
VisionLabs LUNA PLATFORM 5
Deployment using Docker Compose

v.5.57.0

Contents

Default ports for services 4

Configuration names for services 5

System requirements 6
Processors . 6

CPU . 6
GPU . 6

Third-party applications . 7

Introduction 8

1 Before launch 10
1.1 Distribution unpacking . 11
1.2 Symbolic link creation . 11
1.3 SELinux and Firewall . 11
1.4 License activation . 12

1.4.1 Actions from License activation manual . 12
1.4.2 Specify HASP license settings . 12
1.4.3 Specify Guardant license settings . 13

1.5 Docker installation . 14
1.6 Docker Compose installation . 14
1.7 Choose logging method . 15

1.7.1 Logging to stdout . 15
1.7.2 Logging to file . 15

1.8 Calculations using GPU . 16
1.9 Login to registry . 17

2 LUNA PLATFORM launch 18
2.1 Launch services . 18

2.1.1 Run Remote SDK utilizing GPU . 18
2.2 Account creation using API service . 20
2.3 Activate GC task schedule . 21
2.4 Enable Grafana and Loki . 22

3 Additional information 23
3.1 Docker commands . 24

3.1.1 Show containers . 24
3.1.2 Copy files to container . 24
3.1.3 Enter container . 24

VisionLabs B.V. 2 / 29

3.1.4 Images names . 24
3.1.5 Delete image . 24
3.1.6 Stop container . 25
3.1.7 Delete container . 25

3.2 Docker log rotation . 27
3.3 Logging to server . 28

3.3.1 Create logs directory . 28
3.3.2 Logging activation . 28

VisionLabs B.V. 3 / 29

Default ports for services

Service name Port

LUNA PLATFORM API 5000

LUNA PLATFORM Admin 5010

LUNA PLATFORM Image Store 5020

LUNA PLATFORM Faces 5030

LUNA PLATFORM Events 5040

LUNA PLATFORM Tasks 5050

LUNA PLATFORM Tasks Worker 5051

LUNA PLATFORM Configurator 5070

LUNA PLATFORM Sender 5080

LUNA PLATFORM Handlers 5090

LUNA PLATFORM Python Matcher 5100

LUNA PLATFORM Licenses 5120

LUNA PLATFORM Backport 4 5130

LUNA PLATFORM Backport 3 5140

LUNA PLATFORM Accounts 5170

LUNA PLATFORM Lambda 5210

LUNA PLATFORM Remote SDK 5220

LUNA PLATFORM 3 User Interface 4100

LUNA PLATFORM 4 User Interface 4200

Oracle DB 1521

PostgreSQL 5432

Redis DB 6379

InfluxDB 8086

Grafana 3000

VisionLabs B.V. 4 / 29

Configuration names for services

The table below includes the service names in the Configurator service. Use these parameters to
configure your services.

Service Service name in Configurator

API luna-api

Licenses luna-licenses

Faces luna-faces

Image Store luna-image-store

Accounts luna-accounts

Tasks luna-tasks

Events luna-events

Sender luna-sender

Admin luna-admin

Handlers luna-handlers

Lambda luna-lambda

Python Matcher luna-python-matcher

Backport 3 luna-backport3

Backport 4 luna-backport4

Settings for the Configurator service are set in its configuration file.

VisionLabs B.V. 5 / 29

System requirements

LUNA PLATFORM is delivered in Docker containers and can be launched on CPU and GPU. Docker images
of the LP containers are required for the installation. Internet connection is required on the server for
Docker images download, or the images should be downloaded on any other device and moved to the
server. It is required to manually specify login and password for Docker images downloading.

LUNA PLATFORM can be launched with a Docker Compose script.

The following Docker and Docker Compose versions are recommended for LP utilization:

• Docker: 20.10.8 (to manually launch containers)
• Docker Compose: 1.29.2 (to automatically launch containers)

Launching LUNA PLATFORM containers is officially supported on CentOS 7/8. Correct work on other
systems is not guaranteed. All the procedures in the installation manual are described for CentOS 7.

LUNA PLATFORM service containers use the CentOS Linux 8.3.2011 operating system.

Processors

The configuration below guarantees software package minimum power operating and cannot be used
for the production system. System requirements for the production system are calculated based on the
intended system load.

CPU

The following minimum system requirements should be met for the LUNA PLATFORM software package
installation:

• CPU Intel, 4 physical cores minimum with clock frequency 2.0 GHz or higher. AVX2 instruction set
support is required for CPU.

• RAM DDR3 (DDR4 recommended), 8 Gb or higher.

• Free storage size must be 80 Gb or higher.

It is recommended using SSD for databases and Image Store service.

GPU

For GPU acceleration an NVIDIA GPU is required. The following architectures are supported:

• Pascal or newer.

Compute Capability 6.1 or higher is required.

A minimum of 6GB or dedicated video RAM is required. 8 GB or more VRAM recommended.

VisionLabs B.V. 6 / 29

CUDA of version 11.4 should be installed on the server with the Remote SDK service. The recommended
NVIDIA driver is r470.

Third-party applications

The following third-party services are used by default with LUNA PLATFORM 5.

• PostgreSQL is used as a default database for Faces, Configurator, Events, Handlers, Lambda, Tasks,
Admin, and Backport3 services.

You can also use theOracle database instead of PostgreSQL for all services except the Events service.
The installation and configuration of Oracle are not described in this manual.

• Redis DB is used for Faces and Sender services.

• InfluxDB is used for monitoring.

Balancers and other software can be usedwhen scaling the system to provide fail-safety. The installation
guide provides recommendations on launching Nginx container with a configuration file to balance
requests to the API, Faces, Image Store, and Events services.

The following third-party applications versions are recommended for LP launching:

• PostgreSQL: 16
• Oracle: 21c (if used instead PostgreSQL)
• Redis: 7.2
• InfluxDB: 2.0.8-alpine
• Grafana: 8.5.20 (optional)
• Grafana Loki: 2.7.1 (optional)
• Nginx: 1.17.4-alpine (optional)

These versions were tested by VisionLabs specialists. Newer versions can be used if needed, but
they are not guaranteed to work.

It is recommended to use the unzip package to unpack the distribution. The command to download the
package is given in the installation manual.

If you need to use an external database and the VLMatch function, you need to download additional
dependencies described in the “External DB” section of the installation manual.

PostgreSQL, Redis, InfluxDB, Grafana and Nginx docker containers can be downloaded from the
VisionLabs registry.

VisionLabs B.V. 7 / 29

Introduction

This document describes the installation and usage of Docker Compose for LUNA PLATFORM
deployment.

Docker Compose is used for automated containers deployment. The Docker Compose scenario from this
distribution is used for deploying the LUNA PLATFORM services on a single server.

Touse theDocker Compose script, a LUNAPLATFORMnetwork license is required. The license is provided
by VisionLabs on request separately from the delivery. The license key is created using the fingerprint of
the system. This fingerprint is created based on information about the hardware characteristics of the
server. Thus, the received licensekeywillworkonly on the sameserver fromwhich the system fingerprint
was obtained. LUNA PLATFORM can be activated using one of two utilities - HASP or Guardant. The
section “Activate license” provides instructions for activating the license key for eachmethod.

It is considered that installation is performed on the server with CentOS OS, where LP was not installed.

Docker images of the LP containers are required for the installation. Internet connection is required
on the server for Docker images download, or the images should be downloaded on any other device
and moved to the server. It is required to manually specify login and password for Docker images
downloading.

Firewall and SELinux should be manually configured on the server by the administrator. Their
configuration is not described in this document.

No data backup or databases replication is implemented for LP data in this installation.

This document includes an example of LUNA PLATFORM deployment using the Compose script example.
It implements LUNA PLATFORM minimum power operating for demonstration purposes and cannot be
used for the production system.

See the “docker-compose.yml” file and other files in the “example-docker” directory for the information
about launched services and performed actions.

It is recommended to use orchestration services for the commercial usage of LP. Their utilization is not
described in this manual.

This document also contains instructions for automatically launching LUNA Dashboards (Grafana) and
Loki (see the “Enable Grafana and Loki” section).

For a successful launch, youneed toperform theactions from the sections “Before launch” and “Platform
launch”.

Additional notes about Docker Compose script. The script:

• Is tested using the default services configurations.

• Is not intended to be used for LP scaling:

– It is not used for the deployment of LP services on several servers.

VisionLabs B.V. 8 / 29

– It is not used for deployment and balancing of several LP services on a single service.

• Launches default databases and does not include a build-in possibility to change the databases
used.

• Supports GPU utilization for LP calculations.

• Does not provide the possibility to use external databases already installed on the server.

• Does not performmigrations from previous LP versions and updates from the previous LP build.

• Does not run the services Backport 3, Backport 4, User Interface 3, User Interface 4.

You can write your scenario that deploys and configures all the required services. This document does
not include information about scenario creation or tutorial for Docker usage. Please refer to the Docker
documentation to find more information about Docker and Docker Compose:

https://docs.docker.com

All the provided commands should be executed using the Bash shell (when you launch commands
directly on the server) or in a program for working with network protocols (when you remotely
connect to the server), for example, Putty.

A license file is required for LUNA PLATFORM activation. The file is provided by VisionLabs separately
upon request.

All actions described in this manual must be performed by the root user. This document does not
describe the creation of the user with administrator privileges and the following installation by this user.

VisionLabs B.V. 9 / 29

https://docs.docker.com

1 Before launch

Make sure that you are the root user before launch!

Before launching the LUNA PLATFORM, youmust perform the following actions:

1. Unpack the LUNA PLATFORM distribution.
2. Create symbolic link.
3. Configure SELinux and Firewall.
4. Activate license.
5. Install Docker.
6. Install Docker Compose.
7. Choose logging method.
8. Set up GPU computing if you plan to use GPU.
9. Login to VisionLabs registry.

VisionLabs B.V. 10 / 29

1.1 Distribution unpacking

The distribution package is an archive luna_v.5.57.0, where v.5.57.0 is a numerical identifier, describing
the current LUNA PLATFORM version.

The archive includes configuration files, required for installation and exploitation. It does not include
Docker images for the services. They should be downloaded from the Internet.

Move the distribution package to the directory on your server before the installation. For example, move
the files to /root/ directory. The directory should not contain any other distribution or license files
except the target ones.

Move the distribution to the created directory.

mv /root/luna_v.5.57.0.zip /var/lib/luna

Install the unzip archiver if it is necessary.

yum install -y unzip

Go to the folder with distribution.

cd /var/lib/luna

Unzip files.

unzip luna_v.5.57.0.zip

1.2 Symbolic link creation

Create a symbolic link.

The link indicates that the current version of the distribution file is used to run LUNA PLATFORM.

ln -s luna_v.5.57.0 current

1.3 SELinux and Firewall

Youmust configure SELinux and Firewall so that they do not block LUNA PLATFORM services.

VisionLabs B.V. 11 / 29

SELinux and Firewall configurations are not described in this guide.

If SELinux and Firewall are not configured, the installation cannot be performed.

1.4 License activation

To activate/upgrade the license, follow these steps:

• Follow the steps from license activation manual.
• Set settings for HASP license or Guardant license before starting Licenses container.

1.4.1 Actions from License activationmanual

Open the license activation manual and follow the necessary steps.

Note: This action is mandatory. The license will not work without following the steps to activate the
license from the corresponding manual.

1.4.2 Specify HASP license settings

For theHASPkey, youneed to specify the IPaddressof the licensing server. Theaddress is set in thedump
file “platform_settings.json”. The contents of the default settings will be overwritten by the contents of
this file when the Configurator service starts.

Open the “platform_settings.json” file.

vi /var/lib/luna/current/extras/conf/platform_settings.json

Set the server IP address with your HASP key in the “server_address” field.

{
"value": {

"vendor": "hasp",
"server_address": "127.0.0.1"

},
"description":"License vendor config",
"name":"LICENSE_VENDOR",
"tags":[]

},

Save the file.

VisionLabs B.V. 12 / 29

If the license is activated using the HASP key, then two parameters “vendor” and “server_address”
must be specified. If you want to change the HASP protection to Guardant, then you need to add
the “license_id” field.

1.4.3 Specify Guardant license settings

For the Guardant key, you need to specify the IP address of the licensing server and the license ID. The
settings are set in the dump file “platform_settings.json”. The contents of the standard settings will be
overwritten by the contents of this file at the launch stage of the Configurator service.

Open the file “platform_settings.json”.

vi /var/lib/luna/current/extras/conf/platform_settings.json

Enter the following data:

• IP address of the server with your Guardant key in the “server_address” field.
• License ID in the format 0x<your_license_id>, obtained in the section “Save license ID” of
license activation manual, in the “license_id” field.

{
"value": {

"vendor": "guardant",
"server_address": "127.0.0.1",
"license_id": "0x92683BEA"

},
"description":"License vendor config",
"name":"LICENSE_VENDOR",
"tags":[]

},

Save the file.

If the license is activated using the Guardant key, then three parameters “vendor”, “server_address”
and “license_id” must be specified. If you want to change the Guardant protection to HASP, then
you need to delete the “license_id” field.

VisionLabs B.V. 13 / 29

1.5 Docker installation

The Docker installation is described in the official documentation

You do not need to install Docker if you already have an installed Docker 20.10.8 on your server. Not
guaranteed to work with higher versions of Docker.

Quick installation commands are listed below.

Check the official documentation for updates if you have any problems with the installation.

Install dependencies.

yum install -y yum-utils device-mapper-persistent-data lvm2

Add repository.

yum-config-manager --add-repo https://download.docker.com/linux/centos/
docker-ce.repo

Install Docker.

yum -y install docker-ce docker-ce-cli containerd.io

Launch Docker.

systemctl start docker

systemctl enable docker

Check Docker status.

systemctl status docker

1.6 Docker Compose installation

Install Docker Compose.

curl -L "https://github.com/docker/compose/releases/download/1.29.2/docker-
compose-$(uname -s)-$(uname -m)" -o /usr/local/bin/docker-compose

VisionLabs B.V. 14 / 29

https://docs.docker.com/engine/install/centos/

chmod +x /usr/local/bin/docker-compose

ln -s /usr/local/bin/docker-compose /usr/bin/docker-compose

1.7 Choose loggingmethod

There are twomethods to output logs in LUNA PLATFORM:

• Standard log output (stdout).
• Log output to a file.

Log output settings are set in the settings of each service in the <SERVICE_NAME>_LOGGER section.

If necessary, you can use both methods of displaying logs.

For more information about the LUNA PLATFORM logging system, see the “Logging” section in the
administrator manual.

1.7.1 Logging to stdout

This method is used by default and requires no further action.

It is recommended to configure Docker log rotation to limit log sizes (see “Docker log rotation”).

1.7.2 Logging to file

Note: When you enable saving logs to a file, you should remember that logs occupy a certain place in the
storage, and the process of logging to a file negatively affects system performance.

To use this method, you need to perform the following additional actions:

• Before launching the services: Create directories for logs on the server.
• After launching the services: Activate log recording and set the location of log storage inside LP
service containers.

• During the launch of services: Configure synchronization of log directories in the container with
logs on the server using the volume argument at the start of each container.

Synchronizationof logdirectories is already configured in theDockerCompose script, youonlyneed
to create directories and activate logging.

See the instructions for enabling logging to files in the “Logging to server” section.

VisionLabs B.V. 15 / 29

1.8 Calculations using GPU

You can use GPU for the general calculations performed by Remote SDK.

Skip this section if you are not going to utilize GPU for your calculations.

Docker Compose v1.28.0+ is required to use the GPU.

You need to install NVIDIA Container Toolkit to use GPU with Docker containers. The example of the
installation is given below.

distribution=$(. /etc/os-release;echo IDVERSION_ID)

curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-
docker.repo | tee /etc/yum.repos.d/nvidia-docker.repo

Install the nvidia-docker2 package (and dependencies) after updating the package listing:

yum clean expire-cache

yum install -y nvidia-docker2

systemctl restart docker

Check the NVIDIA Container toolkit operating by running a base CUDA container (this container is not
provided in the LP distribution and should be downloaded from the Internet):

docker run --rm --gpus all nvidia/cuda:11.4.3-base-centos7 nvidia-smi

Next, you should additionally add a deploy section to the remote-sdk field in the docker-compose.
yml file.

vi /var/lib/luna/current/example-docker/docker-compose.yml

remote-sdk:
image: ${DOCKER_URL}/luna-remote-sdk:${LUNA_REMOTE_SDK_VER}
deploy:

resources:
reservations:

VisionLabs B.V. 16 / 29

devices:
- driver: nvidia

count: all
capabilities: [gpu]

restart: always
...

Here:

• driver - This field specifies the driver for the reserved device(s).

• count - This field specifies the number of GPU devices that should be reserved (providing the host
holds that number of GPUs).

• capabilities - This field expresses both generic and driver specific capabilities. It must be set,
otherwise, an error will be returned when deploying the service.

See the Docker documentation for additional information.

Attributes extraction on the GPU is engineered for maximum throughput. The input images are
processed in batches. This reduces computation cost per image but does not provide the shortest
latency per image.

GPU acceleration is designed for high load applications where request counts per second
consistently reach thousands. It won’t be beneficial to use GPU acceleration in non-extensively
loaded scenarios where latency matters.

1.9 Login to registry

When launching containers, you should specify a link to the image required for the container launching.
This imagewill be downloaded from the VisionLabs registry. Before that, you should login to the registry.

Login and password can be requested from the VisionLabs representative.

Enter login <username>.

docker login dockerhub.visionlabs.ru --username <username>

After running the command, you will be prompted for a password. Enter password.

In the docker login command, you can enter the login and password at the same time, but this
does not guarantee security because the password can be seen in the command history.

VisionLabs B.V. 17 / 29

https://docs.docker.com/compose/gpu-support/#enabling-gpu-access-to-service-containers

2 LUNA PLATFORM launch

The launch of Docker Compose is performed using a script “start_platform.sh”, located in the “example-
docker” directory.

If necessary, you canmodify the Docker Compose startup script for user needs. Modification of the
script is intended only for experienced users.

When the script is run, a default account of type user will be created with login user@mail.com and
password password. Instructions for creating your own account are given below.

See detailed information about accounts in the “Accounts, tokens and authorization types” section
of the administrator manual.

2.1 Launch services

Go to the Docker Compose folder.

cd /var/lib/luna/current/example-docker

Make sure that LP containers are not launched before executing the script. An error will occur if you
try to run a container with the same name as an existing container. If one or several LP containers
are launched, you should stop them using the docker container rm -f <container_name>
command. To stop all the containers, use docker container rm -f $(docker container
ls -aq).

Launch Docker Compose.

Youmust be logged in the VisionLabs registry (see section “Login to registry”).

./start_platform.sh

Deploying containers takes some time. You have to wait until all the services are running before working
with LUNA PLATFORM.

Check the state of launched Docker containers.

docker ps

2.1.1 Run Remote SDK utilizing GPU

The Remote SDK service does not utilize GPU by default. If you are going to use the GPU, then you should
enable its use for the Remote SDK service in the Configurator service.

VisionLabs B.V. 18 / 29

If you need to use the GPU for all estimators and detectors at once, then you need to use the
“global_device_class” parameter in the “LUNA_REMOTE_SDK_RUNTIME_SETTINGS” section. All
estimators and detectors will use the value of this parameter if the “device_class” parameter of their
settings like ”LUNA_REMOTE_SDK_<estimator-or-detector-name>_SETTINGS.runtime_settings” is set
to “global” (by default for all estimators and detectors).

If you need to use the GPU for a specific estimator or detector, then you need to use the “device_class”
parameter in sections like ”LUNA_REMOTE_SDK_<estimator/detector-name>_SETTINGS.runtime_settings”.

See section “Calculations using GPU” for additional requirements for GPU utilization.

VisionLabs B.V. 19 / 29

2.2 Account creation using API service

Note: When you run the Docker Compose script, an account of type “user” is automatically created
with login “user@mail.com” and password “password”. Instructions for creating an account with your
authentication data are given below.

The account is created using an HTTP request to the “create account” resource of the API service.

You can also create an account using the Admin service. This method requires an existing login and
password (or the default login and password) and enables you to create an “admin” account. See
the “Admin service” section of the administrator manual for details.

To create the account using a request to the API service, you need to provide the following mandatory
data:

• “login” — Email address.
• “password” — Password.
• “account_type” — Account type (“user” or “advanced_user”).

Create the account using your authentication details.

Example of CURL-request to the “create account” resource:

curl --location --request POST 'http://127.0.0.1:5000/6/accounts' \
--header 'Content-Type: application/json' \
--data '{
"login": "user@mail.com",
"password": "password",
"account_type": "user",
"description": "description"

}'

It is necessary to replace the authentication data from the example with your own.

To work with tokens, youmust have an account.

VisionLabs B.V. 20 / 29

2.3 Activate GC task schedule

Before you start working with the LUNA PLATFORM, you can create a schedule for the Garbage collection
task.

To do this, make a “create tasks schedule” request to the API service, specifying the necessary rules for
the schedule.

An example of a schedule creation command for an account created at the stage of creating an account
using the API service is given below.

The example sets a schedule for the Garbage collection task for events older than 30 days with the
removal of the samples and the source images. The task will be repeated once a day at 05:30 am.

curl --location --request POST 'http://127.0.0.1:5000/6/tasks/schedules' \
--header 'Authorization: Basic dXNlckBtYWlsLmNvbTpwYXNzd29yZA==' \
--header 'Content-Type: application/json' \
--data '{

"task": {
"task_type": 4,
"content": {

"target": "events",
"filters": {

"create_time__lt": "now-30d"
},
"remove_samples": true,
"remove_image_origins": true

}
},
"trigger": {"cron": "30 5 * * *", "cron_timezone": "utc"},
"behaviour": {"start_immediately": false, "create_stopped": false}

}'

If necessary, you can create a schedule without automatically activating it. To do this, specify the
parameter “create_stopped”: “true”. In this case, after creating the schedule, it must be activated
manually using the “action” = “start” parameter of the “patch tasks schedule” request.

For more information, see the “Running scheduled tasks” section of the administrator manual.

VisionLabs B.V. 21 / 29

2.4 Enable Grafana and Loki

Note: Follow these steps if you want to use LUNA Dashboards (Grafana) and Loki. Otherwise, skip this
step.

To use Grafana and Loki, you can execute a script start_logging.sh, launching the LUNADashboards,
Loki and Promtail service. This script must be executed after executing themain Docker Compose script.

See detailed information about monitoring visualization in the “LUNA Dashboards” and “Grafana
Loki” section of the administrator manual.

Go to the Docker Compose folder.

cd /var/lib/luna/current/example-docker

Launch Docker Compose.

./start_logging.sh

Check the state of launched Docker containers.

docker ps

VisionLabs B.V. 22 / 29

3 Additional information

This section provides the following additional information:

• Useful commands for working with Docker.
• Actions to enable saving LP service logs to files.
• Configuring Docker log rotation.

VisionLabs B.V. 23 / 29

3.1 Docker commands

3.1.1 Show containers

To show the list of launched Docker containers use the command:

docker ps

To show all the existing Docker containers use the command:

docker ps -a

3.1.2 Copy files to container

You can transfer files into the container. Use the docker cp command to copy a file into the container.

docker cp <file_location> <container_name>:<folder_inside_container>

3.1.3 Enter container

You can enter individual containers using the following command:

docker exec -it <container_name> bash

To exit the container, use the command:

exit

3.1.4 Images names

You can see all the names of the images using the command:

docker images

3.1.5 Delete image

If you need to delete an image:

• Run the docker images command.

VisionLabs B.V. 24 / 29

• Find the required image, for example dockerhub.visionlabs.ru/luna/luna-image-store.
• Copy the corresponding image ID from the IMAGE ID, for example, “61860d036d8c”.
• Specify it in the deletion command:

docker rmi -f 61860d036d8c

Delete all the existing images.

docker rmi -f $(docker images -q)

3.1.6 Stop container

You can stop the container using the command:

docker stop <container_name>

Stop all the containers:

docker stop $(docker ps -a -q)

3.1.7 Delete container

If you need to delete a container:

• Run the “docker ps” command.
• Stop the container (see Stop container).
• Find the required image, for example dockerhub.visionlabs.ru/luna/luna-image-store.
• Copy the corresponding container ID from the CONTAINER ID column, for example, “23f555be8f3a”.
• Specify it in the deletion command:

docker container rm -f 23f555be8f3a

Delete all the containers.

docker container rm -f $(docker container ls -aq)

3.1.7.1 Check service logs
You can use the following command to show logs for the service:

VisionLabs B.V. 25 / 29

docker logs <container_name>

VisionLabs B.V. 26 / 29

3.2 Docker log rotation

To limit the size of logs generated by Docker, you can set up automatic log rotation. To do this, add the
following data to the /etc/docker/daemon.json file:

{
"log-driver": "json-file",
"log-opts": {

"max-size": "100m",
"max-file": "5"

}
}

This will allow Docker to store up to 5 log files per container, with each file being limited to 100MB.

After changing the file, you need to restart Docker:

systemctl reload docker

The above changes are the default for any newly created container, they do not apply to already created
containers.

VisionLabs B.V. 27 / 29

3.3 Logging to server

To enable saving logs to the server, you should:

• Create directories for logs on the server.
• Activate log recording and set the location of log storage inside LP service containers.
• Configure synchronization of log directories in the container with logs on the server using the
volume argument at the start of each container.

Docker Compose script is already configured to synchronize directories with the folders created in
the section below.

3.3.1 Create logs directory

You need to create the following directories for storing logs and assign them the appropriate rights.

mkdir -p /tmp/logs/configurator /tmp/logs/image-store /tmp/logs/accounts /
tmp/logs/faces /tmp/logs/licenses /tmp/logs/events /tmp/logs/python-
matcher /tmp/logs/handlers /tmp/logs/remote-sdk /tmp/logs/tasks /tmp/logs
/tasks-worker /tmp/logs/sender /tmp/logs/api /tmp/logs/admin /tmp/logs/
backport3 /tmp/logs/backport4

chown -R 1001:0 /tmp/logs/configurator /tmp/logs/image-store /tmp/logs/
accounts /tmp/logs/faces /tmp/logs/licenses /tmp/logs/events /tmp/logs/
python-matcher /tmp/logs/handlers /tmp/logs/remote-sdk /tmp/logs/tasks /
tmp/logs/tasks-worker /tmp/logs/sender /tmp/logs/api /tmp/logs/admin /tmp
/logs/backport3 /tmp/logs/backport4

If you need to use the PythonMatcher Proxy service, then youneed to additionally create the/tmp/logs
/python-matcher-proxy directory and set its permissions.

3.3.2 Logging activation

3.3.2.1 LP services logging activation
To enable logging to file, you need to set the log_to_file and folder_with_logs settings in the <
SERVICE_NAME>_LOGGER section of the settings for each service.

Automatic method

To update logging settings, you can use the logging.json settings file provided with the distribution
package.

Run the following command after starting the Configurator service:

VisionLabs B.V. 28 / 29

docker cp /var/lib/luna/current/extras/conf/logging.json luna-configurator:/
srv/luna_configurator/used_dumps/logging.json

Update your logging settings with the copied file.

docker exec -it luna-configurator python3 ./base_scripts/db_create.py --dump
-file /srv/luna_configurator/used_dumps/logging.json

Manual method

Go to the Configurator service interface (127.0.0.1:5070) and set the logs path in the container in the
folder_with_logs parameter for all services whose logs need to be saved. For example, you can use
the path /srv/logs.

Set the log_to_file option to true to enable logging to file.

3.3.2.2 Configurator service logging activation
The Configurator service settings are not located in the Configurator user interface, they are located in
the following file:

/var/lib/luna/current/example-docker/luna_configurator/configs/
luna_configurator_postgres.conf

Set the path to the logs location in the container in the FOLDER_WITH_LOGS = ./ parameter of the file.
For example, FOLDER_WITH_LOGS = /srv/logs.

Set the log_to_file option to true to enable logging to file.

You should restart Configurator after making changes.

VisionLabs B.V. 29 / 29

	Default ports for services
	Configuration names for services
	System requirements
	Processors
	CPU
	GPU

	Third-party applications

	Introduction
	Before launch
	Distribution unpacking
	Symbolic link creation
	SELinux and Firewall
	License activation
	Actions from License activation manual
	Specify HASP license settings
	Specify Guardant license settings

	Docker installation
	Docker Compose installation
	Choose logging method
	Logging to stdout
	Logging to file

	Calculations using GPU
	Login to registry

	LUNA PLATFORM launch
	Launch services
	Run Remote SDK utilizing GPU

	Account creation using API service
	Activate GC task schedule
	Enable Grafana and Loki

	Additional information
	Docker commands
	Show containers
	Copy files to container
	Enter container
	Images names
	Delete image
	Stop container
	Delete container

	Docker log rotation
	Logging to server
	Create logs directory
	Logging activation

