
VisionLabs LUNA PLATFORM 5
Quick start guide

v.5.95.0

Contents

Glossary 3

Introduction 5

1 Distribution package structure 6

2 Distribution documentation 7
2.1 Operation manuals . 7
2.2 Installation manuals . 7
2.3 Reference manuals . 8
2.4 Developer manuals . 9

3 Getting started 10
3.1 Requests creation . 12

3.1.1 Using OpenAPI specification . 13

4 Example 15
4.1 Create account . 15
4.2 Create handler . 16
4.3 Generate event . 18

VisionLabs B.V. 2 / 23

Glossary

Term Description

Attributes Basic attributes and descriptor.

Avatar Visual image of a face used in the user interface.

Basic attributes Age, gender, and ethnicity.

Body parameters Body characteristics (presence of backpack, headwear, color of clothing, etc.)
determined on the source image during detection.

Bounding box Rectangle that bounds the image space with the detected face or body.

Bucket Logical entity used to store objects.

Descriptor Data set in closed, binary format prepared by recognition system based on the
characteristic being analyzed.

Detector Neural network used to detect either faces or bodies, or both faces and bodies
in the source image.

Events Immutable objects that include information about a single face and/or human
body.

Face Changeable objects that include information about a human face.

Face parameters Facial characteristics (emotions, mouth parameters, head position, etc.)
determined on the source image during detection.

Handlers Changeable objects that store rules for image processing.

Image
parameters

Image characteristics (width and height, aspect ratio, size, etc.) determined on
the source image during detection.

Landmarks Reference points on the face or body used by recognition algorithms to localize
the face or body.

Matching The operation of matching descriptors stored in the database.

Samples, Warps Normalized (centered and cropped) image obtained after face or body
detection, prior to descriptor extraction.

Abbreviation Decoding

DB Database

LUNA PLATFORM LP, LUNA

LUNA PLATFORM API API

VisionLabs B.V. 3 / 23

Abbreviation Decoding

LUNA PLATFORM Accounts API

LUNA PLATFORM Faces Faces

LUNA PLATFORM Image Store Image Store

LUNA PLATFORMMatcher Matcher

LUNA PLATFORM Events Events

LUNA PLATFORM Sender Sender

LUNA PLATFORM Handlers Handlers

LUNA PLATFORM Python Matcher Python Matcher

LUNA PLATFORM Python Matcher Proxy Python Matcher Proxy

LUNA PLATFORM Backport 3 Backport 3

LUNA PLATFORM Backport 4 Backport 4

LUNA PLATFORM Admin Admin

LUNA PLATFORM Configurator Configurator

LUNA PLATFORM Tasks Tasks

LUNA PLATFORM Licenses Licenses

VisionLabs B.V. 4 / 23

Introduction

The “Distribution package structure” section describes the distribution package content.

The “Distribution documentation” section lists all the documents included in the distribution package.

The “Getting started” section will help you to get started with LUNA PLATFORM.

The “Example” sectionprovides an example of sending a face recognition request to the LUNAPLATFORM
with a detailed description of the request and response bodies.

VisionLabs B.V. 5 / 23

1 Distribution package structure

The package consist of the following directories:

Directory name Description

/example-docker The directory includes all the files required for launching docker containers

/extras Additional dependencies and helper scripts

/docs Documentation for LUNA PLATFORM

The “extras” directory contents:

Directory name Description

/conf Configuration files for LP services and NGINX

/hasp HASP utility and files required for license activation

/utils Utilities for working with LP

/VLMatch Matching libraries and sources required for matching by DB using Python
Matcher

The “example-docker” directory contents:

Directory name Description

/luna_configurator Configurations for the Configurator service

/logging Files for LUNA Dashboards, Grafana Loki and Promtail

/postgresql Scripts for databases creation in PostgreSQL

VisionLabs B.V. 6 / 23

2 Distribution documentation

This section covers the documentation package for LUNA PLATFORM. All the documents can be found in
“/docs” folder of the distribution package.

2.1 Operationmanuals

Thesemanuals cover general LPprocesses, architecture, user interface, systemrequirements and release
notes.

Documents are provided in PDF and HTML formats.

File Description

LP_Release_Notes Release notes.

LP_User_Interface_Manual User interface manual.

LP_Administrator_Manual Administrator manual.

LP_System_Requirements System requirements.

2.2 Installationmanuals

The followingmanuals describehow todeploy andupgrade in a variety ofways, aswell as how toactivate
your license and use the Storages utility.

The manuals can be found in the “./docs/InstallationManuals” directory.

Documents are provided in PDF and HTML formats.

File Description

LP_Docker_Compose_Deployment_-
Example

Deployment example using Docker Compose.
Describes installing on a bare-metal server from
scratch using an example Docker Compose script in
the distribution package.

LP_Kubernetes_Helm_Deployment_-
Example

Deployment example in Kubernetes cluster.
Describes installing in a Kubernetes cluster using the
Helm charts examples in the distribution package.

LP_Installation_Manual_Using_Storages Manual installation using Storages utility. Describes
preparing the environment using the Storages utility
and launching Docker containers manually on a
separate server.

VisionLabs B.V. 7 / 23

File Description

LP_Upgrade_Manual_Using_Storages Manual upgrade using Storages utility. Describes
upgrading the environment using the Storages utility
and launching new Docker containers manually on a
separate server.

LP_Installation_Manual Manual installation. Describes preparing the
environment and launching all Docker containers
manually on a separate server.

LP_Upgrade_Manual Manual upgrade. Describes updating the
environment and launching new Docker containers
manually on a separate server.

LP_Migration_from_LP3 Manual migration from LP 3 to LP 5. Describes
migration of LP 3 environment and launching LP 5
Docker contents manually on a separate server.

LP_Migration_from_LP4 Manual migration from LP 4 to LP 5. Describes
migration of LP 4 environment and launching LP 5
Docker contents manually on a separate server.

LP_License_Activation_Manual License activation manual.

LP_Storages_Utility_Manual Storages utility manual.

Storages utility enables you to check and/or prepare the environment for LUNA PLATFORM
services version 5.46.1 and higher before launching them manually. It is recommended to use the
installation/upgrade manuals with the Storages utility for LUNA PLATFORM versions 5.46.1 and
higher.

2.3 Referencemanuals

Thesemanuals describe theOpenAPI specifications for LUNAPLATFORM services. OpenAPI specification
is the only valid document providing up-to-date information about the service API. The specification can
be used:

• By documentation generation tools to visualize the API.
• By code generation tools.

All the documents and code generated using this specification can include inaccuracies and should be
carefully checked.

The manuals can be found in the “./docs/ReferenceManuals” directory. This directory includes
documents in the YML and HTML format. Documents in YML format contain requests to all LUNA

VisionLabs B.V. 8 / 23

PLATFORM services. You can use them to automatically generate requests in API testing tools, for
example, Postman (not described in LUNA PLATFORM documentation). It is not guaranteed that all
requests will be imported correctly, manual editing may be required. Documents in HTML format are
used to visualize these specification andmay not be complete.

The OpenAPI specification for the LUNA PLATFORM services can be obtained from the “get openapi
documentation” request to each service. The “Accept” header should take the value “application/x-
yaml”.

File Description

APIReferenceManual This manual describes all general requests to LUNA
PLATFORM services using API service

AdminReferenceManual Admin service API description. Describes tasks run by the
administrator

AccountsReferenceManual Accounts service API description

Backport3ReferenceManual Backport 3 API description

Backport4ReferenceManual Backport 4 API description

ConfiguratorReferenceManual Configurator service API description

EventsReferenceManual Events service API description

FacesReferenceManual Faces service API description

HandlersReferenceManual Handlers service API description

ImageStoreReferenceManual Image Store service API description

LicensesReferenceManual Licenses service API description

PythonMatcherReferenceManual Python Matcher service API description

SenderReferenceManual Sender service API description. Describes receiving event
notifications using web sockets

TasksReferenceManual Tasks service API description. Describes requests for
execution of long tasks

LambdaReferenceManual Lambda service API description. Describes requests for
execution of long tasks

2.4 Developer manuals

These interactive reference guides are intended for developers and DevOps. The manuals can be found
in the “./docs/ServiceManuals” directory. The manuals contains a description of the work of LUNA

VisionLabs B.V. 9 / 23

PLATFORM services with a detailed disclosure of technical nuances.

File Description

APIDevelopmentManual/index.html Server installation, documentation of
tornado-handlers, PostgreSQL usage, admin
statistics, etc.

AdminDevelopmentManual/index.html Common administrative routines

AccountsDevelopmentManual/index.html Accounts service description

Backport3DevelopmentManual/index.html Backport 3 service description

Backport4DevelopmentManual/index.html Backport 4 service description

ConfiguratorDevelopmentManual/index.html Configurator service description

EventsDevelopmentManual/ Index.html Events service description

FacesDevelopmentManual/Index.html Faces service description

HandlersDevelopmentManual/index.html Handlers service description

ImageStoreDevelopmentManual/index.html Image Store service description

LicensesDevelopmentManual/index.html Licenses service description

PythonMatcherDevelopmentManual/index.html Python Matcher service description

SenderDevelopmentManual/index.html Sender service description

TasksReferenceManual/index.html Tasks service description

LambdaReferenceManual.index.html Lambda service description

3 Getting started

There are several useful guides to get started with the LUNA PLATFORM.

The “LP_Administrator_Manual” includes all general information about LUNA PLATFORM:

• terminology,
• image processing workflow,
• process of working with the received data,
• objects created and tasks performed,
• architecture and interaction of services,
• structures of databases,
• description of the service settings.

VisionLabs B.V. 10 / 23

Before working with LUNA PLATFORM, it is recommended to read the section “General concepts” in
order to understand the general principles of working with LUNA PLATFORM.

The distribution package does not include the docker containers. You need to download them from the
Internet. See the “LP_Installation_Manual” for more information.

Once LUNA PLATFORM is up and running, open the document “APIReferenceManual.html” containing a
description of requests to the LUNA PLATFORM.

VisionLabs B.V. 11 / 23

3.1 Requests creation

LUNA PLATFORM does not have a default user interface. To work with the system, you need to send
requests via the API.

If necessary, you can use the LUNA CLEMENTINE 2.0 user interface (not included in the distribution
package).

LUNAPLATFORMconsists of several services that interactwith eachother. Themain interface forworking
with the LUNA PLATFORM is the API service. The service is designed to receive user requests and redirect
them to other LP services. For example, to detect a face in an image, you need to send a request to
the API service, which will redirect the request to the Handlers service, where the face detection will be
performed, and then the response from the Handlers service will be redirected to the API service, where
the user will receive the detection result.

If necessary, you can send requests directly to other services, but this method is not recommended
and is intended only for certain purposes and experienced users.

General requests to LP are sent via API service, using its URL:

http://<API server IP-address>:<API port>/<API Version>/

Here:

• <API server IP-address>— IP address where the API service is deployed
• <API port> — port where the API service is deployed. The port is set during container startup
(default is 5000)

• <API Version>—API version (always 6)

Example:

http://10.16.8.152:5000/6/

Requests can be sent via CURL or using API tools (for example, Postman).

Almost all requests sent to LP 5 require authorization. There are three types of authorization available in
LUNA PLATFORM:

• BasicAuth. Authorization by login and password (set during account creation);
• BearerAuth. Authorization by JWT token (issued after the token is created);
• LunaAccountIdAuth. Authorization by “Luna-Account-Id” header, which specifies the “account_-
id” generated after creating the account.

LunaAccountIdAuth authorization has the lowest priority compared to other methods and can
be enabled using the “ALLOW_LUNA_ACCOUNT_AUTH_HEADER” setting in the “OTHER” section of

VisionLabs B.V. 12 / 23

the API service settings in the Configurator (disabled by default). In the OpenAPI specification the
“Luna-Account-Id” header is marked with the word Deprecated.

The Configurator service contains settings for all services.

In order to use one of the types of authorization, you must have an account. The easiest way to create
an account is to send a POST request “create account” to the API service. When creating an account, you
must specify the following data: login (email), password and account type (account type). The account
is created at the installation stage after the launch of the API service.

If the authorization type is not specified in the request, an error with status code 403 will be returned.

3.1.1 Using OpenAPI specification

Specification includes:

• Required resources andmethods for requests sending.
• Request parameters description.
• Response description.
• Examples of the requests and responses.

Figure 1: OpenAPI documentation

The HTML document includes the following elements:

1. Requests, divided into groups.
2. Request method and URL example. You should use it with your protocol, IP-address, and port to

create a request. Example: POST http://<IP>:<PORT>/<Version>/matcher.

VisionLabs B.V. 13 / 23

3. Description of request path parameters, query parameters, header parameters, body schema.
4. Example of the request body.
5. Description of responses.
6. Examples of responses.

You can expand descriptions for request body parameters or response parameters using the
corresponding icon.

Figure 2: Expand descriptions

You can select the required example for request body or response in corresponding windows.

Figure 3: Select required example

VisionLabs B.V. 14 / 23

Figure 4: Response example

Whenspecifying filters for requests youmustusea full value, unlessotherwisenoted. Thepossibility
of using part of the value is indicated in the description.

4 Example

There are twomain approaches when performing the requests.

The first and main approach is to set the rules of detection, estimation, extraction, matching, etc. in a
single handler object. After that, you need to create an object event, which will give a result based on
all the rules specified in the handler. Using this approach is the most optimal from the point of view of
business logic.

The second approach is to sequential performing of requests, i.e. in one request you need to perform a
face detection and get its result, then use this result in an extraction request and so on.

This section provides an example of using handlers and events using CURL requests with a detailed
description of the request bodies and responses.

See the detailed information about the approaches in the section “Approaches at work” in the
administrator’s guide.

4.1 Create account

Without anaccount, it is impossible to sendmost requests to the LUNAPLATFORM.Theaccount is created
at the installation stage after launching the API service. Create the account using the following command,
if it has not been created yet:

VisionLabs B.V. 15 / 23

curl --location --request POST 'http://127.0.0.1:5000/6/accounts' \
--header 'Content-Type: application/json' \
--data '{
"login": "user@mail.com",
"password": "password",
"account_type": "user",
"description": "description"

}'

To use BasicAuth authorization in a CURL request, you need to convert your username and password
to Base64 format. To convert, you need to specify a username and password in the format login:
password. In this case, user:password. The Base64-encoded login and password look like this:

dXNlcjpwYXNzd29yZA==

4.2 Create handler

This section provides an example of creating a simple handler using CURL requests. Using this handler,
it will be possible to:

• detect the face
• define basic attributes (gender, age)
• extract its descriptor
• save a sample to a disk (in a bucket)
• save a face to the Faces database

Description of request: The request enables you to create a handler.

Type of request: POST

Request: http://127.0.0.1:5000/6/handlers

The request to create a handler is executed with the parameters specified below:

Parameter
name Description Value

Request headers

Content-
Type

Type of content in the request application/json

Authorization Basic-authorization. Username and password in Base64
format

dXNlcjpwYXNzd29yZA==

Request body See below

VisionLabs B.V. 16 / 23

Parameter
name Description Value

Data entry string.
It is necessary to specify:

• description — description of the handler
• policies — handler policies
• policies > detect_policy > detect_face — face
detection parameter

• policies > extract_policy > extract_basic_attributes
— parameter for extracting basic attributes

• policies > extract_policy > extract_face_descriptor
— parameter for extracting descriptor

• policies > storage_policy > face_policy > store_face
— parameter for save face in the Faces database

• policies > handler_type — “0” — static, “1” —
dynamic, “2” — lambda

Example of a CURL request, to execute a request from the command line:

curl --location --request POST 'http://127.0.0.1:5000/6/handlers' \
--header 'Authorization: Basic dXNlcjpwYXNzd29yZA==' \
--header 'Content-Type: application/json' \
--data '{

"description": "Simple handler",
"policies": {

"detect_policy": {
"detect_face": 1

},
"extract_policy": {

"extract_basic_attributes": 1,
"extract_face_descriptor": 1

},
"storage_policy": {

"face_sample_policy": {
"store_sample": 1

}
"face_policy": {

"store_face": 1
}

}

VisionLabs B.V. 17 / 23

},
"is_dynamic": false

}'

If the request is successful, the system returns the handler ID and its address.

Example of a response to a request:

{"handler_id":"f2831884-65b9-4b94-9639-f10f4d5f042d","url":"\/6\/handlers\/
f2831884-65b9-4b94-9639-f10f4d5f042d", "external_url": "http
:\/\/127.0.0.1:5000\/6\/handlers\/28e6358a-3753-4442-8310-617a8bba14bf"}

After the handler is created, its ID (parameter handler_id), account ID (parameter account_id
), creation time (parameter create_time), last update time (parameter last_update_time),
description (parameter description) and policies (section policies) are recorded in the table
handler of the Handlers database.

At this stage, nothing else is saved to any databases. A handler is a simple set of rules that cannot create
anyobjects other than itself. In order to use these rules on a certain image, youneed to generate an event.

4.3 Generate event

Description of request: The request enables you to generate events and process them with the
appropriate handler.

Type of request: POST

Request: http://127.0.0.1:5000/6/handlers/{handler_id}/events

The request to generate an event is executed with the parameters specified below:

Parameter name Description Value

Request parameter

handler_id ID of the created handler f2831884-65b9-4b94-9639-
f10f4d5f042d

Request headers

Content-Type Type of content in the request image/jpeg

Authorization Basic-authorization. Username and
password in Base64 format

dXNlcjpwYXNzd29yZA==

Request body

VisionLabs B.V. 18 / 23

Parameter name Description Value

Jpeg image transferred to the server where
LP is deployed:

@/root/example.jpg

Example of a CURL request, to execute a request from the command line:

curl --location --request POST 'http://127.0.0.1:5000/6/handlers/f2831884-65
b9-4b94-9639-f10f4d5f042d/events' \

--header 'Authorization: Basic dXNlcjpwYXNzd29yZA==' \
--header 'Content-Type: image/jpeg' \
--data-binary '@/root/example.jpg'

If necessary, you can specify an image in Base64 format without transferring it to the server from
LP.

If the request is successful, the system creates an event.

Example of a response to a request sorted by blocks:

1) The “images” block defines the general data about the image. If the image was processed
unsuccessfully, the status “0” and an error code with a description and a link will be returned. The
“exif” parameter contains information about the metadata of the processed image.

"images": [
{

"filename": "raw image",
"status": 1,
"error": {

"error_code": 0,
"desc": "Success",
"detail": "Success",
"link": "https:\/\/docs.visionlabs.ai\/info\/luna\/

troubleshooting\/errors-description\/code-0"
},

VisionLabs B.V. 19 / 23

"exif": {}
}

],

2) The “events” block, which defines all the information about the generated event.

"events": [
...

]

2.1) The “face_attributes” sub-block defines the attributes extracted using the “extract_policy” handler
policy, namely, the basic attributes (the “extract_basic_attributes” handler parameter) and the quality of
the descriptor (the “extract_face_descriptor” handler parameter).

Thedescriptor itself is not issued in the response to the request. See thesection“Descriptor formats”
in the administrator manual.

Note that the “attribute_id” parameter and its “url” are “null”. This indicates that the attributes were not
saved to the Redis database because the “store_attribute” parameter is not enabled for the “storage_-
policy” > “attribute_policy” policy. However, at the moment of creating the “face” object, attributes are
attached to it. Since we are creating a face and saving it to the Faces database (the “store_face” handler
parameter), a face with associated attributes will be visible in the Faces database. That is, attributes are
issued in the response and stored in the Faces database.

Since the “store_sample” handler parameter of the “face_sample_policy” policy is enabled, the “sample”
object will be created and stored in a bucket (the Image Store service contains a link to this bucket).

The “store_sample” handler parameter of the “face_sample_policy” policy is always enabled by
default. We explicitly specified it when creating the handler. If you delete it from the request body,
the sample will still be created. You need to set the parameter value to 0.

The “samples” field of the “face_attributes” block specifies the identifier of the sample from which the
attributes were extracted. Full information on the sample is provided below in the “detections” sub-
block.

{
"face_attributes": {

"attribute_id": null,
"url": null,
"samples": [

"b92b05cd-c871-4533-89ce-0a538f8227d3"
],
"basic_attributes": {

"ethnicities": {

VisionLabs B.V. 20 / 23

"predominant_ethnicity": "african_american",
"estimations": {

"asian": 5.721812167271785e-15,
"indian": 1.3687103486030773e-16,
"caucasian": 3.082826702249797e-11,
"african_american": 1.0

}
},
"age": 25,
"gender": 0

},
"score": 0.8616658210754395

},
}

2.2) The “detections” sub-block defines a list of detections detected in the image using the “detect_-
policy”. The coordinates of theboundingboxof the face (“rect”), five landmarks of the face (“landmarks_-
5”), theaddress (“url”) to the ImageStore service (which contains theaddress to the “visionlabs-samples”
bucket with a sample) and the sample identifier (“sample_id”) are specified here. The field “image_-
origin” has the value “null” because the policy of saving the source image was not enabled — “storage_-
policy” > “image_origin_policy”. If it had been enabled, the source image would have been saved in the
ImageStore serviceasa link to the “visionlabs-image-origin”bucket. The “body” fieldhas thevalue “null”
because the “detect_body” handler parameter was not enabled.

"detections": [
{

"filename": "raw image",
"samples": {

"face": {
"detection": {

"rect": {
"x": 103,
"y": 74,
"width": 195,
"height": 275

},
"landmarks5": [

[
29,
129

],
[

123,

VisionLabs B.V. 21 / 23

90
],
[

91,
148

],
[

51,
211

],
[

160,
171

]
]

},
"url": "\/6\/samples\/faces\/b92b05cd-c871-4533-89ce-0

a538f8227d3",
"sample_id": "b92b05cd-c871-4533-89ce-0a538f8227d3"

},
"body": null

},
"detect_time": "2022-11-28T17:01:09.572910+03:00",
"image_origin": null,
"detect_ts": null

}
],

2.3) The “aggregate_estimations” sub-block is responsible for the general parameters of the face or body
obtained from different images. Combining several parameters (for example, age and gender) of one
person into one parameter is called aggregation. This sub-block is empty because the request for event
generation did not specify the “aggregate_attributes” request parameter.

"aggregate_estimations": {
"face": {

"attributes": {}
},
"body": {

"attributes": {}
}

},

2.4) The “face” sub-block defines the “face” object obtained as a result of event generation. If the “store_-
face” handler parameter of the “storage_policy” > “face_policy” policy hadbeendisabled, then the “face”

VisionLabs B.V. 22 / 23

field would have been equal to the “null” value, i.e. it would not have been saved to the Faces database.
The “avatar” parameter specifies the address of the stored sample that will be used as an avatar for the
face. Note that thehandler parameter “set_sample_as_avatar” from thepolicy “storage_policy” > “face_-
policy” is responsible for enabling saving theaddress to theavatar. Wedidn’t specify thisparameterwhen
creating the handler, but it is enabled by default. The “lists” field is empty because we did not specify
the policy of linking a face to the list (“link_to_lists_policy”). The “event_id” field specifies the event ID,
which is also stored in the Faces database. The “external_id” and “user_data” fields are empty because
they were not specified in the event generation request.

"face": {
"external_id": "",
"face_id": "854f4b56-9a77-4be3-bc6e-797b8f3319ad",
"user_data": "",
"url": "\/6\/faces\/854f4b56-9a77-4be3-bc6e-797b8f3319ad",
"lists": [],
"avatar": "\/6\/samples\/faces\/b92b05cd-c871-4533-89ce-0a538f8227d3",
"event_id": "5aaa902f-7085-4dc0-810a-09d170e35c0b"

}

2.5) The “filtered_detections” sub-block will have content if any filter is specified in the filters of the
“match_policy” and the image will not pass according to the specified conditions.

"filtered_detections": {
"face_detections": []

}

2.6) Other parameters. The parameters “location”, “user_data”, “external_id”, “track_id”, “tags”, “source”
are set in the parameters of the event generation request (see the section “Event object” of the
administrator manual). The “matches” field is filled in when using the “match_policy” policy. The
“body_attributes” parameter will be filled in if parameters from the “body_attributes” parameter group
of the “detect_policy” policy are enabled.

VisionLabs B.V. 23 / 23

	Glossary
	Introduction
	Distribution package structure
	Distribution documentation
	Operation manuals
	Installation manuals
	Reference manuals
	Developer manuals

	Getting started
	Requests creation
	Using OpenAPI specification

	Example
	Create account
	Create handler
	Generate event

