Standalone lambda development

Here is standalone lambda development description.

More information about lambda types and differences of standalone and others available at lambda types description.

Standalone lambda requirements

Standalone lambda requirements has no extra requirements and determines only by user: if lambda suggests Luna Events usage - it requires Luna Events service.

Standalone lambda development

The standalone lambda must be designed for detached from luna services requests processing, but it can access remote resources.

The request to standalone lambda can be used by user next ways:

lambda_main.py
from luna_lambda_tools import StandaloneLambdaRequest, logger

async def main(request: StandaloneLambdaRequest) -> dict:
    logger.info(request.json)   # print request json to log
    logger.info(request.getBody())  # print request body as raw bytes
    logger.info(request.headers)    # print request headers
    ...

It is required to use StandaloneLambdaRequest imported from luna_lambda_tools request as argument to main function.

Standalone lambda examples

  • Here is an example of standalone lambda which works with numbers, that getting from external resources:

    lambda_main.py
    import aiohttp
    from luna_lambda_tools import StandaloneLambdaRequest, logger
    
    
    class UserCtx:
        def __init__(self):
            self.session = None
    
        async def onStart(self):
            logger.info("start lambda")
            self.session = aiohttp.ClientSession()
    
        async def onShutdown(self):
            logger.info("shutdown lambda")
            await self.session.close()
    
    
    async def main(request: StandaloneLambdaRequest) -> dict:
        """
        Supposed request structure:
    
        ```json
        {"url": "http://very-useful-url"}
        ```
    
        """
        logger.info("Request processing starts")
        url = request.json.get("url")
    
        async with request.userCtx.session.get(url) as resp:
            statusCode = resp.status
    
        logger.info("Request processing finished")
        result = f"{url} available" if statusCode == 200 else f"{url} is not available"
        return {"result": result}
    
    request example
    from luna3.luna_lambda.luna_lambda import LambdaApi
    
    SERVER_ORIGIN = "http://lambda_address:lambda_port"  # Replace by your values before start
    SERVER_API_VERSION = 1
    lambdaApi = LambdaApi(origin=SERVER_ORIGIN, api=SERVER_API_VERSION)
    lambdaId, accountId = "your_lambda_id", "your_account_id"  # Replace by your values before start
    
    
    def makeRequest():
        data = {
            "url": "https://ya.ru/",
        }
        reply = lambdaApi.proxyLambdaPost(lambdaId=lambdaId, path="main", accountId=accountId, body=data)
        return reply
    
    
    if __name__ == "__main__":
        response = makeRequest()
        print(response.json)
    

    The luna-lambda-tools provides some stuff whose may be used to create standalone lambda:

    standalone lambda stuff description

    luna_lambda_tools.public.standalone

    Module contains some stuff for standalone lambda

  • The lambda example which gets face detection and estimate mask directly using the LUNA SDK (available at https://github.com/VisionLabs/lunasdk)

    LUNA python SDK must be added it to requirements.txt (requirements description available here)

    requirements.txt
    https://github.com/VisionLabs/lunasdk/archive/refs/tags/v.2.1.4.tar.gz
    

    Note

    To develop lambda with lunasdk locally it needs LUNA FSDK python bindings to be installed previously.

    Warning

    Such user lambda requires LUNA SDK data available from user lambda (the fsdk/data folder near the lambda_main.py main file) The LUNA SDK is available on VL release portal which must be extracted to fsdk folder (see archive file structure below). The only thing which is needed is data folder with used fsdk plans and config files (faceengine.conf and runtime.conf). It is recommended to not include not using plans from folder in archive to decrease result lambda image size.

    Archive file structure with files required for the example
      ├──lambda_main.py
      ├──requirements.txt
      └──fsdk
         └──data
             ├──faceengine.conf
             ├──runtime.conf
             ├──FaceDet_v3_a5_cpu-avx2.plan
             ├──FaceDet_v3_redetect_v3_cpu-avx2.plan
             ├──LNet_precise_v2_cpu-avx2.plan
             ├──mask_clf_v3_cpu-avx2.plan
             └──slnet_v5_cpu-avx2.plan
    
    lambda_main.py
    from luna_lambda_tools import StandaloneLambdaRequest, UserException
    from lunavl.sdk.faceengine.engine import VLFaceEngine
    from lunavl.sdk.faceengine.setting_provider import DetectorType
    from lunavl.sdk.image_utils.image import VLImage
    
    
    class FaceDetectionException(UserException):
        statusCode = 400
        errorText = "failed to get face detection from image"
    
    
    async def main(request: StandaloneLambdaRequest) -> dict:
        image = VLImage(body=request.getBody())
        faceEngine = VLFaceEngine()
        detector = faceEngine.createFaceDetector(DetectorType.FACE_DET_V3)
        detections = detector.detect([image])
        if not detections:
            raise FaceDetectionException
        faceDetections = detections[0]
        warper = faceEngine.createFaceWarper()
        warps = [warper.warp(faceDetection) for faceDetection in faceDetections]
    
        maskEstimator = faceEngine.createMaskEstimator()
        mask = await maskEstimator.estimate(warps[0].warpedImage, asyncEstimate=True)
    
        return {"results": mask.asDict()}
    
    request example
    from luna3.luna_lambda.luna_lambda import LambdaApi
    
    SERVER_ORIGIN = "http://lambda_address:lambda_port"  # Replace by your values before start
    SERVER_API_VERSION = 1
    lambdaApi = LambdaApi(origin=SERVER_ORIGIN, api=SERVER_API_VERSION)
    lambdaId, accountId = "your_lambda_id", "your_account_id"  # Replace by your values before start
    
    
    def getImage(pathToImage):
        """
        Make sure pathToImage is valid path to specified image
        """
        with open(pathToImage, "rb") as file:
            return file.read()
    
    
    def makeRequest():
        reply = lambdaApi.proxyLambdaPost(lambdaId=lambdaId, path="main", accountId=accountId, body=getImage("empty.jpeg"))
        return reply
    
    
    if __name__ == "__main__":
        response = makeRequest()
        print(response.json)
    
  • Lambda example which extracts faces from video and matches them with faces from the list:

    lambda_main.py
    from luna3.public.matcher import Candidates, FaceFilters, SDKDescriptorReference
    from luna3.public.sdk import (
        HumanTrackingAnalyticsParams as HTParams,
        Orientation,
        VideoSDKAnalytics,
        VideoSDKInput,
        VideoSDKProperties,
    )
    from luna_lambda_tools import StandaloneLambdaRequest
    
    EVENTS_BATCH_SIZE = 50
    
    
    def splitEvents(values: list) -> list[list]:
        """Split events into batches"""
        if not values:
            return []
        return [values[x : x + EVENTS_BATCH_SIZE] for x in range(0, len(values), EVENTS_BATCH_SIZE)]
    
    
    async def main(request: StandaloneLambdaRequest) -> dict:
        results = []
        videosdkReply = (
            await request.clients.videoAgent.videosdk(
                VideoSDKInput(
                    video=VideoSDKProperties(
                        url=request.json["video"]["url"], orientation=Orientation(request.json["video"].get("angle", 0))
                    ),
                    analytics=[
                        VideoSDKAnalytics(
                            name="human_tracking",
                            targets=["aggregated_face_descriptor"],
                            parameters=HTParams(tracking=HTParams.Tracking(detectorType="face")),
                        )
                    ],
                ),
                asyncRequest=True,
                raiseError=True,
            )
        ).json
    
        for eventsBatch in splitEvents(videosdkReply["analytics"][0]["result"]["tracking"]["events"]):
            references = []
            eventsMap = {}
            for event in eventsBatch:
                descriptor = (
                    event["aggregated_estimations"]["face"].get("descriptor")
                    if event["aggregated_estimations"]["face"]
                    else None
                )
                if descriptor is None:
                    continue
                references.append(
                    SDKDescriptorReference(
                        referenceId=event["event_id"],
                        descriptor=descriptor["sdk_descriptor"],
                    )
                )
                eventsMap[event["event_id"]] = event
    
            matchReply = await request.clients.matcher.matchFaces(
                references=references,
                candidates=[
                    Candidates(
                        FaceFilters(listId=request.json["list_id"]), threshold=request.json.get("similarity_threshold")
                    )
                ],
                asyncRequest=True,
                raiseError=True,
            )
    
            for match in matchReply.json:
                results.append(
                    {
                        "event": eventsMap[match["reference"]["id"]],
                        "matches": match,
                    }
                )
    
        return {"result": results}
    
    request example
    from luna3.common.requests import RequestPayload
    from luna3.luna_lambda.luna_lambda import LambdaApi
    
    SERVER_ORIGIN = "http://lambda_address:lambda_port"  # Replace by your values before start
    SERVER_API_VERSION = 1
    lambdaApi = LambdaApi(origin=SERVER_ORIGIN, api=SERVER_API_VERSION)
    lambdaId, accountId = "your_lambda_id", "your_account_id"  # Replace by your values before start
    videoUrl = "your_video_url"
    listId = "your_list_id"
    
    
    def makeRequest():
        data = {
            "video": {"url": videoUrl, "angle": 0},
            "similarity_threshold": 0.9,
            "list_id": listId,
        }
        payload = RequestPayload.buildMsgpack(body=data)
        reply = lambdaApi.proxyLambdaPost(lambdaId=lambdaId, path="main", accountId=accountId, body=payload)
        return reply
    
    
    if __name__ == "__main__":
        response = makeRequest()
        print(response.json)