Monitoring¶
Data for monitoring¶
Now we monitor two types of events for monitoring: request and error. First type is all requests, second is failed requests only.
Comparison of data formats for Clickhouse and InfluxDB:
InfluxDB: Each event is presented as a “point” in a time series. The structure of a point includes:
series name
start event time
tags, indexed data in storage, dictionary: keys - string tag names, values - string, integer, float
fields, non indexed data in storage, dictionary: keys - string tag names, values - string, integer, float
Clickhouse: In Clickhouse, the data structure resembles that of a traditional SQL table. Each event is represented as a record, where:
The `time` field contains the record’s creation timestamp;
The `data` field contains a JSON object with all the information that would otherwise be distributed across tags and fields in InfluxDB.
Important: In Clickhouse, there is no differentiation between “tags” and “fields”—all data is consolidated into a single JSON object within the data field.
The structure and the meaning of each monitoring series remain consistent. However, for Clickhouse, data from tags and fields are merged into a single JSON object under the data field. Below are examples for each series:
Requests series.
Triggered on every request. Each point contains a data about corresponding request (execution time and etc).
InfluxDB:
tags
tag name
description
service
always “luna-api”
account_id
account id or none
route
concatenation of a request method and a request resource (POST:/extractor)
status_code
http status code of response
fields
fields
description
request_id
request id
execution_time
request execution time
ClickHouse JSON `data` field Example:
{ "service": "luna-api", "route": "POST:/extractor", "status_code": 204, "request_id": "1536751345,6a5c2191-3e9b-f5a4-fc45-3abf43625c5f", "execution_time": 123.45 }
Errors series.
Triggered on failed request. Each point contains error_code of luna error.
InfluxDB:
tags
fields
fields
description
request_id
request id
ClickHouse JSON `data` field Example:
{ "service": "luna-api", "route": "POST:/extractor", "status_code": 400, "error_code": 13037, "request_id": "1536751345,6a5c2191-3e9b-f5a4-fc45-3abf43625c5f", }
Every handler can add additional tags or fields. For example, handler of resource /handlers/{handlerId}/events adds tag handler_id.
For a resource “/detector”, “/extractor”, “/handlers/{handler_id}/events” there are additional fields:
fields
fields
description
task_execution_time
sdk task execution time
results_queue_transport_time
transport time by results queue
detector_queue_transport_time
transport time by detector queue
extractor_queue_transport_time
transport time by extractor queue
warp_attributes_estimator_queue_transport_time
transport time by warp attributes queue
detector_stage_time
detector stage time
extractor_stage_time
extractor stage time
warp_estimator_stage_time
warp estimator stage time
faces_detect_time
face detect time
descriptors_extract_time
descriptors extract time
basic_attributes_extract_time
basic attributes extract time
gaze_direction_estimation_time
gaze direction estimation time
head_pose_estimation_time
head pose execution time
eyes_attributes_estimation_time
eyes attributes execution time
ags_estimation_time
ags estimation time
quality_estimation_time
quality estimation time
emotions_estimation_time
emotions estimation time
mouth_attributes_estimation_time
mouth attributes estimation time
save_samples_time
save samples to image store time
save_face_attributes_time
save face attributes to luna-faces time
load_samples_time
load samples from image-store time
load_images_for_processing_time
load images for processing time
Database¶
You can refer to documentation for influx database and clickhouse database to compare the databases and choose what benefit your needs more. Note that clickhouse might be the better choice for aggregation You can setup your database credentials in configuration file in section “monitoring”.
Plugins¶
You can create your plugin for sending monitoring data. See plugins
Classes¶
Module contains points for monitoring.
- class luna_api.crutches_on_wheels.cow.monitoring.points.BaseMonitoringPoint(eventTime)[source]¶
Abstract class for points
- eventTime¶
event time as timestamp
- Type:
float
- abstract property fields: Dict[str, int | float | str]¶
Get fields from point. We supposed that fields are not indexing data
- Returns:
dict with fields.
- abstract property tags: Dict[str, int | float | str]¶
Get tags from point. We supposed that tags are indexing data
- Returns:
dict with tags.
- class luna_api.crutches_on_wheels.cow.monitoring.points.BaseRequestMonitoringPoint(requestId, resource, method, requestTime, service, statusCode)[source]¶
Base class for point which is associated with requests.
- requestId¶
request id
- Type:
str
- route¶
concatenation of a request method and a request resource
- Type:
str
- service¶
service name
- Type:
str
- statusCode¶
status code of a request response.
- Type:
int
- property fields: Dict[str, int | float | str]¶
Get fields
- Returns:
“request_id”
- Return type:
dict with following keys
- property tags: Dict[str, int | float | str]¶
Get tags
- Returns:
“route”, “service”, “status_code”
- Return type:
dict with following keys
- class luna_api.crutches_on_wheels.cow.monitoring.points.DataForMonitoring(tags=<factory>, fields=<factory>)[source]¶
Class fo storing an additional data for monitoring.
- class luna_api.crutches_on_wheels.cow.monitoring.points.InfluxFormatter[source]¶
Format any point filed into inline format
- class luna_api.crutches_on_wheels.cow.monitoring.points.MonitoringPointInfluxFormatBuilder(name, bases, namespace, /, **kwargs)[source]¶
Complement point class with explicit fields formatting function for the sake of better performance
To perform type format building target class must have ‘fields’ property return value annotated with TypedDict.
Target class might be configured via ‘Config’ class. Available options:
extraFields: whether class should handle additional fields or not
>>> from typing import TypedDict >>> >>> class MonitoringFields(TypedDict): ... field1: str ... field2: int ... field3: float ... field4: bool >>> >>> class BasePoint(BaseMonitoringPoint, metaclass=MonitoringPointInfluxFormatBuilder): ... ... def __init__(self, fields: dict): ... self._fields = fields ... ... @property ... def tags(self): ... return {} ... ... @property ... def fields(self) -> MonitoringFields: ... return self._fields ... >>> class TestPointNoExtra(BasePoint): ... ... class Config: ... extraFields = False ... >>> class TestPointWithExtra(BasePoint): ... class Config: ... extraFields = True >>> >>> >>> point1 = TestPointNoExtra({"field1": "data", "field2": 1, "field3": 1.0, "field4": False}) >>> point2 = TestPointWithExtra({"field1": "data", "field2": 1, "field3": 1.0, "field4": False, "extra": True}) >>> print(point1.convertFieldsToInfluxLineProtocol()) field1="data",field2=1i,field3=1.000000,field4=False >>> print(point2.convertFieldsToInfluxLineProtocol()) field1="data",field2=1i,field3=1.000000,field4=False,extra=True
- classmethod buildInfluxFormats(annotations, extraFields)[source]¶
Build map with influx formats for corresponding fields
- Return type:
dict
- Parameters:
annotations (dict) – point fields type annotations
extraFields (bool) – whether point uses extra fields or not
- Returns:
dict of fields with their format
- static convertFieldsToInfluxLineProtocolNoExtra(point)[source]¶
Convert point fields into influx line protocol format without extra fields
- class luna_api.crutches_on_wheels.cow.monitoring.points.RequestErrorMonitoringPoint(requestId, resource, method, errorCode, service, requestTime, statusCode, additionalTags=None, additionalFields=None)[source]¶
Request monitoring point is suspended for monitoring requests errors (error codes)
- errorCode¶
error code
- Type:
int
- additionalTags¶
additional tags which was specified for the request
- Type:
dict
- additionalFields¶
additional fields which was specified for the request
- Type:
dict
- property fields: Dict[str, int | float | str]¶
Get fields.
- Returns:
dict with base fields and additional tags
-
series:
str
= 'errors'¶ series “errors”
- property tags: Dict[str, int | float | str]¶
Get tags.
- Returns:
dict with base tags, “error_code” and additional tags
- class luna_api.crutches_on_wheels.cow.monitoring.points.RequestMonitoringPoint(requestId, resource, method, executionTime, requestTime, service, statusCode, additionalTags=None, additionalFields=None)[source]¶
Request monitoring point is suspended for monitoring all requests and measure a request time etc.
- executionTime¶
execution time
- Type:
float
- additionalTags¶
additional tags which was specified for the request
- Type:
dict
- additionalFields¶
additional fields which was specified for the request
- Type:
dict
- property fields: Dict[str, int | float | str]¶
Get fields.
- Returns:
dict with base fields, “execution_time” and additional tags
-
series:
str
= 'requests'¶ series “request”
- property tags: Dict[str, int | float | str]¶
Get tags.
- Returns:
dict with base tags and additional tags
- luna_api.crutches_on_wheels.cow.monitoring.points.getRoute(resource, method)[source]¶
- Return type:
str
Get a request route, concatenation of a request method and a request resource :param resource: resource :param method: method
- Returns:
{resource}”
- Return type:
“{method}
- luna_api.crutches_on_wheels.cow.monitoring.points.monitorTime(monitoringData, fieldName)[source]¶
Context manager for timing execution time.
- Parameters:
monitoringData – container for saving result
fieldName – field name
Module implement base class for monitoring
- class luna_api.crutches_on_wheels.cow.monitoring.manager.LunaMonitoringManager(settings, name, pluginManager)[source]¶
Monitoring manager. Sends data to the monitoring storage and monitoring plugins. .. attribute:: settings
monitoring storage settings
- class luna_api.crutches_on_wheels.cow.monitoring.manager.MonitoringSettings(*args, **kwargs)[source]¶
Monitoring settings protocol
Module contains classes for sending a data to an influx monitoring.
- class luna_api.crutches_on_wheels.cow.monitoring.influx_adapter.InfluxMonitoringAdapter(settings, flushingPeriod)[source]¶
Influx 2.x adaptor. Suspended to send points to an influxdb
- bucket¶
influx bucket name
- Type:
str
- addPointsToBuffer(points)[source]¶
Add points to buffer.
- Return type:
None
- Parameters:
points – points
- static convertFieldsToInfluxLineProtocol(fields)[source]¶
Convert field value to influx line protocol format
- Return type:
str
- Parameters:
fields – dict with values to convert
- Returns:
line protocol string
- class luna_api.crutches_on_wheels.cow.monitoring.influx_adapter.InfluxSettings(url, bucket, organization, token)[source]¶
Container for influx 2.x settings
Clickhouse monitoring adaptor
- class luna_api.crutches_on_wheels.cow.monitoring.clickhouse_adapter.ClickhouseMonitoringAdaptor(settings, flushingPeriod)[source]¶
Clickhouse adaptor. Suspended to send points to a clickhouse
- addPointsToBuffer(points)[source]¶
Add points to buffer.
- Return type:
None
- Parameters:
points – points