Monitoring¶
Data for monitoring¶
We support two database options for collecting monitoring data: Clickhouse and InfluxDB. Depending on the database chosen, the structure and methodology for storing data vary.
Types of processed events
Our monitoring system processes the following event types:
request (any http request)
error (failed http request)
Comparison of data formats for Clickhouse and InfluxDB:
InfluxDB: Each event is presented as a “point” in a time series. The structure of a point includes:
series name
start event time
tags, indexed data in storage, dictionary: keys - string tag names, values - string, integer, float
fields, non indexed data in storage, dictionary: keys - string tag names, values - string, integer, float
Clickhouse: In Clickhouse, the data structure resembles that of a traditional SQL table. Each event is represented as a record, where:
The `time` field contains the record’s creation timestamp;
The `data` field contains a JSON object with all the information that would otherwise be distributed across tags and fields in InfluxDB.
Important: In Clickhouse, there is no differentiation between “tags” and “fields”—all data is consolidated into a single JSON object within the data field.
Monitoring series¶
Requests series.
Triggered on every request. Each point contains a data about corresponding request (execution time and etc).
InfluxDB:
tags
tag name
description
service
always “luna-faces”
route
concatenation of a request method and a request resource (POST:/faces)
status_code
http status code of response
fields
fields
description
request_id
request id
execution_time
request execution time
ClickHouse JSON `data` field Example:
{ "service": "luna-faces", "route": "POST:/faces", "status_code": 204, "request_id": "1536751345,6a5c2191-3e9b-f5a4-fc45-3abf43625c5f", "execution_time": 1.234 }
Errors series.
Triggered on failed request. Each point contains error_code of luna error.
InfluxDB:
tags
tag name
description
service
always “luna-faces”
route
concatenation of a request method and a request resource (POST:/faces)
status_code
http status code of response
error_code
luna error code
fields
fields
description
request_id
request id
ClickHouse JSON `data` field Example:
{ "service": "luna-faces", "route": "POST:/faces", "status_code": 400, "error_code": 13037, "request_id": "1536751345,6a5c2191-3e9b-f5a4-fc45-3abf43625c5f" }
Licensing series.
Triggered if liveness balance is over. Each point contains license check data.
InfluxDB:
tags
tag name
description
service
always “luna-faces”
license_status
license status (“ok”, “warning”, “error”, “exception”)
fields
fields
description
license_faces_limit_rate
the percentage of used faces
warnings
license warning messages
errors
license error messages
ClickHouse JSON `data` field Example:
{ "errors":"License limit exceeded: 480.0 % of the available license limit is used. Please contact VisionLabs for license upgrade or delete redundant faces.", "license_faces_limit_rate":480, "license_status":"error", "service":"luna-faces" }
Every handler can add additional tags or fields. Resource /descriptors/batches adds a data about type of batches.
Database¶
You can refer to documentation for influx database and clickhouse database to compare the databases and choose what benefit your needs more. Note that clickhouse might be the better choice for aggregation You can setup your database credentials in configuration file in section “monitoring”.
Classes¶
Module contains points for monitoring.
- class luna_faces.crutches_on_wheels.cow.monitoring.points.BaseMonitoringPoint(eventTime)[source]¶
Abstract class for points
- eventTime¶
event time as timestamp
- Type:
float
- abstract property fields: Dict[str, int | float | str]¶
Get fields from point. We supposed that fields are not indexing data
- Returns:
dict with fields.
- abstract property tags: Dict[str, int | float | str]¶
Get tags from point. We supposed that tags are indexing data
- Returns:
dict with tags.
- class luna_faces.crutches_on_wheels.cow.monitoring.points.BaseRequestMonitoringPoint(requestId, resource, method, requestTime, service, statusCode)[source]¶
Base class for point which is associated with requests.
- requestId¶
request id
- Type:
str
- route¶
concatenation of a request method and a request resource
- Type:
str
- service¶
service name
- Type:
str
- statusCode¶
status code of a request response.
- Type:
int
- property fields: Dict[str, int | float | str]¶
Get fields
- Returns:
“request_id”
- Return type:
dict with following keys
- property tags: Dict[str, int | float | str]¶
Get tags
- Returns:
“route”, “service”, “status_code”
- Return type:
dict with following keys
- class luna_faces.crutches_on_wheels.cow.monitoring.points.DataForMonitoring(tags=<factory>, fields=<factory>)[source]¶
Class fo storing an additional data for monitoring.
- class luna_faces.crutches_on_wheels.cow.monitoring.points.InfluxFormatter[source]¶
Format any point filed into inline format
- class luna_faces.crutches_on_wheels.cow.monitoring.points.MonitoringPointInfluxFormatBuilder(name, bases, namespace, /, **kwargs)[source]¶
Complement point class with explicit fields formatting function for the sake of better performance
To perform type format building target class must have ‘fields’ property return value annotated with TypedDict.
Target class might be configured via ‘Config’ class. Available options:
extraFields: whether class should handle additional fields or not
>>> from typing import TypedDict >>> >>> class MonitoringFields(TypedDict): ... field1: str ... field2: int ... field3: float ... field4: bool >>> >>> class BasePoint(BaseMonitoringPoint, metaclass=MonitoringPointInfluxFormatBuilder): ... ... def __init__(self, fields: dict): ... self._fields = fields ... ... @property ... def tags(self): ... return {} ... ... @property ... def fields(self) -> MonitoringFields: ... return self._fields ... >>> class TestPointNoExtra(BasePoint): ... ... class Config: ... extraFields = False ... >>> class TestPointWithExtra(BasePoint): ... class Config: ... extraFields = True >>> >>> >>> point1 = TestPointNoExtra({"field1": "data", "field2": 1, "field3": 1.0, "field4": False}) >>> point2 = TestPointWithExtra({"field1": "data", "field2": 1, "field3": 1.0, "field4": False, "extra": True}) >>> print(point1.convertFieldsToInfluxLineProtocol()) field1="data",field2=1i,field3=1.000000,field4=False >>> print(point2.convertFieldsToInfluxLineProtocol()) field1="data",field2=1i,field3=1.000000,field4=False,extra=True
- classmethod buildInfluxFormats(annotations, extraFields)[source]¶
Build map with influx formats for corresponding fields
- Parameters:
annotations (dict) – point fields type annotations
extraFields (bool) – whether point uses extra fields or not
- Return type:
dict
- Returns:
dict of fields with their format
- static convertFieldsToInfluxLineProtocolNoExtra(point)[source]¶
Convert point fields into influx line protocol format without extra fields
- class luna_faces.crutches_on_wheels.cow.monitoring.points.RequestErrorMonitoringPoint(requestId, resource, method, errorCode, service, requestTime, statusCode, additionalTags=None, additionalFields=None)[source]¶
Request monitoring point is suspended for monitoring requests errors (error codes)
- errorCode¶
error code
- Type:
int
- additionalTags¶
additional tags which was specified for the request
- Type:
dict
- additionalFields¶
additional fields which was specified for the request
- Type:
dict
- property fields: Dict[str, int | float | str]¶
Get fields.
- Returns:
dict with base fields and additional tags
-
series:
str
= 'errors'¶ series “errors”
- property tags: Dict[str, int | float | str]¶
Get tags.
- Returns:
dict with base tags, “error_code” and additional tags
- class luna_faces.crutches_on_wheels.cow.monitoring.points.RequestMonitoringPoint(requestId, resource, method, executionTime, requestTime, service, statusCode, additionalTags=None, additionalFields=None)[source]¶
Request monitoring point is suspended for monitoring all requests and measure a request time etc.
- executionTime¶
execution time
- Type:
float
- additionalTags¶
additional tags which was specified for the request
- Type:
dict
- additionalFields¶
additional fields which was specified for the request
- Type:
dict
- property fields: Dict[str, int | float | str]¶
Get fields.
- Returns:
dict with base fields, “execution_time” and additional tags
-
series:
str
= 'requests'¶ series “request”
- property tags: Dict[str, int | float | str]¶
Get tags.
- Returns:
dict with base tags and additional tags
- luna_faces.crutches_on_wheels.cow.monitoring.points.getRoute(resource, method)[source]¶
Get a request route, concatenation of a request method and a request resource :type resource:
str
:param resource: resource :type method:str
:param method: method- Returns:
{resource}”
- Return type:
“{method}
- luna_faces.crutches_on_wheels.cow.monitoring.points.monitorTime(monitoringData, fieldName)[source]¶
Context manager for timing execution time.
- Parameters:
monitoringData (
DataForMonitoring
) – container for saving resultfieldName (
str
) – field name
Module implement base class for monitoring
- class luna_faces.crutches_on_wheels.cow.monitoring.manager.LunaMonitoringManager(settings, name, pluginManager)[source]¶
Monitoring manager. Sends data to the monitoring storage and monitoring plugins. .. attribute:: settings
monitoring storage settings
- flushPoints(points)[source]¶
Flush point to monitoring.
- Parameters:
points (
Iterable
[TypeVar
(TPoint
, bound=BaseMonitoringPoint
)]) – point- Return type:
None
- class luna_faces.crutches_on_wheels.cow.monitoring.manager.MonitoringSettings(*args, **kwargs)[source]¶
Monitoring settings protocol
Module contains classes for sending a data to an influx monitoring.
- class luna_faces.crutches_on_wheels.cow.monitoring.influx_adapter.InfluxMonitoringAdapter(settings, flushingPeriod)[source]¶
Influx 2.x adaptor. Suspended to send points to an influxdb
- bucket¶
influx bucket name
- Type:
str
- addPointsToBuffer(points)[source]¶
Add points to buffer.
- Parameters:
points (
Iterable
[BaseMonitoringPoint
]) – points- Return type:
None
- static convertFieldsToInfluxLineProtocol(fields)[source]¶
Convert field value to influx line protocol format
- Parameters:
fields (
dict
) – dict with values to convert- Return type:
str
- Returns:
line protocol string
- generatePointStr(point)[source]¶
Generate string from point
- Parameters:
point (
BaseMonitoringPoint
) – point- Return type:
str
- Returns:
influx line protocol string
- class luna_faces.crutches_on_wheels.cow.monitoring.influx_adapter.InfluxSettings(url, bucket, organization, token)[source]¶
Container for influx 2.x settings
Clickhouse monitoring adaptor
- class luna_faces.crutches_on_wheels.cow.monitoring.clickhouse_adapter.ClickhouseMonitoringAdaptor(settings, flushingPeriod)[source]¶
Clickhouse adaptor. Suspended to send points to a clickhouse
- addPointsToBuffer(points)[source]¶
Add points to buffer.
- Parameters:
points (
Iterable
[BaseMonitoringPoint
]) – points- Return type:
None
- static generateRecord(point)[source]¶
Generate monitoring record from point
- Parameters:
point (
BaseMonitoringPoint
) – point- Return type:
dict
- Returns:
monitoring record