Monitoring

Data for monitoring

Now we monitor two types of events for monitoring: request and error. First type is all requests, second is failed requests only. Every event is a point in the time series. The point is represented as union of the following data:

  • series name (now requests and errors)

  • start request time

  • tags, indexed data in storage, dictionary: keys - string tag names, values - string, integer, float

  • fields, non indexed data in storage, dictionary: keys - string tag names, values - string, integer, float

‘Requests’ series. Triggered on every request. Each point contains a data about corresponding request (execution time and etc).

  • tags

    tag name

    description

    service

    always “luna-events”

    route

    concatenation of a request method and a request resource (POST:/events)

    status_code

    http status code of response

  • fields

    fields

    description

    request_id

    request id

    execution_time

    request execution time

‘Errors’ series. Triggered on failed request. Each point contains error_code of luna error.

  • tags

    tag name

    description

    service

    always “luna-events”

    route

    concatenation of a request method and a request resource (POST:/events)

    status_code

    http status code of response

    error_code

    luna error code

  • fields

    fields

    description

    request_id

    request id

Every handler can add additional tags or fields.

‘event_copy’ series. Triggered on events copy into database. Each point contains event_count and copy_time.

  • tags

    tag name

    description

    service

    always “luna-events”

    status

    events copy execution status: 1 means success, 0 - fail

  • fields

    fields

    description

    copy_time

    events copy time

    event_count

    events count

Database

Monitoring is implemented as data sending to an influx database. You can setup your database credentials in configuration file in section “monitoring”.

Classes

Module contains points for monitoring’s.

class luna_events.crutches_on_wheels.monitoring.points.BaseMonitoringPoint(eventTime)

Abstract class for points

eventTime

event time as timestamp

Type:

float

abstract property fields: Dict[str, Union[int, float, str]]

Get tags from point. We supposed that fields are not indexing data

Return type:

Dict[str, Union[int, float, str]]

Returns:

dict with fields.

abstract property tags: Dict[str, Union[int, float, str]]

Get tags from point. We supposed that tags are indexing data

Return type:

Dict[str, Union[int, float, str]]

Returns:

dict with tags.

class luna_events.crutches_on_wheels.monitoring.points.BaseRequestMonitoringPoint(requestId, resource, method, requestTime, service, statusCode)

Base class for point which is associated with requests.

requestId

request id

Type:

str

route

concatenation of a request method and a request resource

Type:

str

service

service name

Type:

str

requestTime

a request processing start timestamp

Type:

float

statusCode

status code of a request response.

Type:

int

property fields: Dict[str, Union[int, float, str]]

Get fields

Returns:

“request_id”

Return type:

dict with following keys

property tags: Dict[str, Union[int, float, str]]

Get tags

Returns:

“route”, “service”, “status_code”

Return type:

dict with following keys

class luna_events.crutches_on_wheels.monitoring.points.DataForMonitoring(tags=<factory>, fields=<factory>)

Class fo storing an additional data for monitoring.

class luna_events.crutches_on_wheels.monitoring.points.RequestErrorMonitoringPoint(requestId, resource, method, errorCode, service, requestTime, statusCode, additionalTags=None, additionalFields=None)

Request monitoring point is suspended for monitoring requests errors (error codes)

errorCode

error code

Type:

int

additionalTags

additional tags which was specified for the request

Type:

dict

additionalFields

additional fields which was specified for the request

Type:

dict

property fields: Dict[str, Union[int, float, str]]

Get fields.

Return type:

Dict[str, Union[int, float, str]]

Returns:

dict with base fields and additional tags

series: str = 'errors'

series “errors”

property tags: Dict[str, Union[int, float, str]]

Get tags.

Return type:

Dict[str, Union[int, float, str]]

Returns:

dict with base tags, “error_code” and additional tags

class luna_events.crutches_on_wheels.monitoring.points.RequestMonitoringPoint(requestId, resource, method, executionTime, requestTime, service, statusCode, additionalTags=None, additionalFields=None)

Request monitoring point is suspended for monitoring all requests and measure a request time and etc.

executionTime

execution time

Type:

float

additionalTags

additional tags which was specified for the request

Type:

dict

additionalFields

additional fields which was specified for the request

Type:

dict

property fields: Dict[str, Union[int, float, str]]

Get fields.

Return type:

Dict[str, Union[int, float, str]]

Returns:

dict with base fields, “execution_time” and additional tags

series: str = 'requests'

series “request”

property tags: Dict[str, Union[int, float, str]]

Get tags.

Return type:

Dict[str, Union[int, float, str]]

Returns:

dict with base tags and additional tags

luna_events.crutches_on_wheels.monitoring.points.getRoute(resource, method)

Get a request route, concatenation of a request method and a request resource :type resource: str :param resource: resource :type method: str :param method: method

Returns:

{resource}”

Return type:

“{method}

luna_events.crutches_on_wheels.monitoring.points.monitorTime(monitoringData, fieldName)

Context manager for timing execution time.

Parameters:
  • monitoringData (DataForMonitoring) – container for saving result

  • fieldName (str) – field name

Module implement base class for monitoring

class luna_events.crutches_on_wheels.monitoring.base_monitoring.BaseLunaMonitoring

Base class for monitoring

abstract flushPoints(points)

Flush point to monitoring.

Parameters:

points (List[BaseMonitoringPoint]) – point

Return type:

None

class luna_events.crutches_on_wheels.monitoring.base_monitoring.LunaRequestInfluxMonitoring(credentials, host='localhost', port=8086, ssl=False, flushingPeriod=1)

Class for sending data which is associated with request to influx .. attribute:: settings

influxdb settings

type:

InfluxSettings

flushingPeriod

period of flushing points (in seconds)

Type:

int

flushPoints(points)

Flush point to influx.

Parameters:

points (Iterable[BaseMonitoringPoint]) – point

Return type:

None

initializeMonitoring()

Initialize monitoring

Return type:

None

static prepareSettings(credentials, host, port, ssl)

Prepare influxdb settings :type credentials: ~T_INFLUX_CREDENTIALS :param credentials: database credentials :type host: str :param host: influx host :type port: int :param port: influx port :type ssl: bool :param ssl: use or not ssl for connecting to influx

Return type:

InfluxSettings

Returns:

influxdb settings container

async stopMonitoring()

Stop monitoring.

Return type:

None

Module contains classes for sending a data to an influx monitoring.

class luna_events.crutches_on_wheels.monitoring.influx_adapter.BaseMonitoringAdapter(settings, flushingPeriod)

Base monitoring adapter.

client

influx client

Type:

InfluxDBClient

backgroundScheduler

runner for periodic flushing monitoring points

Type:

AsyncIOScheduler

_buffer

list of buffering points which is waiting sending to influx

Type:

List[BaseRequestMonitoringPoint]

flushingPeriod

period of flushing points (in seconds)

Type:

float

logger

logger

Type:

Logger

_influxSettings

current influx settings

Type:

InfluxSettings

_job

sending monitoring data job

Type:

Job

addPointsToBuffer(points)

Add points to buffer.

Parameters:

points (Iterable[BaseMonitoringPoint]) – points

Return type:

None

static convertPointToDict(point)

Convert point to influx client point :type point: BaseMonitoringPoint :param point: point

Returns:

  • ‘time’ - timestamp in nanoseconds

  • ’measurement’ - time series

  • ’tags’ - dict of tags (values are str)

  • ’fields’ - dict of fields

Return type:

dict

abstract static getClient(settings)

Prepare influx client.

initializeScheduler()

Start the loop for sending data from the buffer to monitoring.

Return type:

None

stopScheduler()

Stop monitoring.

Return type:

None

updateFlushingPeriod(newPeriod)

Update flushing period :type newPeriod: int :param newPeriod: new period

class luna_events.crutches_on_wheels.monitoring.influx_adapter.InfluxMonitoringAdapter(settings, flushingPeriod)

Influx 2.x adaptor. Suspended to send points to an influxdb

client

influx 2.x client

Type:

InfluxDBClient

bucket

influx bucket name

Type:

str

static getClient(settings)

Initialize influx 2.x client. :type settings: InfluxSettings :param settings: influx 2.x settings

Return type:

WriteApi

Returns:

influx 2.0 write api

initializeMonitoring()

Initialize monitoring.

Return type:

None

stopMonitoring()

Stop monitoring (cancel all request and stop getting new).

Return type:

None

class luna_events.crutches_on_wheels.monitoring.influx_adapter.InfluxSettings(url, bucket, organization, token, ssl)

Container for influx 2.x settings