Monitoring

Data for monitoring

We support two database options for collecting monitoring data: Clickhouse and InfluxDB. Depending on the database chosen, the structure and methodology for storing data vary.

Types of processed events

Our monitoring system processes the following event types:

  1. request (any http request)

  2. error (failed http request)


Comparison of data formats for Clickhouse and InfluxDB:

InfluxDB: Each event is presented as a “point” in a time series. The structure of a point includes:

  • series name

  • start event time

  • tags, indexed data in storage, dictionary: keys - string tag names, values - string, integer, float

  • fields, non indexed data in storage, dictionary: keys - string tag names, values - string, integer, float

Clickhouse: In Clickhouse, the data structure resembles that of a traditional SQL table. Each event is represented as a record, where:

  • The `time` field contains the record’s creation timestamp;

  • The `data` field contains a JSON object with all the information that would otherwise be distributed across tags and fields in InfluxDB.

Important: In Clickhouse, there is no differentiation between “tags” and “fields”—all data is consolidated into a single JSON object within the data field.

Monitoring series

The structure and the meaning of each monitoring series remain consistent. However, for Clickhouse, data from tags and fields are merged into a single JSON object under the data field. Below are examples for each series:

  • Requests series.

    Triggered on every request. Each point contains a data about corresponding request (execution time and etc).

    InfluxDB:

    • tags

      tag name

      description

      service

      always “luna-configurator”

      route

      concatenation of a request method and a request resource (POST:/settings)

      status_code

      http status code of response

    • fields

      fields

      description

      request_id

      request id

      execution_time

      request execution time

    ClickHouse JSON `data` field Example:

    {
        "service": "luna-configurator",
        "route": "POST:/settings",
        "status_code": 200,
        "request_id": "1536751345,6a5c2191-3e9b-f5a4-fc45-3abf43625c5f",
        "execution_time": 123.45
    }
    
  • Errors series.

    Triggered on failed request. Each point contains error_code of luna error.

    InfluxDB:

    • tags

      tag name

      description

      service

      always “luna-configurator”

      route

      concatenation of a request method and a request resource (POST:/settings)

      status_code

      http status code of response

      error_code

      luna error code

    • fields

      fields

      description

      request_id

      request id

    ClickHouse JSON `data` field Example:

    {
        "service": "luna-configurator",
        "route": "POST:/settings",
        "status_code": 400,
        "error_code": 12027
        "request_id": "1536751345,6a5c2191-3e9b-f5a4-fc45-3abf43625c5f",
    }
    

Every handler can add additional tags or fields.

Database

You can refer to documentation for influx database and clickhouse database to compare the databases and choose what benefit your needs more. Note that clickhouse might be the better choice for aggregation You can setup your database credentials in configuration file in section “monitoring”.

Classes

Module contains points for monitoring.

class luna_configurator.crutches_on_wheels.cow.monitoring.points.BaseMonitoringPoint(eventTime)[source]

Abstract class for points

eventTime

event time as timestamp

Type:

float

abstract property fields: Dict[str, int | float | str]

Get fields from point. We supposed that fields are not indexing data

Returns:

dict with fields.

abstract property tags: Dict[str, int | float | str]

Get tags from point. We supposed that tags are indexing data

Returns:

dict with tags.

class luna_configurator.crutches_on_wheels.cow.monitoring.points.BaseRequestMonitoringPoint(requestId, resource, method, requestTime, service, statusCode)[source]

Base class for point which is associated with requests.

requestId

request id

Type:

str

route

concatenation of a request method and a request resource

Type:

str

service

service name

Type:

str

statusCode

status code of a request response.

Type:

int

property fields: Dict[str, int | float | str]

Get fields

Returns:

“request_id”

Return type:

dict with following keys

property tags: Dict[str, int | float | str]

Get tags

Returns:

“route”, “service”, “status_code”

Return type:

dict with following keys

class luna_configurator.crutches_on_wheels.cow.monitoring.points.DataForMonitoring(tags=<factory>, fields=<factory>)[source]

Class fo storing an additional data for monitoring.

class luna_configurator.crutches_on_wheels.cow.monitoring.points.InfluxFormatter[source]

Format any point filed into inline format

class luna_configurator.crutches_on_wheels.cow.monitoring.points.MonitoringPointInfluxFormatBuilder(name, bases, namespace, /, **kwargs)[source]

Complement point class with explicit fields formatting function for the sake of better performance

To perform type format building target class must have ‘fields’ property return value annotated with TypedDict.

Target class might be configured via ‘Config’ class. Available options:

extraFields: whether class should handle additional fields or not

>>> from typing import TypedDict
>>>
>>> class MonitoringFields(TypedDict):
...     field1: str
...     field2: int
...     field3: float
...     field4: bool
>>>
>>> class BasePoint(BaseMonitoringPoint, metaclass=MonitoringPointInfluxFormatBuilder):
...
...     def __init__(self, fields: dict):
...         self._fields = fields
...
...     @property
...     def tags(self):
...         return {}
...
...     @property
...     def fields(self) -> MonitoringFields:
...         return self._fields
...
>>> class TestPointNoExtra(BasePoint):
...
...     class Config:
...         extraFields = False
...
>>> class TestPointWithExtra(BasePoint):
...     class Config:
...         extraFields = True
>>>
>>>
>>> point1 = TestPointNoExtra({"field1": "data", "field2": 1, "field3": 1.0, "field4": False})
>>> point2 = TestPointWithExtra({"field1": "data", "field2": 1, "field3": 1.0, "field4": False, "extra": True})
>>> print(point1.convertFieldsToInfluxLineProtocol())
field1="data",field2=1i,field3=1.000000,field4=False
>>> print(point2.convertFieldsToInfluxLineProtocol())
field1="data",field2=1i,field3=1.000000,field4=False,extra=True
classmethod buildInfluxFormats(annotations, extraFields)[source]

Build map with influx formats for corresponding fields

Return type:

dict

Parameters:
  • annotations (dict) – point fields type annotations

  • extraFields (bool) – whether point uses extra fields or not

Returns:

dict of fields with their format

static convertFieldsToInfluxLineProtocolNoExtra(point)[source]

Convert point fields into influx line protocol format without extra fields

static convertFieldsToInfluxLineProtocolWithExtra(point)[source]

Convert point fields into influx line protocol format with extra fields

static getTypeFormat(_type, _field, extraFields)[source]

Get field type format

Return type:

str

Parameters:
  • _type (type) – field type

  • _field (str) – field name

  • extraFields (bool) – whether point uses extra fields or not

Returns:

string format of the field

class luna_configurator.crutches_on_wheels.cow.monitoring.points.RequestErrorMonitoringPoint(requestId, resource, method, errorCode, service, requestTime, statusCode, additionalTags=None, additionalFields=None)[source]

Request monitoring point is suspended for monitoring requests errors (error codes)

errorCode

error code

Type:

int

additionalTags

additional tags which was specified for the request

Type:

dict

additionalFields

additional fields which was specified for the request

Type:

dict

property fields: Dict[str, int | float | str]

Get fields.

Returns:

dict with base fields and additional tags

series: str = 'errors'

series “errors”

property tags: Dict[str, int | float | str]

Get tags.

Returns:

dict with base tags, “error_code” and additional tags

class luna_configurator.crutches_on_wheels.cow.monitoring.points.RequestMonitoringPoint(requestId, resource, method, executionTime, requestTime, service, statusCode, additionalTags=None, additionalFields=None)[source]

Request monitoring point is suspended for monitoring all requests and measure a request time etc.

executionTime

execution time

Type:

float

additionalTags

additional tags which was specified for the request

Type:

dict

additionalFields

additional fields which was specified for the request

Type:

dict

property fields: Dict[str, int | float | str]

Get fields.

Returns:

dict with base fields, “execution_time” and additional tags

series: str = 'requests'

series “request”

property tags: Dict[str, int | float | str]

Get tags.

Returns:

dict with base tags and additional tags

luna_configurator.crutches_on_wheels.cow.monitoring.points.getRoute(resource, method)[source]
Return type:

str

Get a request route, concatenation of a request method and a request resource :param resource: resource :param method: method

Returns:

{resource}”

Return type:

“{method}

luna_configurator.crutches_on_wheels.cow.monitoring.points.monitorTime(monitoringData, fieldName)[source]

Context manager for timing execution time.

Parameters:
  • monitoringData – container for saving result

  • fieldName – field name

Module implement base class for monitoring

class luna_configurator.crutches_on_wheels.cow.monitoring.manager.LunaMonitoringManager(settings, name, pluginManager)[source]

Monitoring manager. Sends data to the monitoring storage and monitoring plugins. .. attribute:: settings

monitoring storage settings

async close()[source]

Stop monitoring.

Return type:

None

flushPoints(points)[source]

Flush point to monitoring.

Return type:

None

Parameters:

points – point

async initialize()[source]

Initialize monitoring

Return type:

None

async probe()[source]

Check that we can connect to the monitoring service with current configuration. Can be used without initialization

class luna_configurator.crutches_on_wheels.cow.monitoring.manager.MonitoringSettings(*args, **kwargs)[source]

Monitoring settings protocol

class ClickhouseCredentials[source]

Monitoring credentials

class InfluxCredentials[source]

Monitoring credentials

Module contains classes for sending a data to an influx monitoring.

class luna_configurator.crutches_on_wheels.cow.monitoring.influx_adapter.InfluxMonitoringAdapter(settings, flushingPeriod)[source]

Influx 2.x adaptor. Suspended to send points to an influxdb

bucket

influx bucket name

Type:

str

addPointsToBuffer(points)[source]

Add points to buffer.

Return type:

None

Parameters:

points – points

clearBuffer()[source]

Clear monitoring buffer

Return type:

list[str]

static convertFieldsToInfluxLineProtocol(fields)[source]

Convert field value to influx line protocol format

Return type:

str

Parameters:

fields – dict with values to convert

Returns:

line protocol string

generatePointStr(point)[source]

Generate string from point

Return type:

str

Parameters:

point – point

Returns:

influx line protocol string

async stopMonitoring()[source]

Stop monitoring (cancel all request and stop getting new).

Return type:

None

class luna_configurator.crutches_on_wheels.cow.monitoring.influx_adapter.InfluxSettings(url, bucket, organization, token)[source]

Container for influx 2.x settings

Clickhouse monitoring adaptor

class luna_configurator.crutches_on_wheels.cow.monitoring.clickhouse_adapter.ClickhouseMonitoringAdaptor(settings, flushingPeriod)[source]

Clickhouse adaptor. Suspended to send points to a clickhouse

addPointsToBuffer(points)[source]

Add points to buffer.

Return type:

None

Parameters:

points – points

clearBuffer()[source]

Clear monitoring buffer

Return type:

dict[str, list[dict]]

static generateRecord(point)[source]

Generate monitoring record from point

Return type:

dict

Parameters:

point – point

Returns:

monitoring record

async initializeMonitoring()[source]

Initialize monitoring.

Return type:

None

async stopMonitoring()[source]

Stop monitoring (cancel all request and stop getting new).

Return type:

None

class luna_configurator.crutches_on_wheels.cow.monitoring.clickhouse_adapter.ClickhouseSettings(url, user, password, database)[source]

Clickhouse monitoring settings