VisionLabs

MACHINES CAN SEE

VisionLabs LUNA PLATFORM 5

Example of deployment in Kubernetes cluster

v.5.67.0

Contents

Introduction

1

Unpacking the distribution

License activation

2.1 Actions from License activationmanual

Prepare user Docker registry for Lambda

Database configuration

41 ConfiguringInfluxDB L
4.2 VLMatch library compilation
43 Createuseranddatabases

4.4 AddVLMatch functions to Faces and Events databases

45 Install PostGIS for Eventsdatabase

Define LUNA PLATFORM settings

51 HASPlicensesettings.
5.2 GuardantLicenseSettings
53 GPUsettings e

Install Helm charts

6.1 Helmchartsetting
6.11 GPUsetupforRemoteSDK
6.1.2 ConfiguringaccessforLambda
6.2 Startinstallationof Helmcharts

Additional information

7.1 Create Docker registry authenticationsecret
72 UseGPUinMinikube
7.3 VLMatch library compilationforOracle

VisionLabs B.V.

2/20

Introduction

This document describes the procedure for deploying LUNA PLATFORM to Kubernetes using the Helm
charts provided.

The administrator must have a Kubernetes cluster deployed and configured to use Helm charts. It is
assumed that the user’s Kubernetes cluster:

+ PostgreSQL/Oracle DBMS and InfluxDB and Redis databases are running.
« There is access to S3-like object storage for storing buckets.

Important: The documentation and distribution package do not include out-of-the-box solutions for
managing PostgreSQL/Oracle, InfluxDB and Redis databases in Kubernetes. The user should configure
the databases themselves for better fault tolerance and scalability. The sample commands in this
document are for demonstration purposes and may need to be customized for your project’s specific
environment or requirements.

Monitoring in the format of sending data to InfluxDB and collecting query statistics is enabled by
default. If access to InfluxDB is not configured, LUNA PLATFORM services will not start. You can also
configure Prometheus metrics generation for further integration with Prometheus deployed in a custom
Kubernetes cluster (see the “LUNA_SERVICE_METRICS” setting).

This document does not include guidance on how to use Kubernetes. Please refer to the Kubernetes
documentation for more details:

https://kubernetes.io/docs

VisionLabs B.V. 3/20

https://kubernetes.io/docs

1 Unpacking the distribution

The distribution is an archive luna_v.5.67.0, where v.5.67.0 is a numeric identifier denoting the version
of LUNA PLATFORM.

The archive includes the configuration files required for installation and use. It does not include the
Docker service images, these need to be downloaded from the Internet separately.

Move the distribution to a directory on your server before installing. For example, move the files to the
/root/ directory. It should not contain any other distribution or license files other than the target files.

Create a directory to unzip the distribution file.

mkdir -p /var/lib/luna

Move the distribution to the directory ¢ LUNA PLATFORM.

mv /root/luna_v.5.67.0.zip /var/lib/luna

Open the distribution folder.

cd /var/1lib/luna

Unzip the files.

unzip luna_v.5.67.0.z1ip

VisionLabs B.V. 4/20

2 License activation

To activate the license, follow these steps:

« Follow the steps from license activation manual.
« Set settings for HASP license or Guardant license.

2.1 Actions from License activation manual

Open the license activation manual and follow the necessary steps.

The license activation guide provides steps to activate the license on a specific server. HASP/Guardant
has not been tested in a Kubernetes cluster.

Note: This action is mandatory. The license will not work without following the steps to activate the
license from the corresponding manual.

VisionLabs B.V. 5/20

3 Prepare user Docker registry for Lambda

Note: Skip this section if you are not going to use the Lambda service.

You need to prepare the user registry for storing Lambda images. Transfer the base images and the Kaniko
executor image to your registry using the commands below.

Upload the images from the remote repository to the local image repository:

docker pull dockerhub.visionlabs.ru/luna/lpa-lambda-base-fsdk:v.0.1.14

docker pull dockerhub.visionlabs.ru/luna/lpa-lambda-base:v.0.1.14

docker pull dockerhub.visionlabs.ru/luna/kaniko-executor:latest

Add new names to the images by replacing new-registry with your own. The names of the baseimages
in the custom registry should be the same as in the dockerhub.visionlabs.visionlabs.ru/luna
registry.

docker tag dockerhub.visionlabs.ru/luna/lpa-lambda-base-fsdk:v.0.1.14 new-
registry/lpa-lambda-base-fsdk:v.0.1.14

docker tag dockerhub.visionlabs.ru/luna/lpa-lambda-base:v.0.1.14 new-
registry/lpa-lambda-base:v.0.1.14

docker tag dockerhub.visionlabs.ru/luna/kaniko-executor:latest new-registry/
kaniko-executor:latest

Send local images to your remote repository, replacing new-registry with your own.

docker push new-registry/lpa-lambda-base-fsdk:v.0.1.14

docker push new-registry/lpa-lambda-base:v.0.1.14

docker push new-registry/kaniko-executor:latest

VisionLabs B.V. 6/20

4 Database configuration

For LUNA PLATFORM to work correctly, you must configure the databases as follows:

+ Configure InfluxDB.

« Compile the VLMatch library and transfer it to the DBMS.

+ Create user and databases for services and assign them the necessary permissions.
» Add VLMatch functions to Faces and Events databases.

VLMatch is a function for performing descriptor matching calculations. The VLMatch library is
compiled for a specific version of the database. Do not use a library created for a different version
of the database. For example, a library created for PostgreSQL version 16 cannot be used for
PostgreSQL version 12.

The sections below provide commands for PostgreSQL. For Oracle, only the VLMatch library compilation
commands are given (see “VLMatch library compilation for Oracle” in the “Additional information”
section).

4.1 Configuring InfluxDB

If InfluxDB is already deployed in your Kubernetes cluster, make sure the following information is set
correctly:

+ Username and password
+ Bucket and organization name
+ Administrator Token

Important: The above data must be specified in the LUNA PLATFORM settings dump file in order for
services to access InfluxDB. However, Configurator service settings cannot be specified in the dump file,
so they must be specified in the Configurator service Helm chart as follows:

env:

- name: VL_SETTINGS.INFLUX_MONITORING.SEND_DATA_FOR_MONITORING
value: "1"

- name: VL_SETTINGS.INFLUX_MONITORING.ORGANIZATION
value: "luna"

- name: VL_SETTINGS.INFLUX_MONITORING.TOKEN
value: "12345678"

- name: VL_SETTINGS.INFLUX_MONITORING.BUCKET
value: "luna_monitoring"

- name: VL_SETTINGS.INFLUX_MONITORING.HOST
value: "dinfluxdb"

- name: VL_SETTINGS.INFLUX_MONITORING.PORT

VisionLabs B.V. 7/20

value: "8086"
- name: VL_SETTINGS.INFLUX_MONITORING.USE_SSL

value: "o"
- name: VL_SETTINGS.INFLUX_MONITORING.FLUSHING_PERIOD
value: "1"

InfluxDB settings can also be specified in environment variables in the Helm chart of each service.

4.2 VLMatch library compilation

Note: The following instructions provide an example for PostgreSQL 16 DBMS on CentOS 8.

All files required to compile the user-defined extension (UDx) into VLMatch can be found in the following
directory:

/var/1lib/luna/luna_v.5.67.0/extras/VLMatch/postgres/

To compile the VLMatch UDx function, you need to:

« Install the RPM repository:

dnf dinstall -y https://download.postgresql.org/pub/repos/yum/reporpms/EL-8-
x86_64/pgdg-redhat-repo-latest.noarch.rpm

+ Install PostgreSQL:

dnf dinstall postgresqll6-server

+ Install development environment:

dnf install postgresqll6-devel

« Install the gcc package:

dnf dinstall gcc-c++

« Install CMAKE. Version 3.5 or higher is required.

« Open the make.sh script in a text editor. It includes the paths to the currently used PostgreSQL
version. Change the following values (if necessary):

SDK_HOME specifies the path to the PostgreSQL home directory. The defaultis /usr/pgsql-16/

include/server.

VisionLabs B.V. 8/20

LIB_ROOT specifies the path to the PostgreSQL library root directory. The defaultis /usr/pgsql
-16/11b.

« Open the make. sh script directory and run it:

cd /var/lib/luna/luna_v.5.67.0/extras/VLMatch/postgres/

chmod +x make.sh

. /make.sh

Transfer the generated VLMatchSource. so file to the PostgreSQL DBMS.

4.3 Create user and databases

This section provides sample commands for creating a user and databases using the PostgreSQL DBMS

as an example.

Create a database user.

psql -U postgres -c 'create role lunaj'

Assign a password to the user.

psql -U postgres -c "ALTER USER luna

Create databases for all services:

psql
psql
psql
psql
psql
psql
psql
psql

Assign privileges to the database user.

postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres

VisionLabs B.V.

'CREATE
'CREATE
'CREATE
'CREATE
'CREATE
'CREATE
'CREATE
'CREATE

DATABASE
DATABASE
DATABASE
DATABASE
DATABASE
DATABASE
DATABASE
DATABASE

WITH PASSWORD 'luna';"

luna_configurator;'
luna_accounts;'
luna_handlers;'
luna_backport3;"
luna_faces;'
luna_events;'
luna_tasks;'
luna_lambda;'

9/20

psql -U postgres -c 'GRANT ALL PRIVILEGES ON DATABASE luna_configurator TO
luna;'
psql -U postgres -c 'GRANT ALL PRIVILEGES ON DATABASE Tluna_accounts TO luna;

psql -U postgres -c 'GRANT ALL PRIVILEGES ON DATABASE luna_handlers TO luna;

psql -U postgres -c 'GRANT ALL PRIVILEGES ON DATABASE Tluna_backport3 TO luna

'
J

psql -U postgres -c 'GRANT ALL PRIVILEGES ON DATABASE luna_faces TO luna;'
psql -U postgres -c 'GRANT ALL PRIVILEGES ON DATABASE luna_events TO luna;'
psql -U postgres -c 'GRANT ALL PRIVILEGES ON DATABASE Tluna_tasks TO luna;'
psql -U postgres -c 'GRANT ALL PRIVILEGES ON DATABASE luna_lambda TO luna;'

Allow user authorization on databases:

psql -U postgres -c 'ALTER ROLE luna WITH LOGIN;'

Note: Note that the username and password are specified in LUNA PLATFORM settings to connect

services to the database.

4.4 Add VLMatch functions to Faces and Events databases
Define the VLMatch function in the Faces and Events databases:
psql -d luna_faces -c "CREATE FUNCTION VLMatch(bytea, bytea, int) RETURNS
float8 AS 'VLMatchSource.so', 'VLMatch' LANGUAGE C PARALLEL SAFE;"

psql -d luna_events -c "CREATE FUNCTION VLMatch(bytea, bytea, int) RETURNS
float8 AS 'VLMatchSource.so', 'VLMatch' LANGUAGE C PARALLEL SAFE;"

4.5 Install PostGIS for Events database

The Events service requires a PostGIS extension to work with coordinates.

Since PostGlIS is an extension for PostgreSQL, its version usually corresponds to the version of PostgreSQL

with which it is compatible.
Install the extension yourself for the PostgreSQL version you are using, using official documentation.

PostgreSQL 16 requires PostGIS version 3.4.

VisionLabs B.V. 10/20

https://postgis.net/

5 Define LUNA PLATFORM settings

The following settings must be set for LUNA PLATFORM to work minimally:

« LICENSE_VENDOR — License settings.

+ INFLUX_MONITORING — Settings for monitoring and connection to the InfluxDB database.

« LUNA_ATTRIBUTES_DB — Redis database address for storing temporary attributes.

+ TASKS_REDIS_DB_ADDRESS — Redis database address for the Tasks service.

+ LUNA_<SERVICE>_DB — Settings of connection to service databases.

+ LUNA_<SERVICE>_ADDRESS — Settings with service addresses.

+ REDIS_DB_ADDRESS — Redis database address for Sender service (when using Sender service).

+ LUNA_IMAGE_STORE_<BUCKET>_ADDRESS — Settings for access to bucket (when using Image
Store service).

+ STORAGE_TYPE — Type of storage for bucket storage (S3 or local, when using Image Store service).

+ S3 — Settings of S3-like storage for storing bucket (when using Image Store service and
STORAGE_TYPE = S3).

+ LAMBDA_S3 — Settings of S3-like storage for storing archives with modules (when using Lambda
service).

The settings can be specifiedintheextras/helms/luna-configurator/files/platform_settings
.json dump file, which is automatically loaded into the Configurator database during the installation
of the Configurator service Helm chart. The dump file contains a template that must be updated by
entering the correct user data.

Important: The downloaded dump file contains the minimum required list of settings. If necessary,
you can add additional settings using the full dump file located at extras/conf/luna_platform_<
version>_dump.jsonasanexample.

Update the dump file to be loaded using the following command:

vi /var/lib/luna/luna_v.5.67.0/extras/helms/luna-configurator/files/
platform_settings.json

The Helm template luna-configurator/templates/init-configmap.yaml uses the Files
.Glob function to find all JSON files in the Tluna-configurator/files folderin the Helm chart

of the Configurator service.

HASP and Guardant license settings are set differently. Select the section below to configure the license
based on the required protection mechanism:

« HASP
« Guardant

VisionLabs B.V. 11/20

5.1 HASP license settings

Note: Follow the steps in this section only if you are activating the license with HASP. If you need to

activate a Guardant license, follow the steps in “Guardant license settings”.

Specify the IP address of the server with your HASP key in the “server_address” field:

{
"value": {
"vendor": "hasp",
"server_address": '"<your-server-address>"
})
"description":"License vendor config",
"name" :"LICENSE_VENDOR",
"tags":[]
} J
Save the file.

5.2 Guardant License Settings

Note: Follow the steps in this section only if you are activating the license with Guardant. If you need to

activate a HASP license, follow the steps in “HASP license settings”.
Set the following details:

« IP address of the server with your Guardant key in the “server_address” field.

+ LicenseID in the format @x<your_license_1id> obtained in the section “Saving the license ID” in

the license activation guide, in the field “license_id™:

{
"value": {
"vendor": "guardant",
"server_address": "<your-server-address>",
"license_id": "Ox92683BEA"
b
"description":"License vendor config",
"name" :"LICENSE_VENDOR",
"tags":[]
s
Save file.

VisionLabs B.V.

12/20

5.3 GPU settings

Note: Skip this section if you do not intend to use the GPU.
GPU can be enabled for Remote SDK services and for individual Lambda instances.
GPU settings for individual Lambda instances are set at creation time (see the “create lambda” request).

The Remote SDK service does not use the GPU by default.

)

If you wantto use the GPU for all estimators and detectors at once, you must use the “global_device_class’
parameter in the “LUNA_REMOTE_SDK_RUNTIME_SETTINGS” section. All estimators and detectors will
use the value of this parameter if the “device_class” parameter of their own settings is set to “global”
(default).

If you want to use the GPU for a specific estimator or detector, you must use the “device_class” parameter
in sections like "LUNA_REMOTE_SDK_<estimator-or-detector-name>_SETTINGS.runtime_settings”.

Note: The extras/helms/luna-configurator/files/platform_settings.json dump file
from the delivery set contains only the “LUNA_REMOTE_SDK_RUNTIME_SETTINGS” section, which
allows enabling GPU for all estimators and detectors at once. If necessary, you can add settings for the
required estimator or detector to the dump file yourself, using the full dump file located at the path
extras/conf/luna_platform_<version>_dump.json asanexample.

Note that the “LUNA_REMOTE_SDK_RUNTIME_SETTINGS” section in the dump file has the “gpu”
tag specified. To use the settings from this section, you need to transfer the tagged section using
the “EXTEND_CMD” environment variable in the Helm chart of the Remote SDK service. An example
of passing a tagged setting is commented out in the values.yaml file for the Remote SDK service.

VisionLabs B.V. 13/20

6 Install Helm charts

Sample Helm charts for each service are located in the luna_v.5.67.0/extras/helms/ directory.

6.1 Helm chart setting

The supplied Helm charts are not suitable for full operation in the production loop. You need to customize
the charts according to your business logic before installing them.

Navigate to the charts directory:

cd /var/lib/luna/luna_v.5.67.0/extras/helms/

Configure in the luna-<service-name>/values.yaml files all the necessary parameters, especially
paying attention to:

+ resources section for specifying resources (e.g. CPU and memory) for the service containers.

+ ingress section to configure routing of incoming traffic to the service.

« pullSecrets parameter in the image section to specify the secret to be used when extracting
the container image from the registry (see “Create Docker registry authentication secret” in the
“Additional information” section).

Note: It is recommended to configure the nginx.ingress.kubernetes.io/proxy-body-size
annotation to the API service (or any other service to which image requests are sent) depending on the
size requirements of the images being transmitted. The API service Helm chart gives an example of how
to use this annotation.

These settings play an important role in ensuring the performance and availability of your application in
a productive environment.

6.1.1 GPU setup for Remote SDK

Note: Skip this section if you do not intend to use the GPU.

GPU usage for the Remote SDK service is enabled by passing the appropriate key in the resources
section of the values.yaml file of the corresponding Helm chart.

For example, you can configure access to a single GPU as follows:

resources:
limits:
cpu: 5000m
memory: 10Gi
nvidia.com/gpu: 1

VisionLabs B.V. 14 /20

requests:
Cpu: 5000m
memory: 10Gi
nvidia.com/gpu: 1

Note: Also, to enable estimations/detections on the GPU, the necessary settings must be set (see “GPU
settings”). If necessary, you can use the EXTEND_CMD variable to pass the tagged settings.

env:
- name: EXTEND_CMD
value: " —--LUNA_REMOTE_SDK_RUNTIME_SETTINGS gpu"

6.1.2 Configuring access for Lambda

Note: Skip this section if you are not going to use the Lambda service.

For the Lambda service to work properly, access to Kubernetes resources must be properly configured to
ensure the security and efficient management of the service. This can be done, for example, by defining
roles and role bindings using the Role Based Access Control (RBAC) mechanism.

The example below shows how to configure accesses using RBAC in Kubernetes for the Lambda service:

+ Define an object of type ServiceAccount, which represents the identifier used by the service to
interact with the Kubernetes API server:

apiVersion: vl
kind: ServiceAccount
metadata:

name: lambda-user

+ Define a Role object type that defines a set of permissions for the resources your service will work
with:

kind: Role
apiVersion: rbac.authorization.k8s.1i0/v1l
metadata:
namespace: production
name: lambda-admin-role
rules:
- apiGroups: ["", "apps", "networking.k8s.io"]
resources: ["deployments", "pods", "pods/log", "pods/status", "services",
"services/proxy", "ingresses'"]
verbs: ["get", "watch", "list", "create", "delete", "patch"]

VisionLabs B.V. 15/20

Here, services/proxy means the ability to send requests to the /lambdas/\ {lambda_id\}/proxy
resource of the Lambda service.

« Define a RoleBinding object type that binds a role to the created ServiceAccount type,
determining which resources and operations are available to the Lambda service:

kind: RoleBinding
apiVersion: rbac.authorization.k8s.1i0/v1l
metadata:
name: admin-lambda
namespace: production
subjects:
- kind: ServiceAccount
name: lambda-user
namespace: production
roleRef:
apiGroup: rbac.authorization.k8s.1i0
kind: Role
name: lambda-admin-role

6.2 Start installation of Helm charts

Navigate to the directory with the Helm charts.

cd /var/lib/luna/luna_v.5.67.0/extras/helms

Run the Helm charts installation for the required services using the following commands:

helm dinstall --wait --timeout 10m luna-configurator ./luna-configurator
helm dinstall --wait --timeout 10m luna-image-store ./luna-image-store
helm install --wait --timeout 10m luna-licenses ./luna-licenses

helm install --wait --timeout 10m luna-faces ./luna-faces

helm install --wait --timeout 10m luna-events ./luna-events

helm dinstall --wait --timeout 10m luna-python-matcher ./luna-python-matcher
helm install --wait --timeout 10m luna-remote-sdk ./luna-remote-sdk
helm install --wait --timeout 10m luna-handlers ./luna-handlers

helm install --wait --timeout 10m luna-sender ./luna-sender

helm dinstall --wait --timeout 10m luna-tasks-worker ./luna-tasks-worker
helm install --wait --timeout 10m luna-tasks ./luna-tasks

helm install --wait --timeout 10m luna-accounts ./luna-accounts

helm install --wait --timeout 10m luna-lambda ./luna-lambda

helm dinstall --wait --timeout 10m luna-api ./luna-api

VisionLabs B.V. 16 /20

helm install --wait --timeout 10m luna-admin ./luna-admin
helm 1install --wait --timeout 10m luna-backport3 ./luna-backport3
helm 1install --wait --timeout 10m luna-backport4 ./luna-backport4

Before starting the Ul 4 and Ul 3 services, you must perform additional actions in the Helm charts:

« Update the LUNA_API_URL parameter for both Helm charts, which is the internal address of
Backport 3 and Backport 4 respectively.

+ Update the BASIC_AUTH parameter for Helm chart Ul 4, specifying the authorization data for an
account of user type in login:password format encoded in Base64.

It is necessary to create an account of type “user” using the “create account” request to the API
service or using the Admin service.

Run the Helm charts installation for the Ul 4 and Ul 3 services using the following commands:

helm install --wait --timeout 10m luna3-ui ./luna3-ui
helm install --wait --timeout 10m luna4-ui ./luna4-ui

After installing Helm charts, it is recommended that you thoroughly test LUNA PLATFORM in an
environment that meets your performance and security requirements.

VisionLabs B.V. 17/ 20

7 Additional information

This section provides the following additional information:

« Steps to create a Docker registry-authentication-secret.
+ Nuances of using GPU in Minikube.
+ VLMatch library compilation example for Oracle.

7.1 Create Docker registry authentication secret

To download images with LUNA PLATFORM services you need to authorize in the Docker registry.

Create a credentials file, such as vlabs-credentials. json, containing the login and password:

{
"auths": {
"dockerhub.visionlabs.ru": {
"username": "your_username",
"password": "your_password"
}
+
}

Grant Kubernetes access to the registry with Docker images.

kubectl create secret generic my-dockerhub-secret --from-file=.
dockerconfigjson=vlabs-credentials.txt --type=kubernetes.io/
dockerconfigjson

If you have previously authorized via the docker login command, you can grant Kubernetes access

using the following command:

kubectl create secret generic my-dockerhub-secret --from-file=.
dockerconfigjson=$HOME/.docker/config.json --type=kubernetes.io/
dockerconfigjson

The secret can be specified during Helm chart setting.

7.2 Use GPU in Minikube

Minikube is a tool for locally installing and managing a Kubernetes cluster. It is used by developers and
testers to build and test applications in a local environment before deploying them to larger Kubernetes
clusters.

VisionLabs B.V. 18 /20

The use of GPUs in Minikube is only supported from version 1.32.

Each LUNA PLATFORM service that supports GPU running automatically creates GPU processes,
regardless of which resources (CPU or GPU) are installed. If more than one GPU service is running, the
GPU resources must be shared between them to avoid possible errors caused by video card access
conflicts.

See official NVIDIA documentation for more information about GPU resource sharing.

To isolate services from the GPU and prevent them from creating additional processes, set the
CUDA_VISIBLE_DEVICES/NVIDIA_VISIBLE_DEVICES environment variable to none for those
services that use the GPU and should not be used.

env:
- name: CUDA_VISIBLE_DEVICES
value: none

7.3 VLMatch library compilation for Oracle

Note: The following instructions describe the installation for Oracle 21c.

All files required to compile a user-defined extension (UDx) into VLMatch can be found in the following
directory:

/var/lib/luna/luna_v.5.67.0/extras/VLMatch/oracle

To compile the VLMatch UDx function you need to:

« Install the required environment, see. requirements:

sudo yum install gcc g++

+ Change the SDK_HOME — oracle sdk root variable (default is SORACLE_HOME /b n, check that the
$ORACLE_HOME environment variable is set) in the makefile.

vi /var/lib/luna/luna_v.5.67.0/extras/VLMatch/oracle/make.sh

« Open the directory and run the “make.sh” file.

cd /var/lib/luna/luna_v.5.67.0/extras/VLMatch/oracle

VisionLabs B.V. 19/20

https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/latest/gpu-sharing.html
https://docs.oracle.com/en/database/oracle/oracle-database/21/lacli/installation-requirements-for-programming-environments-for-linux-x86-64.html

chmod +x make.sh

. /make.sh

« Define the library and function inside the database (from the database console):

CREATE OR REPLACE LIBRARY VLMatchSource AS '$ORACLE_HOME/bin/VLMatchSource.

so';

CREATE OR REPLACE FUNCTION VLMatch(descriptorFst IN RAW, descriptorSnd IN

RAW, length IN BINARY_INTEGER)
RETURN BINARY_FLOAT
AS
LANGUAGE C
LIBRARY VLMatchSource

NAME "VLMatch"
PARAMETERS (descriptorFst BY REFERENCE, descriptorSnd BY REFERENCE,

length UNSIGNED SHORT, RETURN FLOAT);

« Test the function by calling (from the database console):

SELECT VLMatch(HEXTORAW('
1234567890123456789012345678901234567890123456789012345678901234") ,

HEXTORAW ('
0123456789012345678901234567890123456789012345678901234567890123"),

FROM DUAL;

The result should be “0.4765625”.

Transfer the generated VLMatchSource. so file to the Oracle DBMS.

VisionLabs B.V.

32)

20/20

	Introduction
	Unpacking the distribution
	License activation
	Actions from License activation manual

	Prepare user Docker registry for Lambda
	Database configuration
	Configuring InfluxDB
	VLMatch library compilation
	Create user and databases
	Add VLMatch functions to Faces and Events databases
	Install PostGIS for Events database

	Define LUNA PLATFORM settings
	HASP license settings
	Guardant License Settings
	GPU settings

	Install Helm charts
	Helm chart setting
	GPU setup for Remote SDK
	Configuring access for Lambda

	Start installation of Helm charts

	Additional information
	Create Docker registry authentication secret
	Use GPU in Minikube
	VLMatch library compilation for Oracle

