VisionLabs LUNA PLATFORM 5

Upgrade manual

v.5.67.0

Contents

Default ports for services
Configuration names for services
Introduction

1 Before upgrade

1.1 Key changes from previousversions
1.2 Createbackups e
1.21 Backup of PostgreSQLDMBS
1.2.2 BackupofInfluxdatabase
1.2.3 Backup of Image Storebuckets
1.2.4 Dump file with servicesettings
1.3 Prepare to change the neural networkversion
1.3.1 Change neural network version using Configurator
1.4 Deleteold symboliclink
1.5 Distributionunpacking L.
1.6 Symboliclinkcreation
1.7 Changing group and owner for directories
1.8 Movedata (versions5.38.3andbelow)
1.9 Save user configurations of the Configurator
1.10 Create log directory fornew services
101 Licenseupdate e e e
1.11.1 Actions from License activationmanual
112 CalculationsusingGPU
113 Removeoldcontainers

2 Services launch

2.1 Third-partyservices i i e e e e
211 InfluxDB
212 PostgreSQL
213 Redis e e
2.2 Configurator
2,21 Optionalservicesusage v v v v v vt i i
2.2.2 Configurator database migration
2.2.3 RunConfiguratorcontainer
2.3 ImagesStore e
2.31 Image Storecontainerlaunch
2.3.2 Bucketscreation

VisionLabs B.V.

2/77

2.4

2.5

2.6

2.7

2.8

2.9

2.10

21

212

213

2.14

2.15

2.3.3 AddTTLforlocal-buckets e 30

2.3.4 AddTTLforS3buckets. e 31
ACCOUNTS L e e e e e e e e e e e e e 33
2,41 AccountsDBtablescreation e 33
2,42 Accountsdatabasemigration L L e 33
2.43 Accountscontainerlaunch o 33
LiCENSES .« . . o o e e e e e e e e e e e e 35
2.5.1 Specify license settings using Configurator 35
2.5.2 Licensescontainerlaunch 36
Faces e e e e e e e e 37
2.6.1 Facesdatabasemigration 37
2.6.2 Facescontainerlaunch e 37
Events oL e 38
271 Eventsdatabase migration 38
2.7.2 Eventscontainerlaunch e 38
Python Matcherservices 0 i i i e e e e e 39
2.8.1 Use Python Matcher without Python MatcherProxy 39
2.8.2 Python Matcher containerlaunch 39
Remote SDK e e e e e e 40
2.9.1 Change the neural network model for extracting descriptors 40
2.9.2 RemoteSDKcontainerlaunch 40
Handlers e e e 45
2.10.1 Handlersdatabase migration L 45
2.10.2 Handlerscontainerlaunch e 45
Tasks . . e e e e e e e e 46
2111 Tasksdatabase migration 46
2.11.2 Tasks and Tasks Worker containerslaunch 46
SENder . . e e e e e e e 48
21210 Sendercontainerlaunch. 48
APl . e e e e e e e e 49
2.13.1 APlcontainerlaunch e 49
2.13.2 Accountmigration e e e e 49
AdMIN . L e e e e e e 51
2141 Admincontainerlaunch 51
Backport3 e e e e 52
2.151 Backport3databasemigration o e 52
2.15.2 Accountsandtokensmigration 52
2.15.3 Backport3containerlaunch 53
2.15.4 Userinterface3 e e 54

VisionLabs B.V. 3/77

216 Backportd e e e e e e e 55

2.16.1 Backport4 containerlauncho 55
216.2 Userlinterfaced 56

3 Additional information 57
3.1 Accountcreation e e e 58
3.2 GCtaskschedulecreation 59
3.3 Monitoring and logs visualizationusingGrafana 60
3.31 LUNADashboards 60

332 Grafanaloki 60

3.4 Dockercommands e 62
340 Showcontainers o i i i it e e e e e e e e 62

3.42 Copyfilestocontainer e 62

343 Entercontainer. 62
3.4.4 IMageSNAMES o e 62

3.45 Deleteimage o L e e e 62

3.4.6 Stopcontainer e e e e e e e 63

3.47 Deletecontainer 63

3.5 Launching parametersdescription e 65
3.5.1 Launchingservicesparameters 65

3.5.2 CreatingDBparameters e e 68

3.6 Loggingtoserver e e e e e e 69
3.6.1 Createlogsdirectory e e 69

3.6.2 Loggingactivation L 69

3.6.3 Mounting directories with logs when starting services 70

3.7 Dockerlogrotation 72
3.8 SetcustomInfluxDBsettings. 73
3.9 Use Python Matcher with Python MatcherProxy 75
3.9.1 Python Matcher proxy containerlaunch 75

3.10 Moveolddatatorootdirectory e 76
3101 MovelmageStorebuckets L e 76
3.10.2 MovePostgreSQLdata 76
310.3 MovelnfluxDBData i i 77

VisionLabs B.V. 4/77

Default ports for services

VisionLabs B.V.

Service name

LUNA PLATFORM AP

LUNA PLATFORM Admin

LUNA PLATFORM Image Store
LUNA PLATFORM Faces

LUNA PLATFORM Events

LUNA PLATFORM Tasks

LUNA PLATFORM Tasks Worker
LUNA PLATFORM Configurator
LUNA PLATFORM Sender

LUNA PLATFORM Handlers

LUNA PLATFORM Python Matcher
LUNA PLATFORM Licenses

LUNA PLATFORM Backport 4
LUNA PLATFORM Backport 3
LUNA PLATFORM Accounts

LUNA PLATFORM Lambda

LUNA PLATFORM Remote SDK
LUNA PLATFORM 3 User Interface
LUNA PLATFORM 4 User Interface
Oracle DB

PostgreSQL

Redis DB

InfluxDB

Grafana

Port

5000
5010
5020
5030
5040
5050
5051
5070
5080
5090
5100
5120
5130
5140
5170
5210
5220
4100
4200
1521
5432
6379
8086
3000

5/77

Configuration names for services

The table below includes the service names in the Configurator service.

configure your services.

Service

API

Licenses
Faces
Image Store
Accounts
Tasks
Events
Sender
Admin
Remote SDK
Handlers
Lambda
Python Matcher
Backport 3

Backport 4

Service name in Configurator

luna-api
luna-licenses
luna-faces
luna-image-store
luna-accounts
luna-tasks
luna-events
luna-sender
luna-admin
luna-remote-sdk
luna-handlers
luna-lambda
luna-python-matcher
luna-backport3

luna-backport4

Settings for the Configurator service are set in its configuration file.

VisionLabs B.V.

Use these parameters to

6/77

Introduction

This document gives an example of the steps for upgrading from previous build to a new build of LUNA
PLATFORM.

This document includes an example of LUNA PLATFORM deployment. It implements LUNA
PLATFORM minimum power operating for demonstration purposes and cannot be used for the
production system.

This document also contains the commands required to upgrade from version 5.2.0 and higher to the
current build. Note that starting from versions 5.2.0, there may have been critical changes, such as
updates to thresholds or neural network versions, deprecation of FaceDetV1 and FaceDetV2 detectors,
and others (see the full list in the “Key changes from previous versions” section). A change such as
updating the thresholds may give a different result when performing estimation than in the old build.
This manual is for upgrading from a previous build and these commands are for advanced users only.
These commands are marked accordingly. Be careful and do not perform unnecessary actions if you are
updating from from LUNA PLATFORM 5.64.0.

For LUNA PLATFORM upgrade, you need to perform the actions from the following sections:

« “Before upgrade” — Actions to unpack archives, prepare directories, configure a license, etc. Some
actions may be optional.
+ “Services launch” — Database migration actions and launching containers with LUNA PLATFORM

services.

The “Additional Information” section provides useful information on describing service launch
parameters, Docker commands, enabling Grafana for monitoring visualization, etc.

This manual is designed with an assumption that:

« You already have a previous minor version of LUNA PLATFORM installed and the required
environment is up and running at your server(s).

« LP 5isinstalled according to LP 5 installation manual, and the default paths are used. Otherwise,
you should consider your manual changes during the update.

VisionLabs B.V. /77

1 Before upgrade

Make sure that you are the root user before upgrade!
Before upgrading the LUNA PLATFORM, you must perform the following actions:

1. See key changes from previous versions if you are upgrading from a version other than LUNA
PLATFORM 5.64.0.

Create backups.

Prepare to change the version of the neural network to extract descriptors if necessary.

Delete old symbolic link.

Unpack the distribution of the new version of LUNA PLATFORM.

Create new symbolic link.

Change group and owner for new directories.

Move data if you are upgrading from version 5.38.3 and below.

© ® N0 ¢k WD

Save user configurations of the Configurator service if they have changed.

_.
e

Create log directories for new services if you have previously used logging to file.

—_
j—y

. Update license if necessary.

—_
N

. Setup GPU computing if you plan to use GPU.

—_
w

. Remove old containers.

VisionLabs B.V. 8/77

1.1 Key changes from previous versions

Note: When updating LUNA PLATFORM from a previous version, skip this section.

The following are the key changes from previous versions that you should pay attention to when

updating from older versions of LUNA PLATFORM. Some of these changes require mandatory actions to

be performed, otherwise the LUNA PLATFORM may not start or function incorrectly.

Not all changes are listed in the table below. See the LUNA PLATFORM release notes for details on

all changes.

Version

5.67.0

5.62.3

5.53.0

5.46.0

VisionLabs B.V.

Changes

The threshold value from the

“redetect_score_threshold” setting of the
“LUNA_REMOTE_SDK_FACE_DETECTOR_SETTIN(
section has been updated from “0.3” to “0.5".

Now, by default, the neural network model 62

for extracting face descriptors is used.

The VisionLabs image for PostgreSQL has been

updated from version 12 to version 16.

The functionality for working with neural
networks (detection, estimation and extraction)
has been transferred from the Handlers service

to the new Remote SDK service.

The 105th neural network model for extracting
body descriptors has been removed from the
Remote SDK container. Now, by default, the
110th neural network model is used for

extracting body descriptors.

Mandatory actions

Update the threshold value
according to user logic.

Read the information described in
the section “Prepare to change the
neural network version”, and
perform certain actions before
launching Remote SDK, because
the default version has changed.

If this image was previously used,
then you need to perform the
migration yourself according to
official documentation.

Read the information described in
the section “Prepare to change the
neural network version”, and
perform certain actions before
launching Remote SDK, because
the default version has changed.

9/77

https://www.postgresql.org/docs/current/pgupgrade.html

Version Changes Mandatory actions

5.45.1 The default value of the “score_threshold” Check the face recognition logic if
setting in the the “score_threshold” value is
“LUNA_HANDLERS_FACE_DETECTOR_SETTINGS” used that is different from the
section of the Configurator service has been default value.

changed from 0.42 to 0.5.

5.40.0 The PostgreSQL, InfluxDB and Image Store Move the old PostgreSQL, InfluxDB
container launch commands now prescribe the and Image Store data to the root
paths of the directories for mounting located in directory (see “Move data”), and
the root directory then delete and recreate the
/var/lib/luna/<db_or_bucket_folder>, containers by specifying new
unlike previous versions, where paths were directory paths for mounting.
prescribed for a specific version of the LUNA
PLATFORM
/var/lib/luna/current/example-
docker/<db_or_bucket_folder>. This
enables you not to move data with each

update.

5.38.3 The default value of the “score_threshold” Check the body recognition logic if
setting in the the “score_threshold” value is
“LUNA_HANDLERS_BODY_DETECTOR_SETTINGS” used that is different from the
section of the Configurator service has been default value.

changed from 0.3 to 0.5.

The default value of the Check the face recognition logic if
“redetect_face_target_size” setting in the the “redetect_face_target_size”
“LUNA_HANDLERS_FACE_DETECTOR_SETTINGS” value is used that is different from
section of the Configurator service has been the default value.

changed from 45 to 64.

5.36.5 The address of the license server must now be Perform the steps described in the
set in the Configurator settings before starting ~ “Specify license server address
the Licenses container. using Configurator” section.

5.35.0 Support for old Services for index buildingand -

searching by index has been discontinued.

VisionLabs B.V. 10/77

Version

5.34.0

5.30.0

5.28.0

5.26.0

5.24.0

VisionLabs B.V.

Changes

The 54, 56 and 57 neural network models for
extracting face descriptors have been removed
from the Handlers container.

The 104 and 106 neural network models for
extracting body descriptors has been removed
from the Handlers container. Now the 107
model is used by default.

Support for the Liveness V1 service has been
discontinued.

Vendor libraries for HASP key and HASP utility
have been updated (from 111186 to 30147).

The mechanism for creating and managing
accounts has been changed.

The default value of the “score_threshold”
setting in the “FACE_DETECTOR_V3” section of
the Configurator service has been changed
from 0.89 to 0.42.

The presence of a mask on the chin from this
version refers to the “missing” state. In
previous versions, it referred to the
“medical_mask” state.

Support for the Vertica database for the Events
service has been discontinued.

Mandatory actions

Read the information described in
the section “Prepare to change the
neural network version”, and
perform certain actions before
launching Handlers if one of the
listed models was used.

Read the information described in
the section “Prepare to change the
neural network version”, and
perform certain actions before
launching Handlers, because the
default version has changed.

Update the HASP service and issue
a new license (see “License
update”).

Perform actions marked with the
phrase Note. Accounts migration
(upgrading from 5.2.0...5.28.0
only)

Check the face recognition logic if
the “score_threshold” value is
used that is different from the
default value.

Check the logic of the mask
estimation.

n/77

Version

5.23.0

5.14.0

5.6.0

5.3.0

Changes

The default thresholds (recommended) have
been updated for the following checks in the
“face_quality” section and the “/iso” resource:
“mouth_occluded” (old values: min=0,
max=0.3; new values: min=0, max=0.5) and
“mouth_open” (old values: min=0, max=0.64;
new values: min=0, max=0.5)

The Liveness V2 algorithm has been updated.
The default thresholds for “liveness_threshold”
and “quality_threshold” are now “0.5”. The
recommended threshold “liveness_threshold”
is now “0.5” instead of “0.88”.

Now, by default, the neural network model 59
for extracting face descriptors is used.

The 101 model of the neural network for
extracting body descriptors has been removed
from the Handlers container. Now the 104
model is used by default.

The logic of launching LUNA PLATFORM
services inside containers has been changed.
Now applications are launched not from the
“root” user, but from the “luna” user.

Support for FaceDetV1 and FaceDetV2 detectors
has been discontinued.

1.2 Create backups

It is recommended to create the following backups:

« Backups of all databases used with LUNA PLATFORM.
« Backup of Image Store buckets.

VisionLabs B.V.

Mandatory actions

Check the logic of
“mouth_occluded” and
“mouth_open” if the default values
were used.

Check the logic of the Liveness V2
algorithm.

Read the information described in
the section “Prepare to change the
neural network version”, and
perform certain actions before
launching Handlers, because the
default version has changed.

Read the information described in
the section “Prepare to change the
neural network version”, and
perform certain actions before
launching Handlers, because the
default version has changed.

12/77

+ Backup of LUNA PLATFORM services configurations.

Creating backups will enable you to restore in case of any problems during the migration process.

1.2.1 Backup of PostgreSQL DMBS

A PostgreSQL database backup is performed using the pg_dumpall or pg_dump utilities.

Use the official instructions to perform a backup.

1.2.2 Backup of Influx database

An InfluxDB backup is performed using the influxd backup command.

Use the official instructions to perform a backup.

1.2.3 Backup of Image Store buckets

Create a backup of buckets using the following command:

cp -r /var/lib/luna/image_store /var/lib/luna/BACKUP_image_store

1.2.4 Dump file with service settings

Custom values of settings for LUNA PLATFORM services (all except the Configurator service) are
automatically migrated using the Configurator service migration mechanism.

If the migration of the service for some reason has lost the user configuration or the user just wants to
store the old service settings for different LP versions, then you can create a dump file.

To create a dump file, use the following command (may be executed from anywhere on your server):

wget -0 /var/lib/luna/BACKUP_settings_dump.json 127.0.0.1:5070/1/dump

or

curl 127.0.0.1:5070/1/dump > /var/lib/luna/BACKUP_settings_dump.json

Important: This file will not be used during the normal installation of the LUNA PLATFORM. To
apply the dumped settings use the db_create.py script with the --dump-file command line
argument (followed with the created dump file name): base_scripts/db_create.py --dump-file

settings_dump.json. You can apply full settings dump on an empty database only. See the detailed
information in the “Settings dump” section of the administrator manual.

VisionLabs B.V. 13/77

https://www.postgresql.org/docs/current/app-pg-dumpall.html
https://www.postgresql.org/docs/current/app-pgdump.html
https://docs.influxdata.com/influxdb/v2/admin/backup-restore/backup/

1.3 Prepare to change the neural network version

In some LUNA PLATFORM builds, neural network models for extracting face and body descriptors are
removed, and the default model usage settings are changed. See the section “Key changes from previous
versions” for more information about these changes.

If you are updating from a version where neural networks were removed, and in the previous
build one of the deleted models was specified in the “DEFAULT_FACE_DESCRIPTOR_VERSION” or
“DEFAULT_HUMAN_DESCRIPTOR_VERSION” settings, then the Remote SDK service will not start.

The current build of LUNA PLATFORM supports neural network models for extracting descriptors:

Object from which

descriptor is extracted Neural network models Default model
Face 59, 60, 62 62
Body 107,110 10

Itis necessary to perform one of the additional actions depending on the following scenarios of the work:
Continuation of the use of missing neural networks

Request to VisionLabs an old neural network model and prepare it for transfer to the new Remote SDK
container after its launch (see instructions in the section “Use non-delivery neural network model” of
administrator manual).

Switching to new version of the neural network with continuation of the use of old descriptors

« Run the “Additional extraction” task before the update (see “Additional extraction task” in the
administrator manual). This will convert old descriptors to a new version of the neural network.

« Specify the new version of the neural network in the settings “DEFAULT_FACE_DESCRIPTOR_VERSION”

or “DEFAULT_HUMAN_DESCRIPTOR_VERSION” before launching the Remote SDK service in
accordance with the section “Change neural network version using Configurator”.

Switching to new version of the neural network with cessation of the use of old descriptors

Specify the new version of the neural network in the settings “DEFAULT_FACE_DESCRIPTOR_VERSION”
or “DEFAULT_HUMAN_DESCRIPTOR_VERSION” before launching the Remote SDK service in accordance
with the section “Change neural network version using Configurator”.

If it is not necessary to extract body descriptors, then you can disable the use of the neural network
using the command --env=EXTEND_CMD="--enable-body-descriptor-estimator=0"
when launching Remote SDK container (see the detailed information in the section “Enable/disable
several estimators and detectors” of the administrator manual).

VisionLabs B.V. 14 /77

1.3.1 Change neural network version using Configurator

To change the version of the neural network, you must perform the following steps:

+ Open the Configurator user interface http://<configurator_server_ip>:5070.

Enterthe name of the setting “DEFAULT_FACE_DESCRIPTOR_VERSION” or “DEFAULT_HUMAN_DESCRIPTOR_VE|
in the “Setting name” field and click “Apply Filters”.

« Set the necessary neural network model in the “DEFAULT_FACE_DESCRIPTOR_VERSION” or
“DEFAULT_HUMAN_DESCRIPTOR_VERSION” setting.

Save the changes by clicking the “Save” button.

1.4 Delete old symbolic link

Delete the symbolic link to the previous minor version directory using the following command:

rm -f /var/lib/luna/current

1.5 Distribution unpacking

The distribution package is an archive luna_v.5.67.0, where v.5.67.0 is a numerical identifier, describing
the current LUNA PLATFORM version.

The archive includes configuration files, required for installation and exploitation. It does not include
Docker images for the services. They should be downloaded from the Internet.

Move the distribution package to the directory on your server before the installation. For example, move
the files to /root/ directory. The directory should not contain any other distribution or license files
except the target ones.

Move the distribution to the created directory.

mv /root/luna_v.5.67.0.zip /var/lib/luna

Install the unzip archiver if it is necessary.

yum install -y unzip

Go to the folder with distribution.

cd /var/1lib/luna

VisionLabs B.V. 15/77

Unzip files.

unzip luna_v.5.67.0.zip

1.6 Symbolic link creation

Create a symbolic link.

The link indicates that the current version of the distribution file is used to run LUNA PLATFORM.

In -s luna_v.5.67.0 current

1.7 Changing group and owner for directories

LP services are launched inside the containers by the “luna” user. Therefore, it is required to set
permissions for this user to use the mounted volumes.

Go to the LP “example-docker” directory.

cd /var/lib/luna/current/example-docker/

Create a directory to store settings.

mkdir luna_configurator/used_dumps

Set permissions for the user with UID 1001 and group 0 to use the mounted directories.

chown -R 1001:0 luna_configurator/used_dumps

1.8 Move data (versions 5.38.3 and below)

In the official installation documentation for versions of LUNA PLATFORM v.5.38.3 and lower, the paths
in the PostgreSQL, InfluxDB and Image Store container launch commands were specified for a specific
version of LUNA PLATFORM /var/1lib/luna/current/example-docker/<db_or_bucket_folder
>. Starting from version LUNA PLATFORM v.5.40.0, the commands for launching PostgreSQL, InfluxDB
and Image Store containers specify the paths of the directories for mounting, located in the root directory
/var/lib/luna/<db_or_bucket_folder>.

Example commands for launching PostgreSQL, InfluxDB and Image Store containers contain arguments
for mounting the corresponding data directories from the root directory. If you are upgrading from

VisionLabs B.V. 16 /77

version LUNA PLATFORM v.5.38.3 and lower and the previous version of LUNA PLATFORM was installed
according to the official documentation, then in the container launch commands, specify the old
directories with the data to be mounted or first transfer the old data to the root directory according to
the section “Move old data to root directory”.

1.9 Save user configurations of the Configurator

Note: Skip this step if the Configurator settings have not been changed.

The configurations of the Configurator service are not automatically migrated, unlike the configurations
of all other services.

If your previous LP version was used with non-default Configurator service configurations, back up your
“luna_configurator_postgres.conf” config file in the separate directory on your server.

cp /var/lib/luna/<your_previous_1lp_version>/example-docker/luna_configurator
/configs/luna_configurator_postgres.conf /var/lib/luna/
BACKUP_luna_configurator_postgres.conf

This backup must be mounted to the Configurator service container that is being run.

If you are not sure if the Configurator service configurations have changed, you can compare the created
backup with the Configurator configurations from the current distribution using the following command:

diff /var/lib/luna/current/example-docker/luna_configurator/configs/
luna_configurator_postgres.conf /var/lib/luna/
BACKUP_luna_configurator_postgres.conf

1.10 Create log directory for new services

Skip this section if no logs were previously stored on the server.

In the new version of LUNA PLATFORM, new services could appear, for which you need to create
directories with logs. It depends on the version from which you are upgrading. For example, version
5.30.0 introduced the Accounts service.

See “Logging to server” section if you have not previously used logging to a file, but want to enable
it.
Following are the commands to create directories for all existing services. These commands will create
and assign permissions only to missing directories.

VisionLabs B.V. 17 /77

mkdir -p /tmp/logs/configurator /tmp/logs/image-store /tmp/logs/accounts /
tmp/logs/faces /tmp/logs/licenses /tmp/logs/events /tmp/logs/python-
matcher /tmp/logs/handlers /tmp/logs/remote-sdk /tmp/logs/tasks /tmp/logs
/tasks-worker /tmp/logs/sender /tmp/logs/api /tmp/logs/admin /tmp/logs/
backport3 /tmp/logs/backport4

chown -R 1001:0 /tmp/logs/configurator /tmp/logs/image-store /tmp/logs/
accounts /tmp/logs/faces /tmp/logs/licenses /tmp/logs/events /tmp/logs/
python-matcher /tmp/logs/handlers /tmp/logs/remote-sdk /tmp/logs/tasks /
tmp/logs/tasks-worker /tmp/logs/sender /tmp/logs/api /tmp/logs/admin /tmp
/logs/backport3 /tmp/logs/backport4

If you need to use the Python Matcher Proxy service, then you need to additionally create the /tmp/logs
/python-matcher-proxy directory and set its permissions.

1.11 License update

To update the license, follow these steps:

« Follow the steps from license activation manual.
+ Set settings for HASP license or Guardant license before starting Licenses container.

1.11.1 Actions from License activation manual

Open the license activation manual and follow the necessary steps.

Note: This action is mandatory. The license will not work without following the steps to activate the
license from the corresponding manual.

Note. When updating Guardant Control Center, you must re-issue the license key.

1.12 Calculations using GPU

You can use GPU for the general calculations performed by Remote SDK.
Skip this section if you are not going to utilize GPU for your calculations.

You need to install NVIDIA Container Toolkit to use GPU with Docker containers. The example of the
installation is given below.

distribution=$(. /etc/os-release;echo IDVERSION_ID)

VisionLabs B.V. 18 /77

curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-
docker.repo | tee /etc/yum.repos.d/nvidia-docker.repo

yum install -y nvidia-container-toolkit

systemctl restart docker

Check the NVIDIA Container toolkit operating by running a base CUDA container (this container is not
provided in the LP distribution and should be downloaded from the Internet):

docker run --rm --gpus all nvidia/cuda:11.4.3-base-centos7 nvidia-smi

See the NVIDIA documentation for additional information.

Attributes extraction on the GPU is engineered for maximum throughput. The input images are
processed in batches. This reduces computation cost per image but does not provide the shortest
latency perimage.

GPU acceleration is designed for high load applications where request counts per second
consistently reach thousands. It won’t be beneficial to use GPU acceleration in non-extensively
loaded scenarios where latency matters.

1.13 Remove old containers

Before launching the containers of the current minor version, stop all LUNA PLATFORM related containers
of the previous minor version. It is not necessary to delete third-party services containers.

For example, to remove LP containers only use the following command:

docker container rm -f luna-configurator luna-backport3 luna-backport4 luna-
sender luna-tasks luna-handlers luna-remote-sdk luna-python-matcher luna-
events luna-licenses luna-faces luna-image-store luna-ui-3 luna-ui-4 luna
-admin luna-api luna-tasks-worker luna-accounts luna-lambda

To see the containers names or IDs, use the following command:

docker ps -a

It is also recommended to delete old images of the containers to free space. You can use the following
command to delete all unused images.

VisionLabs B.V. 19/77

https://github.com/NVIDIA/nvidia-container-toolkit

If there is enough space on the server it is recommended to perform this action only after new
version of LP is successfully launched.

The command deletes all the unused images, not only the images related to LP.

docker -image prune -a -f

VisionLabs B.V. 20 /77

2 Services launch

This section gives examples for:

+ Databases tables migration.
+ Buckets creation.
+ Launching of containers.

LUNA PLATFORM services must be launched in the following sequence:

+ Databases, Balancers, HASP service and other third-party party software.
+ Configurator

+ Image Store

+ Accounts

«» Licenses

« Faces

« Events

» Python Matcher

« Python Matcher Proxy. The service is disabled by default
« Remote SDK

« Handlers

» Tasks

« Sender

« API

« Admin

The following service are used when emulation of LUNA PLATFORM 3 is required only:

» Backport 3
« User Interface 3

The following service are used when emulation of LUNA PLATFORM 4 is required only:

» Backport 4
« User Interface 4

Itis recommended to launch containers one by one and wait for the container status to become “up” (use
the docker ps command).

Some ofthese services are optional and you can disable their use. Itis recommended to use Events, Tasks,
Sender and Admin services by default. See the “Optional services usage” section for details.

When launching each service, certain parameters are used, for example, --detach, --network, etc.
See the section “Launching parameters description” for more detailed information about all launch
parameters of LUNA PLATFORM services and databases.

See the “Docker commands” section for details about working with containers.

VisionLabs B.V. 21/ 77

2.1 Third-party services

This section describes the launching of databases in docker containers. They must be launched before
LP services.

2.1.1 InfluxDB

Note: If you haven’t deleted the old container, skip this step.

Monitoring LUNA PLATFORM services requires running the Influx 2.0.8-alpine database. Below are the
commands to launch the InfluxDB container.

For more information, see the “Monitoring” section in the administrator manual.

If necessary, you can configure the visualization of monitoring data using the LUNA Dashboards
service, which includes a configured Grafana data visualization system. In addition, you can
launch the Grafana Loki tool for advanced work with logs. See the instructions for launching LUNA
Dashboards and Grafana Loki in the “Monitoring and logs visualization using Grafana” section.

Note: If necessary, you can use an external InfluxDB 2.0.8-alpine. In this case, you can skip the command
below, but you will have to set custom settings for each LUNA PLATFORM service.

Use the docker run command with these parameters:

docker run \

—-e DOCKER_INFLUXDB_INIT_MODE=setup \

-e DOCKER_INFLUXDB_INIT_BUCKET=luna_monitoring \

-e DOCKER_INFLUXDB_INIT_USERNAME=Tluna \

-e DOCKER_INFLUXDB_INIT_PASSWORD=password \

-e DOCKER_INFLUXDB_INIT_ORG=1luna \

—-e DOCKER_INFLUXDB_INIT_ADMIN_TOKEN=
kofqt4Pfqjn600RBtMDQqVoJLgHoxxDUmmhiAZ7JIS6VmMEnrqZXQhxDhad8AX9tmiJH6CjM7Y1U8p5eSEocC

-v Jetc/localtime:/etc/localtime:ro \

-v /var/lib/luna/influx:/var/lib/influxdb2 \
--restart=always \

--detach=true \

--network=host \

-—-name influxdb \
dockerhub.visionlabs.ru/luna/influxdb:2.0.8-alpine

VisionLabs B.V. 22/ 77

2.1.2 PostgreSQL

2.1.2.1 Migrate PostgreSQL 12 to PostgreSQL 16
In LUNA PLATFORM v.5.53.0, the VisionLabs image for PostgreSQL has been updated from version 12 to
version 16.

If this image was previously used, then you need to perform the migration yourself according to official
documentation. If necessary, you can continue using PostgreSQL 12 by specifying the image “postgis-
vlmatch:12” in the container launch command.

Mounting PostgreSQL 12 data from the directory “/var/lib/luna/postgres” into a container for PostgreSQL
16 will result in an error.

2.1.2.2 Launch PostgreSQL
Note: If you haven’t deleted the old container, skip this step.

Use the following command to launch PostgreSQL.

docker run \

--env=POSTGRES_USER=1luna \

--env=POSTGRES_PASSWORD=1luna \

--shm-size=1g \

-v /var/lib/luna/postgresql/data/:/var/lib/postgresql/data/ \

-v /var/lib/luna/current/example-docker/postgresql/entrypoint-initdb.d/:/
docker-entrypoint-initdb.d/ \

-v /etc/localtime:/etc/localtime:ro \

--name=postgres \

--restart=always \

--detach=true \

--network=host \

dockerhub.visionlabs.ru/luna/postgis-vlmatch:16

-v /var/lib/luna/current/example-docker/postgresql/entrypoint-initdb.d/:/
docker-entrypoint-initdb.d/ \ — The “docker-entrypoint-initdb.d” script includes the
commands for the creation of services databases. During database creation, a default username
and password are automatically used.

-v /var/lib/luna/current/example-docker/postgresql/data/:/var/lib/postgresql/
data/ — The volume command enables you to mount the “data” folder to the PostgreSQL container.
The folder on the server and the folder in the container will be synchronized. The PostgreSQL data from
the container will be saved to this directory.

--network=host — If you need to change the port for PotgreSQL, you should change this string to -p
5440:5432. Where the first port 5440 is the local port and 5432 is the port used inside the container.

VisionLabs B.V. 23/77

https://www.postgresql.org/docs/current/pgupgrade.html
https://www.postgresql.org/docs/current/pgupgrade.html

You should create all the databases for LP services manually if you are going to use an already
installed PostgreSQL.

2.1.3 Redis

Note: If you haven’t deleted the old container, skip this step.

Use the following command to launch Redis.

docker run \

-v /etc/localtime:/etc/localtime:ro \
--name=redis \

--restart=always \

-—-detach=true \

--network=host \
dockerhub.visionlabs.ru/luna/redis:7.2

VisionLabs B.V. 24 /77

2.2 Configurator
2.2.1 Optional services usage

The listed below services are not mandatory for LP:

» Events

+ Image Store

+ Tasks

+ Sender

« Handlers

« Python Matcher Proxy (disabled by default)
« Lambda (disabled by default)

Working with the Lambda service is possible only when deploying LUNA PLATFORM services in
Kubernetes. See detailed information in the installation manual using Kubernetes.

You can disable them if their functionality is not required for your tasks.

Use the “ADDITIONAL_SERVICES_USAGE” section in the API service settings in the Configurator service
to disable unnecessary services.

You can use the dump file provided in the distribution package to enable/disable services before
Configurator launch.

vi /var/lib/luna/current/extras/conf/platform_settings.json

Disabling any of the services has certain consequences. For more information, see the “Disableable
services” section of the administrator manual.

2.2.2 Configurator database migration

Migration from the previous LP build to LP build v.5.67.0 is described in this section.

The following instruction for Configurator DB migration assumes that you already have settings
migration revision set in your database. This revision is set using the configs.migrate head script.
This script is included in the installation manuals of LP, starting with build 5.1.1. If you have performed
installation according to the manual, you do not need to perform additional actions.Settings migration
will be performed automatically.

If there is no revision, you should recreate the database structure. See the LP 5 installation manual
section “Configurator DB tables creation” for instructions. Then you should specify all the required
settings manually.

The migration from version 5.1.0 is described in “LP_Upgrade_Manual.html” in the distribution package
of version 5.1.1. You can update your Configurator database using this instruction and distribution

VisionLabs B.V. 25/77

package of version 5.1.1. Otherwise, you should recreate the database structure for the Configurator
service and specify all the required settings manually. See the LP 5 installation manual section
“Configurator DB tables creation” for instructions.

Migration from pre-release builds (builds before v.5.1.0) of LP is not provided. You should transfer all the
required settings to the Configurator DB of 5.1.1 build manually.

When upgrading the Configurator service database with existing service configurations, a database
structure migration must be performed, which will also migrate the saved settings of all LP services
except the Configurator service configurations.

Note on migrating Configurator service settings is described in the next section.

Use the docker run command with these parameters to create the Configurator database tables.

docker run \

-v Jetc/localtime:/etc/localtime:ro \

-v /var/lib/luna/current/example-docker/luna_configurator/configs/
luna_configurator_postgres.conf:/srv/luna_configurator/configs/config.
conf \

--network=host \

-v /tmp/logs/configurator:/srv/logs \

--rm \

-—entrypoint bash \

dockerhub.visionlabs.ru/luna/luna-configurator:v.2.2.18 \

-c "alembic upgrade head; cd /srv/luna_configurator/configs/configs/;
python3 -m configs.migrate --config /srv/luna_configurator/configs/config
.conf head;"

Here:
+ alembic upgrade head; — Upgrades already existing database structure.

« python3 -m configs.migrate head; — Performs settings migrations in Configurator DB and
sets revision for migration. The revision will be required during the upgrade to the new LP5 build.

2.2.3 Run Configurator container

Note: Configurator service configurations are not automatically migrated, unlike all other service
configurations. If the configurations of the Configurator service were changed in the previous
version of LP and you need to save custom values, then in the command below you need to
replace the path /var/lib/luna/current/example-docker/luna_configurator/configs
/luna_configurator_postgres.conf with the path with a backup copy of the configurations
Configurator service /var/lib/luna/BACKUP_luna_configurator_postgres.conf (see “Save
user configurations of the Configurator” section).

VisionLabs B.V. 26/77

Use the docker runcommand with these parameters to launch Configurator:

docker run \

--env=PORT=5070 \

--env=WORKER_COUNT=1 \

--env=RELOAD_CONFIG=1 \

-—env=RELOAD_CONFIG_INTERVAL=10 \

-v Jetc/localtime:/etc/localtime:ro \

-v /var/lib/luna/current/example-docker/luna_configurator/configs/

luna_configurator_postgres.conf:/srv/luna_configurator/configs/config.
conf \

-v /tmp/logs/configurator:/srv/logs \
--name=luna-configurator \

--restart=always \

--detach=true \

--network=host \
dockerhub.visionlabs.ru/luna/luna-configurator:v.2.2.18

At this stage, you can activate logging to file if you need to save them on the server (see the “Logging
to server” section).

VisionLabs B.V. 27 /77

2.3 Image Store
2.3.1 Image Store container launch

Note: If you are not going to use the Image Store service, do not launch this container and disable the
service utilization in Configurator. See section “Optional services usage”.

Use the following command to launch the Image Store service:

docker run \

--env=CONFIGURATOR_HOST=127.0.0.1 \
-—env=CONFIGURATOR_PORT=5070 \

--env=PORT=5020 \

--env=WORKER_COUNT=1 \

-—env=RELOAD_CONFIG=1 \
-—-env=RELOAD_CONFIG_INTERVAL=10 \

-v /var/lib/luna/image_store/:/srv/local_storage/ \
-v /etc/localtime:/etc/localtime:ro \

-v /tmp/logs/image-store:/srv/logs \
--name=luna-image-store \

--restart=always \

--detach=true \

--network=host \
dockerhub.visionlabs.ru/luna/luna-image-store:v.3.14.2

Here -v /var/lib/luna/image_store/:/srv/local_storage/ is the data from the specified
folder is added to the Docker container when it is launched. All the data from the specified Docker
container folder is saved to this directory.

If you already have a directory with LP buckets you should specify it instead of /var/1lib/luna/

image_store/.

2.3.2 Buckets creation

Buckets are required to store data in Image Store. The Image Store service should be launched before
the commands execution.

When upgrading from the previous version, it is recommended to launch the bucket creation commands
one more time. Hence you make sure that all the required buckets were created.

If the error with code 13006 appears during launching of the listed above commands, the bucket is already
created.

Buckets in LP can be created in two ways:

+ Usingthe 1is_bucket_create. py script located in the Image Store service container.

VisionLabs B.V. 28 /711

https://docs.visionlabs.ai/info/luna/troubleshooting/errors-description/code-13006/#code-13006-returned

« Using direct requests to the Image Store service.
Use script to create buckets

Run this script to create general buckets:

docker run \

-v /etc/localtime:/etc/localtime:ro \

-v /tmp/logs/api:/srv/logs \

-=rm \

--network=host \

dockerhub.visionlabs.ru/luna/luna-api:v.6.29.0 \

python3 ./base_scripts/lis_bucket_create.py -ii --luna-config http://
localhost:5070/1

If you want to specify the storage time of an object in a bucket, you can additionally specify the
number of days using the --bucket-tt1l argument. See details in the “Object lifecycle” section of
the administrator manual.

If you are going to use the Tasks service, use the following command to additionally create the “task-
result” in the Image Store service:

docker run \

-v Jetc/localtime:/etc/localtime:ro \

-v /tmp/logs/tasks:/srv/logs \

-=rm \

--network=host \

dockerhub.visionlabs.ru/luna/luna-tasks:v.3.22.1 \

python3 ./base_scripts/lis_bucket_create.py -ii --luna-config http://
localhost:5070/1

If you are going to use the portraits, use the following command to additionally create the “portraits”.

docker run \

-v Jetc/localtime:/etc/localtime:ro \

-v /tmp/logs/api:/srv/logs \

-=rm \

--network=host \

dockerhub.visionlabs.ru/luna/luna-backport3:v.0.11.9 \

python3 ./base_scripts/lis_bucket_create.py -ii --luna-config http://
localhost:5070/1

Use direct requests

VisionLabs B.V. 29/77

The curl utility is required for the following requests.

The “visionlabs-samples” bucket is used for face samples storage. The bucket is required for LP
utilization.

curl -X POST http://127.0.0.1:5020/1/buckets?bucket=visionlabs-samples

If you want to specify the storage time of an object in a bucket, you can additionally specify the
number of days using the tt1 query parameter. See details in the “Object lifecycle” section of the
administrator manual.

The “portraits” bucket is used for portraits storage. The bucket is required for Backport 3 utilization.

curl -X POST http://127.0.0.1:5020/1/buckets?bucket=portraits

The “visionlabs-bodies-samples” bucket is used for human bodies samples storage. The bucket is
required for LP utilization.

curl -X POST http://127.0.0.1:5020/1/buckets?bucket=visionlabs-bodies-
samples

The “visionlabs-image-origin” bucket is used for source images storage. The bucket is required for LP
utilization.

curl -X POST http://127.0.0.1:5020/1/buckets?bucket=visionlabs-image-origin

The “visionlabs-objects” bucket is used for objects storage. The bucket is required for LP utilization.

curl -X POST http://127.0.0.1:5020/1/buckets?bucket=visionlabs-objects

The “task-result” bucket for the Tasks service. Do not use it if you are not going to use the Tasks service.

curl -X POST http://127.0.0.1:5020/1/buckets?bucket=task-result

2.3.3 Add TTL for local-buckets

Note. Perform the steps below only if the buckets are stored in local storage and you need to manage
the lifetime of existing and/or new objects in the buckets.

In order to add TTLs for all objects in a bucket located in local storage, you must update it by specifying
the tt1lrequest parameter.

VisionLabs B.V. 30/77

Forexample, you can add a lifetime of all objects equal to 2 daysin the “visionlabs-samples” bucket using
the following command:

curl =X PUT http://127.0.0.1:5020/1/buckets?bucket=visionlabs-samples?ttl=2

2.3.4 Add TTL for S3 buckets

Note: Perform the steps below only if the buckets are stored in S3-like storage and you need to manage
the lifetime of existing and/or new objects in the bucket.

In order to add TTLs for objects in buckets located in S3-like storage, a special migration script
migrate_ttl_settings.py must be executed.

Note: See the “Migration to apply TTL to objects in S3” section in the administrator manual for details on
migration and its specifics.

The migration script should be run with the following arguments:

+ ——bucket — Bucket name, e.g. visionlabs-samples.
+ ——update-tags - Whether tags should be added to all existing objects.

If the -—update-tags argument is 1, the tags required for TTL will be added to all existing objects. The
duration of the migration will depend on the number of existing objects.

If the -—update-tags argument is 0, the tags required for TTL will not be added to all existing objects.
In this case, lifecycle management for existing objects will not be available.

Tags will be added automatically to new objects after migration.

The script also needs to fill the authorization data to the S3-like storage in the configuration file and
mount it to the Image Store service container.

Fill the configuration file with the following command:

vi /var/lib/luna/current/extras/conf/s3_bucket.conf

Perform the migration of buckets to the S3 storage:

docker run \

-v Jetc/localtime:/etc/localtime:ro \

-v /tmp/logs/image-store:/srv/logs \

-v /var/lib/luna/current/extras/conf/s3_bucket.conf:/srv/base_scripts/
migrate_ttl_settings/config.conf \

--rm \

--network=host \

VisionLabs B.V. 31/77

dockerhub.visionlabs.ru/luna/luna-image-store:v.3.14.2 \
python3 ./base_scripts/migrate_ttl_settings/migrate_ttl_settings.py --bucket
=<your_bucket_name> --update-tags=<your_value>

VisionLabs B.V. 32/77

2.4 Accounts
2.4.1 Accounts DB tables creation

Note. Accounts migration (upgrading from 5.2.0...5.28.0 only). Perform the steps below only if you
areupgrading from LP 5.2.0...5.28.0, where the Admin service was not used. If you have used the Admin
service before, skip this section and perform the steps in the “Accounts database migration” section.

Use the following command to create Accounts DB tables:

docker run \

-v Jetc/localtime:/etc/localtime:ro \

-v /tmp/logs/accounts:/srv/logs \

-=rm \

--network=host \

dockerhub.visionlabs.ru/luna/luna-accounts:v.0.3.9 \

python3 ./base_scripts/db_create.py --luna-config http://localhost:5070/1

2.4.2 Accounts database migration

You need to execute migration scripts to update your Accounts database structure.

It is recommended to create the back up of your database before applying any changes.

docker run \

-v /etc/localtime:/etc/localtime:ro \

-v /tmp/logs/accounts:/srv/logs \

--rm \

--network=host \
dockerhub.visionlabs.ru/luna/luna-accounts:v.0.3.9 \
alembic -x luna-config=http://127.0.0.1:5070/1 upgrade head

In LUNA PLATFORM 5.30.0, the database that stores information about accounts has changed.
In LUNA PLATFORM versions 5.2.0...5.28.0, information was stored in the Admin database
(luna_admin database), and in versions 5.30.0 and higher, information is stored in the Accounts
database (luna_accounts database). If you are upgrading from versions 5.2.0...5.28.0 to the
current version, then the script above will transform the Tuna_admin database to work with new
accounts (the database name will remain the same).

2.4.3 Accounts container launch

Use the following command to launch the service:

VisionLabs B.V. 33/77

docker run \
-—-env=CONFIGURATOR_HOST=127.0.0.1 \
--env=CONFIGURATOR_PORT=5070 \
--env=PORT=5170 \
--env=WORKER_COUNT=1 \
--env=RELOAD_CONFIG=1 \
-—-env=RELOAD_CONFIG_INTERVAL=10 \

-v Jetc/localtime:/etc/localtime:ro \
-v /tmp/logs/accounts:/srv/logs \
-—-name=luna-accounts \
--restart=always \

--detach=true \

--network=host \
dockerhub.visionlabs.ru/luna/luna-accounts:v.0.3.9

VisionLabs B.V. 34/77

2.5 Licenses

Note: To use a trial license, it is required to launch the Licenses service on the same server where trial
license is being used.

2.5.1 Specify license settings using Configurator

Follow the steps below to set the settings for HASP-key or Guardant-key.

2.5.1.1 Specify HASP license settings
Note: Perform these actions only if the HASP key is used. See the “Specify Guardant license settings”
section if the Guardant key is used.

To set the license server address, follow these steps:
+ Go to the Configurator service interface http://<configurator_server_ip>:5070/.
+ Specify the “LICENSE_VENDOR” value in the “Setting name” field and click “Apply Filters”.

« Set the IP address of the server with your HASP key in the field “server_address” in the format
“127.0.0.1".

« Click “Save”.

If the license is activated using the HASP key, then two parameters “vendor” and “server_address”
must be specified. If you want to change the HASP protection to Guardant, then you need to add
the “license_id” field.

2.5.1.2 Specify Guardant license settings
Note: Perform these actions only if the Guardant key is used. See the “Specify HASP license settings”
section if the HASP key is used.

To set the license server address, follow these steps:

Go to the Configurator service interface http://<configurator_server_ip>:5070/.

Enter the value “LICENSE_VENDOR?” in the “Setting name” field and click “Apply Filters”.

Set the IP address of the server with your Guardant key in the “server_address” field.

Set the license ID in the format @x<your_1license_id>, obtained in the section “Save license ID”
in the License activation manual, in the “license_id” field.

Click “Save”.

» o«

If the license is activated using the Guardant key, then three parameters “vendor”, “server_address”

VisionLabs B.V. 35/77

and “license_id” must be specified. If you want to change the Guardant protection to HASP, then
you need to delete the “license_id” field.

2.5.2 Licenses container launch

Use the following command to launch the service:

docker run \
--env=CONFIGURATOR_HOST=127.0.0.1 \
-—-env=CONFIGURATOR_PORT=5070 \
--env=PORT=5120 \
-—env=WORKER_COUNT=1 \
--env=RELOAD_CONFIG=1 \
--env=RELOAD_CONFIG_INTERVAL=10 \

-v /etc/localtime:/etc/localtime:ro \
-v /tmp/logs/licenses:/srv/logs \
--name=luna-licenses \
-—-restart=always \

-—-detach=true \

--network=host \
dockerhub.visionlabs.ru/luna/luna-licenses:v.0.10.18

VisionLabs B.V. 36/77

2.6 Faces
2.6.1 Faces database migration

You need to execute migration scripts to update your Faces database structure.

It is recommended to create the back up of your database before applying any changes.

Run the following command to perform the Faces DB migration.

docker run \

-v Jetc/localtime:/etc/localtime:ro \

-v /tmp/logs/faces:/srv/logs \

-=rm \

--network=host \
dockerhub.visionlabs.ru/luna/luna-faces:v.4.11.9 \

alembic -x luna-config=http://127.0.0.1:5070/1 upgrade head

2.6.2 Faces container launch

Use the following command to launch the service:

docker run \
--env=CONFIGURATOR_HOST=127.0.0.1 \
-—-env=CONFIGURATOR_PORT=5070 \
--env=PORT=5030 \
--env=WORKER_COUNT=2 \
--env=RELOAD_CONFIG=1 \
--env=RELOAD_CONFIG_INTERVAL=10 \

-v /etc/localtime:/etc/localtime:ro \
-v /tmp/logs/faces:/srv/logs \
-—-name=luna-faces \

-—-restart=always \

-—-detach=true \

--network=host \
dockerhub.visionlabs.ru/luna/luna-faces:v.4.11.9

VisionLabs B.V.

37/77

2.7 Events
2.7.1 Events database migration

You need to execute migration scripts to update your Events database structure.

It is recommended to create the back up of your database before applying any changes.

docker run \

-v Jetc/localtime:/etc/localtime:ro \

-v /tmp/logs/events:/srv/logs \

-=rm \

--network=host \
dockerhub.visionlabs.ru/luna/luna-events:v.4.12.9 \

alembic -x luna-config=http://127.0.0.1:5070/1 upgrade head

2.7.2 Events container launch

Note: If you are not going to use the Events service, do not launch this container and disable the service
utilization in Configurator. See section “Optional services usage”.

Use the following command to launch the service:

docker run \
--env=CONFIGURATOR_HOST=127.0.0.1 \
--env=CONFIGURATOR_PORT=5070 \
--env=PORT=5040 \
--env=WORKER_COUNT=1 \
--env=RELOAD_CONFIG=1 \
-—env=RELOAD_CONFIG_INTERVAL=10 \

-v Jetc/localtime:/etc/localtime:ro \
-v /tmp/logs/events:/srv/logs \
-—-name=luna-events \

--restart=always \

--detach=true \

--network=host \
dockerhub.visionlabs.ru/luna/luna-events:v.4.12.9

VisionLabs B.V. 38/71

2.8 Python Matcher services

For matching tasks, you can use either only the Python Matcher service, or additionally use the Python
Matcher Proxy service, which redirects matching requests to either the Python Matcher service or
matching plugins. This section describes how to use Python Matcher without Python Matcher Proxy.

You need to use the Python Matcher Proxy service only if you are going to use matching plugins.
Using Python Matcher Proxy and running the corresponding docker container are described in the
“Use Python Matcher with Python Matcher Proxy” section.

See the description and usage of matching plugins in the administrator manual.

2.8.1 Use Python Matcher without Python Matcher Proxy

The Python Matcher service with matching by the Faces DB is enabled by default after launching.

The Python Matcher service with matching by the Events is also enabled by default. You can disable it
by specifying “USE_LUNA_EVENTS = 0” in the “ADDITIONAL_SERVICES_USAGE” settings of Configurator
(see “Optional services usage” section). Thus, the Events service will not be used for LUNA PLATFORM.

The Python Matcher that matches using the matcher library is enabled when “CACHE_ENABLED” is set
to “true” in the “DESCRIPTORS_CACHE” setting.

Asingle image is downloaded for the Python Matcher service and the Python Matcher Proxy service.

2.8.2 Python Matcher container launch

Use the following command to launch the service:

docker run \
--env=CONFIGURATOR_HOST=127.0.0.1 \
-—-env=CONFIGURATOR_PORT=5070 \
--env=PORT=5100 \

--env=WORKER_COUNT=1 \
-—env=RELOAD_CONFIG=1 \
-—-env=RELOAD_CONFIG_INTERVAL=10 \

-v Jetc/localtime:/etc/localtime:ro \
-v /tmp/logs/python-matcher:/srv/logs \
--name=luna-python-matcher \
--restart=always \

--detach=true \

--network=host \
dockerhub.visionlabs.ru/luna/luna-python-matcher:v.1.9.9

VisionLabs B.V. 39/77

2.9 Remote SDK
2.9.1 Change the neural network model for extracting descriptors

Some builds of LUNA PLATFORM remove the neural network models for extracting descriptors of faces
and bodies, and also change the default settings for using models.

If you are upgrading from a version where neural networks were removed, and in the previous
build one of the deleted models was specified in the “DEFAULT_FACE_DESCRIPTOR_VERSION” or
“DEFAULT_HUMAN_DESCRIPTOR_VERSION” settings, then the Remote SDK service will not start unless
you do one of the following actions:

« request old neural network model from VisionLabs specialists and transfer it to new container

+ switchto new version of the neural network, having previously completed the Additional extraction
task to re-extract existing descriptors using the new version of the neural network for their further
use

+ switch to new version of the neural network with cessation of the use of old descriptors

See “Prepare to change the neural network version” for details.

2.9.2 Remote SDK container launch

You can run the Remote SDK service utilizing CPU (set by default) or GPU.

By default, the Remote SDK service is launched with all estimators and detectors enabled. If
necessary, you can disable the use of some estimators or detectors when launching the Remote
SDK container. Disabling unnecessary estimators enables you to save RAM or GPU memory, since
when the Remote SDK service launches, the possibility of performing these estimates is checked
and neural networks are loaded into memory. If you disable the estimator or detector, you can
also remove its neural network from the Remote SDK container. See the “Enable/disable several
estimators and detectors” section of the administrator manual for more information.

Run the Remote SDK service using one of the following commands according to the utilized processing
unit.

2.9.2.1 Run Remote SDK utilizing CPU
Use the following command to launch the Remote SDK service using CPU:

docker run \
--env=CONFIGURATOR_HOST=127.0.0.1 \
-—-env=CONFIGURATOR_PORT=5070 \
-—-env=PORT=5220 \
--env=WORKER_COUNT=1 \
--env=RELOAD_CONFIG=1 \

VisionLabs B.V. 40 /77

--env=RELOAD_CONFIG_INTERVAL=10 \

-v /etc/localtime:/etc/localtime:ro \

-v /tmp/logs/remote-sdk:/srv/logs \

--network=host \

--name=luna-remote-sdk \

--restart=always \

--detach=true \
dockerhub.visionlabs.ru/luna/luna-remote-sdk:v.0.6.0

2.9.2.2 Run Remote SDK utilizing GPU
The Remote SDK service does not utilize GPU by default. If you are going to use the GPU, then you should
enable its use for the Remote SDK service in the Configurator service.

If you need to use the GPU for all estimators and detectors at once, then you need to use the
“global_device_class” parameter in the “LUNA_REMOTE_SDK_RUNTIME_SETTINGS” section. All
estimators and detectors will use the value of this parameter if the “device_class” parameter of their
settings like "LUNA_REMOTE_SDK_<estimator-or-detector-name>_SETTINGS.runtime_settings” is set
to “global” (by default for all estimators and detectors).

If you need to use the GPU for a specific estimator or detector, then you need to use the “device_class”
parameterin sections like "LUNA_REMOTE_SDK_<estimator/detector-name>_SETTINGS.runtime_settings”.

See section “Calculations using GPU” for additional requirements for GPU utilization.

Use the following command to launch the Remote SDK service using GPU:

docker run \
--env=CONFIGURATOR_HOST=127.0.0.1 \
--env=CONFIGURATOR_PORT=5070 \
--env=PORT=5220 \
-—env=WORKER_COUNT=1 \
-—env=RELOAD_CONFIG=1 \
—-—-env=RELOAD_CONFIG_INTERVAL=10 \
--gpus device=0 \

-v /etc/localtime:/etc/localtime:ro \
-v /tmp/logs/remote-sdk:/srv/logs \
--network=host \
--name=luna-remote-sdk \
--restart=always \

-—-detach=true \
dockerhub.visionlabs.ru/luna/luna-remote-sdk:v.0.6.0

Here --gpus device=0 is the parameter specifies the used GPU device and enables GPU utilization. A
single GPU can be utilized per Remote SDK instance. Multiple GPU utilization perinstance is not available.

VisionLabs B.V. an/TT

2.9.2.3 Run slim version of Remote SDK

You can run a slim version of the Remote SDK service that contains only configuration files without neural

networks. It is assumed that the user himself will add the neural networks he needs to the container.

The launch of the slim version of the Remote SDK service is intended for advanced users.

To successfully launch the Remote SDK container with a custom set of neural networks, you need to

perform the following actions:

+ Request the required neural networks from VisionLabs.

Place neural networks in a folder with LUNA PLATFORM installed.
Assign appropriate rights to neural network files.

« Mount neural network files to the /srv/fsdk/data folder of the Remote SDK container.

+ Using the arguments of the variable “EXTEND_CMD” to explicitly specify which of the neural

networks should be used.

Using the “enable-all-estimators-by-default” flag for the “EXTEND_CMD” variable, you can disable

the use of all neural networks (estimators) by default, and then use special flags to explicitly specify

which neural networks should be used. If you do not specify this flag or set the value “--enable-all-

estimators-by-default=1", the Remote SDK service will try to find all neural networks in the container.

If one of the neural networks is not found, the Remote SDK service will not start.

List of available estimators:

Argument

--enable-all-estimators-by-default
--enable-human-detector
--enable-face-detector
--enable-body-detector
--enable-face-landmarks5-estimator
--enable-face-landmarks68-estimator
--enable-head-pose-estimator
--enable-liveness-estimator
--enable-fisheye-estimator
--enable-face-detection-background-estimator
--enable-face-warp-estimator
--enable-body-warp-estimator
--enable-quality-estimator

--enable-image-color-type-estimator

VisionLabs B.V.

Description

Enable all estimators by default.
Simultaneous detector of bodies and bodies.
Face detector.

Body detector.

Face landmarks5 estimator.
Face landmarks68 estimator.
Head pose estimator.

Liveness estimator.

FishEye effect estimator.

Image background estimator.
Face sample estimator.

Body sample estimator.

Image quality estimator.

Face color type estimator.

42 /77

Argument

--enable-face-natural-light-estimator
--enable-eyes-estimator
--enable-gaze-estimator
--enable-mouth-attributes-estimator
--enable-emotions-estimator
--enable-mask-estimator
--enable-glasses-estimator
--enable-eyebrow-expression-estimator
--enable-red-eyes-estimator
--enable-headwear-estimator
--enable-basic-attributes-estimator
--enable-face-descriptor-estimator
--enable-body-descriptor-estimator
--enable-body-attributes-estimator
--enable-people-count-estimator

--enable-deepfake-estimator

Description

Natural light estimator.

Eyes estimator.

Gaze estimator.

Mouth attributes estimator.
Emotions estimator.

Mask estimator.

Glasses estimator.

Eyebrow estimator.

Red eyes estimator.

Headwear estimator.

Basic attributes estimator.

Face descriptor extraction estimator.
Body descriptor extraction estimator.
Body attributes estimator.

People count estimator.

Deepfake estimator.

See the detailed information on enabling and disabling certain estimators in the section

“Enable/disable several estimators and detectors” of the administrator manual.

Below is an example of a command to assign rights to a neural network file:

chown -R 1001:0 /var/lib/luna/current/<neural_network_name>.plan

Example of a command to run Remote SDK container with mounting neural networks for face detection

and face descriptor extraction:

docker run \

--env=CONFIGURATOR_HOST=127.0.0.1 \

--env=CONFIGURATOR_PORT=5070 \
--env=PORT=5220 \
--env=WORKER_COUNT=1 \
--env=RELOAD_CONFIG=1 \

VisionLabs B.V.

43 /77

--env=RELOAD_CONFIG_INTERVAL=10 \

--env=EXTEND_CMD="--enable-all-estimators-by-default=0 --enable-face-
detector=1 --enable-face-descriptor-estimator=1" \

-v /var/lib/luna/current/cnn59b_cpu-avx2.plan:/srv/fsdk/data/cnn59b_cpu-avx2
.plan \

-v /var/lib/luna/current/FaceDet_v3_al_cpu-avx2.plan:/srv/fsdk/data/
FaceDet_v3_al_cpu-avx2.plan \

-v /var/lib/luna/current/FaceDet_v3_redetect_v3_cpu-avx2.plan:/srv/fsdk/data
/FaceDet_v3_redetect_v3_cpu-avx2.plan \

-v /var/lib/luna/current/slnet_v3_cpu-avx2.plan:/srv/fsdk/data/slnet_v3_cpu-
avx2.plan \

-v /var/lib/luna/current/LNet_precise_v2_cpu-avx2.plan:/srv/fsdk/data/
LNet_precise_v2_cpu-avx2.plan \

-v /etc/localtime:/etc/localtime:ro \

-v /tmp/logs/remote-sdk:/srv/logs \

--network=host \

--name=luna-remote-sdk \

-—-restart=always \

-—-detach=true \

dockerhub.visionlabs.ru/luna/luna-remote-sdk:v.0.6.0

VisionLabs B.V. 44 /77

2.10 Handlers

Note: If you are not going to use the Handlers service, do not launch this container and disable the service
utilization in Configurator. See section “Optional services usage”.

2.10.1 Handlers database migration

You need to execute migration scripts to update your Handlers database structure.

It is recommended to create the back up of your database before applying any changes.

docker run \

-v /etc/localtime:/etc/localtime:ro \

-v /tmp/logs/handlers:/srv/logs \

--rm \

--network=host \
dockerhub.visionlabs.ru/luna/luna-handlers:v.3.6.0 \
alembic -x luna-config=http://127.0.0.1:5070/1 upgrade head

2.10.2 Handlers container launch

Use the following command to launch the service:

docker run \
--env=CONFIGURATOR_HOST=127.0.0.1 \
-—-env=CONFIGURATOR_PORT=5070 \
--env=PORT=5090 \
--env=WORKER_COUNT=1 \
-—env=RELOAD_CONFIG=1 \
-—-env=RELOAD_CONFIG_INTERVAL=10 \

-v Jetc/localtime:/etc/localtime:ro \
-v /tmp/logs/handlers:/srv/logs \
--name=luna-handlers \
--restart=always \

--detach=true \

--network=host \
dockerhub.visionlabs.ru/luna/luna-handlers:v.3.6.0

VisionLabs B.V. 45 /711

2.11 Tasks

Note: If you are not going to use the Tasks service, do not launch the Tasks container and the Tasks Worker
container. Disable the service utilization in Configurator. See section “Optional services usage”.

2.11.1 Tasks database migration

You need to execute migration scripts to update your Tasks database structure.

It is recommended to create the back up of your database before applying any changes.

docker run \

-v /etc/localtime:/etc/localtime:ro \

-v /tmp/logs/tasks:/srv/logs \

-=rm \

--network=host \
dockerhub.visionlabs.ru/luna/luna-tasks:v.3.22.1 \

alembic -x luna-config=http://127.0.0.1:5070/1 upgrade head

2.11.2 Tasks and Tasks Worker containers launch

Tasks service image includes the Tasks service and the Tasks Worker. They both must be launched.

The “task-result” bucket should be created for the Tasks service before the service launch. The buckets
creation is described in the “Buckets creation”.

If it is necessary to use the Estimator task using a network disk, then you should first mount the
directory with images from the network disk into special directories of Tasks and Tasks Worker
containers. See the “Estimator task” section in the administrator manual for details.

2.11.2.1 Tasks Worker launch
Use the following command to launch the service:

docker run \
-—-env=CONFIGURATOR_HOST=127.0.0.1 \
--env=CONFIGURATOR_PORT=5070 \
--env=PORT=5051 \
--env=WORKER_COUNT=1 \
-—env=RELOAD_CONFIG=1 \
--env=RELOAD_CONFIG_INTERVAL=10 \
--env=SERVICE_TYPE="tasks_worker" \
-v /etc/localtime:/etc/localtime:ro \

VisionLabs B.V. 46 /77

-v /tmp/logs/tasks-worker:/srv/logs \
--name=luna-tasks-worker \

--restart=always \

--detach=true \

--network=host \
dockerhub.visionlabs.ru/luna/luna-tasks:v.3.22.1

2.11.2.2 Tasks launch
Use the following command to launch the service:

docker run \
-—-env=CONFIGURATOR_HOST=127.0.0.1 \
--env=CONFIGURATOR_PORT=5070 \
--env=PORT=5050 \
--env=WORKER_COUNT=1 \
--env=RELOAD_CONFIG=1 \
-—env=RELOAD_CONFIG_INTERVAL=10 \

-v Jetc/localtime:/etc/localtime:ro \
-v /tmp/logs/tasks:/srv/logs \
-—-name=luna-tasks \

--restart=always \

--detach=true \

--network=host \
dockerhub.visionlabs.ru/luna/luna-tasks:v.3.22.1

VisionLabs B.V. A1 /77

2.12 Sender
2.12.1 Sender container launch

Note: If you are not going to use the Sender service, do not launch this container and disable the service
utilization in Configurator. See section “Optional services usage”.

Use the following command to launch the service:

docker run \
--env=CONFIGURATOR_HOST=127.0.0.1 \
-—env=CONFIGURATOR_PORT=5070 \
--env=PORT=5080 \
--env=WORKER_COUNT=1 \
-—env=RELOAD_CONFIG=1 \
-—-env=RELOAD_CONFIG_INTERVAL=10 \

-v Jetc/localtime:/etc/localtime:ro \
-v /tmp/logs/sender:/srv/logs \
--name=luna-sender \

--restart=always \

--detach=true \

--network=host \
dockerhub.visionlabs.ru/luna/luna-sender:v.2.11.9

VisionLabs B.V. 48 /17

2.13 API
2.13.1 API container launch

Use the following command to launch the service:

docker run \
-—-env=CONFIGURATOR_HOST=127.0.0.1 \
--env=CONFIGURATOR_PORT=5070 \
-—-env=PORT=5000 \
-—env=WORKER_COUNT=1 \
--env=RELOAD_CONFIG=1 \
--env=RELOAD_CONFIG_INTERVAL=10 \
--name=luna-api \

--restart=always \

--detach=true \

-v Jetc/localtime:/etc/localtime:ro \
-v /tmp/logs/api:/srv/logs \
--network=host \
dockerhub.visionlabs.ru/luna/luna-api:v.6.29.0

2.13.2 Account migration

Note. Accounts migration (upgrading from 5.2.0...5.28.0 only). If you want to keep the ability to
use the “account_id” that was used as the “Luna-Account-ld” header in versions 5.2.0...5.28.0 (without
creatingan accountinthe Admin service), then you need to link the old “account_id” to the account being
created.

Example of CURL-request to the “create account” resource:

curl --location --request POST 'http://127.0.0.1:5000/6/accounts"' \
-—header 'Content-Type: application/json' \
-—header 'Luna-Account-Id: <your_old_account_id>"' \
--data '{
"login": "user@mail.com",
"password": "password",
"account_type": "user",
"description": "description"

} '

It is necessary to replace the authentication data from the example with your own.

VisionLabs B.V. 49 /77

To work with tokens, you must have an account.

VisionLabs B.V. 50/ 77

2.14 Admin
2.14.1 Admin container launch

Note: If you are not going to use the Admin service, do not launch this container.

Use the following command to launch the service:

docker run \
-—-env=CONFIGURATOR_HOST=127.0.0.1 \
-—-env=CONFIGURATOR_PORT=5070 \
--env=PORT=5010 \
--env=WORKER_COUNT=1 \
--env=RELOAD_CONFIG=1 \
-—-env=RELOAD_CONFIG_INTERVAL=10 \

-v Jetc/localtime:/etc/localtime:ro \
-v /tmp/logs/admin:/srv/logs \
-—-name=luna-admin \

--restart=always \

--detach=true \

--network=host \
dockerhub.visionlabs.ru/luna/luna-admin:v.5.7.1

Monitoring data about the number of executed requests is saved in the luna-admin bucket of the
InfluxDB. To enable data saving use the following command:

docker exec -it luna-admin python3 ./base_scripts/influx2_cli.py
create_usage_task --luna-config http://127.0.0.1:5070/1

VisionLabs B.V. 51/77

2.15 Backport3

The section describes launching of Backport 3 service.

The service is not mandatory for utilizing LP5 and is required for emulation of LP 3 APl only.

2.15.1 Backport 3 database migration

You need to execute migration scripts to update your Backport 3 DB structure.

It is recommended to create the back up of your database before applying any changes.

Run the following command to perform the Backport 3 DB migration.

docker run \

-v /etc/localtime:/etc/localtime:ro \

-v /tmp/logs/backport3:/srv/logs \

-=rm \

--network=host \
dockerhub.visionlabs.ru/luna/luna-backport3:v.0.11.9 \
alembic -x luna-config=http://127.0.0.1:5070/1 upgrade head

2.15.2 Accounts and tokens migration

Note. Accounts migration (upgrading from 5.2.0...5.28.0 only). Use the following command to
migrate existing accounts and tokens from Backport 3 previous version:

docker run \

-v Jetc/localtime:/etc/localtime:ro \

-v /tmp/logs/backport3:/srv/logs \

--rm \

--network=host \

-—entrypoint bash dockerhub.visionlabs.ru/luna/luna-backport3:v.0.11.9 -c "
cd ./base_scripts/migrate_accounts/ && pip3 install -r requirements-
postgres.txt && python3 ./run.py —--backport_db_url postgres://luna:
luna@1l27.0.0.1:5432/1luna_backport3 --accounts_db_url postgres://luna:
luna@127.0.0.1:5432/1luna_admin"

Here:
« python3 ./run.py — Running the script for migrating accounts and tokens.

 ——backport_db_url postgres://luna:luna@l27.0.0.1:5432/1luna_backport3 —
“luna_backport3” DB address flag.

VisionLabs B.V. 52/77

+ ——accounts_db_url postgres://luna:luna@l27.0.0.1:5432/1luna_admin—“luna_admin”
DB address flag.

When migrating API and Faces service databases, all Backport 3 accounts will be migrated and
stored in the database of the Accounts service. All migrated accounts will be of type “user”. The
fields “password”, “email” and “organization_name” will be transferred from the “account” table
of the Backport 3 database to the “account” table of the Accounts database under new names —
“password”; “login” and “description” respectively. Tokens will remain stored in the Backport3
database, but their identifier will also be entered in the Accounts database, where the necessary
permissions will be automatically set.

2.15.3 Backport 3 container launch

Use the following command to launch the service:

docker run \
--env=CONFIGURATOR_HOST=127.0.0.1 \
-—-env=CONFIGURATOR_PORT=5070 \
--env=PORT=5140 \
-—env=WORKER_COUNT=1 \
--env=RELOAD_CONFIG=1 \
-—env=RELOAD_CONFIG_INTERVAL=10 \
--name=luna-backport3 \
--restart=always \

--detach=true \

-v /etc/localtime:/etc/localtime:ro \
-v /tmp/logs/backport3:/srv/logs \
--network=host \
dockerhub.visionlabs.ru/luna/luna-backport3:v.0.11.9

VisionLabs B.V. 53/77

2.15.4 User Interface 3

The User Interface 3 is used with the Backport 3 service only.

2.15.4.1 User Interface 3 container launch
Use the following command to launch the service:

docker run \

--env=PORT=4100 \
-—env=LUNA_API_URL=http://127.0.0.1:5140 \
--name=luna-ui-3 \

--restart=always \

-—-detach=true \

--network=host \

-v Jetc/localtime:/etc/localtime:ro \
dockerhub.visionlabs.ru/luna/luna3-ui:v.0.5.13

Here:
« ——env=LUNA_API_URL — Specifies the URL of the Backport 3 service.

« ——env=PORT — Specifies the port of the User Interface 3 service.

VisionLabs B.V. 54 /77

2.16 Backport 4

The section describes launching of Backport 4 service.

The service is not mandatory for utilizing LP5 and is required for emulation of LP 4 APl only.

2.16.1 Backport 4 container launch

Use the following command to launch the service:

docker run \
--env=CONFIGURATOR_HOST=127.0.0.1 \
-—-env=CONFIGURATOR_PORT=5070 \
--env=PORT=5130 \
--env=WORKER_COUNT=1 \
--env=RELOAD_CONFIG=1 \
-—env=RELOAD_CONFIG_INTERVAL=10 \
-—-name=luna-backport4 \
--restart=always \

--detach=true \

-v /etc/localtime:/etc/localtime:ro \
-v /tmp/logs/backport4:/srv/logs \
--network=host \
dockerhub.visionlabs.ru/luna/luna-backport4:v.1.5.9

VisionLabs B.V.

55/ 77

2.16.2 User Interface 4

The User Interface 4 is used with the Backport 4 service only.

2.16.2.1 User Interface 4 container launch
Note: You should have the account with account type user before launching the User Interface 4
container. Its login and password in Base64 format will be used to work with the user interface.

Use the following command to launch the service:

docker run \

--env=PORT=4200 \
--env=LUNA_API_URL=http://<server_external_ip>:5130 \
-—-env=BASIC_AUTH=dXNlckBtYWlsLmNvbTpwYXNzd29yZA==
--name=luna-ui-4 \

-—-restart=always \

--detach=true \

--network=host \

-v Jetc/localtime:/etc/localtime:ro \
dockerhub.visionlabs.ru/luna/luna4-ui:v.0.1.8

Here:
+ ——env=PORT — Sets the port for running User Interface 4.

« ——env=BASIC_AUTH — Sets the Basic authorization for the account which data is displayed in the
user interface.

« ——env=LUNA_API_URL — Sets the URL of the Backport 4 service.
You should use the external IP of the service, not localhost.

You should specify the Backport 4 service port (“5130” is set by default).

VisionLabs B.V. 56 /77

3 Additional information

This section provides the following additional information:

« Account creation.

« Creating a schedule for a garbage collection task.

+ Monitoring and logs visualization using Grafana.

+ Useful commands for working with Docker.

+ Description of the parameters for launching LUNA PLATFORM services and creating databases.
« Actions to enable saving LP service logs to files.

« Configuring Docker log rotation.

+ Setting custom InfluxDB settings.

» Using Python Matcher service with Python Matcher Proxy service.

+ Move old LUNA PLATFORM data to root directory

VisionLabs B.V. 57 /77

3.1 Account creation

The account is created using an HTTP request to the “create account” resource of the API service.

You can also create an account using the Admin service. This method requires an existing login and
password (or the default login and password) and enables you to create an “admin” account. See
the “Admin service” section of the administrator manual for details.

To create the account using a request to the API service, you need to provide the following mandatory
data:

+ “login” — Email address.
+ “password” — Password.
« “account_type” — Account type (“user” or “advanced_user”).

Create the account using your authentication details.

Example of CURL-request to the “create account” resource:

curl --location --request POST 'http://127.0.0.1:5000/6/accounts' \
--header 'Content-Type: application/json' \
--data '{

"login": "user@mail.com",

"password": "password",

"account_type": "user",

"description": "description"

} !
It is necessary to replace the authentication data from the example with your own.

To work with tokens, you must have an account.

VisionLabs B.V. 58 /77

3.2 GC task schedule creation

Before you start working with the LUNA PLATFORM, you can create a schedule for the Garbage collection
task.

To do this, make a “create tasks schedule” request to the API service, specifying the necessary rules for
the schedule.

An example of aschedule creation command for an account created in section “Account creation” is given
below.

The example sets a schedule for the Garbage collection task for events older than 30 days with the
removal of the samples and the source images. The task will be repeated once a day at 05:30 am.

curl —--location --request POST 'http://127.0.0.1:5000/6/tasks/schedules' \
-—header 'Authorization: Basic dXNLlckBtYWlsLmNvbTpwYXNzd29yZA==" \
--header 'Content-Type: application/json' \
--data '{
"task": {
"task_type": 4,
"content": {

"target": "events",
"filters": {

"create_time__1t": "now-30d"
s

"remove_samples": true,
"remove_image_origins": true

s
"trigger": {"cron": "30 5 * x %", "cron_timezone": "utc"},
"behaviour": {"start_immediately": false, '"create_stopped": false}

} '

If necessary, you can create a schedule without automatically activating it. To do this, specify the
parameter “create_stopped”: “true”. In this case, after creating the schedule, it must be activated
manually using the “action” = “start” parameter of the “patch tasks schedule” request.

For more information, see the “Running scheduled tasks” section of the administrator manual.

VisionLabs B.V. 59/71

3.3 Monitoring and logs visualization using Grafana

Monitoring visualization is performed by the LUNA Dashboards service, which contains the Grafana
monitoring data visualization platform with configured LUNA PLATFORM dashboards.

If necessary, you can install customized dashboards for Grafana separately. See the “LUNA
Dashboards” section in the administrator manual for more information.

Together with Grafana, you can use the Grafana Loki log aggregation system, which enables you to flexibly
work with LUNA PLATFORM logs. The Promtail agent is used to deliver LUNA PLATFORM logs to Grafana
Loki (for more information, see the “Grafana Loki” section in the administrator manual).

3.3.1 LUNA Dashboards

Note: To work with Grafana you need to use InfluxDB version 2.

Note: Before updating, make sure that the old LUNA Dashboards container is deleted.

3.3.1.1 Run LUNA Dashboards container
Use the docker run command with these parameters to run Grafana:

docker run \

--restart=always \

--detach=true \

--network=host \

--name=grafana \

-v /etc/localtime:/etc/localtime:ro \
dockerhub.visionlabs.ru/luna/luna-dashboards:v.0.1.0

Use “http://IP_ADDRESS:3000” to go to the Grafana web interface when the LUNA Dashboards and

InfluxDB containers are running.

3.3.2 Grafana Loki

Note: Grafana Loki requires LUNA Dashboards to be running.

Note: Before updating, make sure that the old Grafana Loki and Promtail containers are removed.

3.3.2.1 Run Grafana Loki container
Use the docker run command with these parameters to run Grafana Loki:

VisionLabs B.V. 60 /77

docker run \

--name=1loki \

--restart=always \

--detach=true \

--network=host \

-v /etc/localtime:/etc/localtime:ro \
dockerhub.visionlabs.ru/luna/loki:2.7.1

3.3.2.2 Run Promtail container
Use the docker runcommand with these parameters to run Promtail:

docker run \

-v /var/lib/luna/current/example-docker/logging/promtail.yml:/etc/promtail/
luna.yml \

-v /var/lib/docker/containers:/var/lib/docker/containers \

-v /etc/localtime:/etc/localtime:ro \

-—-name=promtail \

--restart=always \

--detach=true \

--network=host \

dockerhub.visionlabs.ru/luna/promtail:2.7.1 \

-config.file=/etc/promtail/luna.yml -client.url=http://127.0.0.1:3100/loki/
api/vl/push -client.external-labels=job=containerlogs,pipeline_id=,job_-id
=,version=

Here:

« -v /var/lib/luna/current/example-docker/logging/promtail.yml:/etc/promtail
/luna.yml — Mounting the configuration file to the Promtail container.

« —config.file=/etc/promtail/luna.yml — Flag with the address of the configuration file.

« —client.url=http://127.0.0.1:3100/loki/api/vl/push — Flag with the address of
deployed Grafana Loki.

« —client.external-labels=job=containerlogs,pipeline_id=,job_id=,version= —
Static labels to add to all logs sent to Grafana Loki.

VisionLabs B.V. 61/77

3.4 Docker commands
3.4.1 Show containers

To show the list of launched Docker containers use the command:

docker ps

To show all the existing Docker containers use the command:

docker ps -a

3.4.2 Copy files to container

You can transfer files into the container. Use the docker cp command to copy a file into the container.

docker cp <file_location> <container_name>:<folder_inside_container>

3.4.3 Enter container

You can enter individual containers using the following command:

docker exec -it <container_name> bash

To exit the container, use the command:

exit

3.4.4 Images names

You can see all the names of the images using the command:

docker -images

3.4.5 Delete image

If you need to delete an image:

« Runthe docker -images command.

VisionLabs B.V. 62/77

+ Find the required image, for example dockerhub.visionlabs.ru/luna/luna-image-store.
« Copy the corresponding image ID from the IMAGE ID, for example, “61860d036d8c”.
« Specifyitin the deletion command:

docker rmi -f 61860d036d8c

Delete all the existing images.

docker rmi -f $(docker +images -q)

3.4.6 Stop container

You can stop the container using the command:

docker stop <container_name>

Stop all the containers:

docker stop $(docker ps -a -q)

3.4.7 Delete container

If you need to delete a container:

+ Run the “docker ps” command.

« Stop the container (see Stop container).

Find the required image, for example dockerhub.visionlabs.ru/luna/luna-image-store.

Copy the corresponding container ID from the CONTAINER ID column, for example, “23f555be8f3a”.

Specify it in the deletion command:

docker container rm -f 23f555be8f3a

Delete all the containers.

docker container rm -f $(docker container 1ls -aq)

3.4.7.1 Check service logs
You can use the following command to show logs for the service:

VisionLabs B.V. 63/77

docker logs <container_name>

VisionLabs B.V. 64 /77

3.5 Launching parameters description

When launching a Docker container for a LUNA PLATFORM service you should specify additional
parameters required for the service launching.

The parameters specific for a particular container are described in the section about this container
launching.

All the parameters given in the service launching example are required for proper service launching and
utilization.

3.5.1 Launching services parameters

Example command of launching LP services containers:

docker run \
-—-env=CONFIGURATOR_HOST=127.0.0.1 \
--env=CONFIGURATOR_PORT=5070 \
-—-env=PORT=<Port_of_the_launched_service> \
--env=WORKER_COUNT=1 \
--env=RELOAD_CONFIG=1 \
-—-env=RELOAD_CONFIG_INTERVAL=10 \

-v Jetc/localtime:/etc/localtime:ro \

-v /tmp/logs/<service>:/srv/logs/ \
--name=<service_container_name> \
--restart=always \

--detach=true \

--network=host \
dockerhub.visionlabs.ru/luna/<service-name>:<version>

The following parameters are used when launching LP services containers:
+ docker run— Command for running the selected image as a new container.

+ dockerhub.visionlabs.ru/luna/<service-name>:<version> — Sets the image required
for the container launching.

Links to download the container images you need are available in the description of the
corresponding container launching.

+ ——network=host — Sets that a network is not simulated and the server network is used. If
you need to change the port for third-party party containers, you should change this string to
-p 5440:5432. Where the first port 5440 is the local port and 5432 is the port used inside the
container. The example is given for PostgreSQL.

VisionLabs B.V. 65/77

« ——env= — Sets the environment variables required to run the container (see the “Service

arguments” section).

+ ——name=<service_container_name> — Sets the name of the launched container. The name
must be unique. If there is a container with the same name, an error will occur.

+ ——restart=always — Sets a restart policy. The daemon will always restart the container
regardless of the exit status.

+ —-detach=true — Run the container in the background mode.

« -v — Enables you to mount the content of a server folder into a volume in the container. Thus their
contents will synchronize. The following general data is mounted:

+ /etc/localtime: /etc/localtime:ro — Setsthe current time zone used by the system in the
container.

« /tmp/logs/<service>:/srv/logs/ — Enables copying of the folder with service logs to your
server /tmp/logs/<service> directory. You can change the directory where the logs will be
saved according to your needs.

3.5.1.1 Service arguments
Each service in LUNA PLATFORM has its own launch arguments. These arguments can be passed through:

« Setting a flag for the launch script (run. py) of the corresponding service.
+ Setting environment variables (--env) on the Docker command line.

For example, using the ——help flag you can get a list of all available arguments. An example of passing
an argument to an APl service:

docker run --rm dockerhub.visionlabs.ru/luna/luna-api:v.6.29.0 python3 /srv/
luna_api/run.py --help

List of main arguments:

Launch flag Environment variable Description

--port PORT Port on which the service will listen for
connections.

--workers WORKER_COUNT Number of workers for the service.
--log_suffix LOG_SUFFIX LOG_SUFFIX Suffix added to log file names (with the
--log_suffix option to write logs to a file enabled).

VisionLabs B.V. 66 /77

--config-reload RELOAD_CONFIG Enable automatic configuration reload.
See “Automatic configurations reload” in
the LUNA PLATFORM 5 administrator
manual.

--pulling-time RELOAD_CONFIG_INTERVAL Configuration checking period (default 10
seconds). See “Automatic configurations
reload” in the LUNA PLATFORM 5
administrator manual.

--luna-config CONFIGURATOR_HOST, Address of the Configurator service for

--luna-config CONFIGURATOR_PORT downloading settings. For
--luna-configitis sentin the format
http://localhost:5070/1. For
environment variables, the host and port
are set explicitly. If the argument is not
given, the default configuration file will be

used.
--config None Path to the file with service configurations.
--<config_name> —-EXTEND_CMD=< Tag of the specified configuration in the
config_name> Configurator. When setting this

configuration, the value of the tagged
configuration will be used. Example:
——INFLUX_MONITORING TAG_1
Note: You must pre-tag the appropriate
configuration in. Configurator.

Note: Only works with the
--luna-configflag.

-—tls_cert None Path to the SSL certificate for launching
the service using the HTTPS protocol.

-—tls_key None Path to the SSL private key for launching
the service using the HTTPS protocol.

--tls_key_pass None Password for the SSL private key for
launching the service using the HTTPS
protocol.

The list of arguments may vary depending on the service.

Itis also possible to override the settings of services at their start using environment variables.

VisionLabs B.V. 67 /77

The VL_SETTINGS prefix is used to redefine the settings. Examples:

e ——env=VL_SETTINGS.INFLUX_MONITORING.SEND_DATA_FOR_MONITORING=0. Using the
environment variable from this example will set the “SEND_DATA_FOR_MONITORING” setting for
the INFLUX_MONITORING section to “0”.

+ ——env=VL_SETTINGS.OTHER.STORAGE_TIME=LOCAL. For non-compound settings (settings
that are located in the “OTHER” section in the configuration file), you must specify the “OTHER”
prefix. Using the environment variable from this example will set the value of the “STORAGE_TIME”
setting (if the service uses this setting) to “LOCAL”".

Passing flags using environment variable

Flags for which an environment variable is not explicitly allocated can be passed using the environment
variable EXTEND_CMD.

For example, you can pass the configurations tag in the following way:

—--env=EXTEND_CMD="--INFLUX_MONITORING=TAG_1 --LUNA_EVENTS_DB=TAG_2"

3.5.2 Creating DB parameters

Example command of launching containers for database migration or database creation:

docker run \

-v Jetc/localtime:/etc/localtime:ro \

-v /tmp/logs/<service>:/srv/logs/ \

--rm \

--network=host \

dockerhub.visionlabs.ru/luna/<service-name>:<version> \

python3 ./base_scripts/db_create.py --luna-config http://localhost:5070/1

The following parameters are used when launching containers for database migration or database
creation:
Here:

« ——rm— Sets if the container is deleted after all the specified scripts finish processing.

« python3 ./base_scripts/db_create.py — Sets Python version and a script db_create. py
launched in the container. The script is used for the database structure creation.

« ——luna-config http://localhost:5070/1 — Sets where the launched script should receive
configurations. By default, the service requests configurations from the Configurator service.

VisionLabs B.V. 68 /77

3.6 Logging to server

To enable saving logs to the server, you should:

+ Create directories for logs on the server.

+ Activate log recording and set the location of log storage inside LP service containers.

« Configure synchronization of log directories in the container with logs on the server using the
volume argument at the start of each container.

3.6.1 Create logs directory

Below are examples of commands for creating directories for saving logs and assigning rights to them for
all LUNA PLATFORM services.

mkdir -p /tmp/logs/configurator /tmp/logs/image-store /tmp/logs/accounts /
tmp/logs/faces /tmp/logs/licenses /tmp/logs/events /tmp/logs/python-
matcher /tmp/logs/handlers /tmp/logs/remote-sdk /tmp/logs/tasks /tmp/logs
/tasks-worker /tmp/logs/sender /tmp/logs/api /tmp/logs/admin /tmp/logs/
backport3 /tmp/logs/backport4

chown -R 1001:0 /tmp/logs/configurator /tmp/logs/image-store /tmp/logs/
accounts /tmp/logs/faces /tmp/logs/licenses /tmp/logs/events /tmp/logs/
python-matcher /tmp/logs/handlers /tmp/logs/remote-sdk /tmp/logs/tasks /
tmp/logs/tasks-worker /tmp/logs/sender /tmp/logs/api /tmp/logs/admin /tmp
/logs/backport3 /tmp/logs/backport4

If you need to use the Python Matcher Proxy service, then you need to additionally create the /tmp/logs
/python-matcher-proxy directory and set its permissions.

3.6.2 Logging activation

3.6.2.1 LP services logging activation
To enable logging to file, you need to set the log_to_file and folder_with_logs settings in the <
SERVICE_NAME>_LOGGER section of the settings for each service.

Automatic method (before/after starting Configurator)

To update logging settings, you can use the logging. json settings file provided with the distribution
package.

Run the following command after starting the Configurator service:

VisionLabs B.V. 69 /77

docker cp /var/lib/luna/current/extras/conf/logging.json luna-configurator:/
srv/luna_configurator/used_dumps/logging.json

Update your logging settings with the copied file.

docker exec -it luna-configurator python3 ./base_scripts/db_create.py --dump
-file /srv/luna_configurator/used_dumps/logging.json
Manual method (after starting Configurator)

Go to the Configurator service interface (127.0.0.1:5070) and set the logs path in the container in the
folder_with_logs parameter for all services whose logs need to be saved. For example, you can use
the path /srv/logs.

Set the log_to_f1ile option to true to enable logging to a file.

3.6.2.2 Configurator service logging activation (before/after Configurator start)
The Configurator service settings are not located in the Configurator user interface, they are located in
the following file:

/var/lib/luna/current/example-docker/luna_configurator/configs/
luna_configurator_postgres.conf

You should change the logging parameters in this file before starting the Configurator service or restart it
after making changes.

Set the path to the logs location in the container in the FOLDER_WITH_LOGS = ./ parameter of the file.
For example, FOLDER_WITH_LOGS = /srv/logs.

Set the log_to_f1ile option to true to enable logging to a file.

3.6.3 Mounting directories with logs when starting services

The log directory is mounted with the following argument when starting the container:

-v <server_logs_folder>:<container_logs_folder> \

where <server_logs_folder> is the directory created in the create logs directory step, and
<container_logs_folder> isthe directory created in the activate logging step.

Example of command to launch the API service with mounting a directory with logs:

VisionLabs B.V. 70/77

docker run \
--env=CONFIGURATOR_HOST=127.0.0.1 \
-—env=CONFIGURATOR_PORT=5070 \
--env=PORT=5000 \
--env=WORKER_COUNT=1 \
-—env=RELOAD_CONFIG=1 \
-—-env=RELOAD_CONFIG_INTERVAL=10 \
-—-name=luna-api \

-—-restart=always \

--detach=true \

-v Jetc/localtime:/etc/localtime:ro \
-v /tmp/logs/api:/srv/logs \
--network=host \
dockerhub.visionlabs.ru/luna/luna-api:v.6.29.0

The example container launch commands in this documentation contain these arguments.

VisionLabs B.V. /T

3.7 Docker log rotation

To limit the size of logs generated by Docker, you can set up automatic log rotation. To do this, add the
following data to the /etc/docker/daemon. json file

{
"log-driver": "json-file",
"log-opts": {
"max-size": "106m",
"max-file": "5"
}
}

This will allow Docker to store up to 5 log files per container, with each file being limited to 100MB.

After changing the file, you need to restart Docker:

systemctl reload docker

The above changes are the default for any newly created container, they do not apply to already created
containers.

VisionLabs B.V. 72/77

3.8 Set custom InfluxDB settings

If you are going to use InfluxDB OSS 2, then you need to update the monitoring settings in Configurator
service.

There are the following settings for InfluxDB OSS 2:

"send_data_for_monitoring": 1,
"use_ssl": 0,

"flushing_period": 1,

"host": "127.0.0.1",

"port": 8086,

"organization": "<ORGANIZATION_NAME>",
"token": "<TOKEN>",

"bucket": "<BUCKET_NAME>",

"version": <DB_VERSION>

You can update InfluxDB settings in the Configurator service by following these steps:

+ Open the following file:

vi /var/lib/luna/current/extras/conf/influx2.json

+ Set required data.
+ Save changes.
« Copy the file to the influxDB container:

docker cp /var/lib/luna/current/extras/conf/influx2.json luna-configurator:/
srv/

+ Update settings in the Configurator.

docker exec -it luna-configurator python3 ./base_scripts/db_create.py --dump
-file /srv/influx2.json

You can also manually update settings in the Configurator service user interface.

The Configurator service configurations are set separately.

+ Open the file with the Configurator configurations:

vi /var/lib/luna/current/example-docker/luna_configurator/configs/
luna_configurator_postgres.conf

VisionLabs B.V. 73/77

+ Setrequired data.
+ Save changes.
+ Restart Configurator:

docker restart luna-configurator

VisionLabs B.V. 7477

3.9 Use Python Matcher with Python Matcher Proxy

As mentioned earlier, along with the Python Matcher service, you can additionally use the Python
Matcher Proxy service, which will redirect matching requests either to the Python Matcher service
or to the matching plugins. Plugins may significantly improve matching processing performance.
For example, it is possible to organize the storage of the data required for matching operations and
additional objects fields in separate storage using plugins, which will speed up access to the data
compared to the use of the standard LUNA PLATFORM database.

To use the Python Matcher service with Python Matcher Proxy, you should additionally launch the
appropriate container, and then set a certain setting in the Configurator service. Follow the steps below
only if you are going to use matching plugins.

See the description and usage of matching plugins in the administrator manual.

3.9.1 Python Matcher proxy container launch
Use the following command to launch the service:

After starting the container, you need to set the "luna_matcher_proxy":true parameter in the
“ADDITIONAL_SERVICES_USAGE” section in the Configurator service.

docker run \
-—-env=CONFIGURATOR_HOST=127.0.0.1 \
--env=CONFIGURATOR_PORT=5070 \
--env=PORT=5110 \

--env=WORKER_COUNT=1 \

--env=RELOAD_CONFIG=1 \
-—env=RELOAD_CONFIG_INTERVAL=10 \
-—-env=SERVICE_TYPE="proxy" \

-v Jetc/localtime:/etc/localtime:ro \

-v /tmp/logs/python-matcher-proxy:/srv/logs \
--name=luna-python-matcher-proxy \
--restart=always \

--detach=true \

--network=host \
dockerhub.visionlabs.ru/luna/luna-python-matcher:v.1.9.9

After launching the container, you need to set the following value in the Configurator service.

ADDITIONAL_SERVICES_USAGE = "luna_matcher_proxy":true

VisionLabs B.V. 75/77

3.10 Move old data to root directory

The official installation manual for LUNA PLATFORM v.5.40.0 and higher provides example commands
for creating directories for storing PostgreSQL, InfluxDB and Image Store data in the root directory /
var/lib/luna/<db_or_bucket_folder>. Inolderversions of LUNA PLATFORM, example commands
were given to create directories within a specific LUNA PLATFORM version directory /var/1lib/luna/

current/example-docker/<db_or_bucket_folder>.
Storing directories in the root directory allows you not to transfer data during the next update.

Example commands for launching PostgreSQL, InfluxDB and Image Store containers contain arguments
for mounting the corresponding data directories from the root directory. If you are upgrading from
version LUNA PLATFORM v.5.38.3 and lower and the previous version of LUNA PLATFORM was installed
according to the official documentation, then in the container launch commands, specify the old
directories with the mounted data or first transfer the old data according to the sections below.

The sections below provide example commands for version 5.38.3.

Important: Before transferring old data, stop the corresponding containers, because New data may
appear during the transfer process.

3.10.1 Move Image Store buckets

The following step is required if you are storing Image Store buckets in the default directory.

Copy the “image_store” folder with all its buckets.

mv /var/lib/luna/luna_v.5.38.3/example-docker/image_store /var/lib/luna/

Set rights for the luna user.

chown -R 1001:0 /var/lib/luna/image_store

3.10.2 Move PostgreSQL data

The following step is required if you are using PostgreSQL in Docker container.

Copy the “data” folder.

mv /var/lib/luna/luna_v.5.38.3/example-docker/postgresql /var/lib/luna/

VisionLabs B.V. 76 /77

3.10.3 Move InfluxDB Data

The following step is required if you are using InfluxDB in Docker container.

Copy the “influx” folder with all its buckets.

mv /var/lib/luna/luna_v.5.38.3/example-docker/influx /var/lib/luna/

VisionLabs B.V. /77

	Default ports for services
	Configuration names for services
	Introduction
	Before upgrade
	Key changes from previous versions
	Create backups
	Backup of PostgreSQL DMBS
	Backup of Influx database
	Backup of Image Store buckets
	Dump file with service settings

	Prepare to change the neural network version
	Change neural network version using Configurator

	Delete old symbolic link
	Distribution unpacking
	Symbolic link creation
	Changing group and owner for directories
	Move data (versions 5.38.3 and below)
	Save user configurations of the Configurator
	Create log directory for new services
	License update
	Actions from License activation manual

	Calculations using GPU
	Remove old containers

	Services launch
	Third-party services
	InfluxDB
	PostgreSQL
	Redis

	Configurator
	Optional services usage
	Configurator database migration
	Run Configurator container

	Image Store
	Image Store container launch
	Buckets creation
	Add TTL for local-buckets
	Add TTL for S3 buckets

	Accounts
	Accounts DB tables creation
	Accounts database migration
	Accounts container launch

	Licenses
	Specify license settings using Configurator
	Licenses container launch

	Faces
	Faces database migration
	Faces container launch

	Events
	Events database migration
	Events container launch

	Python Matcher services
	Use Python Matcher without Python Matcher Proxy
	Python Matcher container launch

	Remote SDK
	Change the neural network model for extracting descriptors
	Remote SDK container launch

	Handlers
	Handlers database migration
	Handlers container launch

	Tasks
	Tasks database migration
	Tasks and Tasks Worker containers launch

	Sender
	Sender container launch

	API
	API container launch
	Account migration

	Admin
	Admin container launch

	Backport 3
	Backport 3 database migration
	Accounts and tokens migration
	Backport 3 container launch
	User Interface 3

	Backport 4
	Backport 4 container launch
	User Interface 4

	Additional information
	Account creation
	GC task schedule creation
	Monitoring and logs visualization using Grafana
	LUNA Dashboards
	Grafana Loki

	Docker commands
	Show containers
	Copy files to container
	Enter container
	Images names
	Delete image
	Stop container
	Delete container

	Launching parameters description
	Launching services parameters
	Creating DB parameters

	Logging to server
	Create logs directory
	Logging activation
	Mounting directories with logs when starting services

	Docker log rotation
	Set custom InfluxDB settings
	Use Python Matcher with Python Matcher Proxy
	Python Matcher proxy container launch

	Move old data to root directory
	Move Image Store buckets
	Move PostgreSQL data
	Move InfluxDB Data

