces parameter.

The acceptOccludedFaces parameter has the following values:

To estimate an image on face occlusion:

1․ Add the required .plan files to the dependency:

2․ Specify the acceptOccludedFaces parameter in LunaConfig :

If acceptOccludedFaces = true , you do not need to add the dependency.

In LUNA ID for iOS

To define whether an image with an occluded face will be considered the best shot, set the

LCLunaConfiguration.occludeCheck parameter to true .

Value Description

true An image with an occluded face can be the best shot.

false An image with an occluded face cannot be the best shot. The NotificationDetectionError

event will appear in LunaID.allEvents() with payload DetectionError.OccludedFace every time

an occluded face is recognized.

 implementation("ai.visionlabs.lunaid:mask:1.7.0@aar")

LunaConfig.create(
 acceptOccludedFaces = false
)

VisionLabs B.V. Page 62 of 123

6.1.5 Getting the best shot with faces with closed eyes

Important: This topic applies to LUNA ID for Android.

In LUNA ID, you can define whether images with faces with closed eyes can be considered

best shots.

To do this, you the acceptEyesClosed parameter. The parameter has the following values:

Consider an example below:

Value Description

true Specifies that frames that contain faces with closed eyes can be best shots.

false Default. Specifies that frames that contain faces with closed eyes cannot be best

shots.

LunaConfig.create(
acceptEyesClosed = false,
)

VisionLabs B.V. Page 63 of 123

6.1.6 Getting the best shot with faces with occluded eyes

In LUNA ID, you can define whether an image in which a person is wearing glasses can be

considered the best shot.

In LUNA ID for Android

To get best shots with faces with occluded eyes, use the acceptGlasses parameter. The

parameter has the following values:

To estimate an image on eye occlusion:

1․ Add the required .plan files to the dependency:

2․ Specify the acceptGlasses parameter in LunaConfig :

If acceptGlasses = true , you do not need to add the dependency.

In LUNA ID for iOS

To get best shots with faces with occluded eyes, set the LCLunaConfiguration.glassesCheckEnabled

property to true . This will enable the eye occlusion estimation.

If LCLunaConfiguration.glassesCheckEnabled is true , frames that contains faces with sunglasses

will be excluded from best shot candidates. Images that contains faces with eyeglasses can

be considered to be best shots.

Parameter Description

true An image in which eyes are occluded can be the best shot.

false An image in which eyes are occluded cannot be the best shot. The

NotificationDetectionError event will appear in LunaID.allEvents() with payload

DetectionError.GlassesOn every time an occluded face is recognized.

implementation("ai.visionlabs.lunaid:glasses:1.7.6@aar")

LunaConfig.create(
acceptGlasses = false,
)

VisionLabs B.V. Page 64 of 123

6.2 OneShotLiveness

6.2.1 About OneShotLiveness estimation

OneShotLiveness is an algorithm for determining whether a person in one or more images is

"real" or a fraudster using a fake ID (printed face photo, video, paper, or 3D mask).

OneShotLiveness is used as a pre-check before performing face detection.

OneShotLiveness estimation types

With LUNA ID, you can perform the following types of OneShotLiveness estimation:

Online OneShotLiveness estimation

To perform Online OneShotLiveness estimation, LUNA ID sends a request to the LUNA

PLATFORM 5 /liveness endpoint. For more details about LUNA ID and LUNA PLATFORM 5

interaction, see the Interaction of LUNA ID with LUNA PLATFORM 5.

•

Offline OneShotLiveness estimation

To perform Offline OneShotLiveness estimation, you do not need to send requests to

LUNA PLATFORM 5. You can perform the estimation directly on your device.

•

VisionLabs B.V. Page 65 of 123

Image requirements

An image that LUNA ID takes as input must be a source image and meet the following

requirements:

OneShotLiveness thresholds

By default, two thresholds are used for OneShotLiveness estimation:

QUALITY THRESHOLD

Quality threshold estimates the input image by the following parameters:

Parameters Requirements

Minimum resolution for mobile

devices

720x960 pixels

Maximum resolution for mobile

devices

1080x1920 pixels

Compression No

Image warping No

Image cropping No

Effects overlay No

Mask No

Number of faces in the frame 1

Face detection bounding box size More than 200 pixels

Frame edges offset More than 10 pixels

Head pose -20 to +20 degrees for head pitch, yaw, and roll

Image quality The face in the frame should not be overexposed,

underexposed, or blurred.

Quality threshold•

Liveness threshold•

Lightness (overexposure)•

Darkness (underexposure)•

Blurriness•

Illumination•

Specularity•

VisionLabs B.V. Page 66 of 123

The table below has the default threshold values. These values are set to optimal:

For details on image quality estimation, see Image Quality Estimation and Quality estimator

settings.

LIVENESS THRESHOLD

Liveness threshold is the threshold lower which the system will consider the result as a

presentation attack.

For images received from mobile devices, the default liveness threshold value is 0.5. For

details, see Liveness threshold.

Threshold Value

blurThreshold 0.61

darknessThreshold 0.50

lightThreshold 0.57

illuminationThreshold 0.1

specularityThreshold 0.1

VisionLabs B.V. Page 67 of 123

https://docs.visionlabs.ai/sdk/v.5.16.0/sdk/handbookcompilation/parameter-estimation-facility/#image-quality-estimation
https://docs.visionlabs.ai/sdk/v.5.16.0/sdk/configurationguide/settings/#quality-estimator-settings
https://docs.visionlabs.ai/sdk/v.5.16.0/sdk/configurationguide/settings/#quality-estimator-settings
https://docs.visionlabs.ai/luna/v.5.45.4/standard-distribution/admin-manual/additional-information/#liveness-threshold

6.2.2 Performing Online OneShotLiveness estimation

You can automatically perform Online OneShotLiveness estimation by sending a request to

the LUNA PLATFORM 5 /liveness endpoint. The estimation allows you determine if the person

in the image is a living person or a photograph. You can then validate the received images

with LUNA PLATFORM 5.

In LUNA ID for Android

To perform Online OneShotLiveness estimation:

1․ Specify the livenessType: LivenessType field in LunaConfig . The field accepts one of the

following values:

2․ Specify the required LUNA PLATFORM 5 server parameters in ApiHumanConfig .

The example below shows how to enable Online OneShotLiveness estimation:

Value Description

None Disables the estimation. The default value.

Online Enables the estimation by sending a request to the LUNA PLATFORM 5 /liveness

endpoint.

val apiConfig = ApiHumanConfig("http://luna-platform.com/api/6/")
 LunaID.init(
 ...
 apiHumanConfig = apiConfig,
 lunaConfig = LunaConfig.create(
 livenessType = LivenessType.Online,
),
)

VisionLabs B.V. Page 68 of 123

In LUNA ID for iOS

To perform Online OneShotLiveness estimation, you need to pass appropriate values for the

livenessAPI and configuration parameters to the camera controller instance creation function

LMCameraBuilder.viewController :

The API accepts the configuration parameter, which contains all the necessary settings for

checking liveness.

let controller = LMCameraBuilder.viewController(delegate: self,
 configuration: LCLunaConfiguration,
 livenessAPI: livenessAPI)

Parameter Description

configuration The parameter is represented by the LCLunaConfiguration structure.

livenessAPI The API should be of type LunaWeb.LivenessAPIv6 .

VisionLabs B.V. Page 69 of 123

6.2.3 Performing Offline OneShotLiveness estimation

With LUNA ID, you can check liveness directly on your device. Unlike Online OneShotLiveness

estimation, you do not have to send requests to the LUNA PLATFORM 5 /liveness endpoint to

determine if the person in the image is a living person or a photograph.

In LUNA ID for Android

To perform Offline OneShotLiveness estimation:

1․ Specify the neural network used for Offline OneShotLiveness estimation:

2․ Specify the estimation type in LunaConfig :

In LUNA ID for iOS

To perform Offline OneShotLiveness estimation:

1․ Make sure that you have the following .plan files in your deploy:

2․ In the LCLunaConfiguration structure, set the useOfflineLiveness parameter to true :

 implementation("ai.visionlabs.lunaid:oslm:1.7.0@aar")

LunaConfig.create(
 LivenessType.Offline
)

sdk.framework/data/oslm_v4_model_1_arm.plan•

fsdk.framework/data/oslm_v4_model_2_arm.plan•

LCLunaConfiguration.useOfflineLiveness = true

VisionLabs B.V. Page 70 of 123

6.2.4 Disabling OneShotLiveness estimation

If you want to skip a liveness estimation over the best shot, you can disable a

OneShotLiveness estimation.

In LUNA ID for Android

To disable OneShotLiveness estimations, set the livenessType: LivenessType field to None in

LunaConfig .

If livenessType: LivenessType is not specified, OneShotLiveness estimations are disabled by

default.

The example below shows how to disable OneShotLiveness estimations:

In LUNA ID for iOS

DISABLE ONLINE ONESHOTLIVENESS ESTIMATION

To disable Online OneShotLiveness estimation, disable sending of OneShotLiveness

estimation requests to LUNA PLATFORM 5 by setting livenessType to .none . For example:

val apiConfig = ApiHumanConfig("http://luna-platform.com/api/6/")
 LunaID.init(
 ...
 apiHumanConfig = apiConfig,
 lunaConfig = LunaConfig.create(
 livenessType = LivenessType.None,
),
)

private lazy var configuration: LCLunaConfiguration = {
 let configuration = LCLunaConfiguration.defaultConfig()
 ...
 configuration.bestShotConfiguration.livenessType = .none
 ...
 return configuration
}()

VisionLabs B.V. Page 71 of 123

DISABLE OFFLINE ONESHOTLIVENESS ESTIMATION

To disable Offline OneShotLiveness estimation, set the useOfflineLiveness parameter to false in

the LCLunaConfiguration structure:

LCLunaConfiguration.useOfflineLiveness = false

VisionLabs B.V. Page 72 of 123

6.3 Dynamic Liveness

6.3.1 About Dynamic Liveness

Dynamic Liveness estimation aims to determine whether a person is alive by interacting with

a camera in your app.

The estimation is performed directly on your device without sending the request to a server.

Interaction types

To perform the Dynamic Liveness estimation, you can implement the following user

interaction types:

In LUNA ID for Android, you need to specify the order in which the interactions will be

performed. By default, all user interactions with a camera are disabled and the Dynamic

Liveness estimation does not start. For details, see Performing Dynamic Liveness estimation.

In LUNA ID for iOS, you need to do one of the following to perform the Dynamic Liveness

estimation:

Dynamic Liveness defaults

TIMEOUT

You can set a timeout for every interaction to be performed. The timeout parameter value

defaults to 5 seconds.

Blinking with either one or two eyes•

Head rotation to the left along the Y axis•

Head rotation to the right along the Y axis•

Head pitch up along the X axis•

Head pitch down along the X axis•

Specify a number of interactions to be performed. In this case, the interaction generator

produces a random sequence of interactions. For details, see Specify a number of

interactions or a sequence of interactions to be performed.

•

Define a sequence of interactions to be performed. For details, see Define an interaction

sequence or a sequence of interactions to be performed.

•

VisionLabs B.V. Page 73 of 123

For details on setting a timeout, see:

HEAD ROTATION ANGLES

A head rotation angle is the angle to which the user must turn their head for the interaction

to be considered successful. The angles are:

In LUNA ID for Android, default head rotation angles are as follows:

In LUNA ID for iOS, default head rotation angles are in the 10-25 degrees range.

Set a timeout in LUNA ID for Android•

Set a timeout in LUNA ID for iOS•

Pitch - Limits the head rotation along the X axis.•

Yaw - Limits the head rotation along the Y axis.•

Roll - Limits the head rotation along the Z axis.•

Head rotation angles to the left and right along the Y axis are in the 10-30 degrees

range.

•

Head pitch up and down angles along the X axis are in the 5-20 degrees range.•

VisionLabs B.V. Page 74 of 123

6.3.2 Performing Dynamic Liveness estimation

This topic describes how to implement user interactions with a camera in your app to perform

the Dynamic Liveness estimation.

In LUNA ID for Android

To perform the Dynamic Liveness interaction, do the following:

Important: By default, all user interactions with a camera are disabled. The Dynamic

Liveness estimation does not start. You need to create a list of interactions to enable the

estimation.

ENABLE THE ESTIMATION

To enable the estimation, create a list of interactions. To do this, pass the Interactions

argument to the LunaID.showCamera() . For example:

In cases, when you specify Interactions.Builder().build() or do not specify the interactions

parameters at all, an empty list of interactions will be created. This means no interactions will

be included.

Enable the estimation by creating a list of interactions.

Specify optional parameters, such as:

Interaction timeout•

Timeout between interactions•

Head rotation angles•

Blinking with one eye•

LunaID.showCamera(
 interactions = Interactions.Builder().build()
)

VisionLabs B.V. Page 75 of 123

Interactions is a container for interaction parameters. You can add the following interactions to

it:

Important notes:

The interactions that you add to the list will be performed either in a random order or in a

defined sequence.

Perform interactions in a random order

To perform interactions in a random order, add required interaction types with

Interactions.Builder() .

Define an interaction sequence

To define an interaction sequence, use the addInteraction method as shown in the example

below:

SET AN INTERACTION TIMEOUT

Each interaction has the timeoutMs parameter. It determines the time, in milliseconds, during

which this interaction must be completed.

Parameter Description

YawLeftInteraction Enables user interaction via rotating the head to the left along the Y axis.

YawRightInteraction Enables user interaction via rotating the head to the right along the Y axis.

PitchUpInteraction Enables user interaction via pitching the head up along the X axis.

PitchDownInteraction Enables user interaction via pitching the head down along the X axis.

BlinkInteraction Enables user interaction via blinking. See also Enable blinking with one eye.

You can specify each parameter only once.•

The interaction parameters will be launched in the order you specify them in your code.

If you do not specify the order, no interactions will be performed.

•

LunaID.showCamera(
 interactions = Interactions.Builder()
 .addInteraction(YawLeftInteraction)
 .addInteraction(YawRightInteraction)
 .addInteraction(PitchUpInteraction)
 .addInteraction(PitchDownInteraction)
 .addInteraction(BlinkInteraction)
 .build()
)

VisionLabs B.V. Page 76 of 123

By default, the parameter value is 5 seconds.

SET A TIMEOUT BETWEEN INTERACTIONS

You can set a timeout between interactions in milliseconds. This means that a new interaction

will start after the preceding one ends after the specified timeout is passed.

To do this, use the LunaConfig.interactionDelayMs parameter. By default, the parameter value is

0.

VIEW INTERACTION STATUSES

LUNA ID for Android has the StateInteractionStarted and StateInteractionEnded statuses. The

statuses inform you about an interaction start and successful end, respectively.

SPECIFY HEAD ROTATION ANGLES

Head pose interactions have the startAngleDeg and endAngleDeg parameters. If you do not

specify them, the default values will be used.

Parameter Interaction Default

value

Description

startAngleDeg YawLeftInteraction 10 Specifies the start angle at which the user must

rotate their head for the interaction to be

considered successful.YawRightInteraction 10

PitchUpInteraction 5

PitchDownInteraction 5

endAngleDeg YawLeftInteraction 30 Specifies the end angle at which the user must

rotate their head for the interaction to be

considered successful.YawRightInteraction 30

PitchUpInteraction 20

PitchDownInteraction 20

ENABLE BLINKING WITH ONE EYE

To enable blinking with one eye, set the acceptOneEyed parameter of the BlinkInteraction

interaction to true . This allows users to perform blinking with one eye, rather than two.

By default, the acceptOneEyed parameter is set to false .

VisionLabs B.V. Page 77 of 123

In LUNA ID for iOS

To perform the Dynamic Liveness interaction, do the following:

ENABLE THE ESTIMATION

To enable user interactions with a camera, pass appropriate values for the livenessAPI and

configuration parameters to the LMCameraBuilder.viewController camera controller instance

creation function:

The API accepts the configuration parameter, which contains all the necessary settings for

performing Dynamic Liveness.

SPECIFY A NUMBER OF INTERACTIONS

The interaction generator produces a random sequence of interactions from the interaction

types list.

Enable the estimation.

Specify a number of interactions.

Optional. Define an interaction sequence.

Specify optional parameters, such as:

Interaction timeout•

Timeout between interactions•

Head rotation angles •

let controller = LMCameraBuilder.viewController(delegate: self,
 configuration: LCLunaConfiguration,
 livenessAPI: livenessAPI)

Parameter Description

configuration The parameter is represented by the LCLunaConfiguration structure. The

LCLunaConfiguration → InteractionEnabled = true parameter is responsible for interaction

with the camera.

livenessAPI The API should be of type LunaWeb.LivenessAPIv6 .

VisionLabs B.V. Page 78 of 123

You can specify a number of interactions to be performed. To do this, pass the stepsNumber

parameter to the following property of the LCLunaConfiguration class:

Important:The number of interactions must not exceed 5.

DEFINE AN INTERACTION SEQUENCE

To define a user interaction sequence, use the

LMCameraViewControllerProtocol::defineInteractionsStep method. For example:

You can define an array of LCStepConfigProtocol objects:

You can set a timeout for each interaction.

SET AN INTERACTION TIMEOUT

You can set a timeout for every interaction to be performed in a random sequence. It

determines the time, in seconds, during which an interaction must be completed.

@property (nonatomic, strong) LCInteractionsConfig *interactionsConfig;

let cameraViewController = LMCameraBuilder.viewController(delegate: self,
 configuration: self.configuration,
 livenessAPI: self.livenessAPI)
cameraViewController.defineInteractionsStep([
 LunaCore.LCBlinkConfig(),
 LunaCore.LCDownHeadTrackConfig(),
 LunaCore.LCUpHeadTrackConfig()
])
cameraViewController.dismissHandler = { [weak self] in
 self?.closeViewController(animated: true)
}
cameraViewController.modalPresentationStyle = .fullScreen
self.present(cameraViewController, animated: true)

Object Description

LCBlinkConfig Enables user interaction via blinking.

LCUpHeadTrackConfig Enables user interaction via pitching the head up along the X axis.

LCDownHeadTrackConfig Enables user interaction via pitching the head down along the X axis.

LCLeftHeadTrackConfig Enables user interaction via rotating the head to the left along the Y axis.

LCRightHeadTrackConfig Enables user interaction via rotating the head to the right along the Y axis.

VisionLabs B.V. Page 79 of 123

To do this, pass the interactionTimeout parameter to the following property of the

LCLunaConfiguration class:

By default, the parameter value is 5 seconds.

SET A TIMEOUT BETWEEN INTERACTIONS

You can set a timeout between interactions in seconds. This means that a new interaction will

start after the preceding one ends after the specified timeout is passed.

To do this, use the LCLunaConfiguration.interactionsConfig.timeoutBetweenInteractions property.

VIEW INTERACTION STATUSES

You can find current interaction statuses from userInfo[NSStepStateKey] in the NSError object

which you will receive in the bestshotError() delegate method. For example:

The statuses inform you about an interaction start, being in progress, and successful end.

SPECIFY HEAD ROTATION ANGLES

For user interactions via head rotations, you can specify head rotation angles. For the default

values, see Head rotation angles.

@property (nonatomic, strong) LCInteractionsConfig *interactionsConfig;

 func bestShotError(_ error: Error) {
 if ((error as NSError).code == BestShotError.NEED_TO_BLINK.rawValue) {
 print("blink interaction state <\((error as NSError).userInfo[NSStepStateKey] ?? 0)>")
 }
 }

VisionLabs B.V. Page 80 of 123

6.3.3 Interception of Dynamic Liveness interaction events

You can intercept interaction events via LunaID.detectionCoordinates() .

Important: This feature is available in LUNA ID for Android only.

You will receive structure similar to the "error" and "detection" events:

Where state is an object of the LunaInteraction class.

Just like with errors based on this state, you can control how interaction messages will look

like.

{
 "action": "interaction",
 "state": ...
}

public enum class LunaInteraction {
 INTERACTION_FAILED,
 INTERACTION_STARTED,

 INTERACTION_EYES_OPENED,
 INTERACTION_EYES_CLOSED,
 INTERACTION_EYES_OPENED_AGAIN,

 INTERACTION_SUCCESS
}

VisionLabs B.V. Page 81 of 123

6.3.4 Customizing Dynamic Liveness notifications

You can customize messages that are shown when a user performs blinking to fulfill the

Dynamic Liveness estimation. For example, you can change:

In LUNA ID for Android

To customize Dynamic Liveness notifications:

1․ Call LunaID.showCamera() with ShowCameraParams (disableInteractionTips=true) .

2․ Subscribe to CameraOverlayDelegateOut.receive to receive interaction events.

3․ Implement your own camera overlay. For an example of creating an overlay, see LUNA ID

Android Examples.

4․ Use the overlay to implement any logic to show or hide customized interaction tips

wherever you like.

In LUNA ID for iOS

To customize Dynamic Liveness notifications, use the

func showNotificationMessage(_ newMessage: String) method of LMVideoStreamNotificationViewProtocol .

Notification language•

Fonts•

Font colors•

Background colors•

VisionLabs B.V. Page 82 of 123

https://github.com/VisionLabs/LunaID-Android-Examples
https://github.com/VisionLabs/LunaID-Android-Examples

6.4 Video streams

6.4.1 Recording a video stream

Recording a video stream is a task you may need to perform for further processing of images.

The recorded video stream will then be divided into frames. The most suitable still images will

be later used for facial recognition and getting the best shot.

In LUNA ID for Android

To record a video stream, open a camera by using recordVideo = true . For example:

When the camera finishes its work, LunaID.allEvents() (or more specialized LunaID.finishStates())

will emit the ResultSuccess event with the best shot found and an optional path to the

recorded video. The entire process of getting the best shot is written to this video file.

LUNA ID does not manage the video file. This means, that file management, that is

deletion, copying, sending to a server, and so on, is performed on your side.

The recording stops when the best shot is captured or when a user closes the camera before

LUNA ID gets the best shot.

In LUNA ID for iOS

To record a video stream:

1․ Define the recordVideo parameter as true in:

2․ Find the video file path in the bestShot function in the LMCameraDelegate protocol.

LunaID.showCamera(
 ...
 recordVideo = true,
)

let controller = LMCameraBuilder.viewController(delegate: self,
 recordVideo: true)

public protocol LMCameraDelegate: AnyObject {

 func bestShot(_ bestShot: LunaCore.LCBestShot, _ videoFile: String?)

VisionLabs B.V. Page 83 of 123

The detected face in the frame is tracked all the time when the camera is on.

 func error(_ error: LMCameraError, _ videoFile: String?)

}

VisionLabs B.V. Page 84 of 123

6.4.2 Recording a video stream only with the face detected

With LUNA ID, you can record either entire video sessions or only video sessions in which a

face was detected in at least one frame.

In LUNA ID for Android

To record a video stream only with the face detected, call LunaID.showCamera() with

ShowCameraParams(recordVideo=true, ignoreVideoWithoutFace=true) .

You can optionally set up a fixed delay or specific moment in time to define when the face

recognition will start after the camera is displayed in the screen. To do this, use the

StartBestShotSearchCommand command.

In LUNA ID for iOS

To record a video stream only with the face detected, pass appropriate values for the

recordVideo and configuration parameters to the LMCameraBuilder.viewController camera

controller instance creation function:

You can find the video file path in the bestShot function in the LMCameraDelegate protocol.

let controller = LMCameraBuilder.viewController(delegate: self,
 configuration: LCLunaConfiguration,
 recordVideo: true)

Parameter Description

configuration The parameter is represented by the LCLunaConfiguration structure. The

LCLunaConfiguration → saveOnlyFaceVideo = true parameter is responsible for saving

video files only with a face detected.

recordVideo The parameter is responsible for saving the video file.

public protocol LMCameraDelegate: AnyObject {

 func bestShot(_ bestShot: LunaCore.LCBestShot, _ videoFile: String?)

 func error(_ error: LMCameraError, _ videoFile: String?)

}

VisionLabs B.V. Page 85 of 123

You can also set up a delay, in seconds, to define when the face recognition will start after the

camera is displayed in the screen. To do this, use LCLunaConfiguration.startDelay .

The detected face in the frame is tracked all the time when the camera is on.

VisionLabs B.V. Page 86 of 123

6.4.3 Information about a recorded video stream

LUNA ID saves video stream to file with the following parameters:

As LUNA ID does not limit a duration of a video stream, we recommend that you limit it at

the client app level. This will help you minimize the size of the video file and possible

security issues.

Parameters Android iOS

Duration limits None None

Resolution 320×240 pixels 180×320 pixels

Frame rate 30 fps 30 fps

File format .mp4 .mov

Video

compression

standard

.H264 .H264

Audio recording None None

Video stream re-

recording

Yes

The file with the recorded video

stream is overwritten when a new

video session starts.

Yes

The file with the recorded video

stream is overwritten when a new

video session starts.

VisionLabs B.V. Page 87 of 123

6.5 Logs

6.5.1 Getting logs from mobile devices

LUNA ID writes service information to the logging system of the corresponding platform -

Android and iOS. You can use this information diagnose and debug both the user application

that uses LUNA ID and to debug and fix LUNA ID.

A common problem that requires getting logs is related to the image that LUNA ID takes as

input. Before you start collecting logs, make sure that the image meets the requirements and

the thresholds are correctly configured to pass the OneShotLiveness estimation. For more

information on image requirements and thresholds, see About OneShotLiveness estimation.

Data to be provided to VisionLabs Technical support

Along with the collected logs, provide the following data to Technical Support:

Prerequisites

To successfully receive logs from mobile devices, the following prerequisites must be met:

Device model on which the issue was detected•

MUI•

OS version•

LUNA ID version•

Detailed playback steps•

Video recording of the issue•

Make sure that the necessary values for FaceEngine and TrackEngine logging are set in

the configuration files. For details on the required values and configuration files, see the

FaceEngine and TrackEngine logging section.

•

Before collecting logs, uninstall the app for which you are going to collect logs, and then

reinstall it. Start collecting logs after the first launch of the app.

•

The log file should contain entries from the moment the app was started until the

problem occurred.

•

Put the mobile device in developer or debug mode.•

VisionLabs B.V. Page 88 of 123

FaceEngine and TrackEngine logging

For detailed logging of FaceEngine and TrackEngine, the following values must be set in

configuration files:

Getting logs from Android devices

There are several ways to get logs from Android devices. To do this, we recommend that you

use the Logcat window in Android Studio.

To get logs from an Android device:

1․ Put your mobile device in developer mode:

Depending on the manufacturer of the Android device, the instruction may vary slightly.

1.1 In settings, select About phone or About tablet.

1.2 Find the Build Number or Android Version section and repeatedly tap it.

1.3 Confirm the transition of the device to developer mode.

1.4 Go to Settings > System > For Developers.

1.5 Set the USB Debugging switch to on.

1.6 Allow USB debugging.

2․ In Android Studio, open the Logcat tab. To do this, select View > Tool Windows >

Logcat from the Android Studio menu.

3․ In the upper-left corner, select the device from which you want to receive logs.

4․ In the next field, select the logs of the required app. If you want to get logs of all apps, do

not change this field.

5․ Select the logging level VERBOSE.

With the VERBOSE logging level, you can see records from all previous levels and get the

most useful information.

File Value

Faceengine.conf <param name=”verboseLogging” type=”Value::Int1” x=«4» />

runtime.conf <param name=”verboseLogging” type=”Value::Int1” x=«4» />

trackengine.conf <param name=”mode” type=”Value::String” text=”l2b” />

<param name=”severity” type=”Value::Int1” x=”0” />

VisionLabs B.V. Page 89 of 123

6․ In the search box, enter the required information to filter the results. For example, you can

include a package name, a part like fatal, and so on.

7․ Configure the display of logs:

7․1 Go to Logcat tab settings.

7․2 Select Logcat Header, check the following boxes and click OK:

Show date and time (required)•

Show process and thread IDs•

Show package name•

Show tag•

VisionLabs B.V. Page 90 of 123

The resulting logs contain the following data:

Getting logs from iOS devices

The main tool for getting logs from iOS devices is XCode. Xcode is a software development

environment for macOS and iOS platforms.

To get logs from an iOS device:

1․ Put your mobile device in developer mode:

1․1 Go to Settings > Privacy and Security.

1․2 Find the Developer Mode section and activate the option.

1․3 Restart your device.

2․ Connect your iOS device to your Mac.

3․ From the Xcode menu, select the menu item Window > Devices and Simulators.

Date and time of entry.•

Logging level (for example, D is Debug).•

The name of the tool, utility, package from which the message is received, as well as a

decoding of the ongoing action.

•

VisionLabs B.V. Page 91 of 123

4․ Select the connected device.

5․ Click the View Device Logs button. If you want to view the logs in real time, click the

Open Console button.

6․ In the search box, enter the required information to filter the results.

7․ Find the needed log file and copy it to a text file.

VisionLabs B.V. Page 92 of 123

Tip: To pause the log stream, click the Pause button.

The resulting logs contain the following data:

Getting logs for OneShotLiveness estimation from Android devices

If OneShotLiveness is enabled, you can find the corresponding data in logs.

Here is an example of logs for LUNA ID sending a request for OneShotLiveness estimation

when getting the best shot:

Date and time of entry.•

The name of the part of the system or application from which the message came.•

Event description, service information.•

 I --> POST https://luna-api-aws.visionlabs.ru/6/liveness?aggregate=1
 D Deallocating scratch [101632 bytes]
 I Content-Type: multipart/form-data; boundary=d9fb08cd-a74a-4d22-b596-c9d1810c7470
 I Content-Length: 2510479
 I Luna-Account-Id: 12ed7399-xxxx-xxxx-xxxx-bbc45e6017af
 I --> END POST (binary 2510479-byte body omitted)

VisionLabs B.V. Page 93 of 123

The response returns the following status codes:

Getting logs for OneShotLiveness estimation from iOS devices

Currently, you cannot collect logs for OneShotLiveness estimation by using iOS features.

Status code 200

If the request has reached the server and the server was able to process it, it returns

status code 200 . For example:

I <-- 200 https://luna-api-aws.visionlabs.ru/6/liveness?aggregate=1 (5895ms)

 I server: nginx/1.19.2

 I date: Tue, 08 Aug 2023 23:30:51 GMT

 I content-type: application/json

 I vary: Accept-Encoding

 I luna-request-id: 1691548250,d70bca42-b40c-4c69-ae71-c3ce8207d3d3

 I strict-transport-security: max-age=15724800; includeSubDomains

 I access-control-allow-origin: *

 I access-control-allow-credentials: true

 I access-control-allow-methods: GET, PUT, POST, DELETE, PATCH, OPTIONS

 I access-control-allow-headers: Authorization,Cache-Control,Content-Type,luna-account-id

 I {"images":[{"filename":"0","status":1,"liveness":{"prediction":1,"estimations":{"probability":

0.9960508346557617,"quality":1.0}},"error":{"error_code":

0,"desc":"Success","detail":"Success","link":"https:\/\/docs.visionlabs.ai\/info\/luna\/troubleshooting\/

errors-description\/code-0"}}],"aggregate_estimations":{"liveness":{"prediction":1,"estimations":

{"probability":0.9960508346557617,"quality":1.0}}}}

 I <-- END HTTP (404-byte body)

•

Status code other than 200

For details on status codes other than 200 , please refer to the LUNA PLATFORM API

documentation.

•

VisionLabs B.V. Page 94 of 123

https://docs.visionlabs.ai/luna/v.5.28.0/ReferenceManuals/APIReferenceManual.html#tag/liveness
https://docs.visionlabs.ai/luna/v.5.28.0/ReferenceManuals/APIReferenceManual.html#tag/liveness

6.5.2 Saving logs on an end user’s device

With LUNA ID, you can optionally save log files on an end user’s device. This feature is

available in LUNA ID for Android v. 1.3.3 and later.

Important: This feature is available in LUNA ID for Android only.

To get log files and save them on your device:

1․ Enable logging in LUNA ID: LunaID.showCamera(logToFile = true) .

Every call of showCamera with logToFile set to true will create a log file with a session of

getting the best shot on your mobile device.

2․ Get the log files by calling Context#getFilesDir() . The files are stored in the logs folder inside

your app’s private folder. For details, see getFileDir.

We do not provide a solution for getting log files from your device. You need to realize it in

your code by yourself. That is, you will need to add logic for getting these log files and

sending them, for example, to your endpoint or to your mail.

We recommend that you do the following to get logs from your device:

1․ In your app, realize hidden camera launching with collecting of logs. For example, you can

do it by long-tapping the camera button or via the hidden developer menu in the release

build.

2․ When a user has a problem getting the best shot, you get the logs and forward them to our

Support Team.

VisionLabs B.V. Page 95 of 123

https://developer.android.com/reference/android/content/Context#getFilesDir()

6.5.3 Status codes

LUNA ID responds with status codes to let you know how things are going.

LUNA ID for Android

ONESHOTLIVENESS ESTIMATION STATUS CODES

Code Status Description

200 Success. The OneShotLiveness estimation request has reached

the server and the server was able to process it.

400 Bad request. The server cannot process the OneShotLiveness

estimation request due to a client error.

403 Forbidden. The server understands the OneShotLiveness

estimation request but refuses to authorize it due to an

error on the client side.

408 Request payload too large. The server is unable to process the OneShotLiveness

estimation request due to an error on the server side.

413 Service did not process the

request within the

specified period.

The OneShotLiveness estimation request payload

exceeds the maximum size limit defined by the server.

500 Internal server error. The server encountered an unexpected condition that

prevented it from fulfilling the OneShotLiveness

estimation request.

503 Service did not process the

request within the

specified period.

The server is currently unable to handle the

OneShotLiveness estimation request due to

maintenance or an overload of requests.

504 Server timeout error. The server did not receive a timely response from the

upstream server that it needed to complete the

OneShotLiveness estimation request.

VisionLabs B.V. Page 96 of 123

LUNA ID for iOS

LUNACORE INITIALIZATION ERRORS

The below status codes apply to LUNA ID for iOS.

VisionLabs B.V. Page 97 of 123

Code Error message Description

1000 LunaCore module initialization error. The LunaCore module failed to initialize.

1001 Bad quality. The input image does not meet image

quality thresholds.

1002 The user’s head is turned too much. Head rotation angles are not between the

minimal and maximum valid head position

values.

1003 Multiple faces were detected in the

frame.

The frame must contain only one face for

LUNA ID to perform a series of estimations,

and then select the best shot.

1004 Liveness check has not been passed. OneShotLiveness estimation failed.

1005 A face has not been found. For the image to be considered the best

shot, it must contain a face.

1006 Need to blink. A Dynamic Liveness estimation interaction

error.

1007 Interaction timeout. The frame was not received in the time

interval allotted for the best shot.

1008 Medical mask is on the face. The person in the input image is currently

wearing a medical mask on the face.

1009 Mask is not on the right place. The mask is not covering the right areas on

the person's face.

1010 Face is occluded by something. The face is not properly visible in the input

image.

1011 The image is blurred. The input image does not meet the

blurriness threshold.

1012 The image is underexposed (i.e., too

dark).

The input image does not meet the

darkness threshold.

1013 The image is overexposed (i.e., too

light).

The input image does not meet the

lightness threshold.

1014 The face in the image is illuminated

unevenly (there is a great difference

between light and dark regions).

The input image does not meet the

illumination threshold.

1015 Image contains flares on face (too

specular).

The input image does not meet the

specularity threshold.

1016 The face is too far. The bounding box size with the detected

face does not correspond to the specified

size.

VisionLabs B.V. Page 98 of 123

Code Error message Description

1017 The face overlaps borders. The bounding box size with the detected

face does not correspond to the specified

size.

VisionLabs B.V. Page 99 of 123

6.6 Changing detection settings

6.6.1 In LUNA ID for Android

The LunaCore.aar file uses default detection settings. These settings are stored in the .conf

files inside LunaCore.aar and you cannot change them directly. However, you can change

them if you put the files of the same name in your app along the assets/data path.

For example, if you need to change the FaceEngine settings, then inside your app, where

LunaCore.aar is connected as a dependency, you need to create the assets/data/

faceengine.conf file, which will contain all the FaceEngine settings.

Your faceengine.conf must contain all the settings, not just the ones you want to change,

because your file will completely overwrite all the settings contained in LunaCore.aar.

6.6.2 In LUNA ID for iOS

To change detection settings, pass the required values for the parameters specified in the

table below:

Function Parameter Description

LCLunaConfiguration →

bestShotConfiguration →

estimationThreshold

headPitch Specifies the head rotation along the X axis.

LCLunaConfiguration →

bestShotConfiguration →

estimationThreshold

headYaw Specifies the head rotation along the Y axis.

LCLunaConfiguration →

bestShotConfiguration →

estimationThreshold

headRoll Specifies the head rotation along the Z axis.

LCLunaConfiguration →

bestShotConfiguration →

estimationThreshold

ags Specifies the source image score for further

descriptor extraction and matching.

LCLunaConfiguration →

bestShotConfiguration

borderDistance Specifies the distance from the frame edges

and is based on the face detection bounding

box size estimation.

LCLunaConfiguration →

bestShotConfiguration

minDetSize Specifies a bounding box size.

LCLunaConfiguration startDelay Specifies a timeout, in seconds, before face

recognition begins.

VisionLabs B.V. Page 100 of 123

6.7 Using descriptors

Descriptors are data sets in closed, binary format prepared by recognition system based on

the characteristic being analyzed.

LUNA ID uses .plan files that stores a compact set of packed properties, as well as some

helper parameters used to extract these properties from the source image. The .plan files are:

Using the .plan files to generate descriptors will increase the size of your app. To learn how

to measure the size added to your app, see Measuring the size that LUNA ID adds to your

app.

6.7.1 In LUNA ID for Android

Descriptor functions are available in the following packages:

To get a descriptor, call a method of the LunaUtils class. For example:

OS .plan files

LUNA ID for Android cnn52m_cpu.plan

cnn52m_arm.plan

cnn59m_arm.plan

cnn59m_cpu.plan

LUNA ID for iOS cnn52m_arm.plan

cnn59m_arm.plan

Package .plan files

ai.visionlabs.lunaid:cnn59:1.6.0 cnn59m_arm.plan

cnn59m_cpu.plan

ai.visionlabs.lunaid:cnn52:1.6.0 cnn52m_arm.plan

cnn52m_cpu.plan

 public fun getDescriptorFromWrapped(
 warp: Bitmap,
 @DescriptorVersion descriptorVersion: Int = V59
): ByteArray {
 }
 public fun getDescriptor(
 image: Bitmap,
 @DescriptorVersion descriptorVersion: Int = V59
): ByteArray {
 }
 public fun matchDescriptors(

VisionLabs B.V. Page 101 of 123

All the methods take descriptorVersion as an argument. The argument has two possible values:

V59 (default) and V52 . The values specify the model version to be used. We recommend that

you use V59 .

6.7.2 In LUNA ID for iOS

To calculate descriptors, LUNA ID for iOS uses the cnn59m_arm.plan file by default. The .plan

file and its version are defined in the fsdk.framework/data/faceengine.conf file:

If you need to use the cnn52m_arm.plan file, change the fsdk.framework/data/

faceengine.conf file as follows:

 first: ByteArray,
 second: ByteArray,
 @DescriptorVersion descriptorVersion: Int = V59
): Float {
 }

<param name="model" type="Value::Int1" x="59" />

<param name="model" type="Value::Int1" x="52" />

VisionLabs B.V. Page 102 of 123

6.8 Using commands

This topic applies to LUNA ID for Android only.

LUNA ID for Android provides controls to manage a camera:

6.8.1 StartBestShotSearchCommand

You can use the StartBestShotSearchCommand command to start a best shot search at any

specified moment, that is after some event or a fixed delay.

If specified in Commands , a call to LunaID.showCamera does not automatically start the best

shot search. To start the best shot search, you need to send the command with

LunaID.sendCommand(StartBestShotSearchCommand) .

6.8.2 CloseCameraCommand

You can use the CloseCameraCommand command you to specify when to close a camera after

the best shot was found.

If specified in Commands , the camera will not be closed automatically when the best shot

search finishes. Currently, this is the default behavior. You will still receive the

LunaID.FinishResult finish event. You need to close the camera by calling

LunaID.sendCommand(CloseCameraCommand) .

6.8.3 Usage

To use the commands, you need to do the following:

1․ Create the Commands instance with commands that you want to use:

All the commands override the default behavior when specified. Only the specified

commands will be accepted. If you try to send unspecified commands, an exception will be

thrown.

StartBestShotSearchCommand•

CloseCameraCommand•

Commands.Builder().apply {
 override(StartBestShotSearchCommand)
 override(CloseCameraCommand)
 }.build()

VisionLabs B.V. Page 103 of 123

2․ Call the LunaID.showCamera() method with the Commands instance.

If you do not specify commands , you can expect the default behavior. Nothing will change

for you compared to the previous LUNA ID versions.

3․ Send any command with LunaID.sendCommand() .

6.8.4 Example

You can find a detailed example of how to use the StartBestShotSearchCommand and

CloseCameraCommand commands in CameraExample.

 LunaID.showCamera(
 ...
 commands = ...,
)

VisionLabs B.V. Page 104 of 123

https://github.com/VisionLabs/LunaID-Android-Examples/tree/v1.7.2

6.9 Tracking face identity

In LUNA ID, you can track a face identity of the face detected in a video stream during the

entire session. This helps you avoid security issues and make sure that the detected face

belongs to one person.

6.9.1 In LUNA ID for Android

Currently, you cannot configure this setting explicitly.

6.9.2 In LUNA ID for iOS

To implement face identity tracking, set the LCLunaConfiguration.trackFaceIdentity property to

true . The default value is false .

VisionLabs B.V. Page 105 of 123

7. Interacting with LUNA PLATFORM

7.1 Interaction of LUNA ID with LUNA PLATFORM 5

Interaction between LUNA ID and LUNA PLATFORM 5 extends LUNA ID functionality and allows

you to perform the following tasks:

LUNA ID interacts with LUNA PLATFORM 5 via REST API.

Important: If you are not going to use the LUNA PLATFORM 5 API, we recommend that

you disable OneShotLiveness estimation to avoid possible errors.

LUNA PLATFORM 5 functions as the backend and lets you create and use handlers. Handlers

are sets of rules or policies that describe how to process the received images. For details on

how to create and use handlers, see the LUNA PLATFORM 5 documentation.

The below diagram shows how LUNA ID interacts with LUNA PLATFORM 5. We recommend

that you use it to integrate LUNA ID into your app.

Perform OneShotLiveness estimation to determine whether a person’s face is real

or fake, for example, a photo or printed image.

•

Send the best shot for descriptor matching to compare a set of properties and

helper parameters, which describe a person’s face, with the source image to determine

the similarity of represented objects. The result is a similarity score, where 1 means

completely identical, and 0 means completely different.

•

VisionLabs B.V. Page 106 of 123

https://docs.visionlabs.ai/luna/v.5.45.1/ReferenceManuals/APIReferenceManual.html#tag/handlers

As the diagram shows, the process of interaction between LUNA ID and LUNA PLATFORM 5 is a

back-and-forth communication between the frontend and backend.

Your mobile app runs on the frontend and embeds LUNA ID to use its key features. LUNA ID

sends requests to LUNA PLATFORM 5 that functions as the backend.

But, when your production system is deployed, an interaction between LUNA ID and LUNA

PLATFORM 5 is not realized directly. The interaction occurs via a secure channel through a

middleware service that provides encryption and protection of the data being transferred.

Important. This document describes an example of direct interaction between LUNA ID

and LUNA PLATFORM 5. VisionLabs does not provide security solutions for data transfer.

You need to provide data protection by yourself.

We recommend that you use security best practices to protect data transfer. You should pay

attention to the following security aspects:

If you want to use the HTTPS protocol, then you need to add NGINX or other similar

software to the backend.

•

If you want to use the TLS cryptographic protocol, then you need to implement it at

your mobile app.

•

You might need to configure a firewall correctly.•

To restrict access, you can use LUNA PLATFORM 5 tokens, which can be transferred to a

request header from LUNA ID.

•

VisionLabs B.V. Page 107 of 123

https://docs.visionlabs.ai/luna/latest/standard-distribution/admin-manual/general-concepts/#authorization-system

7.2 Usage scenario: Complete face recognition cycle

This section describes a sample LUNA ID usage scenario, which involves interaction with LUNA

PLATFORM 5.

This is only an example. You need to change it according to your business logic.

7.2.1 Scenario description

You want to run a full face recognition cycle using frontend and backend.

7.2.2 Scenario realization stages

Applying a full face recognition cycle in your mobile app proceeds in stages:

7.2.3 Prerequisites

To use this scenario, you need to configure LUNA PLATFORM 5 for it to work with LUNA ID. For

details on how LUNA PLATFORM 5 works, see the LUNA PLATFORM 5 documentation.

The preliminary steps are:

1․ Create a LUNA PLATFORM 5 account. For details, see Create account.

2․ Create a list of faces in LUNA PLATFORM 5 for further identification and verification. For

details, see Create list.

3․ Add faces to the list by generating a handler event with the link_to_lists_policy enabled.

4․ Create handlers for the following operations:

Getting the best shot with the detected face for best shot and OneShotLiveness

estimation.

•

Identifying that the face in the image belongs to a person from a client list (1:N

identification).

•

Matching the detected face with the face corresponding to the client ID in a global

database (1:1 verification).

•

Identification•

Verification•

VisionLabs B.V. Page 108 of 123

https://docs.visionlabs.ai/luna/latest/
https://docs.visionlabs.ai/luna/v.5.45.1/ReferenceManuals/APIReferenceManual.html#tag/accounts/operation/createAccount
https://docs.visionlabs.ai/luna/v.5.45.1/ReferenceManuals/APIReferenceManual.html#tag/lists/operation/createList
https://docs.visionlabs.ai/luna/v.5.45.1/ReferenceManuals/APIReferenceManual.html#tag/handlers/operation/createHandler
https://docs.visionlabs.ai/luna/v.5.45.1/ReferenceManuals/APIReferenceManual.html#tag/verifiers/operation/createVerifier

7.2.4 Scenario realization steps

The scenario has the following steps:

You should perform some of the scenario realization steps in LUNA PLATFORM 5.

1․ Video stream processing and face detection.

2․ Getting the best shot.

3․ Sending the selected best shot for OneShotLiveness estimation in the backend.

4․ Performing OneShotLiveness estimation at the LUNA PLATFORM 5 /liveness resource. The

source image is required for the estimation.

5․ Creating a warp for further face recognition, if the previous steps were successfully passed.

6․ Saving the video stream with the detected face on the mobile device.

7․ Sending the best shot to LUNA PLATFORM 5 for identification according to the existing list.

8․ Performing the identification at the LUNA PLATFORM 5 /handlers/handler_id/events resource.

This step creates a temporary attribute that will be used in step 11.

9․ Receiving the results.

10․ Sending a request for verification according to the existing list to LUNA PLATFORM 5.

11․ Performing the verification at the LUNA PLATFORM 5 /verifiers/verifier_id/verification resource.

The resource does not create event objects in LUNA PLATFORM 5 with information about

image processing.

12․ Returning the attribute ID.

When implementing the scenario, you can either perform identification (step 8) or

verification (step 10), not necessarily perform the both.

The diagram below shows the steps of this scenario:

VisionLabs B.V. Page 109 of 123

https://docs.visionlabs.ai/luna/v.5.45.1/ReferenceManuals/APIReferenceManual.html#tag/liveness
https://docs.visionlabs.ai/luna/v.5.45.1/ReferenceManuals/APIReferenceManual.html#tag/liveness
https://docs.visionlabs.ai/luna/v.5.45.1/ReferenceManuals/APIReferenceManual.html#tag/events/operation/generateEvents
https://docs.visionlabs.ai/luna/v.5.45.1/ReferenceManuals/APIReferenceManual.html#tag/events/operation/generateEvents
https://docs.visionlabs.ai/luna/v.5.45.1/ReferenceManuals/APIReferenceManual.html#tag/verifiers/operation/postVerifier
https://docs.visionlabs.ai/luna/v.5.45.1/ReferenceManuals/APIReferenceManual.html#tag/verifiers/operation/postVerifier

VisionLabs B.V. Page 110 of 123

7.3 Specifying LUNA PLATFORM URL and handler IDs

To guarantee interaction of LUNA ID with LUNA PLATFORM 5, you need to specify the URL to

LUNA PLATFORM 5. This URL will be used to send requests to LUNA PLATFORM 5.

Along with the the URL to LUNA PLATFORM 5, you need to specify IDs of LUNA PLATFORM 5

handlers so you can perform the required tasks.

7.3.1 In LUNA ID for Android

Specify the baseUrl variable to provide the URL to LUNA PLATFORM 5 in the build.gradle.kts

file. Consider the following example:

The example has the following components:

To specify LUNA PLATFORM 5 handler IDs, define variables that correspond to the required

handlers in constantHeaders . For details, see the PlatformAPIExample example.

class DemoApp : Application () {
 override fun onCreate() {
 super.onCreate()

 ...

 LunaID.apiHuman

 // specify the URL to LUNA PLATFORM
 val baseUrl = "http://luna-platform.com/api/6/"
 }
}

Component Description

LunaID.apiHuman Property. Provides access to the LUNA PLATFORM API and allows sending

requests.

baseUrl Variable. Specifies the LUNA PLATFORM URL that is used by the LunaID.apiHuman()

function.

VisionLabs B.V. Page 111 of 123

https://github.com/VisionLabs/LunaID-Android-Examples/blob/756c8bbdf0825f172bde9580858e8b815da28e10/PlatformAPIExample/src/main/java/ai/visionlabs/examples/platformapi/App.kt#L17

7.3.2 In LUNA ID for iOS

Specify the following parameters in the LCLunaConfiguration object at the app start:

For example:

Parameter Description

identifyHandlerID The ID of a handler that receives the best shot and identification according to

the existing list of faces.

registrationHandlerID The ID of a handler that registers a new user and receives the best shot and

user name.

verifyID The ID of a verifier used to roll out LUNA PLATFORM 5.

lunaServerURL The LUNA PLATFORM 5 host URL. The URL should not have the slash at the

end. For example: https://LUNA_PLATFORM_HOST/6 .

func application(_ application: UIApplication, didFinishLaunchingWithOptions launchOptions:
[UIApplication.LaunchOptionsKey: Any]?) -> Bool {
...
 let configuration = LCLunaConfiguration.defaultConfig()
 configuration.identifyHandlerID = "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX"
 configuration.registrationHandlerID = "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX"
 configuration.verifyID = "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX"
 configuration.lunaAccountID = "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX"
 configuration.lunaServerURL = URL(string: "https://LUNA_PLATFORM_HOST/6")
...
 return true
 }

VisionLabs B.V. Page 112 of 123

8. Best practices

8.1 Measuring the size that LUNA ID adds to your app

You can measure the size that LUNA ID adds to your app.

8.1.1 In LUNA ID for Android

To measure the size that LUNA ID adds to your app, do the following:

1․ Update build files to build separate .apk files for different platforms:

2․ In Android Studio, run the Analyze APK utility.

In the build.gradle.kts file: •

android {
 ...
 splits {
 abi {
 isEnable = true
 reset()
 include("armeabi-v7a", "arm64-v8a", "x86", "x86_64")
 isUniversalApk = false
 }
 }
 ...
}

In the build.dragle file: •

 android {
 ...

 splits {
 abi {
 enable true
 reset()
 include "armeabi-v7a", "arm64-v8a", "x86", "x86_64"
 universalApk false
 }
 }

 ...
 }

VisionLabs B.V. Page 113 of 123

3․ Open the build platfrom-specific .apk file (for example, armeabi-v7a) and see the size of the

following files:

Important notes

8.1.2 In LUNA ID for iOS

Total size

The number of .plan files included in the SDK library depends on your particular case. The

app size depends on the selected .plan files.

After you select all the required .plan files for your app, sum their sizes to find the total size of

the .plan files.

You can find the .plan files in fsdk.framework/data.

In the picture below, you can see the .plan files selected for this example.

assets/data* folder•

lib/{platform}/libTrackEngineSDK.so•

lib/{platform}/libBestShotMobile.so•

lib/{platform}/libflower.so•

lib/{platform}/libMatchingKernel.s•

lib/{platform}/libFaceEngineSDK.so•

lib/{platform}/libwrapper.so•

lib/{platform}/libc++_shared.so•

Any other files are not part of LUNA ID and are added by other dependencies of your

app.

•

In the Analyze APK utility, there should be only one platform in the lib folder (for

example, armeabi-v7a , arm64-v8a or any another). If there is more than one platform in

this folder, then you are looking at a universal .apk file that includes all platforms. Go

back a step and rebuild the app with splits.abi enabled.

•

VisionLabs B.V. Page 114 of 123

Application size

To find out the IOS application size, do the following:

1․ Open your project with added frameworks in Xcode.

2․ Go to Product > Archive.

3․ Click the Distribute App button after archiving finishes.

VisionLabs B.V. Page 115 of 123

4․ Select a distribution method. For example, Development.

5․ Select development distribution options.

VisionLabs B.V. Page 116 of 123

6․ Select a device for distribution creation. For example, All compatible device variants.

VisionLabs B.V. Page 117 of 123

7․ Re-sign your application. For example, by the developer signing.

VisionLabs B.V. Page 118 of 123

8․ View the information about the archive.

VisionLabs B.V. Page 119 of 123

9․ Export your app.

10․ Open the App Thinning Size Report.txt file.

VisionLabs B.V. Page 120 of 123

11․ Find necessary information about the application size.

The picture below shows the size of the application without additional swift frameworks from

this example.

12․ Verify the size of the packed application.

VisionLabs B.V. Page 121 of 123

8.2 Reducing your app size by excluding .plan files

LUNA ID uses neural networks for face processing in images and video streams. Neural

networks are stored in the .plan files. You can reduce the size of your app by removing

unnecessary .plan files.

8.2.1 In LUNA ID for Android

You do not need to remove any .plan files as they are distributed separately. For details, see

Distribution kit.

8.2.2 In LUNA ID for iOS

To reduce your app size, remove unnecessary .plan files from the sdk' directory.framework/

ios_arm64(or simulator)/fsdk.framework/data/ directory. The .plan files that you can remove are:

glasses_estimation_flwr_arm.plan•

mask_clf_v3_arm.plan•

oslm_v4_model_1_arm.plan•

oslm_v4_model_2_arm.plan•

cnn59m_arm.plan•

VisionLabs B.V. Page 122 of 123

9. Documentation download page

Version Documentation (pdf)

v.1.8.2 LUNA_ID_v.1.8.2.pdf

VisionLabs B.V. Page 123 of 123

	VisionLabs LUNA ID
	1. Introduction
	About LUNA ID
	API documentation
	Initial setup
	Examples

	2. General information
	2.1 Overview
	2.1.1 Supported operating systems and programming languages
	2.1.2 Use cases
	2.1.3 Key features
	2.1.4 Usage scenarios
	Scenario 1: Getting images
	SCENARIO DESCRIPTION
	SCENARIO REALIZATION STAGES
	SCENARIO REALIZATION STEPS

	Scenario 2: Complete face recognition cycle
	SCENARIO DESCRIPTION
	SCENARIO REALIZATION STAGES
	SCENARIO REALIZATION STEPS

	2.2 Getting LUNA ID
	2.2.1 Download LUNA ID
	2.2.2 Distribution kit
	LUNA ID for Android
	EXAMPLES

	LUNA ID for iOS
	LUNA ID size

	2.2.3 Next steps
	2.2.4 See also

	2.3 What's new in LUNA ID v.1.8.2
	2.3.1 Improvements
	2.3.2 Bug fixes

	2.4 Version history
	2.4.1 LUNA ID v. 1.8.1
	2.4.2 LUNA ID v. 1.8.0
	2.4.3 LUNA ID v. 1.7.9
	2.4.4 LUNA ID v. 1.7.8
	2.4.5 LUNA ID v. 1.7.7
	2.4.6 LUNA ID v. 1.7.6
	2.4.7 LUNA ID v. 1.7.5
	2.4.8 LUNA ID v. 1.7.4
	2.4.9 LUNA ID v. 1.7.3
	2.4.10 LUNA ID v. 1.7.2
	2.4.11 LUNA ID v. 1.7.1
	2.4.12 LUNA ID v. 1.7.0
	2.4.13 LUNA ID v. 1.6.1
	2.4.14 LUNA ID v. 1.6.0
	2.4.15 LUNA ID v. 1.5.1
	2.4.16 LUNA ID v. 1.5.0
	2.4.17 LUNA ID v. 1.4.5
	2.4.18 LUNA ID v. 1.4.4
	2.4.19 LUNA ID v. 1.4.3
	2.4.20 LUNA ID v. 1.4.2
	2.4.21 LUNA ID v. 1.4.1
	2.4.22 LUNA ID v. 1.4.0
	2.4.23 LUNA ID v.1.3.3
	2.4.24 LUNA ID v.1.3.2
	2.4.25 LUNA ID v.1.3.1
	2.4.26 LUNA ID v. 1.3.0
	2.4.27 LUNA ID v. 1.2.0-1.2.4
	2.4.28 LUNA ID v. 1.1.0

	2.5 System and hardware requirements
	2.5.1 Information about third-party software
	LUNA SDK
	Regula

	2.6 Neural networks used in LUNA ID
	2.7 Glossary
	2.8 Technical Support and resources
	2.8.1 Contact Technical Support
	2.8.2 More resources

	3. Licensing
	3.1 License activation
	3.1.1 In LUNA ID for Android
	Example license file

	3.1.2 In LUNA ID for iOS
	Example license file

	3.2 License parameters

	4. API documentation
	4.1 API documentation
	4.2 Changelog
	4.2.1 API changes made in LUNA ID for Android v.1.5.0 in comparison to v.1.4.x
	4.2.2 API changes made in LUNA ID for Android v.1.5.1 in comparison to v.1.5.0
	4.2.3 API changes made in LUNA ID for Android v.1.6.0 in comparison to v.1.5.1

	5. Initial setup
	5.1 Initial setup of LUNA ID for Android
	5.1.1 Step 1. Get the .aar file
	5.1.2 Step 2. Provide your user credentials
	5.1.3 Step 3. Add the .aar file as a dependency
	5.1.4 Step 4. Initialize LUNA ID
	5.1.5 Step 5. Call LUNA ID functions

	5.2 Initial setup of LUNA ID for iOS
	5.2.1 Step 1. Add XCFrameworks
	5.2.2 Step 2. Enable OneShotLiveness estimation
	5.2.3 Step 3. Specify license data
	5.2.4 Step 4. Create a face recognition screen in your app

	6. Working with LUNA ID
	6.1 Best shots
	6.1.1 Best shot estimations
	How it works
	Estimations
	FACE DETECTION BOUNDING BOX SIZE
	Description
	Implementation

	FRAME EDGES OFFSET
	Description
	Implementation

	EYE STATE
	Description
	Implementation

	HEAD POSE
	Description
	Implementation

	AGS (APPROXIMATE GARBAGE SCORE)
	Description
	Implementation

	IMAGE QUALITY ESTIMATION
	Description

	BEST SHOT CAPTURE PERIOD
	Description
	Implementation

	FACE OCCLUSION
	Description

	EYE OCCLUSION
	Description

	6.1.2 Changing best shot image quality estimation thresholds
	6.1.3 Getting the best shot
	In LUNA ID for Android
	EXAMPLE
	FACE RECOGNITION AREA
	ADD A DELAY BEFORE STARTING FACE RECOGNITION
	ADD A DELAY BEFORE GETTING THE BEST SHOT

	In LUNA ID for iOS
	ADD A DELAY BEFORE STARTING FACE RECOGNITION
	ADD A DELAY BEFORE GETTING THE BEST SHOT

	6.1.4 Getting the best shot with an occluded face
	In LUNA ID for Android
	In LUNA ID for iOS

	6.1.5 Getting the best shot with faces with closed eyes
	6.1.6 Getting the best shot with faces with occluded eyes
	In LUNA ID for Android
	In LUNA ID for iOS

	6.2 OneShotLiveness
	6.2.1 About OneShotLiveness estimation
	OneShotLiveness estimation types
	Image requirements
	OneShotLiveness thresholds
	QUALITY THRESHOLD
	LIVENESS THRESHOLD

	6.2.2 Performing Online OneShotLiveness estimation
	In LUNA ID for Android
	In LUNA ID for iOS

	6.2.3 Performing Offline OneShotLiveness estimation
	In LUNA ID for Android
	In LUNA ID for iOS

	6.2.4 Disabling OneShotLiveness estimation
	In LUNA ID for Android
	In LUNA ID for iOS
	DISABLE ONLINE ONESHOTLIVENESS ESTIMATION
	DISABLE OFFLINE ONESHOTLIVENESS ESTIMATION

	6.3 Dynamic Liveness
	6.3.1 About Dynamic Liveness
	Interaction types
	Dynamic Liveness defaults
	TIMEOUT
	HEAD ROTATION ANGLES

	6.3.2 Performing Dynamic Liveness estimation
	In LUNA ID for Android
	ENABLE THE ESTIMATION
	Perform interactions in a random order
	Define an interaction sequence

	SET AN INTERACTION TIMEOUT
	SET A TIMEOUT BETWEEN INTERACTIONS
	VIEW INTERACTION STATUSES
	SPECIFY HEAD ROTATION ANGLES
	ENABLE BLINKING WITH ONE EYE

	In LUNA ID for iOS
	ENABLE THE ESTIMATION
	SPECIFY A NUMBER OF INTERACTIONS
	DEFINE AN INTERACTION SEQUENCE
	SET AN INTERACTION TIMEOUT
	SET A TIMEOUT BETWEEN INTERACTIONS
	VIEW INTERACTION STATUSES
	SPECIFY HEAD ROTATION ANGLES

	6.3.3 Interception of Dynamic Liveness interaction events
	6.3.4 Customizing Dynamic Liveness notifications
	In LUNA ID for Android
	In LUNA ID for iOS

	6.4 Video streams
	6.4.1 Recording a video stream
	In LUNA ID for Android
	In LUNA ID for iOS

	6.4.2 Recording a video stream only with the face detected
	In LUNA ID for Android
	In LUNA ID for iOS

	6.4.3 Information about a recorded video stream

	6.5 Logs
	6.5.1 Getting logs from mobile devices
	Data to be provided to VisionLabs Technical support
	Prerequisites
	FaceEngine and TrackEngine logging
	Getting logs from Android devices
	Getting logs from iOS devices
	Getting logs for OneShotLiveness estimation from Android devices
	Getting logs for OneShotLiveness estimation from iOS devices

	6.5.2 Saving logs on an end user’s device
	6.5.3 Status codes
	LUNA ID for Android
	ONESHOTLIVENESS ESTIMATION STATUS CODES

	LUNA ID for iOS
	LUNACORE INITIALIZATION ERRORS

	6.6 Changing detection settings
	6.6.1 In LUNA ID for Android
	6.6.2 In LUNA ID for iOS

	6.7 Using descriptors
	6.7.1 In LUNA ID for Android
	6.7.2 In LUNA ID for iOS

	6.8 Using commands
	6.8.1 StartBestShotSearchCommand
	6.8.2 CloseCameraCommand
	6.8.3 Usage
	6.8.4 Example

	6.9 Tracking face identity
	6.9.1 In LUNA ID for Android
	6.9.2 In LUNA ID for iOS

	7. Interacting with LUNA PLATFORM
	7.1 Interaction of LUNA ID with LUNA PLATFORM 5
	7.2 Usage scenario: Complete face recognition cycle
	7.2.1 Scenario description
	7.2.2 Scenario realization stages
	7.2.3 Prerequisites
	7.2.4 Scenario realization steps

	7.3 Specifying LUNA PLATFORM URL and handler IDs
	7.3.1 In LUNA ID for Android
	7.3.2 In LUNA ID for iOS

	8. Best practices
	8.1 Measuring the size that LUNA ID adds to your app
	8.1.1 In LUNA ID for Android
	Important notes

	8.1.2 In LUNA ID for iOS
	Total size
	Application size

	8.2 Reducing your app size by excluding .plan files
	8.2.1 In LUNA ID for Android
	8.2.2 In LUNA ID for iOS

	9. Documentation download page

