VisionLabs

MACHINES CAN SEE

LUNA Index Module

Administrator manual

v.5.58.0

Contents
Glossary
1 Overview

2 General concepts

21 Index . ..
2.1.1 Associating index with descriptorversion
21.2 Indexstructureo
2.1.3 Index building task creation progress
2.1.4 Indexcreation processo i
22 Matching
2.21 Matchingrequests Lo
2.2.2 Matchingprocess i

3 Service interaction

4 Index services

41 IndexManagerservice i i i e e e e e
4110 Backgroundroutines
41.2 IndexManagerstorageo

4121 Work with multipleinstances

41.3 Requeststoservice

42 Indexerservice e e e e e e
4.3 Indexed Matcherservice

4.3.1 Synchronization of matching labels in memory

43.2 Indexreloading.
4.3.3 Refreshingindexinmemory
434 Indexcaching

5 Matching plugin for Python Matcher Proxy

51 Matching plugindescription
52 Matchingcost
5.3 Matchingtargets e

6 Monitoring

6.1 Databeingsent

7 Sequence diagrams

70 Indexcreationdiagram L oo e
7.2 Diagram of initial index loadingintomemory

VisionLabs B.V.

2/73

7.3 Diagram of matchingdescriptors 32
7.4 Indexreloadingdiagram 33
7.5 Indexrefreshingdiagram L 35
8 Use Redis Sentinel 38
9 APlerrors 39
9.1 INdEeXerServiCe errors v v i i i e e e e e e e e e e e 39
9.11 Code26100returned L e e e e e e 39

9.1.2 Code2610Treturned i e e e e e 39

9.1.3 Code26103returned i e e e e 39

9.1.4 Code26104returned L e e e 40

9.1.5 Code26105returned e e e e e e 40

9.1.6 Code26106returned L e e e 40

9.1.7 Code26107returned L e e e 41

9.1.8 Code26108returned e e 41

9.1.9 Code26109returned L e e e 41

9.2 IndexManagerserviCe errors v v v v v i e e e e e e e e e e e e e 1
9.21 Code2620Treturned i e e e e 41

9.2.2 Code26202returned. e e e e 42

9.23 Code26203returned L e e e e e 42
9.2.4 Code26204returned e e e e 42

9.3 IndexMatcherserviceerrors L e e e e 43
9.31 Code2630Treturned L e e e e e 43

9.3.2 Code26302returned e e e 43

9.3.3 Code26303returned. i e e e e 43
9.3.4 Code26304returned e e e 44

9.3.5 Code26305returned e 44

9.3.6 Code26306returned e e 44

9.3.7 Code26307returned e e e e 45

9.3.8 Code26308returned e e 45

10 Configuration parameters of services 46
10.1 Index Manager service configuration o o 46
10.1.1 LIM_MANAGER_LOGGERsection 46
10100 log level o o 46

10.1.1.2 log time o o e e e 46

101103 log to_stdout 46

10104 log to_file 46

10.1.1.,5 folder_with_logs 47

VisionLabs B.V.

3/73

10.1.2

10.1.3

10.1.4

10.1.5

10.1.6

VisionLabs B.V.

10.1.1.6 max_log file_size 47

10.1.1.7 multiline_stack _trace e 47
10.1.1.8 format e e 47
LIM_MANAGER_INDEXINGsection. 48
10.1.2.1 indexer_origins o e e e 48
10.1.2.2 planning_period 48
10.1.2.3 lookup_period e 48
10.1.2.4 face_lists>min_indexing_list_size 48
10.1.2.5 face_lists>indexing_lists, 49
10.1.2.6 ef construction e e e 49
LIM_MANAGER_HTTP_SETTINGS section 49
10.1.3.1 request_timeout L 49
10.1.3.2 response_timeout e e e e 49
10.1.3.3 request_max_SiZze i i i e e e e e e e e e e 50
10.1.3.4 keep_alive_timeout 50
LIM_MANAGER_DBsection @ i i it i it i e e 50
10.1.40 db_user 50
10.1.4.2 db_password e 50
10.1.4.3 db_host e 50
10.1.4.4 db_port e e e 50
10.1.4.5 db_settings>connection_pool_size, 51
10.1.4.6 db_number e e 51
10.1.4.7 sentinel>master_name e 51
10.1.4.8 sentinel>sentinels 51
10.1.4.9 sentinel>user. 51
10.1.4.10 sentinel>password 51
INFLUX_MONITORING section o i i e e e e e e e e o 52
10.1.5.1 send_data_for_monitoring L. 52
10.1.5.2 use_ssl. 52
10.1.5.3 organization 52
10.1.5.4 token e e e e 52
10.1.5.5 bucket e 52
10.1.5.6 host 52
10.1.5.7 port . . o e e e e e e 53
10.1.5.8 flushing_period 53
LUNA_FACES_ADDRESSsection i i i i 53
10.1.6.1 origin . . L . e e 53
10.1.6.2 api_Version e e e e e e e e e e 53

4/73

10.1.7 LUNA_FACES_TIMEOUTS section o i i i i it e e i i 53

10171 connect e e e e e e e e e 54

10.1.7.2 request L L e e e e 54

10.1.7.3 sock_connect e e e 54

10.1.7.4 sock_read 54

10.1.8 Other e e e e 54
10.1.8.1 index_storage_type 54
10.1.8.2 index_storage_local. o Lo 55
10.1.8.3 storage_time 55
10.1.8.4 lim_manager_active_plugins. 55
10.1.8.5 default_face_descriptor_version, 55

10.2 Indexed Matcher service configuration L. 56
10.2.1 LIM_MATCHING section i e e e e e e e e e e e 56
10.21.1 ef search e e 56

10.2.2 LIM_MATCHER_REFRESHsection 56
10.2.21 enabled 56

10.2.3 LIM_MATCHER_LOGGERsection. it i i 56
10.2.371 log_level o 56
10.2.3.2 log_time e 57
10.2.3.3 log to_stdout 57
10.2.34 log tofile. 57
10.2.3.5 folder_with_logs 57
10.2.3.6 max_log file_size L 57
10.2.3.7 multiline_stack_trace L 58
10.2.3.8 format 58

10.2.4 LIM_MATCHER_HTTP_SETTINGSsection 58
10.2.4.1 request_timeout L. 58
10.2.4.2 response_timeout 59
10.2.4.3 request_max_Size e e e e e e e e e 59
10.2.4.4 keep_alive_timeout 59

10.2.5 LIM_MATCHER_DBsection. it 59
10.2.5.1 db_user e e 59
10.2.5.2 db_password 59
10.2.5.3 db_host e e 60
10.2.5.4 db_port e 60
10.2.5.5 db_settings > connection_pool_size 60
10.2.5.6 db_number 60
10.2.5.7 sentinel>master_ name 60
10.2.5.8 sentinel>sentinels 60

VisionLabs B.V.

5/73

10.2.5.9 sentinel>user. e 61

10.2.5.10 sentinel>password 61

10.2.6 INFLUX_MONITORINGSsection o i i e e e e e e e e 61
10.2.6.1 send_data_for_monitoring Lo 61
10.2.6.2 use_ssl. 61
10.2.6.3 organization 61
10.2.6.4 token e e 61
10.2.6.5 bucket e 62
10.2.6.6 host e e 62
10.2.6.7 poOrt . . o . e e e e e e e e e e 62
10.2.6.8 flushing_period 62

10.2.7 LUNA_FACES_ADDRESSsection i i i ettt e e 62
10.2.7.1 OFigIN . . o e e e e e e e e e e e e e 62
10.2.7.2 @pi_Version e e e e e e e e e e e e 63

10.2.8 LUNA_FACES_TIMEOUTSsection i i i i i i e e 63
10.2.8.1 connect e e e e 63
10.2.8.2 request e e e e e e e e 63
10.2.8.3 sock_connect e e e e 63
10.2.8.4 sock_read e e 63

10.2.9 LUNA_LICENSES_ADDRESSsection o v i i v it i e e e o 64
10.2.9.1 Origin e e e e e e e e e e 64
10.2.9.2 a@pi_Version e e e e e e e e e e e 64
10.2.10 Other o e e e e 64
10.2.10.1 lim_matcher_cache 64
10.2.10.2 index_storage_type o . e e 64
10.2.10.3 index_storage_local oo 65
10.2.10.4 lim_matcher_active_plugins oL 65
10.2.10.5 default_face_descriptor_version 65

10.3 Indexerservice configuration L 66
10.3.1 LIM_INDEXER_LOGGERsection i it i i i 66
10.3.1.0 log_level o 66
10.3.1.2 log time o o e e e e 66
10.3.1.3 log to_stdout 66
10.3.1.4 log to_file. 66
10.3.1.5 folder_with_logs 67
10.3.1.6 max_log file_size 67
10.3.1.7 multiline_stack_trace o oo oo 67
10.3.1.8 format e e 67

VisionLabs B.V.

6/73

10.3.2 INFLUX_MONITORINGsection ittt 68
10.3.2.1 send_data_for_monitoring o o Lo oL 68
10.3.2.2 USe_SSl. . v v e e e 68
10.3.2.3 organization 68
10.3.2.4 token 68
10.3.2.5 bucket e 69
10.3.2.6 host e e 69
10.3.2.7 port e e e e e 69
10.3.2.8 flushing_period 69

10.3.3 LUNA_FACES_ADDRESSsection it 69
10.3.3.1 origin . . L. e e 69
10.3.3.2 @pi_Version e e e e e e e e e e 70

10.3.4 LUNA_FACES_TIMEOUTSsection i i it 70
10.3.4.1 connect e e e e e e e e e 70
10.3.4.2 request e e e 70
10.3.4.3 sock_connect e e e 70
10.3.4.4 sock_read 70

10.3.5 LIM_INDEXER_HTTP_SETTINGSsection 7
10.3.5.1 request_timeout T
10.3.5.2 response_timeout e m
10.3.5.3 request_max_Size e e e e e e e e e e e m
10.3.5.4 keep_alive_timeout. 71

10.3.6 Other e e e e 7
10.3.6.1 index_storage_type e 7
10.3.6.2 index_storage_local. 72
10.3.6.3 lim_indexer_active_plugins 72
10.3.6.4 default_face_descriptor_version, 72

10.4 Matching plugin configuration 73

10.4.1 LUNA_INDEXED_LIST_PLUGINsection, 73
10.41.1 redis_url L e e e 73
10.4.1.2 request_timeout 73

VisionLabs B.V.

T7/73

Glossary

Term

Descriptor

Index

Matching

Matching label

Relevant index

Sample

Abbreviation

DB
LP
LIM

VisionLabs B.V.

Description

Set of unique features received from the sample. It is used for
matching of faces. Descriptor is not considered personal data.

LUNA Index Module (LIM) entity containing set of received from
user-provided images and deployed together for approximate
matching. The index is generated by the Indexer service after
receiving the task from the Index Manager service.

The process of comparing descriptor with some descriptor
batch that results in similarity scores. Its purpose is to search
most similar descriptors to a given one over some
user-provided set of descriptors.

LIM entity that contains the ID of a list of faces.

Last built index for the list, since the index can be rebuilt if the
task is created automatically.

Image containing a face and corresponding to VisionLabs and
other standards.

Full form

Database
LUNA PLATFORM
VisionLabs LP5 Index, LUNA Index Module

8/73

1 Overview

LUNA Index Module is a module consisting of the Index Manager, Indexer and Indexed Matcher services,
designed to speed up the matching of a large number of descriptors. When matching a large set of
descriptors by classical brute-force matching, it is impossible to get a low latency with a high number
of requests per second. Therefore, it is required to use approximation methods implemented in LIM that
exchange some accuracy for high speed. These methods speed up the matching by building an index
containing preprocessing data.

The basic principle of the module work is as follows:

The index is created using a task containing a “list_id” with linked faces, by which the matching will be
made. You can also not specify “list_id”, but set the settings for automatic indexing of all lists whose
number of faces exceeds the value specified in a certain setting. After the index is created, the user sends
a request to the API service, which redirects it to the Python Matcher Proxy service. The Python Matcher
Proxy service determines where the matching will be performed - in the Python Matcher service or in the
Indexed Matcher service. After matching, the response is returned to the user.

The ability to perform matching using the Indexed Matcher service is controlled using a separate
parameter in the LUNA PLATFORM 5 license key. Thus, without a license, you can use the Indexer and
Indexed Matcher services, but the built indexes cannot be processed.

This document contains the following main sections:

« General concepts. The section contains:

Description of index.

Description of how LIM works.

Description of the process of creating tasks for building indexes.

Description of the index building process.

Description of the matching process.
It is recommended to start your acquaintance with LIM from this section.

« Service interaction. This section provides a interaction diagram of LIM services, which covers the
necessary sequence of actions to perform the matching using LIM services.

+ Index services. This section provides basic information about LIM services and the nuances of
working with them.

« Matching plugin for Python Matcher Proxy. This section describes the operation of the matching
plugin built into the Python Matcher Proxy service, which is required to perform the matching.

+ Monitoring. This section describes the monitoring process for LIM services.
« APl errors. This section provides an extended description of the errors returned by LIM services.

« Configuration parameters of services. This section describes the parameters for all LIM services.

VisionLabs B.V. 9/73

2 General concepts

LUNA Index Module:

+ Sends requests for indexing lists with descriptors.
+ Performsindex building.
+ Loadsindex into memory and performs matching.

LIM contains the following services:

+ Index Manager - Manages index building tasks and coordinates the Indexer service.

« Indexer - Builds indexes based on the list of descriptors.

+ Indexed Matcher - Performs approximate nearest neighbor (descriptors) matching using indexes
built.

See the Wiki for more information about the nearest neighbor search.

Itis required Python Matcher Proxy service with a built-in matching plugin to work with module. Matching
plugin enables you to determine to which service requests from the LUNA API service will be sent - to
the Python Matcher service or to the Indexed Matcher service. The Index Manager and Indexed Matcher
services require a Redis database.

All LIM services are scalable, which means you can use multiple instances.

If necessary, you can change the logging format of all services to json (see the FORMAT setting for each
service).

2.1 Index

Index is a collection of user-provided set of descriptors deployed together for approximate matching. It
is building as a dependency graph whose vertices are descriptors. Search descriptors in this dependency
graph is performed while moving along its vertices (see “Matching process” section below).

Building the index requires a lot of resources for a long time and is a rather slow process, so you need to
correctly set the period for automatic index rebuilding when changes appear in the list (see below).

The size of the list with descriptors controls speed/accuracy trade-off during the index construction and
search. Higher values leads to more accurate but slower search. To configure these parameters, use the
“ef_construction” and “ef_search” settings.

2.1.1 Associating index with descriptor version

LUNA Index Module takes into account the version change of face descriptors. The Indexer service builds
the index from the version descriptors specified in the “DEFAULT_FACE_DESCRIPTOR_VERSION” setting
of the Index Manager service. The Index Manager service automatically rebuilds the index if it does not
contain descriptor version information. The Indexed Matcher service only loads indexes that contain

VisionLabs B.V. 10/73

https://en.wikipedia.org/wiki/Nearest_neighbor_search

descriptors for the version specified in the “DEFAULT_FACE_DESCRIPTOR_VERSION” setting of the Index
Manager service.

2.1.2 Index structure

The index consists of the following files:

+ The meta.json file, which contains meta information about the index, including which objects are
indexed.

« The index.dat file, which contains binary index data.

+ Theids.dat file, which contains an ordered list of object IDs in the index.

Each index has unique name, and it is used as key/folder name.

The default index storage directory is specified for each LIM service in the “index_storage_local”
setting of the “OTHER” section of the Configurator service. Note that the directory must be the same
for all three services.

2.1.3 Index building task creation progress

The indexing of a set of descriptors is performed out by placing tasks for indexing in a queue. Such tasks
are created in the Index Manager service. There are two types of index building tasks - one-time and
background.

One-time type enables you to “create task” to build the index once using an HTTP request to the Index
Manager service. In the request body, you should specify the required “list_id”.

Background type enables you to create index building tasks in the background, where:

+ Set of lists is explicitly specified in the “indexing_lists” setting.

« All existing lists in LP are dynamically indexed, whose number of faces exceeds the number
specified in the “min_indexing_list_size” setting. In this case, the value of the “indexing_lists”
setting should take the value “dynamic”. The default value is 50000 faces.

When using the background type, the Index Manager service tracks changes in the number of faces in the
lists, interacting with the Faces service. If the number of faces has changed, a new task will be sent to the
internal queue.

One task processes only one list.

To disable task building in the background, you need to set the value of the “indexing_lists” setting to
[1.

2.1.4 Index creation process

Below is the operation process of the index creation:

VisionLabs B.V. n/73

./ReferenceManuals/IndexManagerReferenceManual.html#operation/createTask

1. To start indexing, the Index Manager service sends a request to the Indexer service with the
necessary parameters - “list_id” and “task_id”. The Indexer service converts these parameters into
“label” and “index_id” respectively.

2. When the indexing request is received, the Indexer service starts a separate indexing process. At
this point, the Indexer sets its status to “indexing”.

3. When the indexing process is started, the Indexer service fetches the descriptors from the Faces
service. Fetching is performed in batches of 1000 items.

4. After all descriptors have been fetched and loaded into memory, Indexer begins building of the
index. A directed descriptor dependency graph is created (see “Index”).

5. Next, when indexing has finished, the index itself is saved using configured backend (filesystem).
In the storage, the index is a directory containing some files (see “Index structure”).

6. After successfully saving the index, the indexing process stops. At this point, the Indexer sets its

status to “success”. If the indexing process ended in an error, then the Indexer will set its status to
“error”.

Information about stored indexes can be obtained using “getindexes” or “get most relevantindexes”
to the Index Manager service.

You can view the status of the Indexer service using the “get tasks” request to the Index Manager
service.

Some time after the indexes are stored, all running instances of the Indexed Matcher automatically
(re)load those indexes into memory. After the indexes are loaded into memory, you can send requests to
match the indexed descriptors sets with the specified matching label.

2.2 Matching

Indexed Matcher loads more relevant indexes from the storage and processes requests for matching.
Because the index storage can contain multiple versions of indexes with a specific matching label, the
Indexed Matcher service always tries to match against the newer (i.e., more relevant) version.

The index becomes outdated as soon as descriptors are created or deleted in LUNA PLATFORM 5.

In-memory indexes in the Indexed Matcher service are synchronized with the store by a periodic
background process called index reloading (see “Index reloading” section for details).

If any changes were made to the source list, the Indexed Matcher service updates the corresponding
indexes in its memory by gradually adding a small number of new descriptors to the index loaded into
memory (see “Refreshing index in memory” section for details).

VisionLabs B.V. 12/73

./ReferenceManuals/IndexManagerReferenceManual.html#operation/getIndexes
./ReferenceManuals/IndexManagerReferenceManual.html#operation/getMostReleventIndexes
./ReferenceManuals/IndexManagerReferenceManual.html#operation/getTasks

2.2.1 Matching requests

Matching requests come from the API service to the Matcher Proxy service, which uses the matching
plugin to forward the request to the Indexed Matcher service. The Indexed Matcher service accepts
matching requests via Redis streams, performs the matching, and sends the matching result to the Redis
channel, from where the result is redirected to the Python Matcher Proxy service and then to the API
service.

For requests for each corresponding matching label, there is the stream with the label name. Several
running instances of Indexed Matcher with index loaded are the consumer group for this stream.

2.2.2 Matching process

The Indexed Matcher service moves along the vertices of the dependency graph (index).

After moving to the first vertex of the graph, the service matches the incoming descriptor with all the
vertices associated with the current vertex. When the most similar vertex is found, the next matching is
made with the vertices associated with it. After several iterations, the most similar vertexis found (i.e., the
descriptor with the highest similarity score). The number of operations with such a search is significantly
reduced, which increases the search performance a hundred times.

VisionLabs B.V. 13/73

https://redis.io/docs/manual/data-types/streams/
https://redis.io/docs/manual/pubsub/
https://redis.io/docs/manual/pubsub/
https://redis.io/docs/manual/data-types/streams/#consumer-groups

3 Service interaction

Below is a diagram of the interaction of the index module services.

API

| A

Al PMP3

v |

Python Matcher

Proxy

Licenses

| Matching plugin]

A

PMPL

A

Python
Matcher

Faces DB

| .
LIM services

Index
Manl-b-| Redis DB | IMat3

IMan2

|
|
i Manager
|
|

—_—— - - ———

IMatd

A
Ini IMat2
i IMan3 l
Ind Indexed
naexer
Matcher
In3 IM£t1

|
]

Figure 1: Service Interaction

Before sending the matching request from the APl service, the user must create an index, which is created

by creating a task to build it. The task is created in the Index Manager service and can be one-time type

or background type.

After creation, the task is sent to the queue in the Redis database (IMan1).

In addition to the queue, the Redis database acts as a repository for all index building tasks. It also

uses the RedLock mechanism to ensure the operation of multiple instances of the Index Manager

service (see the “Working with multiple instances” section).

The Index Manager service interacts with the Faces database (IMan2) to monitor changes in lists if

the task of the background type has been created.

VisionLabs B.V.

14/73

Next, the Index Manager sends a request to the Indexer service to build the index (In1). After receiving
the request, the Indexer service extracts the descriptors from the Faces database (In2) and starts building
the index. The built index is stored in storage (In3).

After successfully creating the index, the status of the task changes to “success”. Before sending
the matching request, you need to check the status of the index using the “get tasks” request to the
Index Manager service. When sending user requests to the Index Manager service to get information
about indexes, the service will interact with the index storage (IMan3).

The Indexed Matcher load the index into memory (IMat1), loads the matching label (contains the “list_-
id” of the loaded into memory index) into the Redis DB (IMat2) and listens to the Redis stream until the
matching request appears there.

The Indexed Matcher service constantly monitors changes in face lists by interacting with the Faces
(IMat4) database. If new changes are made to the list, the Indexed Matcher service gradually adds
new descriptors to the corresponding index loaded into memory. In this case, the index located in
the repository remains unchanged until it is rebuilt. If necessary, this functionality can be disabled
(see section “Refreshing index in memory”).

After the index is created and loaded into the memory of the Indexed Matcher service, the user performs
the matching request in the API service, attaching an image of the reference. This request is redirected
to the Python Matcher Proxy service (A1), where the matching plugin generates a request of a specific
format containing the matching label and the descriptor of the reference, and determines whether the
Indexed Matcher service loaded the matching label into the Redis database. Next, the service is selected
to perform the matching: - If the matching label is not loaded into the Redis database, then the request
is sent to the Python Matcher (PMP1). In this case, the matching will be performed using the classical
brute-force matching descriptors. - If the matching label is loaded into the Redis database, then the
request is sent as a message to the Redis stream. The Indexed Matcher service reads a message from the
Redis stream (IMat2). After that, the Indexed Matcher service checks the presence of a LUNA PLATFORM
5 license for the possibility of performing the matching, interacting with the Licenses (IMat3) service.

See “Matching plugin for Python Matcher Proxy” for details on choosing a service to perform the
matching.

After the matching is completed, the Indexed Matcher service writes the matching results to the Redis
channel (IMat2). The Python Matcher Proxy service matching plugin reads the matching results and
returns them to the user in the API service (PMP2).

See the “Sequence diagrams” section for a more detailed description of the LUNA Index Module
processes.

VisionLabs B.V. 15/73

./ReferenceManuals/IndexManagerReferenceManual.html#operation/getTasks

4 Index services

4.1 Index Manager service

The service manages the process of creating indexes for lists containing face descriptors and performs
the following tasks:

+ Generates tasks for building the index.

+ Sends tasks to the internal queue.

+ Retrieves tasks from the internal queue and coordinates the process of sending tasks for indexing
to the Indexer service.

It is recommended to run at least two manager instances for redundancy purposes. Since task
management is carried out through the Redis, if one manager is down, the second one will be able to
continue its work from the instant step.

4.1.1 Background routines

The Index Manager service performs two types of background routines in parallel:

+ Planning routine
+ Lookup routine

In the planning routine, the Index Manager checks which sets of lists are to be indexed, then creates tasks
underaunique “task_id” and places themin the internal queue. The planning procedure is executed with
the period (sec) specified in the “planning_period” setting.

In the lookup routine, the Index Manager checks the status of all running Indexer instances. If any Indexer
instance has finished building the index, the Index Manager updates the task information and submits
the data for monitoring. If any Indexer instance is ready to accept the task, the Index Manager service
retrieves the next task from the internal queue, sends the task to the free Indexer instance, and updates
the task information. The lookup routine is performed with the period (sec) specified in the “lookup_-
period” setting.

4.1.2 Index Manager storage

All information about the created tasks is stored in the Redis database. Also, using the Redis Redlock
mechanism, work with multiple instances is regulated.

4.1.2.1 Work with multiple instances
The multiple instance mode is supported by automatic selection of the master instance based on Redis
Redlock.

VisionLabs B.V. 16 /73

See https://redis.io/docs/reference/patterns/distributed-locks/ for details on distributed locks
done with Redis.

Only the master instance can perform planning and lookup background routines. The remaining
instances can only accept requests for a one-time index creation, as well as issue responses to GET
requests.

4.1.3 Requests to service

Interaction with the Index Manager service is performed using HTTP requests. The main requests are
listed below:

+ “get queue” - Get list of tasks and their number from the queue.
+ “get tasks” - Get information on tasks:
- “task_id” - Task ID.

» o« » o« » o«

- “status” - “pending”, “indexing”, “success”, “error”.

- “create_time” - Index build create time in RFC 3339 format.
- “start_time” - Index build start time in RFC 3339 format.

- “end_time” - Index build end time in RFC 3339 format.

- “indexer” - Address of the server where the Indexer instance that processes the specified task
is running.

- “error” - Error received during index build.
- “content” - Processed “list_id”.
If necessary, you can filter the received tasks.
+ “create task” - Create task to build the index once.
+ “remove tasks” - Delete tasks. If necessary, you can filter the tasks to be deleted.
+ “getindexes” - Get the number of indexes, as well as the following information for each index:

- “index_id” - Equal to “task_id”.
- “index_type” - List only.
- “label” - Processed “list_id".

« “remove indexes” - Delete the index from the repository by ID.

« “get mostrelevantindexes” - Get information on the most relevant index, i.e. by the last built index
for the list.

See the OpenAPI specification for more information about requests made to the Index Manager service
and other requests.

VisionLabs B.V. 17 /73

https://redis.io/docs/reference/patterns/distributed-locks/
./ReferenceManuals/IndexManagerReferenceManual.html#operation/createTask
./ReferenceManuals/IndexManagerReferenceManual.html#operation/getTasks
./ReferenceManuals/IndexManagerReferenceManual.html#operation/createTask
./ReferenceManuals/IndexManagerReferenceManual.html#operation/removeTasks
./ReferenceManuals/IndexManagerReferenceManual.html#operation/getIndexes
./ReferenceManuals/IndexManagerReferenceManual.html#operation/removeIndex
./ReferenceManuals/IndexManagerReferenceManual.html#operation/getMostReleventIndexes
./ReferenceManuals/IndexManagerReferenceManual.html

4.2 Indexer service

The Indexer service is intended to process tasks received by the Index Manager service and perform the
indexes creation process.

Requests to the Indexer service are not intended for the user. All requests related to the LUNA Index
Module must be made to the Index Manager service (see “Requests to Index Manager service”).

The deployment of the Indexer service should be done on a separate server, because building an index
takes a lot of resources for a long time. One Indexer instance can only build one index at a time, so it
is recommended to run multiple indexer instances. The indexer must be also configured with storage,
which must be large enough.

VisionLabs B.V. 18/73

4.3 Indexed Matcher service

The Indexed Matcher service loads the most relevant indexes from the index storage (file system) and
processes matching requests.

On startup, the Indexed Matcher service loads all indexes of the latest version from the index storage into
memory and sets up Redis streams to accept match messages for all matching labels loaded into the
index storage.

The Indexed Matcher service always checks for the existence of the list when starting, loading a new index
into memory, and refreshing an index in memory. An index without an existing list will be removed from
the service’s memory.

To speed up access to the index, you can configure index caching in a special folder in the Indexed
Matcher service container (caching is disabled by default). Caching is enabled by “LIM_MATCHER_-
CACHE” setting.

Requests to the Indexed Matcher service are not intended for the user. All requests related to the LUNA
Index Module must be made to the Index Manager service (see “Requests to Index Manager service”).

Indexed Matcher does not communicate with other LIM services. It only monitors the storage, and when
indices appear it loads them into memory. Since matching requests processing is carried out through the
Redis streams, any number of matcher instances could be run without any system config updates. The
number of Indexed Matcher instances should be determined by performance requirements.

4.3.1 Synchronization of matching labels in memory

The Indexed Matcher service synchronizes matching labels of indexes with Redis keys in its memory. For
all labels in memory, the service sets the keys in the following format:

matching_label__<label>__<matcher_id>

For example, matching_label__17cdbe41-c7f1-440b-b9ad-aad93c7176ee__127.0.0.1:5200

The <matcher_id> field in the label key is the host and port of the Indexed Matcher instance. The
host is read from the environment variable VL_LIM_MATCHER_HOST or, if the variable is not set,
it is guessed using the operating system sockets API. Reading these keys from Redis enables the
matching plugin to get information about which instances of Indexed Matcher specific index labels
were loaded into memory.

Label key being set have a TTL and will expire if not updated again. The presence of such a key in Redis
means that some of the running Indexed Matcher instances can process matching requests on the label.

VisionLabs B.V. 19/73

4.3.2 Index reloading

In-memory indexes in the Indexed Matcher service are synchronized with the store by a periodic
background process called index reloading.

If the index is removed from storage, the index is also removed from the Indexed Matcher service’s
memory.

If a new index with a new match label appears in the store, the Indexed Matcher service will attempt to
load the new index into memory.

If anew index appears in the store with a newer version of the matching label than the index loaded into
memory, the Indexed Matcher service will try to load the new index into memory instead of the old one.

p
Index storage
Indexes in order of creation

Index 1 Index 2 Index 3
label_1 label 2 label_1

7

Indexed Matcher service memory

Index 1 Index 3
label 1 label_1

Figure 2: Replacing index with outdated version of list (Index 1) with new one (Index 3)

To ensure that the given index can only be reloaded by one Indexed Matcher service at a time, the Redis
Redlock mechanism is used. If a lock is set, the older version of the index is removed from the Indexed
Matcher service’s memory and the newer one is loaded.

If there is a problem loading the index, for example, lack of memory, an appropriate message is sent to
the logs and monitoring.

VisionLabs B.V. 20/73

When the index is reloaded, the Indexed Matcher service does not accept matching requests for the
corresponding label. However, only one Indexed Matcher can reload the index for a particular label
at a time. Therefore, it is recommended to run multiple instances of the Indexed Matcher in order
to be able to match all labels at any time.

See the sequence diagram for index reloading in the “Index reloading diagram” section.

4.3.3 Refreshingindex in memory

By default, the Indexed Matcher service monitors lists with faces for changes. If new changes are made
to the list, the Indexed Matcher service updates the corresponding indexes in its memory by gradually
adding a small number of descriptors.

The use of this functionality is controlled by the “enabled” setting.

This information is described for an index that is already loaded into the memory of the Indexed
Matcher service. The index used and the index in the storage may differ.

When the index is updated in memory, the Indexed Matcher service stops matching on that index, but
continues to accept new match requests for thatindex. By adding a small number of descriptors (no more
than 10 descriptors at a time) to the index in memory, the matching process is performed with minimal
interruption. However, it should be taken into account that if elements are inserted into the list too often
(dozens and hundreds of additions), this will affect a significant degradation in the speed of work, up to
an almost complete stop of the matching process.

During the index update, the Index Matcher service outputs the following information to the logs:

Refresh index for: 2d5832ad-8c8f-415f-a@b4-d12d69fabd60

Sync: 5->6, 0->0

Refresh index for: 2d5832ad-8c8f-415f-ab@b4-d12d69fabd6® has finished
successfully

where:

+ 2d5832ad-8c8f-415f-a0b4-d12d69fabd60 - List ID.

+ 5->6- Information about downloading packets with descriptors (1 packet equals 10 descriptors)
from the Faces database. Here 6 is the total number of packages that need to be downloaded
from the database, and 5 is the current number of downloaded packages. Thus, the message 5->6
means that synchronization will continue and another packet will be downloaded.

+ 0->0 - Information about deleting packets with descriptors (1 packet equals 10 descriptors) from
theindexin memory. The principle of operation is similar to downloading packages from the Faces
database.

The speed of updating the index in memory depends on the size of the current index.

VisionLabs B.V. 21/73

If this functionality is used, then it is not necessary and not recommended to perform frequent index
rebuilds. Accordingly, it is recommended to increase the planning routine period (“planning_period”
setting). However, adding new faces to the index in memory is slower than rebuilding the index, so it
makes no sense to use this function if a very large number of faces have been added to the list. In this
case, it is easier to rebuild the index again.

Unlinking faces from the list does not remove those faces from the indexin memory. In this case, the
descriptors are marked as unsearchable, so the index retains the storage space allocated to them.

See the sequence diagram for index refreshing in the “Index refreshing diagram” section.

4.3.4 Index caching

You can enable index caching to speed up the process of loading data into the memory of the Indexed
Matcher service. Using caching enables you not to load the index into memory from the Storage, but to
load it from the cached directory in case of an unexpected restart of the Indexed Matcher service.

Cachingis enabled when specifying an intermediate directory for storing and loading indexes in the “lim_-
matcher_cache” setting of the Configurator service. By default, the directory is not specified, i.e. caching
is disabled.

Intermediate directory must be located at local file system (using things like GlusterFS or NFS might
cause bugs). Every time Indexed Matcher service reloads its indexes it tries to clean up cache directory
by removing old generation of list indexes. Cache system has locking mechanism. In case of multiple
instances of Indexed Matcher running on the same host and sharing the same directory for cache, locking
will prevent downloading of the same indexes multiple times. It means, index storage will be hit exactly
one time when data is being sent between Indexed Matcher services host and the storage.

VisionLabs B.V. 22 /73

5 Matching plugin for Python Matcher Proxy

Using the matching plugin, the Python Matcher Proxy service can redirect matching requests from the API
service to either the Python Matcher service or the Indexed Matcher service. The principle of operation
of the plugin and the description of the choice of the service in which the matching will be performed are
described below.

The matching plugin is already integrated into the Python Matcher Proxy Docker container, you just
need to enable it (see the installation manual).

5.1 Matching plugin description

Each matching request is presented in the form of all possible combinations of candidates and
references, then each such combination is processed as a separate sub-request as follows (further
sub-request means combination of reference and candidates):

+ Get the sub-request matching cost (see “Matching cost”).

+ Choose the way for the sub-request processing using the lowest estimated matching cost:
matching plugin or Python Matcher service.

- If in the previous step Python Matcher service was selected, it will process sub-request,
returns the response to the Python Matcher Proxy service.

- Ifinthe previous step matching plugin was selected, it will process sub-request. If sub-request
was successfully processed, the response returns to the Python Matcher Proxy service. If a
sub-request was not successfully processed, it will try to process by Python Matcher service.

+ If the request was successfully processed by matching plugin and plugin does not have access to
all matching targets which specified in sub-request, then Python Matcher Proxy service will enrich
data before next step, see matching targets for details.

« The Python Matcher Proxy service collects results from all sub-requests, sorts them in the right
order, and replies to the user.

5.2 Matching cost

Matching cost is a float numeric expression of matching request process complexity using a plugin.
Matching cost is necessary to choose the best way to process a matching request: Python Matcher
service or one or more plugins.

The matching cost value for the Python Matcher service is infinity. If there are several plugins, then
the matching cost value will be calculated for each plugin. If the matching label is loaded in the Redis
database, then a certain query complexity will be calculated and the matching plugin will be used. If the
label is not loaded, then the Python Matcher service will be used.

VisionLabs B.V. 23/73

5.3 Matching targets

The Python Matcher service has access to all data of matching entities, so it can process matching
requests with all targets. Matching plugins may not have access to data, which is specified in request
targets. In this case, Python Matcher Proxy service will enrich response of plugin with missing targets
data, e.g.:

« Matching response contains next targets: face_id, user_data and similarity and the chosen
matching plugin does not have access to user_data field:

- Matching plugin match reference with specified face_ids and return the matching response
to the Python Matcher Proxy, which contains only pairs of face_id and similarity.

- Forevery match candidate in result, Python Matcher Proxy service will get user_data from the
main database by face_id and merge face_id and similarity with user_data.

- Return enriched response with specified targets to the user.

« Matching response contains next targets: age, gender (all candidates are events’ faces) and the
chosen matching plugin have access only to event_id, descriptor, and age fields:

- Matching plugin match reference and return the matching response to the Python Matcher
Proxy, which contains only pairs of event_id, age and similarity.

- For every match candidate in result, Python Matcher Proxy service will get gender from the
main database by event_id and merge event_id with gender, also after that it drops non-
required event_id and similarity from the response.

- Return a prepared response with specified targets to the user.

Several matching plugins can be used in LUNA PLATFORM. See the “Matching plugins” section of the
LUNA PLATFORM administrator manuals for details.

VisionLabs B.V. 24 /73

6 Monitoring

Monitoring is implemented as sending data to the InfluxDB. Monitoring is enabled in the services by
default.

Itis also possible to use LUNA Dashboards (the “luna_index_module” directory) and Grafana Loki for LIM
services. See detailed information about LUNA PLATFORM monitoring, LUNA Dashboards and Grafana
Loki in the “Monitoring” section of the LUNA PLATFORM administrator manual.

LUNA Dashboards based on the Grafana web application create a set of dashboards for analyzing
the state of individual services, as well as two summarised dashboards that can be used to evaluate
the state of the system. Grafana Loki is a log aggregation system that enables you to flexibly work
with LUNA PLATFORM logs in Grafana.

6.1 Data being sent

The types of monitoring events are different for each service. Below is a table showing all types of events

for each service:

Service Types of events

Index Manager AllLHTTP requests, all failed HTTP requests, index building.

Indexer AlLHTTP requests, all failed HTTP requests.

Indexed Matcher AlLHTTP requests, all failed HTTP requests, index reloading, matching

request (pass through Redis).

Every event is a point in the time series. The point is represented using the following data:

« Series name (requests or errors)
« Timestamp of the request start
« Tags

« Fields

The tagis an indexed data in storage. It is represented as a dictionary, where

+ Keys - String tag names.
+ Values - String, integer or float.

The field is a non-indexed data in storage. It is represented as a dictionary, where

+ Keys - String field names.
+ Values - String, integer or float.

Saving data for requests series is triggered on every request. Each point contains data about the

VisionLabs B.V. 25/73

corresponding request (execution time and etc.).

» Tags

Tag name

service
route

status_code

« Fields

Field name

request_id

execution_time

Description

Always “lim-manager”.
Concatenation of a request method and a request resource (GET:/version).

HTTP status code of response.

Description

Request ID.

Request execution time.

Saving data for errors series is triggered when a request fails. Each point contains error_code.

» Tags

Tag name

service
route
status_code

error_code

« Fields

Description

“lim-indexer”, “lim-manager”, or “lim-matcher”.
Concatenation of a request method and a request resource (GET:/version).
HTTP status code of response.

LIM error code.

Field name Description

request_id Request ID.

Saving data for index processing is started when an error occurs during index building.

« Tags

VisionLabs B.V.

26 /73

Tag name Description

service “lim-manager”, or “lim-matcher”.

socket_address Service address in the format <host>: <port>.

stage Always “build_index”.

label Index matching label (list_id).

error_code LIM error code (0 - request was completed successfully).
« Fields

Field name Description

index_id Index unique ID.

pending Time spent in the internal queue (sec).

duration Index processing (i.e. building / loading / dropping) time, in seconds.

generation Index generation (unix timestamp).

Saving data for index matching is started when a matching is performed.

« Tags

Tag name Description

service Always “lim-matcher”.

socket_address Service address in the format <host>: <port>.

label Index matching label (list_id).

error_code LIM error code (0 - request was completed successfully).
« Fields

Field name Description

request_id Request ID.

index_id Index unique ID.

execution_time Matching request execution time, in seconds.

VisionLabs B.V. 27 /73

7 Sequence diagrams

This section provides sequence diagrams for basic LIM operations.

7.1 Index creation diagram

The index is built after creating a task to build it. There are two types of creating index building tasks -
one-time and background.

Below is a sequence diagram for both types of task creation.

VisionLabs B.V. 28 /73

U;e\r [Index Manager‘ l Canﬂguratarl l Redis‘ l \ndexer‘ Faces Faces DB | | Index storage | | Influx

allt / [One-time index buildiiu;] i

E 1.1 Request to create task_ | | POST /1jtasks. Set list in request bodyml
[BafKground ndex building (specifying listsi] v
| 1.2.1 Set list

| Set "indexing_lists" setting to "dynamic" Bl

! 1.2.2 Set minimurn nurmber|of faces in list | Set number in "'min_indexing_list_size" setting Iﬁ

! 1.2.3 Read settings ! !

[Back d index building (dynamic indexing)] | ' '

1 1.3.1 Set lists | Set lists in "indexing_lists" setting H

! 1.3.2 Read settings ! !

| loop / [Foreach list] T v i
Planning routine ("planning_period" setting) /
2 check lists for indexing | |

3 Write info about created task

4 Response | | |

5 Send created task to queue |

! 6 Response ! | | Task status: "pending”
n|

for one-time index buil

[o]

I
Lookup routine ("lookup_period" setting) /

8 Check status of running instances

9 Instance is ready to accept task

10 Retrieve task from queue '

11 Response ! | |

12 Request to build index | '

13 Build request acceptéd

14 Update task info ' -
:T Task status: "indexing" b

15 Start making periodic indexing status requests

Getting descriptors by packages /J

Requests to get descriptors | !
belonging to list | |

16

Requests to get descriptors

17 belonging to list

18 Response | |

19 Response

20 Build index

21 Save index

Lookup routine ("lookup _period" setting) /J
22 Check status of running instances

23 Instance has comp\etéd building index

25 Send to monitoring | '

26 Stop making periodic indexing status requests

Figure 3: Index creation diagram

+ (1.1) Sending “create task” request to one-time index building.

+ (1.2.1) Enabling dynamic indexing of lists by setting the “dynamic” value for the “indexing_lists”
setting.

+ (1.2.2) Setting the minimum number of faces in the list by which the index will be built (default
50,000) in the “min_indexing_list_size” setting.

VisionLabs B.V. 29/73

./ReferenceManuals/IndexManagerReferenceManual.html#operation/createTask

+ (1.2.3) Reading the settings values from the Configurator service.

(1.3.1) Setting a set of lists in the “indexing_lists” setting.

(1.3.2) Reading the setting value from the Configurator service.

+ (2) Beginningof the planning routine (regulated by setting “planning_period”). Checking which
sets of lists should be indexed.

« (3) Savinginformation about the task being created in the Redis storage.

+ (4) Response that the task was placed in storage.

+ (5) Sendingthe task to an internal queue.

+ (6) Response that the task was queued. At this stage, the status of the task is set to “pending”.
« (7) Response that the task was created. Only for one-time index building (see (1.1)).

+ (8) Beginning of lookup routine (regulated by setting “lookup_period”). Checking the status of
running Indexer instances.

« (9) Response that the Indexer instance is ready to start index creation.

+ (10) Retrieving the task from the internal queue.

« (11) Response that the task was retrieved.

+ (12) Request to build a index on the created task.

« (13) Response that the request to build the index on the created task was accepted.

+ (14) Updating task information. At this stage, the status of the task is set to “indexing”.
« (15) Start making periodic indexing status requests.

« (16) Making requests to the Faces service to get descriptors belonging to the list.

+ (17) Redirecting requests to the Faces database.

+ (18) Uploading data from the Faces database.

+ (19) Redirecting the uploaded data to the Faces service.

+ (20) Index building process.

+ (21) Savingtheindex to the Index storage.

+ (22) Continuation of lookup routine. Checking the status of running Indexer instances.
+ (23) Response that the instance has finished building the index.

+ (24) Updating task information. At this stage, the status of the task is set to “success”.
+ (25) Sending to Influx database.

+ (26) End making of periodic indexing status requests.

VisionLabs B.V. 30/73

You can find out the current status of the task using the request “get tasks” after it has been created.

7.2 Diagram of initial index loading into memory

Before the matching starts, the index is loaded into the Indexed Matcher memory service.

Indexed Matcher | ‘ Index storage ‘ ‘ Redis ‘

1 Load relevant index
|—"(>
opt A

« |

3 Load matching label |

4 Label is loaded !
¢ A Labelis loade |

2 Cache index :

}_l_

5 Register Redis stream

6 Registered
<.

7 Listening to Redis stream |

Figure 4: Diagram of initial index loading into memory

+ (1) Loading the most relevant index from the Storage into the memory of the Indexed Matcher
service.

+ (2) Caching the index into an intermediate directory. The directory is specified in the “lim_-
matcher_cache” setting of the Indexed Matcher service. By default, caching is disabled. See
the “Index caching” section for details.

+ (3) Loading matching label in Redis. The label name is the same as the list ID.
« (4) Response that the label is loaded.

« (5) RegisteraRedisstream asamessage handlerforthe appropriate matching label. At this point,
the stream is given the name of the matching label (i.e. the name of the list id).

+ (6) Response thatthe stream is registered.

VisionLabs B.V. 31/73

./ReferenceManuals/IndexManagerReferenceManual.html#operation/getTasks

+ (7) Waiting for matching request that contains a matching label with exactly the same name as

7.3 Diagram of matching descriptors

the one loaded in Redis (3) and for which the stream was registered (5).

This diagram assumes that the index is already loaded into the memory of the Indexed Matcher service

(see “Diagram of initial index loading into memory”).

El

1 Request fo

Python Matcher Proxy

matching i

2 Request to calculate matching cost_ |

Matching plugin

| Redis } | Python Matcher I | Indexed Matcher]

‘ Licenses }

Matchin

cost calculation

/

3 Check

|| The matching label is named similarly to the "list_id" value.
whether matching label is loaded_ | | This means that at this stage, it is checked whether the
matching label with the name similar to "list_id" from the
request (1) has been uploaded to Redis

]

4 Response | | |
L ! L !
alt / [Matching label dogs|not exist] : :
5.1.1 Matching cost is infinite ! !
5.1.2 Request for matching ! ! !
| I |
! 5.1.3 Matching '
5.1.4 Matching result !
| l I |
5.1.5 Matching result ! ! ! !
[Mptching Tabel exists] i i
5.2.1 Calculated matching cost If there are no instances of Indexed Matcher that ean werk with this !
matching label, then the cost will be equal to infinity. I
I |
5.2.2 Request for matching | | | |
Request for matching in the form |
5.2.3 . .

of| message in Redis stream ! ! !
i Lref / i
| Indexed Matcher is listening |
' to the Redis stream '
5.9.4 Read message from | I
Redis' stream ' !
| |
5.2.5 Message read l ‘ !
| 5.2.6 Check license_
! i 5.2.7 License is OK I:|

I v e T I
! | | 5.2.8 Matching |
- i
Write'result to !
) 5-2.9 Redis, channel |
7 T |
5.2.10 Read result from Redis channel J ‘ | i |
5.2.11 Matching result i | |
5.2.12 Matghing result | | } | }

+ (1) Sendingthe matching request.

Figure 5: Diagram of matching descriptors

+ (2) Request to calculate the matching cost of request.

+ (3) Checking whether the matching label is loaded to Redis.

+ (4) Response.

- (5.1.1) If the matching label exists, then the matching cost of the request is considered infinite

VisionLabs

and the matching plugin returns the corresponding information to the Python Matcher Proxy

B.V.

32/73

service.

- (5.1.2) Request for matching to the Python Matcher service.

- (5.1.3) Matching process in the Python Matcher service.

- (5.1.4) Response about matching result to the Python Matcher Proxy.

- (5.1.5) Response about matching result to the API.

- (5.2.1) If the matching label not exists, then the certain matching cost of the request is
calculated and the response is returned to the Python Matcher Proxy service.

- (5.2.2) Sending the matching request to the matching plugin.

- (5.2.3) Converting the request and sending it as a message to the Redis stream.

- (5.2.4) The Indexed Matcher service is listening to the Redis stream (see “Diagram of initial
index loading into memory”). As soon as the matching request appears, which contains
the matching label with exactly the same name as the one that was previously uploaded to
Redis and for which the stream was registered, then Indexed Matcher reads the message for
matching.

- (5.2.5) Response that the message was read.

- (5.2.6) Performing license verification.

- (5.2.7) Response about the license status (this diagram does not reflect the case of invalid
license).

5.2.8) Performing the matching process.

5.2.9) Recording the matching result in the Redis channel.

5.2.11) Sending the matching result to the Python Matcher Proxy.

(
(
(5.2.10) The matching plugin reads the matching result from the Redis channel.
(
(5.2.12) Sending the matching result to the API.

7.4 Index reloading diagram

This diagram reflects only the sequence of work in the case when an index with a newer version of
the matching label appears in the Index storage. If the index disappears from Index storage, then after
checking the status of the index, the Indexed Matcher service deletes it from memory. This functionality
is enabled using the “enabled =1” setting (enabled by default) of the “LIM_MATCHER_REFRESH” section
of the Indexed Matcher service settings.

It is recommended to read the section “Index reloading”.

VisionLabs B.V. 33/73

Indexed Matcher ‘ Index storage ‘ ‘ Redis |

1 Check index status -

” 2 Index is not relevant H

3 Request to enable Redis lock

4 Successful lock

5 Stop matching

6 Delete old index

< |

7 Download new index

8 Index is loaded H
L

9 Request to disable Redis lock

10 Lock is disabled

11 Continuation of mtching

< |

Figure 6: Index reloading diagram

« (1) Checkingwhetherthe currentindexin the Index storage was changed. If the Index storage has
a more recent index at the time of saving for the same matching label and with the desired
version of the descriptor, then this will be taken into account as the fact that the currentindex
is not relevant.

+ (2) Response that the index is not relevant.
+ (3) Request to enable Redis lock.

« (4) Response about successful Redis lock. If it is currently impossible to perform the lock, then
Indexed Matcher will perform lock attempts until the next attempt succeeds.

+ (5) Ifthe lock is successful, then stop matching using the current index.

VisionLabs B.V. 34/73

+ (6) Deletingthe old index from the Indexed Matcher memory.

+ (7) Loadinganew index from the Index storage into the Indexed Matcher service memory.
+ (8) Response that the index is loaded into memory.

+ (9) Request to disable Redis lock.

« (10) Response that the lock is disabled.

+ (11) Continuation of the matching.

7.5 Index refreshing diagram
Below is a sequence diagram for the process of refreshing an index in the memory of the Indexed Matcher
service.

This information is described for an index that is already loaded into the memory of the Indexed
Matcher service. The index in the service’s memory and the index in the storage may differ. It is
recommended to read the section “Refreshing index in memory”.

VisionLabs B.V. 35/73

Indexed Matcher Faces

1 Processing matching requests

il
=

Faces DB

loop)/

2 Start {(continuation] of matching

I~

1 time per second /
| 3 Check list status

Y

_ 6 Response

4 Check list status

Y

| _ 5 Response

-

<

alt Mg new descriptors have been added to list]

7.1 Continuation of matching

-
[New descripkars have been added to list]
7.2.1 Stop matching

7.2.2 Request for missing descriptors

-

_ 7.2.5 Send missing descriptors

7.2.3 Request for missing descriptors_
-

-

No more than 10 descriptors /

7.2.6 Add missing descriptors to memory

7.2.7 Continuation of matching

_, 7.2.4Response
[

<

+ (1) Receiving processing of matching requests.

+ (2) Starting of matching.

Figure 7: Index refreshing diagram

« (3) Request to check the state of the list to Faces (request is performed every second).

+ (4) Redirecting the request to check the state of the list to the Faces database.

+ (5) Response.

+ (6) Response.

- (7.1) If no new descriptors was added to the list, then the matching will continue until the next

check of the list status (3).

VisionLabs B.V.

36/73

(7.2.1) If new descriptors were added to the list, the matchings stops.

7.2.2) Request missing descriptors to the Faces service.

7.2.3) Redirecting the request to the Faces database.

7.2.5) Response containing missing descriptors.

(
(
(7.2.4) Response containing missing descriptors.
(
(

7.2.6) Adding missing descriptors to the index located in the memory of the Indexed Matcher
service (no more than 10 descriptors at a time).
(7.2.7) Continuation of the matching until the next check of the state of the list (3).

VisionLabs B.V. 37/73

8 Use Redis Sentinel

Redis Sentinel is a component in the High Availability Management System for the Redis database. It
is used to detect failures in Redis master nodes and automatically reconfigure the system to ensure
continuous operation.

To use Redis Sentinel, you need tofill in the “sentinels” section from the “LIM_MANAGER_DB” and “LIM_-
MATCHER_DB” sections.

Also, the use of Redis Sentinel can be specified in the “LUNA_INDEXED_LIST_PLUGIN” section, which is
responsible for connecting the matching plugin with Redis when calculating matching cost of the request.

Example of filling in the “LUNA_INDEXED_LIST_PLUGIN” section:

LUNA_INDEXED_LIST_PLUGIN = {"REDIS_URL": "redist+sentinel://localhost:26379,
localhost:26378/1indexed_matcher?username=master_username&password=
master_password", "REQUEST_TIMEOUT": 60}

Here:

+ “redist+sentinel://” - Prefix indicating the use of the Redis protocol and Redis Sentinel for
connection.

+ “localhost:26379,localhost:26378” - List of Sentinel addresses and ports that the service will use to
detect the status of Redis master nodes and coordinate actions in case of failures.

« “/indexed_matcher” - Path to a specific Redis database.

+ “?username=master_username&password=master_password” - Auth data.

VisionLabs B.V. 38/73

9 API errors

The section describes errors, returned by the API service. Each of the errors has a unique code.
The errors can have different reasons.

In case of “Internal server error” or any other unexpected error occurrence, it is recommended to check
service logs to find out more information about the error.

9.1 Indexer service errors
9.1.1 Code 26100 returned

Error Message:
Internal server error
Error Source:
Indexer service errors
Error Description:

An unknown error has occurred.

9.1.2 Code 26101 returned

Error Message:

Indexer busy

Error Source:

Indexer service errors

Error Description:

The Indexer service is currently unable to process the request.

Wait for the index to finish processing, or start another instance of the Indexer service.

9.1.3 Code 26103 returned
Error Message:

Build failed

Error Source:

Indexer service errors

Error Description:

VisionLabs B.V. 39/73

An error occurred while creating the index. Try again.

9.1.4 Code 26104 returned

Error Message:

Build process failed. Build process died
Error Source:

Indexer service errors

Error Description:

Index build failed.

This error could have occurred due to process termination (OOM killer).

9.1.5 Code 26105 returned

Error Message:

Build process failed. List is empty

Error Source:

Indexer service errors

Error Description:

Building the index failed due to the lack of faces associated with the list.

Make sure the faces are attached to the list.

9.1.6 Code 26106 returned

Error Message:

Build process cancelled
Error Source:

Indexer service errors

Error Description:

Index building was canceled with the “/stop” request to the Indexer service.

VisionLabs B.V.

40/73

9.1.7 Code 26107 returned

Error Message:

Build process failed. List not found
Error Source:

Indexer service errors

Error Description:

Index build failed due to missing list.

Make sure the list exists.

9.1.8 Code 26108 returned

Error Message:

Build process failed. Index with specified ID already exists
Error Source:

Indexer service errors

Error Description:

Index build failed because the index with the specified ID already exists.

9.1.9 Code 26109 returned

Error Message:

Build process failed. It’s probably due to running out of memory and the OS was triggering the OOM killer.
Error Source:

Indexer service errors

Error Description:

Index build failed. It’s probably due to running out of memory and the OS was triggering the OOM killer.

9.2 Index Manager service errors
9.2.1 Code 26201 returned

Error Message:

Task duplicate. Indexing task already exists

VisionLabs B.V. 4/73

Error Source:
Index Manager service errors
Error Description:

An error occurred while trying to create the task. The task with this ID already exists (the task ID is equal
to the list ID).

9.2.2 Code 26202 returned

Error Message:

Index duplicate. Index for the most recent content version already exists
Error Source:

Index Manager service errors

Error Description:

An error occurred while trying to create the index. The most relevant index already exists.

9.2.3 Code 26203 returned

Error Message:

Internal server error. Indexer was restarted for internal reasons
Error Source:

Index Manager service errors

Error Description:

The Indexer service restarted for unknown reasons.

9.2.4 Code 26204 returned

Error Message:

Object not found. Index with id “{}” not found in the storage

Error Source:

Index Manager service errors

Error Description:

The index with the specified ID was not found in the storage. Verify that the specified index exists.

You can check the list of existing indexes using the query “get indexes”.

VisionLabs B.V. 42 /73

./ReferenceManuals/IndexManagerReferenceManual.html#operation/getIndexes

The link leads to the latest version of the documentation. Make sure you read the documentation

for your current version of LIM.

9.3 Index Matcher service errors
9.3.1 Code 26301 returned

Error Message:

Bad/incomplete input data. Failed to validate matching request: {value}
Error Source:

Index Matcher service errors

Error Description:

Matching request processing failed due to invalid data specified.

9.3.2 Code 26302 returned

Error Message:

Bad/incomplete input data. Failed to load descriptor bytes {value}
Error Source:

Index Matcher service errors

Error Description:

Error loading descriptor.

The error may occur due to the wrong descriptor format.

9.3.3 Code 26303 returned

Error Message:

Internal server error. Failed to search descriptor {value}
Error Source:

Index Matcher service errors

Error Description:

Internal error while searching for descriptor.

VisionLabs B.V.

43/73

9.3.4 Code 26304 returned

Error Message:

Index not found. Index for label {value} not found

Error Source:

Index Matcher service errors

Error Description:

Index was not found for the specified matching label.

Verify that the index with the ID equal to the matching label has been created.

You can check the list of existing indexes using the “get indexes” request to the Index Manager service.

The link leads to the latest version of the documentation. Make sure you read the documentation
for your current version of LIM.

9.3.5 Code 26305 returned

Error Message:

Descriptor version mismatch. Descriptor of version {value} cannot be searched in index of version {value}
Error Source:

Index Matcher service errors

Error Description:

Version mismatch of the matched descriptors was detected.

Make sure the descriptors versions match. You can upgrade descriptors versions using the Additional
extraction task (see “Running the Additional extraction task” section of the LUNA PLATFORM 5
administrator manual).

The default descriptors version is contained in the “DEFAULT_FACE_DESCRIPTOR_VERSION” setting in
the Configurator service.

9.3.6 Code 26306 returned

Error Message:
Index processing internal error. Skip load index for label {value} due to index storage damage
Error Source:

Index Matcher service errors

VisionLabs B.V. 44 /73

./ReferenceManuals/IndexManagerReferenceManual.html#operation/getIndexes

Error Description:

Internalindex processing error. The index load for the specified matching label was skipped due to index
storage corruption.

9.3.7 Code 26307 returned

Error Message:

Index processing internal error. Skip load index for label {value} due to insufficient memory
Error Source:

Index Matcher service errors

Error Description:

An internal index processing error. The index load for the specified matching label was skipped due to
insufficient free space.

Make sure there is enough free space.

The system can be purged with the docker system prune command. By default, stopped containers,
layers not related to the images in use, volumes and networks not related to running containers will be
deleted.

9.3.8 Code 26308 returned

Error Message:

Index processing internal error. Skip load index for label {value} due to index corruption
Error Source:

Index Matcher service errors

Error Description:

Internal index processing error. The index load for the specified matching label was skipped due to a
corrupted index.

VisionLabs B.V. 45 /73

10 Configuration parameters of services

10.1 Index Manager service configuration

The section describes the Index Manager service parameters.

You can configure the service using the Configurator service.

10.1.1 LIM_MANAGER_LOGGER section

This section sets the logging settings for the logging.

10.1.1.1 log_level
The parameter sets the level of debug printing, by priority: “ERROR”, “WARNING”, “INFO”, “DEBUG”.

Setting format: string.

Default value: INFO.

10.1.1.2 log_time
The parameter sets the time format used in log entries. The following values are available:

« “LOCAL” - displays the local time of the system on which the logs are being recorded.
« “UTC” - displays Coordinated Universal Time, which is a time standard and is not affected by local
time zones or seasonal time changes.

Setting format: string.

Default value: LOCAL.

10.1.1.3 log_to_stdout
The parameter enables you to send logs to standard output (stdout).

Setting format: boolean.

Default value: true

10.1.1.4 log_to_file
The parameter enables you to save logs to a file. The directory with log files is specified in the “folder_-
with_logs” parameter.

Setting format: boolean.

Default value: false.

VisionLabs B.V. 46 /73

10.1.1.5 folder_with_logs
The parameter sets the directory in which logs are stored. The relative path starts from the application
directory.

To use this parameter, you must enable the “log_to_file” parameter.
Setting format: string.
Default value: ./

Example:

"folder_with_logs": "/srv/logs"

10.1.1.6 max_log_file_size
The parameter sets the maximum size of the log file in MB before performing its rotation (0 - do not use
rotation).

To use this parameter, you must enable the “log_to_file” parameter.

If necessary, you can configure Docker log rotation. See the section “Docker log rotation” in the
LUNA PLATFORM installation manual.

Setting format: integer.

Default value: 1024

10.1.1.7 multiline_stack_trace

The parameter enables multi-line stack tracing in logs. When the parameter is enabled, information
about the call stack is recorded in the logs so that each stack frame is placed on a separate line, which
improves readability. If the parameter is disabled, information about the call stack is recorded on one
line, which may make logs less convenient for analysis.

Setting format: boolean.

Default value: true.

10.1.1.8 format
The parameter defines the format of the output logs. The following values are available:

« “default” - standard output format of the LUNA PLATFORM logs.
+ “json” - output of logs in json format.
+ “ecs” - output of logs in ECS format (Elastic Common Schema).

When using the “ecs” value, the following fields will be used:

VisionLabs B.V. 47 /73

+ “http.response.status_code” - contains the HTTP response status code (e.g., 200, 404, 500, etc.).

« “http.response.execution_time” - contains information about the time taken to execute the
request and receive the response.

« “http.request.method” - contains the HTTP request method (GET, POST, PUT, etc.).

« “url.path” - contains the path in the request’s URL.

+ “error.code” - contains the error code if the request results in an error.

Setting format: string.

Default value: default.

10.1.2 LIM_MANAGER_INDEXING section

This section sets the indexing settings set by the Index Manager service.

10.1.2.1 indexer_origins
The parameter sets the list of addresses of running instances of the Indexer service.

Setting format: array > string.

Default value: http://127.0.0.1:5180.

10.1.2.2 planning_period
The parameter sets the period of the planning routine, which checks the sets of lists that need to be
indexed.

Setting format: integer (seconds).

Default value: 600.

10.1.2.3 lookup_period
The parameter sets the period of the search routine, which checks the statuses of all running Indexer
instances.

Setting format: integer (seconds).

Default value: 5.

10.1.2.4 face_lists > min_indexing_list_size
The parameter sets the minimum number of faces in the lists for the list to be indexed.

The parameter is used only when using the parameter “indexing_lists” with the value “dynamic”.
Setting format: integer.

Default value: 50000.

VisionLabs B.V. 48 /73

10.1.2.5 face_lists > indexing_lists
The parameter sets a set of lists for indexing.

You can either specify lists explicitly or specify the value “dynamic”. In the latter case, all lists will be
processed whose number of face descriptors exceeds the number specified in the “min_indexing_list_-
size” parameter.

Setting format: array > string.

Default value: dynamic.

10.1.2.6 ef_construction
The parameter sets a limit on the number of nearest neighbors considered when constructing the index.

Higher values result in a more accurate graph, but it takes longer to build.

It is recommended to change the parameter together with the “ef_search” parameter of the Indexed
Matcher service.

Setting format: integer.

Default value: 1600.

10.1.3 LIM_MANAGER_HTTP_SETTINGS section

This section contains parameters responsible for process HTTP connections. More detail see here.

10.1.3.1 request_timeout
The parameter sets the duration of time between the instant when a new open TCP connection is passed
to the server, and the instant when the whole HTTP request is received.

Setting format: integer (seconds).

Default value: 60.

10.1.3.2 response_timeout
The parameter sets the duration of time between the instant the server passes the HTTP request to the
app, and the instant a HTTP response is sent to the client.

Setting format: integer (seconds).

Default value: 600.

VisionLabs B.V. 49 /73

https://sanic.dev/en/guide/deployment/configuration.html#builtin-values

10.1.3.3 request_max_size
The parameter sets the maximum size of the request.

Setting format: integer (bytes).

Default value: 1073741824.

10.1.3.4 keep_alive_timeout

The parameter sets the timeout for maintaining HTTP activity.

Setting format: integer (seconds).

Default value: 15.

10.1.4 LIM_MANAGER_DB section

In this section, the settings for connecting to the database of the Index Manager service are set.

10.1.4.1 db_user
The parameter sets the name of the Redis database user.

Setting format: string.

Default value is not set.

10.1.4.2 db_password
This parameter sets the password of the Redis database user.

Setting format: string.

Default value is not set.

10.1.4.3 db_host
The parameter sets the host of the Redis database.

Setting format: string.

Default value: 127.0.0.1.

10.1.4.4 db_port
The parameter sets the port of the Redis database.

Setting format: string.

Default value: 6379.

VisionLabs B.V.

50/73

10.1.4.5 db_settings > connection_pool_size
This parameter sets the size of the pool of connections to the Redis database.

Setting format: string.

Default value: 100.

10.1.4.6 db_number
The parameter sets the number of the Redis database. Each number corresponds to a separate database,
which enables you to separate the data.

Setting format: integer.

Default value: 0.

10.1.4.7 sentinel> master_name
The parameter sets the name of the Redis database master, which is monitored and managed by the
Sentinel system.

Setting format: string.

Default value: index_manager.

10.1.4.8 sentinel > sentinels
The parameter sets the list of addresses and ports of Sentinel servers that will be used by clients to detect
and monitor the Redis database.

Setting format: list > string.

Default value: [].

10.1.4.9 sentinel > user
The parameter sets the user name of the Sentinel server.

Setting format: string.

Default value: Not specified.

10.1.4.10 sentinel > password
The parameter sets the password of the Sentinel server user.

Setting format: string.

Default value: Not specified.

VisionLabs B.V. 51/73

10.1.5 INFLUX_MONITORING section

In this section, settings for monitoring are set.

For more information about monitoring, see “Monitoring” section.

10.1.5.1 send_data_for_monitoring

The parameter enables you to enable or disable sending monitoring data to InfluxDB.

Setting format: integer.

Default value: 1.

10.1.5.2 use_ssl
The parameter enables you to use HTTPS to connect to InfluxDB.

Setting format: integer.

Default value: 0.

10.1.5.3 organization
The parameter sets InfluxDB workspace.

Setting format: string.

Default value: luna.

10.1.5.4 token
The parameter sets InfluxDB authentication token.

Setting format: string.

10.1.5.5 bucket
The parameter sets InfluxDB bucket name.

Setting format: string.

Default value: luna_monitoring.

10.1.5.6 host
The parameter sets IP address of server with InfluxDB.

Setting format: string.

Default value: 127.0.0.1.

VisionLabs B.V.

52/73

10.1.5.7 port
The parameter sets InfluxDB port.

Setting format: string.

Default value: 8086.

10.1.5.8 flushing_period
The parameter sets frequency of sending monitoring data to InfluxDB.

Setting format: integer (seconds).

Default value: 1.

10.1.6 LUNA_FACES_ADDRESS section

This section sets the connection settings for the Faces service.

10.1.6.1 origin
The parameter sets the protocol, IP address and port of the Faces service.

The IP address “127.0.0.1” means that the Faces service located on the server with Configurator will be
used. If the service is located on another server, then in this parameter you need to specify the correct IP
address of the server with the Faces service running.

Setting format: string.

Default value: http://127.0.0.1:5030.

10.1.6.2 api_version
The parameter sets the version of the Faces service. The available API version is “3”.

Setting format: integer.

Default value: 3.

10.1.7 LUNA_FACES_TIMEOUTS section

This section sets time intervals for managing the timeouts of HTTP requests that are sent to the Faces
service.

VisionLabs B.V. 53/73

10.1.7.1 connect
The parameter sets the timeout for establishing a connection when sending an HTTP request to the Faces
service. This is the timeout during which the client tries to establish a connection with the service.

Setting format: integer (seconds).

Default value: 20.

10.1.7.2 request

The parameter sets a general timeout for the entire HTTP request. It includes the time to establish a
connection, send a request, receive a response, and close the connection. If the entire process takes
longer than specified in this parameter, the request will be aborted.

Setting format: integer (seconds).

Default value: 60.

10.1.7.3 sock_connect
The parameter sets the timeout for establishing a connection at the socket level. If the socket level
connection is not established at the set time, the operation will be aborted.

Setting format: integer (seconds).

Default value: 10.

10.1.7.4 sock_read
The parameter sets the timeout for reading data from the socket after a successful connection. If the data
does not arrive at the set time, the read operation will be interrupted.

Setting format: integer (seconds).

Default value: 60.

10.1.8 Other

10.1.8.1 index_storage_type
The parameter sets the type of index storage. Currently, only the “LOCAL” option is available.

The value “LOCAL” means that the indexes will be stored in the directory specified in the “index_storage_-
local” parameter.

Setting format: string.

Default value: LOCAL.

VisionLabs B.V. 54 /73

10.1.8.2 index_storage_local

The parameter sets the directory for storing indexes with “LOCAL” storage type.

Setting format: string.

Default value: . /local_storage.

10.1.8.3 storage_time

The parameter sets the time format used for records in the database. The following values are available:

+ “LOCAL” - displays the local time of the system on which logs are being recorded.

« “UTC” - displays coordinated universal time, which is a standard time and does not depend on the

local time zone or seasonal time changes.
Setting format: string.

Default value: LOCAL.

10.1.8.4 lim_manager_active_plugins
The parameter sets a list of plugins that the service should use.

The names are given in the following format:

[
"plugin_1",
"plugin_2",
"plugin_3"
]

The list should contain file names without the extension (.py).

Setting format: integer.

Default value: 1.

10.1.8.5 default_face_descriptor_version
The parameter sets the version of the face descriptor to use.

Setting format: string.

Default value: 59.

VisionLabs B.V.

55/73

10.2 Indexed Matcher service configuration

The section describes the Indexed Matcher service parameters.

You can configure the service using the Configurator service.

10.2.1 LIM_MATCHING section

This section sets the settings for indexed matching.

10.2.1.1 ef_search
The parameter sets a limit on the considered number of nearest neighbors when searching for an index.

Higher values result in a more accurate but slower search.

It is recommended to change the parameter together with the “ef_construction” parameter of the
Indexed Manager service.

Setting format: integer.

Default value: 1600.

10.2.2 LIM_MATCHER_REFRESH section

In this section, the settings for index refreshing in the Indexed Matcher service memory are set.

10.2.2.1 enabled
The parameter allows you to enable index refreshing.

Setting format: integer.

Default value: 1.

10.2.3 LIM_MATCHER_LOGGER section

This section sets the logging settings for the logging.

10.2.3.1 log_level
The parameter sets the level of debug printing, by priority: “ERROR”, “WARNING”, “INFO”, “DEBUG”.

Setting format: string.

Default value: INFO.

VisionLabs B.V. 56 /73

10.2.3.2 log_time
The parameter sets the time format used in log entries. The following values are available:

+ “LOCAL” - displays the local time of the system on which the logs are being recorded.
« “UTC” - displays Coordinated Universal Time, which is a time standard and is not affected by local
time zones or seasonal time changes.

Setting format: string.

Default value: LOCAL.

10.2.3.3 log_to_stdout
The parameter enables you to send logs to standard output (stdout).

Setting format: boolean.

Default value: true

10.2.3.4 log_to_file
The parameter enables you to save logs to a file. The directory with log files is specified in the “folder_-
with_logs” parameter.

Setting format: boolean.

Default value: false.

10.2.3.5 folder_with_logs
The parameter sets the directory in which logs are stored. The relative path starts from the application
directory.

To use this parameter, you must enable the “log_to_file” parameter.
Setting format: string.
Default value: ./

Example:

"folder_with_logs": "/srv/logs"

10.2.3.6 max_log_file_size
The parameter sets the maximum size of the log file in MB before performing its rotation (0 - do not use
rotation).

To use this parameter, you must enable the “log_to_file” parameter.

VisionLabs B.V. 57/73

If necessary, you can configure Docker log rotation. See the section “Docker log rotation” in the
LUNA PLATFORM installation manual.

Setting format: integer.

Default value: 1024

10.2.3.7 multiline_stack_trace

The parameter enables multi-line stack tracing in logs. When the parameter is enabled, information
about the call stack is recorded in the logs so that each stack frame is placed on a separate line, which
improves readability. If the parameter is disabled, information about the call stack is recorded on one
line, which may make logs less convenient for analysis.

Setting format: boolean.

Default value: true.

10.2.3.8 format
The parameter defines the format of the output logs. The following values are available:

+ “default” - standard output format of the LUNA PLATFORM logs.
+ “json” - output of logs in json format.
« “ecs” - output of logs in ECS format (Elastic Common Schema).

When using the “ecs” value, the following fields will be used:

+ “http.response.status_code” - contains the HTTP response status code (e.g., 200, 404, 500, etc.).

+ “http.response.execution_time” - contains information about the time taken to execute the
request and receive the response.

« “http.request.method” - contains the HTTP request method (GET, POST, PUT, etc.).

 “url.path” - contains the path in the request’s URL.

« “error.code” - contains the error code if the request results in an error.

Setting format: string.

Default value: default.

10.2.4 LIM_MATCHER_HTTP_SETTINGS section

This section contains parameters responsible for process HTTP connections. More detail see here.

10.2.4.1 request_timeout
The parameter sets the duration of time between the instant when a new open TCP connection is passed
to the server, and the instant when the whole HTTP request is received.

VisionLabs B.V. 58 /73

https://sanic.dev/en/guide/deployment/configuration.html#builtin-values

Setting format: integer (seconds).

Default value: 60.

10.2.4.2 response_timeout
The parameter sets the duration of time between the instant the server passes the HTTP request to the
app, and the instant a HTTP response is sent to the client.

Setting format: integer (seconds).

Default value: 600.

10.2.4.3 request_max_size
The parameter sets the maximum size of the request.

Setting format: integer (bytes).

Default value: 1073741824.

10.2.4.4 keep_alive_timeout
The parameter sets the timeout for maintaining HTTP activity.

Setting format: integer (seconds).

Default value: 15.

10.2.5 LIM_MATCHER_DB section

In this section, the settings for connecting to the database of the Index Matcher service are set.

10.2.5.1 db_user
The parameter sets the name of the Redis database user.

Setting format: string.

Default value is not set.

10.2.5.2 db_password
This parameter sets the password of the Redis database user.

Setting format: string.

Default value is not set.

VisionLabs B.V. 59/73

10.2.5.3 db_host
The parameter sets the host of the Redis database.

Setting format: string.

Default value: 127.0.0.1.

10.2.5.4 db_port
The parameter sets the port of the Redis database.

Setting format: string.

Default value: 6379.

10.2.5.5 db_settings > connection_pool_size
This parameter sets the size of the pool of connections to the Redis database.

Setting format: string.

Default value: 100.

10.2.5.6 db_number
The parameter sets the number of the Redis database. Each number corresponds to a separate database,
which enables you to separate the data.

Setting format: integer.

Default value: 0.

10.2.5.7 sentinel > master_name
The parameter sets the name of the Redis database master, which is monitored and managed by the
Sentinel system.

Setting format: string.

Default value: indexed_matcher.

10.2.5.8 sentinel > sentinels
The parameter sets the list of addresses and ports of Sentinel servers that will be used by clients to detect
and monitor the Redis database.

Setting format: list > string.

Default value: [].

VisionLabs B.V. 60/73

10.2.5.9 sentinel > user
The parameter sets the user name of the Sentinel server.

Setting format: string.

Default value: Not specified.

10.2.5.10 sentinel > password
The parameter sets the password of the Sentinel server user.

Setting format: string.

Default value: Not specified.

10.2.6 INFLUX_MONITORING section

In this section, settings for monitoring are set.

For more information about monitoring, see “Monitoring” section.

10.2.6.1 send_data_for_monitoring

The parameter enables you to enable or disable sending monitoring data to InfluxDB.

Setting format: integer.

Default value: 1.

10.2.6.2 use_ssl
The parameter enables you to use HTTPS to connect to InfluxDB.

Setting format: integer.

Default value: 0.

10.2.6.3 organization
The parameter sets InfluxDB workspace.

Setting format: string.

Default value: luna.
10.2.6.4 token

The parameter sets InfluxDB authentication token.

Setting format: string.

VisionLabs B.V.

61/73

10.2.6.5 bucket
The parameter sets InfluxDB bucket name.

Setting format: string.

Default value: Tuna_monitoring.

10.2.6.6 host
The parameter sets IP address of server with InfluxDB.

Setting format: string.

Default value: 127.0.0.1.

10.2.6.7 port
The parameter sets InfluxDB port.

Setting format: string.

Default value: 8086.

10.2.6.8 flushing_period
The parameter sets frequency of sending monitoring data to InfluxDB.

Setting format: integer (seconds).

Default value: 1.

10.2.7 LUNA_FACES_ADDRESS section

This section sets the connection settings for the Faces service.

10.2.7.1 origin

The parameter sets the protocol, IP address and port of the Faces service.

The IP address “127.0.0.1” means that the Faces service located on the server with Configurator will be

used. If the service is located on another server, then in this parameter you need to specify the correct IP

address of the server with the Faces service running.
Setting format: string.

Default value: http://127.0.0.1:5030.

VisionLabs B.V.

10.2.7.2 api_version
The parameter sets the version of the Faces service. The available API version is “3”.

Setting format: integer.

Default value: 3.

10.2.8 LUNA_FACES_TIMEOUTS section

This section sets time intervals for managing the timeouts of HTTP requests that are sent to the Faces
service.

10.2.8.1 connect
The parameter sets the timeout for establishing a connection when sending an HTTP request to the Faces
service. This is the timeout during which the client tries to establish a connection with the service.

Setting format: integer (seconds).

Default value: 20.

10.2.8.2 request

The parameter sets a general timeout for the entire HTTP request. It includes the time to establish a
connection, send a request, receive a response, and close the connection. If the entire process takes
longer than specified in this parameter, the request will be aborted.

Setting format: integer (seconds).

Default value: 60.

10.2.8.3 sock_connect
The parameter sets the timeout for establishing a connection at the socket level. If the socket level
connection is not established at the set time, the operation will be aborted.

Setting format: integer (seconds).

Default value: 10.

10.2.8.4 sock_read
The parameter sets the timeout for reading data from the socket after a successful connection. If the data
does not arrive at the set time, the read operation will be interrupted.

Setting format: integer (seconds).

Default value: 60.

VisionLabs B.V. 63/73

10.2.9 LUNA_LICENSES_ADDRESS section

This section sets the connection settings for the Licenses service.

10.2.9.1 origin
The parameter sets the protocol, IP address and port of the Licenses service.

The IP address “127.0.0.1” means that the Licenses service located on the server with Configurator will be
used. If the service is located on another server, then in this parameter you need to specify the correct IP
address of the server with the Licenses service running.

Setting format: string.

Default value: http://127.0.0.1:5120.

10.2.9.2 api_version
The parameter sets the version of the Licenses service. The available API version is “1”.

Setting format: integer.

Default value: 1.

10.2.10 Other

10.2.10.1 lim_matcher_cache
The parameter sets the path to the directory with the cache.

For more information about caching, see “Index caching”.
To disable caching, leave the field empty.
Setting format: string.

Default value: not set.

10.2.10.2 index_storage_type
The parameter sets the type of index storage. Currently, only the “LOCAL” option is available.

The value “LOCAL” means that the indexes will be stored in the directory specified in the “index_storage_-
local” parameter.

Setting format: string.

Default value: LOCAL.

VisionLabs B.V. 64 /73

10.2.10.3 index_storage_local

The parameter sets the directory for storing indexes with “LOCAL” storage type.

Setting format: string.

Default value: . /local_storage.

10.2.10.4 lim_matcher_active_plugins
The parameter sets a list of plugins that the service should use.

The names are given in the following format:

[
"plugin_1",
"plugin_2",
"plugin_3"
]

The list should contain file names without the extension (.py).

Setting format: integer.

Default value: 1.

10.2.10.5 default_face_descriptor_version
The parameter sets the version of the face descriptor to use.

Setting format: string.

Default value: 59.

VisionLabs B.V.

65/73

10.3 Indexer service configuration

The section describes the Indexer service parameters.

You can configure the service using the Configurator service.

10.3.1 LIM_INDEXER_LOGGER section

This section sets the logging settings for the logging.

10.3.1.1 log_level
The parameter sets the level of debug printing, by priority: “ERROR”, “WARNING”, “INFO”, “DEBUG”.

Setting format: string.

Default value: INFO.

10.3.1.2 log_time
The parameter sets the time format used in log entries. The following values are available:

+ “LOCAL” - displays the local time of the system on which the logs are being recorded.
+ “UTC” - displays Coordinated Universal Time, which is a time standard and is not affected by local
time zones or seasonal time changes.

Setting format: string.

Default value: LOCAL.

10.3.1.3 log_to_stdout
The parameter enables you to send logs to standard output (stdout).

Setting format: boolean.

Default value: true

10.3.1.4 log_to_file
The parameter enables you to save logs to a file. The directory with log files is specified in the “folder_-
with_logs” parameter.

Setting format: boolean.

Default value: false.

VisionLabs B.V. 66 /73

10.3.1.5 folder_with_logs
The parameter sets the directory in which logs are stored. The relative path starts from the application
directory.

To use this parameter, you must enable the “log_to_file” parameter.
Setting format: string.
Default value: ./

Example:

"folder_with_logs": "/srv/logs"

10.3.1.6 max_log_file_size
The parameter sets the maximum size of the log file in MB before performing its rotation (0 - do not use
rotation).

To use this parameter, you must enable the “log_to_file” parameter.

If necessary, you can configure Docker log rotation. See the section “Docker log rotation” in the
LUNA PLATFORM installation manual.

Setting format: integer.

Default value: 1024

10.3.1.7 multiline_stack_trace

The parameter enables multi-line stack tracing in logs. When the parameter is enabled, information
about the call stack is recorded in the logs so that each stack frame is placed on a separate line, which
improves readability. If the parameter is disabled, information about the call stack is recorded on one
line, which may make logs less convenient for analysis.

Setting format: boolean.

Default value: true.

10.3.1.8 format
The parameter defines the format of the output logs. The following values are available:

« “default” - standard output format of the LUNA PLATFORM logs.
+ “json” - output of logs in json format.
+ “ecs” - output of logs in ECS format (Elastic Common Schema).

When using the “ecs” value, the following fields will be used:

VisionLabs B.V. 67/73

+ “http.response.status_code” - contains the HTTP response status code (e.g., 200, 404, 500, etc.).

« “http.response.execution_time” - contains information about the time taken to execute the
request and receive the response.

« “http.request.method” - contains the HTTP request method (GET, POST, PUT, etc.).

« “url.path” - contains the path in the request’s URL.

+ “error.code” - contains the error code if the request results in an error.

Setting format: string.

Default value: default.

10.3.2 INFLUX_MONITORING section

In this section, settings for monitoring are set.

For more information about monitoring, see “Monitoring” section.

10.3.2.1 send_data_for_monitoring
The parameter enables you to enable or disable sending monitoring data to InfluxDB.

Setting format: integer.

Default value: 1.

10.3.2.2 use_ssl
The parameter enables you to use HTTPS to connect to InfluxDB.

Setting format: integer.

Default value: 0.

10.3.2.3 organization
The parameter sets InfluxDB workspace.

Setting format: string.

Default value: luna.
10.3.2.4 token

The parameter sets InfluxDB authentication token.

Setting format: string.

VisionLabs B.V. 68 /73

10.3.2.5 bucket
The parameter sets InfluxDB bucket name.

Setting format: string.

Default value: Tuna_monitoring.

10.3.2.6 host
The parameter sets IP address of server with InfluxDB.

Setting format: string.

Default value: 127.0.0.1.

10.3.2.7 port
The parameter sets InfluxDB port.

Setting format: string.

Default value: 8086.

10.3.2.8 flushing_period
The parameter sets frequency of sending monitoring data to InfluxDB.

Setting format: integer (seconds).

Default value: 1.

10.3.3 LUNA_FACES_ADDRESS section

This section sets the connection settings for the Faces service.

10.3.3.1 origin

The parameter sets the protocol, IP address and port of the Faces service.

The IP address “127.0.0.1” means that the Faces service located on the server with Configurator will be

used. If the service is located on another server, then in this parameter you need to specify the correct IP

address of the server with the Faces service running.
Setting format: string.

Default value: http://127.0.0.1:5030.

VisionLabs B.V.

10.3.3.2 api_version
The parameter sets the version of the Faces service. The available API version is “3”.

Setting format: integer.

Default value: 3.

10.3.4 LUNA_FACES_TIMEOUTS section

This section sets time intervals for managing the timeouts of HTTP requests that are sent to the Faces
service.

10.3.4.1 connect
The parameter sets the timeout for establishing a connection when sending an HTTP request to the Faces
service. This is the timeout during which the client tries to establish a connection with the service.

Setting format: integer (seconds).

Default value: 20.

10.3.4.2 request

The parameter sets a general timeout for the entire HTTP request. It includes the time to establish a
connection, send a request, receive a response, and close the connection. If the entire process takes
longer than specified in this parameter, the request will be aborted.

Setting format: integer (seconds).

Default value: 60.

10.3.4.3 sock_connect
The parameter sets the timeout for establishing a connection at the socket level. If the socket level
connection is not established at the set time, the operation will be aborted.

Setting format: integer (seconds).

Default value: 10.

10.3.4.4 sock_read
The parameter sets the timeout for reading data from the socket after a successful connection. If the data
does not arrive at the set time, the read operation will be interrupted.

Setting format: integer (seconds).

Default value: 60.

VisionLabs B.V. 70/73

10.3.5 LIM_INDEXER_HTTP_SETTINGS section

This section contains parameters responsible for process HTTP connections. More detail see here.

10.3.5.1 request_timeout
The parameter sets the duration of time between the instant when a new open TCP connection is passed
to the server, and the instant when the whole HTTP request is received.

Setting format: integer (seconds).

Default value: 60.

10.3.5.2 response_timeout
The parameter sets the duration of time between the instant the server passes the HTTP request to the
app, and the instant a HTTP response is sent to the client.

Setting format: integer (seconds).

Default value: 600.

10.3.5.3 request_max_size
The parameter sets the maximum size of the request.

Setting format: integer (bytes).

Default value: 1073741824.

10.3.5.4 keep_alive_timeout
The parameter sets the timeout for maintaining HTTP activity.

Setting format: integer (seconds).

Default value: 15.

10.3.6 Other

10.3.6.1 index_storage_type
The parameter sets the type of index storage. Currently, only the “LOCAL” option is available.

The value “LOCAL” means that the indexes will be stored in the directory specified in the “index_storage_-
local” parameter.

Setting format: string.

Default value: LOCAL.

VisionLabs B.V. 7/73

https://sanic.dev/en/guide/deployment/configuration.html#builtin-values

10.3.6.2 index_storage_local

The parameter sets the directory for storing indexes with “LOCAL” storage type.

Setting format: string.

Default value: . /local_storage.

10.3.6.3 lim_indexer_active_plugins
The parameter sets a list of plugins that the service should use.

The names are given in the following format:

[
"plugin_1",
"plugin_2",
"plugin_3"
]

The list should contain file names without the extension (.py).

Setting format: integer.

Default value: 1.

10.3.6.4 default_face_descriptor_version
The parameter sets the version of the face descriptor to use.

Setting format: string.

Default value: 59.

VisionLabs B.V.

72/73

10.4 Matching plugin configuration
10.4.1 LUNA_INDEXED_LIST_PLUGIN section

This section is responsible for connecting the matching plugin with Redis when calculating matching
cost.

Itis possible to specify the Redis Sentinel address. See “Use Redis sentinel”.

10.4.1.1 redis_url
The parameter sets the Redis address.

Setting format: string.

Default value: redis://localhost:6379.

10.4.1.2 request_timeout
The parameter sets the connection timeout to Redis.

Setting format: integer.

Default value: 60.

VisionLabs B.V. 73/73

	Glossary
	Overview
	General concepts
	Index
	Associating index with descriptor version
	Index structure
	Index building task creation progress
	Index creation process

	Matching
	Matching requests
	Matching process

	Service interaction
	Index services
	Index Manager service
	Background routines
	Index Manager storage
	Work with multiple instances

	Requests to service

	Indexer service
	Indexed Matcher service
	Synchronization of matching labels in memory
	Index reloading
	Refreshing index in memory
	Index caching

	Matching plugin for Python Matcher Proxy
	Matching plugin description
	Matching cost
	Matching targets

	Monitoring
	Data being sent

	Sequence diagrams
	Index creation diagram
	Diagram of initial index loading into memory
	Diagram of matching descriptors
	Index reloading diagram
	Index refreshing diagram

	Use Redis Sentinel
	API errors
	Indexer service errors
	Code 26100 returned
	Code 26101 returned
	Code 26103 returned
	Code 26104 returned
	Code 26105 returned
	Code 26106 returned
	Code 26107 returned
	Code 26108 returned
	Code 26109 returned

	Index Manager service errors
	Code 26201 returned
	Code 26202 returned
	Code 26203 returned
	Code 26204 returned

	Index Matcher service errors
	Code 26301 returned
	Code 26302 returned
	Code 26303 returned
	Code 26304 returned
	Code 26305 returned
	Code 26306 returned
	Code 26307 returned
	Code 26308 returned

	Configuration parameters of services
	Index Manager service configuration
	LIM_MANAGER_LOGGER section
	log_level
	log_time
	log_to_stdout
	log_to_file
	folder_with_logs
	max_log_file_size
	multiline_stack_trace
	format

	LIM_MANAGER_INDEXING section
	indexer_origins
	planning_period
	lookup_period
	face_lists > min_indexing_list_size
	face_lists > indexing_lists
	ef_construction

	LIM_MANAGER_HTTP_SETTINGS section
	request_timeout
	response_timeout
	request_max_size
	keep_alive_timeout

	LIM_MANAGER_DB section
	db_user
	db_password
	db_host
	db_port
	db_settings > connection_pool_size
	db_number
	sentinel > master_name
	sentinel > sentinels
	sentinel > user
	sentinel > password

	INFLUX_MONITORING section
	send_data_for_monitoring
	use_ssl
	organization
	token
	bucket
	host
	port
	flushing_period

	LUNA_FACES_ADDRESS section
	origin
	api_version

	LUNA_FACES_TIMEOUTS section
	connect
	request
	sock_connect
	sock_read

	Other
	index_storage_type
	index_storage_local
	storage_time
	lim_manager_active_plugins
	default_face_descriptor_version

	Indexed Matcher service configuration
	LIM_MATCHING section
	ef_search

	LIM_MATCHER_REFRESH section
	enabled

	LIM_MATCHER_LOGGER section
	log_level
	log_time
	log_to_stdout
	log_to_file
	folder_with_logs
	max_log_file_size
	multiline_stack_trace
	format

	LIM_MATCHER_HTTP_SETTINGS section
	request_timeout
	response_timeout
	request_max_size
	keep_alive_timeout

	LIM_MATCHER_DB section
	db_user
	db_password
	db_host
	db_port
	db_settings > connection_pool_size
	db_number
	sentinel > master_name
	sentinel > sentinels
	sentinel > user
	sentinel > password

	INFLUX_MONITORING section
	send_data_for_monitoring
	use_ssl
	organization
	token
	bucket
	host
	port
	flushing_period

	LUNA_FACES_ADDRESS section
	origin
	api_version

	LUNA_FACES_TIMEOUTS section
	connect
	request
	sock_connect
	sock_read

	LUNA_LICENSES_ADDRESS section
	origin
	api_version

	Other
	lim_matcher_cache
	index_storage_type
	index_storage_local
	lim_matcher_active_plugins
	default_face_descriptor_version

	Indexer service configuration
	LIM_INDEXER_LOGGER section
	log_level
	log_time
	log_to_stdout
	log_to_file
	folder_with_logs
	max_log_file_size
	multiline_stack_trace
	format

	INFLUX_MONITORING section
	send_data_for_monitoring
	use_ssl
	organization
	token
	bucket
	host
	port
	flushing_period

	LUNA_FACES_ADDRESS section
	origin
	api_version

	LUNA_FACES_TIMEOUTS section
	connect
	request
	sock_connect
	sock_read

	LIM_INDEXER_HTTP_SETTINGS section
	request_timeout
	response_timeout
	request_max_size
	keep_alive_timeout

	Other
	index_storage_type
	index_storage_local
	lim_indexer_active_plugins
	default_face_descriptor_version

	Matching plugin configuration
	LUNA_INDEXED_LIST_PLUGIN section
	redis_url
	request_timeout

