Monitoring

Monitoring is implemented as sending data to the influx database.

Data for monitoring

There are two types of events that are monitored: request (all requests) and error (failed requests only).

Every event is a point in the time series. The point is represented using the following data:

  • series name (requests or errors)

  • timestamp of the request start

  • tags

  • fields

The tag is an indexed data in storage. It is represented as a dictionary, where * keys - string tag names, * values - string, integer or float.

The field is a non-indexed data in storage. It is represented as a dictionary, where * keys - string field names, * values - string, integer or float.

Saving data for ‘Requests’ is triggered on every request. Each point contains data about the corresponding request (execution time and etc.).

  • tags

    tag name

    description

    service

    always “luna-api”

    account_id

    account id or none

    route

    concatenation of a request method and a request resource (POST:/extractor)

    status_code

    http status code of response

  • fields

    fields

    description

    request_id

    request id

    execution_time

    request execution time

Saving data for ‘Errors’ is triggered when a request fails. Each point contains error_code of LUNA error.

  • tags

    tag name

    description

    service

    always “luna-api”

    account_id

    account ID or none

    route

    concatenation of a request method and a request resource (POST:/extractor)

    status_code

    http status code of response

    error_code

    LUNA PLATFRORM error code

  • fields

    fields

    description

    request_id

    request id

Every handler can add additional tags or fields. For example, handler of resource /handlers/{handlerId}/events adds tag handler_id.

For a resource “/detector”, “/extractor”, “/handlers/{handler_id}/events” there are additional fields:

  • fields

    fields

    description

    task_execution_time

    sdk task execution time

    results_queue_transport_time

    transport time by results queue

    detector_queue_transport_time

    transport time by detector queue

    extractor_queue_transport_time

    transport time by extractor queue

    warp_attributes_estimator_queue_transport_time

    transport time by warp attributes queue

    detector_stage_time

    detector stage time

    extractor_stage_time

    extractor stage time

    warp_estimator_stage_time

    warp estimator stage time

    faces_detect_time

    face detect time

    descriptors_extract_time

    descriptors extract time

    basic_attributes_extract_time

    basic attributes extract time

    gaze_direction_estimation_time

    gaze direction estimation time

    head_pose_estimation_time

    head pose execution time

    eyes_attributes_estimation_time

    eyes attributes execution time

    ags_estimation_time

    ags estimation time

    quality_estimation_time

    quality estimation time

    emotions_estimation_time

    emotions estimation time

    mouth_attributes_estimation_time

    mouth attributes estimation time

    save_samples_time

    save samples to image store time

    save_face_attributes_time

    save face attributes to luna-faces time

    load_samples_time

    load samples from image-store time

    load_images_for_processing_time

    load images for processing time

Database

You can set your database credentials in configuration file in section “monitoring”.

Plugins

You can create your plugin for sending monitoring data. See plugins

Classes

Module contains points for monitoring.

class luna_api.crutches_on_wheels.cow.monitoring.points.BaseMonitoringPoint(eventTime)[source]

Abstract class for points

eventTime

event time as timestamp

Type:

float

abstract property fields: Dict[str, int | float | str]

Get fields from point. We supposed that fields are not indexing data

Returns:

dict with fields.

abstract property tags: Dict[str, int | float | str]

Get tags from point. We supposed that tags are indexing data

Returns:

dict with tags.

class luna_api.crutches_on_wheels.cow.monitoring.points.BaseRequestMonitoringPoint(requestId, resource, method, requestTime, service, statusCode)[source]

Base class for point which is associated with requests.

requestId

request id

Type:

str

route

concatenation of a request method and a request resource

Type:

str

service

service name

Type:

str

statusCode

status code of a request response.

Type:

int

property fields: Dict[str, int | float | str]

Get fields

Returns:

“request_id”

Return type:

dict with following keys

property tags: Dict[str, int | float | str]

Get tags

Returns:

“route”, “service”, “status_code”

Return type:

dict with following keys

class luna_api.crutches_on_wheels.cow.monitoring.points.DataForMonitoring(tags=<factory>, fields=<factory>)[source]

Class fo storing an additional data for monitoring.

class luna_api.crutches_on_wheels.cow.monitoring.points.InfluxFormatter[source]

Format any point filed into inline format

class luna_api.crutches_on_wheels.cow.monitoring.points.MonitoringPointInfluxFormatBuilder(name, bases, namespace, /, **kwargs)[source]

Complement point class with explicit fields formatting function for the sake of better performance

To perform type format building target class must have ‘fields’ property return value annotated with TypedDict.

Target class might be configured via ‘Config’ class. Available options:

extraFields: whether class should handle additional fields or not

>>> from typing import TypedDict
>>>
>>> class MonitoringFields(TypedDict):
...     field1: str
...     field2: int
...     field3: float
...     field4: bool
>>>
>>> class BasePoint(BaseMonitoringPoint, metaclass=MonitoringPointInfluxFormatBuilder):
...
...     def __init__(self, fields: dict):
...         self._fields = fields
...
...     @property
...     def tags(self):
...         return {}
...
...     @property
...     def fields(self) -> MonitoringFields:
...         return self._fields
...
>>> class TestPointNoExtra(BasePoint):
...
...     class Config:
...         extraFields = False
...
>>> class TestPointWithExtra(BasePoint):
...     class Config:
...         extraFields = True
>>>
>>>
>>> point1 = TestPointNoExtra({"field1": "data", "field2": 1, "field3": 1.0, "field4": False})
>>> point2 = TestPointWithExtra({"field1": "data", "field2": 1, "field3": 1.0, "field4": False, "extra": True})
>>> print(point1.convertFieldsToInfluxLineProtocol())
field1="data",field2=1i,field3=1.000000,field4=False
>>> print(point2.convertFieldsToInfluxLineProtocol())
field1="data",field2=1i,field3=1.000000,field4=False,extra=True
classmethod buildInfluxFormats(annotations, extraFields)[source]

Build map with influx formats for corresponding fields

Return type:

dict

Parameters:
  • annotations (dict) – point fields type annotations

  • extraFields (bool) – whether point uses extra fields or not

Returns:

dict of fields with their format

static convertFieldsToInfluxLineProtocolNoExtra(point)[source]

Convert point fields into influx line protocol format without extra fields

static convertFieldsToInfluxLineProtocolWithExtra(point)[source]

Convert point fields into influx line protocol format with extra fields

static getTypeFormat(_type, _field, extraFields)[source]

Get field type format

Return type:

str

Parameters:
  • _type (type) – field type

  • _field (str) – field name

  • extraFields (bool) – whether point uses extra fields or not

Returns:

string format of the field

class luna_api.crutches_on_wheels.cow.monitoring.points.RequestErrorMonitoringPoint(requestId, resource, method, errorCode, service, requestTime, statusCode, additionalTags=None, additionalFields=None)[source]

Request monitoring point is suspended for monitoring requests errors (error codes)

errorCode

error code

Type:

int

additionalTags

additional tags which was specified for the request

Type:

dict

additionalFields

additional fields which was specified for the request

Type:

dict

property fields: Dict[str, int | float | str]

Get fields.

Returns:

dict with base fields and additional tags

series: str = 'errors'

series “errors”

property tags: Dict[str, int | float | str]

Get tags.

Returns:

dict with base tags, “error_code” and additional tags

class luna_api.crutches_on_wheels.cow.monitoring.points.RequestMonitoringPoint(requestId, resource, method, executionTime, requestTime, service, statusCode, additionalTags=None, additionalFields=None)[source]

Request monitoring point is suspended for monitoring all requests and measure a request time etc.

executionTime

execution time

Type:

float

additionalTags

additional tags which was specified for the request

Type:

dict

additionalFields

additional fields which was specified for the request

Type:

dict

property fields: Dict[str, int | float | str]

Get fields.

Returns:

dict with base fields, “execution_time” and additional tags

series: str = 'requests'

series “request”

property tags: Dict[str, int | float | str]

Get tags.

Returns:

dict with base tags and additional tags

luna_api.crutches_on_wheels.cow.monitoring.points.getRoute(resource, method)[source]
Return type:

str

Get a request route, concatenation of a request method and a request resource :param resource: resource :param method: method

Returns:

{resource}”

Return type:

“{method}

luna_api.crutches_on_wheels.cow.monitoring.points.monitorTime(monitoringData, fieldName)[source]

Context manager for timing execution time.

Parameters:
  • monitoringData – container for saving result

  • fieldName – field name

Module implement base class for monitoring

class luna_api.crutches_on_wheels.cow.monitoring.manager.LunaMonitoringManager(settings, name, pluginManager)[source]

Monitoring manager. Sends data to the monitoring storage and monitoring plugins. .. attribute:: settings

monitoring storage settings

async close()[source]

Stop monitoring.

Return type:

None

flushPoints(points)[source]

Flush point to monitoring.

Return type:

None

Parameters:

points – point

async initialize()[source]

Initialize monitoring

Return type:

None

async probe()[source]

Check that we can connect to the monitoring service with current configuration. Can be used without initialization

class luna_api.crutches_on_wheels.cow.monitoring.manager.MonitoringSettings(*args, **kwargs)[source]

Monitoring settings protocol

class InfluxCredentials[source]

Monitoring credentials

Module contains classes for sending a data to an influx monitoring.

class luna_api.crutches_on_wheels.cow.monitoring.influx_adapter.InfluxMonitoringAdapter(settings, flushingPeriod)[source]

Influx 2.x adaptor. Suspended to send points to an influxdb

bucket

influx bucket name

Type:

str

addPointsToBuffer(points)[source]

Add points to buffer.

Return type:

None

Parameters:

points – points

clearBuffer()[source]

Clear monitoring buffer

Return type:

list[str]

static convertFieldsToInfluxLineProtocol(fields)[source]

Convert field value to influx line protocol format

Return type:

str

Parameters:

fields – dict with values to convert

Returns:

line protocol string

generatePointStr(point)[source]

Generate string from point

Return type:

str

Parameters:

point – point

Returns:

influx line protocol string

async stopMonitoring()[source]

Stop monitoring (cancel all request and stop getting new).

Return type:

None

class luna_api.crutches_on_wheels.cow.monitoring.influx_adapter.InfluxSettings(url, bucket, organization, token)[source]

Container for influx 2.x settings