Monitoring¶
Data for monitoring¶
  Now we monitor two types of events for monitoring: request and error. The first type is all requests, second is failed requests only. Every event is a point in the time series. The point is represented as the union of the following data:
series name (now requests and errors)
start request time
tags, indexed data in storage, dictionary: keys - string tag names, values - string, integer, float
fields, non-indexed data in storage, dictionary: keys - string tag names, values - string, integer, float
‘Requests’ series. Triggered on every request. Each point contains a data about corresponding request (execution time and etc).
‘Matching-Process’ series. Triggered on every match action. Each point contains data about matching performance.
¶ tag name
description
service
“luna-python-matcher” or “luna-matcher-proxy”
matching_type
type of matching
matching_candidate
candidate for matching (events_candidates, faces_candidates, attributes_candidates)
¶ tag name
resource
description
service
matcher
match_face
preferred matcher
luna-matcher-proxy
matcher
match_body
preferred matcher
luna-matcher-proxy
¶ fields
description
request_id
request id
matching_time
time taken to perform matching
¶ fields
matching_type
description
service
list_id
match_face
list id used for cached list matching
luna-python-matcher
load_descriptor_time
match_body
time taken to load descriptor before matching *
luna-python-matcher
load_descriptor_time
match_face
time taken to load descriptor before matching *
luna-python-matcher
enrich_match_result_time
match_face
time taken to enrich cached list matching result with data
luna-python-matcher
enrich_match_result_time
match_face
time taken to enrich matching result with data
luna-matcher-proxy
enrich_match_result_time
match_body
time taken to enrich matching result with data
luna-matcher-proxy
* For events reference showed only if events_ids or external_ids not specified in candidates filters
‘Errors’ series. Triggered on failed request. Each point contains error_code of luna error.
Every handler can add additional tags or fields.
Database¶
Monitoring is implemented as data sending to an influx database. You can set up your database credentials in configuration file in section “monitoring”.
Classes¶
Module contains points for monitoring.
- class luna_python_matcher.crutches_on_wheels.cow.monitoring.points.BaseMonitoringPoint(eventTime)[source]¶
Abstract class for points
- eventTime¶
event time as timestamp
- Type:
float
- abstract property fields: Dict[str, int | float | str]¶
Get fields from point. We supposed that fields are not indexing data
- Returns:
dict with fields.
- Return type:
Dict
[str
,Union
[int
,float
,str
]]
- abstract property tags: Dict[str, int | float | str]¶
Get tags from point. We supposed that tags are indexing data
- Returns:
dict with tags.
- Return type:
Dict
[str
,Union
[int
,float
,str
]]
- class luna_python_matcher.crutches_on_wheels.cow.monitoring.points.BaseRequestMonitoringPoint(requestId, resource, method, requestTime, service, statusCode)[source]¶
Base class for point which is associated with requests.
- requestId¶
request id
- Type:
str
- route¶
concatenation of a request method and a request resource
- Type:
str
- service¶
service name
- Type:
str
- statusCode¶
status code of a request response.
- Type:
int
- property fields: Dict[str, int | float | str]¶
Get fields
- Returns:
“request_id”
- Return type:
dict with following keys
- Return type:
Dict
[str
,Union
[int
,float
,str
]]
- property tags: Dict[str, int | float | str]¶
Get tags
- Returns:
“route”, “service”, “status_code”
- Return type:
dict with following keys
- Return type:
Dict
[str
,Union
[int
,float
,str
]]
- class luna_python_matcher.crutches_on_wheels.cow.monitoring.points.DataForMonitoring(tags=<factory>, fields=<factory>)[source]¶
Class fo storing an additional data for monitoring.
- class luna_python_matcher.crutches_on_wheels.cow.monitoring.points.InfluxFormatter[source]¶
Format any point filed into inline format
- class luna_python_matcher.crutches_on_wheels.cow.monitoring.points.MonitoringPointInfluxFormatBuilder(name, bases, namespace, /, **kwargs)[source]¶
Complement point class with explicit fields formatting function for the sake of better performance
To perform type format building target class must have ‘fields’ property return value annotated with TypedDict.
Target class might be configured via ‘Config’ class. Available options:
extraFields: whether class should handle additional fields or not
>>> from typing import TypedDict >>> >>> class MonitoringFields(TypedDict): ... field1: str ... field2: int ... field3: float ... field4: bool >>> >>> class BasePoint(BaseMonitoringPoint, metaclass=MonitoringPointInfluxFormatBuilder): ... ... def __init__(self, fields: dict): ... self._fields = fields ... ... @property ... def tags(self): ... return {} ... ... @property ... def fields(self) -> MonitoringFields: ... return self._fields ... >>> class TestPointNoExtra(BasePoint): ... ... class Config: ... extraFields = False ... >>> class TestPointWithExtra(BasePoint): ... class Config: ... extraFields = True >>> >>> >>> point1 = TestPointNoExtra({"field1": "data", "field2": 1, "field3": 1.0, "field4": False}) >>> point2 = TestPointWithExtra({"field1": "data", "field2": 1, "field3": 1.0, "field4": False, "extra": True}) >>> print(point1.convertFieldsToInfluxLineProtocol()) field1="data",field2=1i,field3=1.000000,field4=False >>> print(point2.convertFieldsToInfluxLineProtocol()) field1="data",field2=1i,field3=1.000000,field4=False,extra=True
- classmethod buildInfluxFormats(annotations, extraFields)[source]¶
Build map with influx formats for corresponding fields
- Parameters:
annotations (dict) – point fields type annotations
extraFields (bool) – whether point uses extra fields or not
- Returns:
dict of fields with their format
- Return type:
dict
- static convertFieldsToInfluxLineProtocolNoExtra(point)[source]¶
Convert point fields into influx line protocol format without extra fields
- class luna_python_matcher.crutches_on_wheels.cow.monitoring.points.RequestErrorMonitoringPoint(requestId, resource, method, errorCode, service, requestTime, statusCode, additionalTags=None, additionalFields=None)[source]¶
Request monitoring point is suspended for monitoring requests errors (error codes)
- errorCode¶
error code
- Type:
int
- additionalTags¶
additional tags which was specified for the request
- Type:
dict
- additionalFields¶
additional fields which was specified for the request
- Type:
dict
- property fields: Dict[str, int | float | str]¶
Get fields.
- Returns:
dict with base fields and additional tags
- Return type:
Dict
[str
,Union
[int
,float
,str
]]
- series: str = 'errors'¶
series “errors”
- property tags: Dict[str, int | float | str]¶
Get tags.
- Returns:
dict with base tags, “error_code” and additional tags
- Return type:
Dict
[str
,Union
[int
,float
,str
]]
- class luna_python_matcher.crutches_on_wheels.cow.monitoring.points.RequestMonitoringPoint(requestId, resource, method, executionTime, requestTime, service, statusCode, additionalTags=None, additionalFields=None)[source]¶
Request monitoring point is suspended for monitoring all requests and measure a request time etc.
- executionTime¶
execution time
- Type:
float
- additionalTags¶
additional tags which was specified for the request
- Type:
dict
- additionalFields¶
additional fields which was specified for the request
- Type:
dict
- property fields: Dict[str, int | float | str]¶
Get fields.
- Returns:
dict with base fields, “execution_time” and additional tags
- Return type:
Dict
[str
,Union
[int
,float
,str
]]
- series: str = 'requests'¶
series “request”
- property tags: Dict[str, int | float | str]¶
Get tags.
- Returns:
dict with base tags and additional tags
- Return type:
Dict
[str
,Union
[int
,float
,str
]]
- luna_python_matcher.crutches_on_wheels.cow.monitoring.points.getRoute(resource, method)[source]¶
Get a request route, concatenation of a request method and a request resource :param resource: resource :param method: method
- Returns:
{resource}”
- Return type:
“{method}
- Return type:
str
- luna_python_matcher.crutches_on_wheels.cow.monitoring.points.monitorTime(monitoringData, fieldName)[source]¶
Context manager for timing execution time.
- Parameters:
monitoringData – container for saving result
fieldName – field name
Module implement base class for monitoring
- class luna_python_matcher.crutches_on_wheels.cow.monitoring.manager.LunaMonitoringManager(settings, pluginManager)[source]¶
Monitoring manager. Sends data to the monitoring storage and monitoring plugins. .. attribute:: settings
monitoring storage settings
- class luna_python_matcher.crutches_on_wheels.cow.monitoring.manager.MonitoringSettings(*args, **kwargs)[source]¶
Monitoring settings protocol
Module contains classes for sending a data to an influx monitoring.
- class luna_python_matcher.crutches_on_wheels.cow.monitoring.influx_adapter.BaseMonitoringAdapter(settings, flushingPeriod)[source]¶
Base monitoring adapter.
- backgroundScheduler¶
runner for periodic flushing monitoring points
- Type:
AsyncIOScheduler
- _buffer¶
list of buffering points which is waiting sending to influx
- Type:
- flushingPeriod¶
period of flushing points (in seconds)
- Type:
float
- _influxSettings¶
current influx settings
- Type:
- _job¶
sending monitoring data job
- Type:
Job
- addPointsToBuffer(points)[source]¶
Add points to buffer.
- Parameters:
points – points
- Return type:
None
- static convertFieldsToInfluxLineProtocol(fields)[source]¶
Convert field value to influx line protocol format
- Parameters:
fields – dict with values to convert
- Returns:
line protocol string
- Return type:
str
- generatePointStr(point)[source]¶
Generate string from point
- Parameters:
point – point
- Returns:
influx line protocol string
- Return type:
str