EEEEEEEEEEEEEE

VisionLabs LUNA PLATFORM 5

Quick start guide

v.5.95.0

Contents

Glossary 3
Introduction 5
1 Distribution package structure 6
2 Distribution documentation 7
2.1 Operationmanuals e e e e e 7
2.2 Installationmanuals e 7
2.3 Referencemanuals L e e e e 8
2.4 Developermanuals oL e e e e e e e e 9

3 Getting started 10
3.1 Requestscreation. L e e e e e e e e 12
3.1.1 UsingOpenAPlspecification. 13

4 Example 15
41 Createaccount L e e e e e e e e e e e e 15
42 Createhandler e e 16
4.3 Generateevent L L e e e e e e e e e 18

VisionLabs B.V. 2/23

Glossary

Term

Attributes
Avatar
Basic attributes

Body parameters

Bounding box
Bucket

Descriptor
Detector
Events

Face

Face parameters

Handlers

Image
parameters

Landmarks

Matching

Samples, Warps

VisionLabs B.V.

Description

Basic attributes and descriptor.
Visual image of a face used in the user interface.
Age, gender, and ethnicity.

Body characteristics (presence of backpack, headwear, color of clothing, etc.)
determined on the source image during detection.

Rectangle that bounds the image space with the detected face or body.
Logical entity used to store objects.

Data set in closed, binary format prepared by recognition system based on the
characteristic being analyzed.

Neural network used to detect either faces or bodies, or both faces and bodies
in the source image.

Immutable objects that include information about a single face and/or human
body.

Changeable objects that include information about a human face.

Facial characteristics (emotions, mouth parameters, head position, etc.)
determined on the source image during detection.

Changeable objects that store rules for image processing.

Image characteristics (width and height, aspect ratio, size, etc.) determined on
the source image during detection.

Reference points on the face or body used by recognition algorithms to localize
the face or body.

The operation of matching descriptors stored in the database.

Normalized (centered and cropped) image obtained after face or body
detection, prior to descriptor extraction.

Abbreviation Decoding
DB Database
LUNA PLATFORM LP, LUNA

LUNA PLATFORM API API

3/23

VisionLabs B.V.

Abbreviation

LUNA PLATFORM Accounts

LUNA PLATFORM Faces

LUNA PLATFORM Image Store
LUNA PLATFORM Matcher

LUNA PLATFORM Events

LUNA PLATFORM Sender

LUNA PLATFORM Handlers

LUNA PLATFORM Python Matcher
LUNA PLATFORM Python Matcher Proxy
LUNA PLATFORM Backport 3
LUNA PLATFORM Backport 4
LUNA PLATFORM Admin

LUNA PLATFORM Configurator
LUNA PLATFORM Tasks

LUNA PLATFORM Licenses

Decoding

API

Faces

Image Store
Matcher

Events

Sender
Handlers
Python Matcher
Python Matcher Proxy
Backport 3
Backport 4
Admin
Configurator
Tasks

Licenses

4/23

Introduction

The “Distribution package structure” section describes the distribution package content.
The “Distribution documentation” section lists all the documents included in the distribution package.
The “Getting started” section will help you to get started with LUNA PLATFORM.

The “Example” section provides an example of sending a face recognition request to the LUNA PLATFORM

with a detailed description of the request and response bodies.

VisionLabs B.V. 5/23

1 Distribution package structure

The package consist of the following directories:

Directory name Description

/example-docker The directory includes all the files required for launching docker containers

|extras

/docs

Additional dependencies and helper scripts

Documentation for LUNA PLATFORM

The “extras” directory contents:

Directory name Description

[conf
[hasp
Jutils
/VLMatch

Configuration files for LP services and NGINX
HASP utility and files required for license activation
Utilities for working with LP

Matching libraries and sources required for matching by DB using Python
Matcher

The “example-docker” directory contents:

Directory name Description

[luna_configurator Configurations for the Configurator service
[logging Files for LUNA Dashboards, Grafana Loki and Promtail

[postgresql Scripts for databases creation in PostgreSQL

VisionLabs B.V. 6/23

2 Distribution documentation

This section covers the documentation package for LUNA PLATFORM. All the documents can be found in
“/docs” folder of the distribution package.

2.1 Operation manuals

These manuals cover general LP processes, architecture, user interface, system requirements and release
notes.

Documents are provided in PDF and HTML formats.

File Description

LP_Release_Notes Release notes.
LP_User_Interface_Manual User interface manual.
LP_Administrator_Manual Administrator manual.

LP_System_Requirements System requirements.

2.2 Installation manuals

The following manuals describe how to deploy and upgrade in a variety of ways, as well as how to activate
your license and use the Storages utility.

The manuals can be found in the “./docs/InstallationManuals” directory.

Documents are provided in PDF and HTML formats.

File Description
LP_Docker_Compose_Deployment_- Deployment example using Docker Compose.
Example Describes installing on a bare-metal server from

scratch using an example Docker Compose scriptin
the distribution package.

LP_Kubernetes_Helm_Deployment_- Deployment example in Kubernetes cluster.
Example Describes installing in a Kubernetes cluster using the
Helm charts examples in the distribution package.

LP_Installation_Manual_Using_Storages Manual installation using Storages utility. Describes
preparing the environment using the Storages utility
and launching Docker containers manually on a
separate server.

VisionLabs B.V. 7/23

File Description

LP_Upgrade_Manual_Using_Storages Manual upgrade using Storages utility. Describes
upgrading the environment using the Storages utility
and launching new Docker containers manually on a
separate server.

LP_Installation_Manual Manual installation. Describes preparing the
environment and launching all Docker containers
manually on a separate server.

LP_Upgrade_Manual Manual upgrade. Describes updating the
environment and launching new Docker containers
manually on a separate server.

LP_Migration_from_LP3 Manual migration from LP 3 to LP 5. Describes
migration of LP 3 environment and launching LP 5
Docker contents manually on a separate server.

LP_Migration_from_LP4 Manual migration from LP 4 to LP 5. Describes
migration of LP 4 environment and launching LP 5
Docker contents manually on a separate server.

LP_License_Activation_Manual License activation manual.

LP_Storages_Utility_Manual Storages utility manual.

Storages utility enables you to check and/or prepare the environment for LUNA PLATFORM
services version 5.46.1 and higher before launching them manually. It is recommended to use the
installation/upgrade manuals with the Storages utility for LUNA PLATFORM versions 5.46.1 and
higher.

2.3 Reference manuals

These manuals describe the OpenAPI specifications for LUNA PLATFORM services. OpenAPI specification
is the only valid document providing up-to-date information about the service API. The specification can
be used:

+ By documentation generation tools to visualize the API.
+ By code generation tools.

All the documents and code generated using this specification can include inaccuracies and should be
carefully checked.

The manuals can be found in the “/docs/ReferenceManuals” directory. This directory includes
documents in the YML and HTML format. Documents in YML format contain requests to all LUNA

VisionLabs B.V. 8/23

PLATFORM services. You can use them to automatically generate requests in API testing tools, for
example, Postman (not described in LUNA PLATFORM documentation). It is not guaranteed that all
requests will be imported correctly, manual editing may be required. Documents in HTML format are
used to visualize these specification and may not be complete.

The OpenAPI specification for the LUNA PLATFORM services can be obtained from the “get openapi
documentation” request to each service. The “Accept” header should take the value “application/x-

yaml”,

File

APIReferenceManual

AdminReferenceManual

AccountsReferenceManual
Backport3ReferenceManual
Backport4ReferenceManual
ConfiguratorReferenceManual
EventsReferenceManual
FacesReferenceManual
HandlersReferenceManual
ImageStoreReferenceManual
LicensesReferenceManual
PythonMatcherReferenceManual

SenderReferenceManual

TasksReferenceManual

LambdaReferenceManual

2.4 Developer manuals

Description

This manual describes all general requests to LUNA
PLATFORM services using API service

Admin service API description. Describes tasks run by the
administrator

Accounts service API description
Backport 3 APl description

Backport 4 API description
Configurator service API description
Events service API description

Faces service API description

Handlers service APl description

Image Store service APl description
Licenses service API description
Python Matcher service APl description

Sender service API description. Describes receiving event
notifications using web sockets

Tasks service APl description. Describes requests for
execution of long tasks

Lambda service API description. Describes requests for
execution of long tasks

These interactive reference guides are intended for developers and DevOps. The manuals can be found
in the “./docs/ServiceManuals” directory. The manuals contains a description of the work of LUNA

VisionLabs B.V. 9/23

PLATFORM services with a detailed disclosure of technical nuances.

File

APIDevelopmentManual/index.html

AdminDevelopmentManual/index.html
AccountsDevelopmentManual/index.html
Backport3DevelopmentManual/index.html
Backport4DevelopmentManual/index.html
ConfiguratorDevelopmentManual/index.html
EventsDevelopmentManual/ Index.html
FacesDevelopmentManual/Index.html
HandlersDevelopmentManual/index.html
ImageStoreDevelopmentManual/index.html
LicensesDevelopmentManual/index.html
PythonMatcherDevelopmentManual/index.html
SenderDevelopmentManual/index.html
TasksReferenceManual/index.html

LambdaReferenceManual.index.html

3 Getting started

Description

Server installation, documentation of
tornado-handlers, PostgreSQL usage, admin
statistics, etc.

Common administrative routines
Accounts service description
Backport 3 service description
Backport 4 service description
Configurator service description
Events service description

Faces service description
Handlers service description
Image Store service description
Licenses service description
Python Matcher service description
Sender service description

Tasks service description

Lambda service description

There are several useful guides to get started with the LUNA PLATFORM.

The “LP_Administrator_Manual” includes all general information about LUNA PLATFORM:

« terminology,

+ image processing workflow,

« process of working with the received data,
+ objects created and tasks performed,

« architecture and interaction of services,

« structures of databases,

« description of the service settings.

VisionLabs B.V.

10/23

Before working with LUNA PLATFORM, it is recommended to read the section “General concepts” in
order to understand the general principles of working with LUNA PLATFORM.

The distribution package does not include the docker containers. You need to download them from the
Internet. See the “LP_Installation_Manual” for more information.

Once LUNA PLATFORM is up and running, open the document “APIReferenceManual.html” containing a
description of requests to the LUNA PLATFORM.

VisionLabs B.V. 1n/23

3.1 Requests creation

LUNA PLATFORM does not have a default user interface. To work with the system, you need to send
requests via the API.

If necessary, you can use the LUNA CLEMENTINE 2.0 user interface (not included in the distribution
package).

LUNA PLATFORM consists of several services that interact with each other. The main interface for working
with the LUNA PLATFORM is the APl service. The service is designed to receive user requests and redirect
them to other LP services. For example, to detect a face in an image, you need to send a request to
the API service, which will redirect the request to the Handlers service, where the face detection will be
performed, and then the response from the Handlers service will be redirected to the API service, where
the user will receive the detection result.

If necessary, you can send requests directly to other services, but this method is not recommended
and is intended only for certain purposes and experienced users.

General requests to LP are sent via APl service, using its URL:

http://<API server IP-address>:<API port>/<API Version>/

Here:

« <API server IP-address> —IP address where the API service is deployed

« <API port> — port where the API service is deployed. The port is set during container startup
(default is 5000)

« <API Version>— APl version (always 6)

Example:

http://10.16.8.152:5000/6/

Requests can be sent via CURL or using API tools (for example, Postman).

Almost all requests sent to LP 5 require authorization. There are three types of authorization available in
LUNA PLATFORM:

+ BasicAuth. Authorization by login and password (set during account creation);

« BearerAuth. Authorization by JWT token (issued after the token is created);

« LunaAccountldAuth. Authorization by “Luna-Account-ld” header, which specifies the “account_-
id” generated after creating the account.

LunaAccountldAuth authorization has the lowest priority compared to other methods and can
be enabled using the “ALLOW_LUNA_ACCOUNT_AUTH_HEADER” setting in the “OTHER” section of

VisionLabs B.V. 12/23

the API service settings in the Configurator (disabled by default). In the OpenAPI specification the
“Luna-Account-ld” header is marked with the word Deprecated.

The Configurator service contains settings for all services.

In order to use one of the types of authorization, you must have an account. The easiest way to create
an account is to send a POST request “create account” to the API service. When creating an account, you
must specify the following data: login (email), password and account type (account type). The account
is created at the installation stage after the launch of the API service.

If the authorization type is not specified in the request, an error with status code 403 will be returned.

3.1.1 Using OpenAPI specification

Specification includes:

+ Required resources and methods for requests sending.
« Request parameters description.

+ Response description.

« Examples of the requests and responses.

w
N

matching

Figure 1: OpenAP| documentation

The HTML document includes the following elements:

1. Requests, divided into groups.
2. Request method and URL example. You should use it with your protocol, IP-address, and port to
create a request. Example: POST http://<IP>:<PORT>/<Version>/matcher.

VisionLabs B.V. 13/23

Description of request path parameters, query parameters, header parameters, body schema.
Example of the request body.
Description of responses.

I

Examples of responses.

You can expand descriptions for request body parameters or response parameters using the
corresponding icon.

candidates for matching. You can specify the array of face IDs or the array of lists.
Figure 2: Expand descriptions

You can select the required example for request body or response in corresponding windows.

Response samples

200

application/json

GCTaskResult

Copy Expandall Collapse all

"result”: [
+{ -1
"errors”:
- .
+ {1

1

Figure 3: Select required example

VisionLabs B.V. 14 /23

Response samples

application/json

"error_code™:
"desc™: "Bad/incomplete input data”,

"detail™: "Bad query parameters ‘create_time_ 1t""

Figure 4: Response example

When specifying filters for requests you must use a full value, unless otherwise noted. The possibility
of using part of the value is indicated in the description.

4 Example

There are two main approaches when performing the requests.

The first and main approach is to set the rules of detection, estimation, extraction, matching, etc. in a
single handler object. After that, you need to create an object event, which will give a result based on
all the rules specified in the handler. Using this approach is the most optimal from the point of view of
business logic.

The second approach is to sequential performing of requests, i.e. in one request you need to perform a
face detection and get its result, then use this result in an extraction request and so on.

This section provides an example of using handlers and events using CURL requests with a detailed
description of the request bodies and responses.

See the detailed information about the approaches in the section “Approaches at work” in the
administrator’s guide.

4.1 Create account

Without an account, itisimpossible to send most requests to the LUNA PLATFORM. The account is created
attheinstallation stage after launching the APl service. Create the account using the following command,
if it has not been created yet:

VisionLabs B.V. 15/23

curl --location --request POST 'http://127.0.0.1:5000/6/accounts’ \
--header 'Content-Type: application/json' \
--data '{

"login": "user@mail.com",

"password": "password",

"account_type": "user",

"description": "description"

} '

To use BasicAuth authorization in a CURL request, you need to convert your username and password
to Base64 format. To convert, you need to specify a username and password in the format login:
password. In this case, user:password. The Base64-encoded login and password look like this:

dXN1lcjpwYXNzd29yZA==

4.2 Create handler

This section provides an example of creating a simple handler using CURL requests. Using this handler,
it will be possible to:

+ detect the face
« define basic attributes (gender, age)

extract its descriptor

save a sample to a disk (in a bucket)
« save a face to the Faces database

Description of request: The request enables you to create a handler.
Type of request: POST
Request: http://127.0.0.1:5000/6/handlers

The request to create a handler is executed with the parameters specified below:

Parameter

name Description Value
Request headers

Content- Type of content in the request application/json

Type

Authorization Basic-authorization. Username and password in Base64 dXNlcjpwYXNzd29yZA==
format
Request body See below

VisionLabs B.V. 16 /23

Parameter
name Description Value

Data entry string.
It is necessary to specify:
« description — description of the handler

policies — handler policies
policies > detect_policy > detect_face — face
detection parameter

policies > extract_policy > extract_basic_attributes
— parameter for extracting basic attributes

policies > extract_policy > extract_face_descriptor
— parameter for extracting descriptor

policies > storage_policy > face_policy > store_face
— parameter for save face in the Faces database

policies > handler_type — “0” — static, “1” —
dynamic, “2” — lambda

Example of a CURL request, to execute a request from the command line:

curl —--location --request POST 'http://127.0.0.1:5000/6/handlers"' \

-—header 'Authorization: Basic dXNlcjpwYXNzd29yZA==" \
--header 'Content-Type: application/json' \
--data '{

"description": "Simple handler",

"policies": {
"detect_policy": {
"detect_face": 1
}J
"extract_policy": {
"extract_basic_attributes": 1,
"extract_face_descriptor": 1
})
"storage_policy": {
"face_sample_policy": {
"store_sample": 1
}
"face_policy": {
"store_face": 1

VisionLabs B.V. 17/23

s

"is_dynamic": false
} 1
If the request is successful, the system returns the handler ID and its address.

Example of a response to a request:

{"handler_id":"f2831884-65b9-4b94-9639-f10f4d5f042d" ,"ur1":"\/6\/handlers\/
£2831884-65b9-4b94-9639-f10f4d5f042d", "external_url": "http
:\/\/127.0.0.1:5000\/6\/handlers\/28e6358a-3753-4442-8310-617a8bbal4bf"}

After the handler is created, its ID (parameter handler_id), account ID (parameter account_1id
), creation time (parameter create_time), last update time (parameter last_update_time),
description (parameter description) and policies (section policies) are recorded in the table
handler of the Handlers database.

At this stage, nothing else is saved to any databases. A handler is a simple set of rules that cannot create
any objects other than itself. In order to use these rules on a certain image, you need to generate an event.

4.3 Generate event

Description of request: The request enables you to generate events and process them with the
appropriate handler.

Type of request: POST
Request: http://127.0.0.1:5000/6/handlers/{handler_id}/events

The request to generate an event is executed with the parameters specified below:

Parametername Description Value

Request parameter

handler_id ID of the created handler f2831884-65b9-4b94-9639-
flof4dsfo42d

Request headers
Content-Type Type of content in the request image/jpeg

Authorization Basic-authorization. Username and dXNlcjpwYXNzd29yZA==
password in Base64 format

Request body

VisionLabs B.V. 18 /23

Parameter name Description Value

Jpegimage transferred to the server where ~ @/root/example.jpg
LP is deployed:

Example of a CURL request, to execute a request from the command line:

curl --location --request POST 'http://127.0.0.1:5000/6/handlers/f2831884-65
b9-4b94-9639-f10f4d5f042d/events' \

--header 'Authorization: Basic dXNlcjpwYXNzd29yZA==" \

-—header 'Content-Type: image/jpeg' \

--data-binary '@/root/example.jpg'

If necessary, you can specify an image in Base64 format without transferring it to the server from
LP.

If the request is successful, the system creates an event.

Example of a response to a request sorted by blocks:

1) The “images” block defines the general data about the image. If the image was processed
unsuccessfully, the status “0” and an error code with a description and a link will be returned. The
“exif” parameter contains information about the metadata of the processed image.

"images": [

{
"filename": "raw image",
"status": 1,
"error'": {
"error_code": 0,
"desc": "Success",
"detail": "Success",

"link": "https:\/\/docs.visionlabs.ai\/info\/luna\/
troubleshooting\/errors-description\/code-0"

I

VisionLabs B.V. 19/23

"exif": {}
1,

2) The “events” block, which defines all the information about the generated event.

"events": [

2.1) The “face_attributes” sub-block defines the attributes extracted using the “extract_policy” handler
policy, namely, the basic attributes (the “extract_basic_attributes” handler parameter) and the quality of
the descriptor (the “extract_face_descriptor” handler parameter).

Thedescriptoritselfis notissuedinthe responseto the request. See the section “Descriptor formats”
in the administrator manual.

Note that the “attribute_id” parameter and its “url” are “null”. This indicates that the attributes were not
saved to the Redis database because the “store_attribute” parameter is not enabled for the “storage_-
policy” > “attribute_policy” policy. However, at the moment of creating the “face” object, attributes are
attached to it. Since we are creating a face and saving it to the Faces database (the “store_face” handler
parameter), a face with associated attributes will be visible in the Faces database. That is, attributes are
issued in the response and stored in the Faces database.

Since the “store_sample” handler parameter of the “face_sample_policy” policy is enabled, the “sample”
object will be created and stored in a bucket (the Image Store service contains a link to this bucket).

The “store_sample” handler parameter of the “face_sample_policy” policy is always enabled by
default. We explicitly specified it when creating the handler. If you delete it from the request body,
the sample will still be created. You need to set the parameter value to 0.

The “samples” field of the “face_attributes” block specifies the identifier of the sample from which the
attributes were extracted. Full information on the sample is provided below in the “detections” sub-
block.

"face_attributes": {

"attribute_id": null,

"url": null,

"samples": [
"b92b05cd-c871-4533-89ce-0a538f8227d3"

1,

"basic_attributes": {
"ethnicities": {

VisionLabs B.V. 20/23

"predominant_ethnicity": "african_american",
"estimations": {
"asjan": 5.721812167271785e-15,
"indian": 1.3687103486030773e-16,
"caucasian": 3.082826702249797e-11,
"african_amerdican": 1.0

b
"age'": 25,
"gender": 0

s
"score": 0.8616658210754395

I

2.2) The “detections” sub-block defines a list of detections detected in the image using the “detect_-
policy”. The coordinates of the bounding box of the face (“rect”), five landmarks of the face (“landmarks_-
5”),the address (“url”) to the Image Store service (which contains the address to the “visionlabs-samples”
bucket with a sample) and the sample identifier (“sample_id”) are specified here. The field “image_-
origin” has the value “null” because the policy of saving the source image was not enabled — “storage_-
policy” > “image_origin_policy”. If it had been enabled, the source image would have been saved in the
Image Store service as a link to the “visionlabs-image-origin” bucket. The “body” field has the value “null”
because the “detect_body” handler parameter was not enabled.

"detections": [

{
"filename": "raw -image",
"samples": {
"face": {
"detection": {
"rect": {
"x": 103,
ny": 74,

"width": 195,
"height": 275

b
"landmarks5": [
[
29,
129
1,
[
123,

VisionLabs B.V. 21/23

90

1s
[
91,
148
15
[
51,
211
15
[
160,
171
]

1,

"url": "\/6\/samples\/faces\/b92b05cd-c871-4533-89ce-0
a538f8227d3",

"sample_id": "b92b05cd-c871-4533-89ce-0a538f8227d3"

s
"body": null

I

"detect_time": "2022-11-28T17:01:09.572910+03:00",
"image_origin": null,

"detect_ts": null

1,

2.3) The “aggregate_estimations” sub-block is responsible for the general parameters of the face or body
obtained from different images. Combining several parameters (for example, age and gender) of one
person into one parameter is called aggregation. This sub-block is empty because the request for event
generation did not specify the “aggregate_attributes” request parameter.

"aggregate_estimations": {
"face": {
"attributes": {}

1,
"body”: {
"attributes": {}

I

2.4) The “face” sub-block defines the “face” object obtained as a result of event generation. If the “store_-
face” handler parameter of the “storage_policy” > “face_policy” policy had been disabled, then the “face”

VisionLabs B.V. 22 /23

field would have been equal to the “null” value, i.e. it would not have been saved to the Faces database.
The “avatar” parameter specifies the address of the stored sample that will be used as an avatar for the
face. Note that the handler parameter “set_sample_as_avatar” from the policy “storage_policy” > “face_-
policy” isresponsible for enabling saving the address to the avatar. We didn’t specify this parameter when
creating the handler, but it is enabled by default. The “lists” field is empty because we did not specify
the policy of linking a face to the list (“link_to_lists_policy”). The “event_id” field specifies the event ID,
which is also stored in the Faces database. The “external_id” and “user_data” fields are empty because
they were not specified in the event generation request.

"face'": {
"external_did": "",
"face_id": "854f4b56-9a77-4be3-bc6e-797b8f3319ad",
"user_data": "",
"url": "\/6\/faces\/854f4b56-9a77-4be3-bc6e-797b8f3319ad",
"lists": [],
"avatar": "\/6\/samples\/faces\/b92b05cd-c871-4533-89ce-0a538f8227d3",
"event_id": "5aaaf902f-7085-4dc0-810a-09d170e35cOb"

2.5) The “filtered_detections” sub-block will have content if any filter is specified in the filters of the
“match_policy” and the image will not pass according to the specified conditions.

"filtered_detections": {
"face_detections": []

» o« » <«

2.6) Other parameters. The parameters “location”, “user_data”, “external_id”, “track_id”, “tags”, “source”
are set in the parameters of the event generation request (see the section “Event object” of the
administrator manual). The “matches” field is filled in when using the “match_policy” policy. The
“body_attributes” parameter will be filled in if parameters from the “body_attributes” parameter group

of the “detect_policy” policy are enabled.

VisionLabs B.V. 23/23

	Glossary
	Introduction
	Distribution package structure
	Distribution documentation
	Operation manuals
	Installation manuals
	Reference manuals
	Developer manuals

	Getting started
	Requests creation
	Using OpenAPI specification

	Example
	Create account
	Create handler
	Generate event

