VisionLabs LUNA PLATFORM 5

Storages utility manual

v.5.95.0

Contents

Introduction 3
1 Use cases for Storages utility 4
11 Launchfromscratch 4

1.2 Upgrade/downgrade 4
1.2.1 Recommendations services behavior during environment preparation 5

2 Setting Storages configuration 6
3 Utility commands 7
31 Listcommand. e 7
3.2 Checkcommand e 8
3.3 Preparecommand e e e e e e e e e e 9
3.3.1 Typesofpassedarguments 10

3.4 Settingup customschemafordatabases 12

3.5 Load_dumpcommand e e e e 12
3.6 Logscommand 13
3.6.1 Example of Prepare command with loggingenabled 14

3.6.2 Example of Logs command to get environment preparationlogs 15

4 Named arguments 16
4.0.1 Environmentparameters e e e 18

5 Environment upgrade scenario 19

VisionLabs B.V.

2/21

Introduction

This document describes the Storages utility and how to use it. It is recommended to familiarize yourself
with this document before using the utility.

The Storages utility enables you to check and/or prepare the environment for LUNA PLATFORM services
before launching them. The preparation of the environment is understood as follows:

+ Preparing buckets in InfluxDB for monitoring work.

« Preparing buckets for the Image Store service, enabling you to store user data (images, metadata,
archives, etc.).

+ Preparing the InfluxDB for collection of aggregated statistics by the Admin service (see “Requests
and estimations statistics gathering” section in the administrator manual).

+ Preparing databases, adding VLMatch functionality, creating and managing migration scripts for
LUNA PLATFORM databases (PostgreSQL or Oracle).

+ Performing migration/loading settings into the Configurator database.

+ Loading dump files into the Configurator service database.

The main advantage of Storages over manual preparation of the environment is that the utility knows
revisions of the Configurator service settings and migration scenarios for LP service databases, which
greatly simplifies the process of updating and downgrading LUNA PLATFORM. In addition, using the
utility, you can evaluate the current state of the LUNA PLATFORM environment and determine what
exactly needs to be updated.

The utility is supplied in a Docker container and can be used as a tool for preparing the LUNA PLATFORM
environment deployed in Docker containers, the Docker Compose script, the Kubernetes orchestration
system, etc. The main task of the administrator is to indicate to the Storages utility the addresses of
databases, buckets, etc. (see “Setting Storages configuration” section).

VisionLabs B.V. 3/21

1 Use cases for Storages utility

The Storages utility can be used for updating or downgrading, or for installing from scratch.

It is recommended to create backups before any actions related to updating or downgrading. See
recommendations for creating backups and useful links in the update manual.

Example commands for updating and installing from scratch are provided in the corresponding
documents. A downgrade is actually no different from an update.

The sections below provide general procedures for performing these tasks.

1.1 Launch from scratch

The general procedure for installing from scratch is as follows:

1. Launch and configure PostgreSQL/Oracle and InfluxDB databases — create users, configure rights,
etc. (see the “Databases” section in the administrator manual).

2. Compile the VLMatch library for a user version of the PostgeSQL or Oracle database (see the
“Databases” section in the administrator manual). The Storages utility automatically adds the
VLMatch function to the Faces and Events databases during the database environment preparation
phase.

3. Correctlyfill out the Storages configuration, indicating all the necessary data — database addresses
and authentication data, S3 connection settings (if necessary), bucket addresses, etc.

4. Prepare the environment using the prepare command.

5. Make sure that the environment of the version of interest has been successfully prepared using the
check command.

6. Correctly fill in user settings for services (connection to services, databases, etc.) in one of the
following ways:

+ Execute the command load_dump, loading a dump file with user settings *
+ Configure and launch the Configurator service, specifying user settings in it.
« Fillin the service configuration files, specifying user settings in them.

7. Launch LUNA PLATFORM services.

* you can edit the full Luna_platform_<version>_dump.json dump file included in the distribution
package, or use a custom dump file (see example of a custom dump file platform_settings.json
included in the distribution package). See the “Configurator service” sectionin the administrator manual
for more information about dumps.

1.2 Upgrade/downgrade

The general procedure for upgrading or downgrading is as follows:

VisionLabs B.V. 4/21

1. Correctlyfillout the Storages configuration, indicating all the necessary data — database addresses
and authentication data, S3 connection settings (if necessary), bucket addresses, etc.

2. Make sure that Storages supports preparing the environment for LUNA PLATFORM of the version

you are interested in using the list command.

Check the current LUNA PLATFORM environment using the check command.

Configure the behavior of services during environment preparation

Prepare the environment using the prepare command.

I

Make sure that the environment of the version of interest has been successfully prepared using the
check command.
7. Update user settings for services (connection to services, databases, etc.) in one of the following
ways (optional):
+ Execute the command load_dump, loading a dump file with user settings *
+ Configure and launch the Configurator service, specifying user settings in it.
« Fillin the service configuration files, specifying user settings in them.
8. Launch the new version of LUNA PLATFORM services.

* you can edit the full Luna_platform_<version>_dump.json dump file included in the distribution
package, or use a custom dump file (see example of a custom dump file platform_settings.json
included in the distribution package). See the “Configurator service” sectionin the administrator manual
for more information about dumps.

1.2.1 Recommendations services behavior during environment preparation

When preparing your environment, it is important to carefully plan the impact on services that use
databases.

Below are recommendations for managing services in various migration scenarios.

+ Load reduction: Try to reduce the number of requests to a minimum during environment
preparation. This will help reduce the likelihood of conflicts and data integrity issues.

+ Restricted Access: Consider temporarily restricting access to services to avoid inconsistent
changes during migration.

+ Stopping services: Consider stopping services that actively interact with the database. This can
help reduce potential conflicts and simplify the migration process.

« Caution: If you leave the service running during migration, be prepared for possible delays in the
operation of LUNA PLATFORM.

Thefinal decision on how to manage services should be made based on the specific requirements of your
system and business processes.

VisionLabs B.V. 5/ 21

2 Setting Storages configuration

To correctly prepare the environment, you need to configure the Storages configuration so that the
utility can interact with various services, databases, buckets and other resources. The required Storages
settings can be specified using:

« Storages service configuration file.
+ Running Configurator service (during update/downgrade).

The method for transferring settings is specified using the arguments of the corresponding commands
(see below). If no argument is given, the Storages utility will use the default configuration file. If both
arguments are given, priority will be given to receiving settings from the running Configurator service.

Using Storages configuration file

By default, the configuration file is located in the Storages container. If you need to specify settings
other than the default settings, you can change a copy of the default configuration file located in the
distribution package at the path luna_v.5.95.0/extras/conf/storages_config.conf and
specify it using the argument —-config. The configuration file must also be mounted to the Storages
container.

This method is listed as an example in the installation and upgrade manuals using Storages.
Using settings from running Configurator service

The address of the running Configurator service is passed in the -luna-config argument of the
corresponding command.

This method requires preliminary preparation of the environment for the new version of the Configurator
service. An example of using this method is given in the section “Environment upgrade scenario”.

VisionLabs B.V. 6/ 21

3 Utility commands

The preparation of the environment is carried out using the luna_prepare script, to which specific
commands are passed, enabling for detailed configuration of the preparation process.

List of available commands:

+ check — Command that enables you to check the existing environment in accordance with the
specified information about the LUNA PLATFORM version.

« list — Command that enables you to show a list of available versions of LUNA PLATFORM for
preparing the environment.

« prepare — Main command, which enables you to prepare the environment in accordance with the
specified LUNA PLATFORM version information.

+ load_dump — Command that enables you to load settings from a user dump file into the
Configurator database.

+ logs — Command that enables you to display or save to a file special logs received during the
environment preparation stage.

Each command except the 1ist command hasits own arguments. A list of possible arguments with their
basic description can be obtained using the help argument --help.

For an extended description of the arguments, see “Named arguments” section.

In addition, the prepare command has two types of arguments — positional and named (see “Prepare
command”) and you can also get help information for each type of argument.

For example, you can get a list of arguments for the Toad_dump command with the following command:

docker run \

-=rm \

--network=host \
dockerhub.visionlabs.ru/luna/storages:v.0.5.9 \
bash -c "luna_prepare load_dump --help"

Important: It is highly recommended that you use help arguments when working with the Storages
utility.

3.1 List command

The Storages utility does not work with all versions of LUNA PLATFORM. The 1ist command enables you
to get a list of supported versions of the environment preparation run.

Important: The version list also contains releases intended for internal use. Only public versions of LUNA
PLATFORM must be used.

VisionLabs B.V. 7/ 21

Example of a command to get a list of versions:

docker run \

-=rm \

--network=host \
dockerhub.visionlabs.ru/luna/storages:v.0.5.9 \
bash -c "luna_prepare list"

Example of successful command execution:

[2024-02-07 16:20:50+0300] [storages] [INFO]: Available platform versions
for surroundings preparation:

[2024-02-07 16:20:50+0300] [storages] [INFO]: v.5.46.1, v.5.47.1, v.5.47.4,
v.5.49.1, v.5.51.0, v.5.51.4, v.5.51.6, v.5.53.0, v.5.54.0, v.5.55.0, v
.5.56.0, v.5.57.0

3.2 Check command

The check command enables you to check the current environment and get information about what is
needed to install an environment of a different version. Using this command, for example, you can verify
whether the user really has a certain version of the environment installed.

The following arguments are available for the check command:

+ —config
+ —luna-config
» —profile

-platform_version
« —s3-buckets
-local-buckets

Example of a command to check the current environment:

docker run \

-=rm \

--network=host \

dockerhub.visionlabs.ru/luna/storages:v.0.5.9 \

bash -c "luna_prepare check \
-—-platform_version=v.5.53.0 \
-—profile=common \
--luna-config=http://10.16.5.177:5070"

VisionLabs B.V. 8/ 21

The example checks the environment for all LUNA PLATFORM v.5.53.0 services, except for the Backport
3 and Backport 4 services, and also checks the availability of buckets using the corresponding settings
“LUNA_IMAGE_STORE_bucket_name_ADDRESS” from the Configurator service launched at the address
from the --luna-configargument.

If the installed environment matches the version specified in the --platform_versionargument, then
a message similar to this will appear in the logs:

[2024-02-06 13:57:01+0300] [storages] [INFO]: The surrounding state is
completely prepared for platform version 'v.5.53.0'

If the installed environment does not match the version specified in the -—-platform_version
argument, then a message similar to this will appear in the logs:

[2024-02-08 18:19:48+0300] [storages] [INFO]: luna_tasks[v.3.18.0] will be
added database entity: tasks_database_migration with revision 75
d45d56f7f7

[2024-02-08 18:19:48+0300] [storages] [INFO]: luna_tasks[v.3.18.0] will be
updated configs migration version from '6a3d8839' to 'e7490433'

This means that when the prepare command is executed, the Tasks database will be migrated and the
Configurator settings migration revision will be updated to the specified one.

3.3 Prepare command

The prepare command prepares the environment according to the specified version of LUNA
PLATFORM.

The preparation of the environment is understood as follows:

+ Preparing buckets in InfluxDB for monitoring work.

+ Preparing buckets for the Image Store service, enabling you to store user data (images, metadata,
archives, etc.).

+ Preparing the InfluxDB for collection of aggregated statistics by the Admin service (see “Requests
and estimations statistics gathering” section in the administrator manual).

+ Preparing databases, adding VLMatch functionality, creating and managing migration scripts for
LUNA PLATFORM databases (PostgreSQL or Oracle).

+ Performing migration/loading settings into the Configurator database.

All of the above tasks are specified as separate command arguments (see below).

Note: If necessary, you can record environment preparation execution logs to solve specific problems
that require contacting VisionLabs specialists. To do this, you need to specify additional data in the

VisionLabs B.V. 9/21

environment preparation command. By default, logs are not saved. See “Logs command” for more
information.

Important: The Storages utility will not prepare the environment for services that are disabled in the
“ADDITIONAL_SERVICES_USAGE” setting.

3.3.1 Types of passed arguments

For the prepare command, you can pass additional arguments that enable you to configure the
preparation of the environment in detail.

Arguments can be:

« Positional (mandatory)
+ Named (optional, having a default value)

The positional argument must appear exactly after the prepare command. Named arguments appear
after positional ones.

The table below provides a list of possible positional and named arguments for the prepare command.

Positional

argument Description
Preparing entities

lis_bucket Enables you to create buckets in the Image Store container. Bucket settings are
specified in the “LUNA_IMAGE_STORE_bucket_name_ADDRESS” sections in the
Storages utility settings (--conf1ig) orin the Configurator service settings
(--luna-config).
List of available named arguments: --help, --verbose, --config,
--luna-config,--ignore-integrity,—-platform_version,
--s3-buckets, --local-buckets, -—profile,
--ADDITIONAL_SERVICES_USAGE, arguments for passing configuration tags
with bucket addresses.

s3_bucket Enables you to create buckets in S3 storage without accessing the Image Store

service. Bucket settings are specified in the “S3” section, and bucket names in
the “LUNA_IMAGE_STORE_bucket_name_ADDRESS” sections in the Storages
utility settings (--conf-ig) orin the Configurator service settings
(--luna-config).

List of available named arguments: --he'lp, --verbose, --config,
--luna-config,--ignore-integrity, ——-platform_version,
--profile, ——ADDITIONAL_SERVICES_USAGE, --LAMBDA_S3.

VisionLabs B.V. 10/ 21

Positional
argument Description

influx_bucket Enablesyou to create buckets in the InfluxDB.
List of available named arguments: --he'lp, --verbose, --config,
--luna-config,--ignore-integrity, —-platform_version,
-—profile, ——LUNA_MONITORING.

aggregated_inf Allows you to create a “luna_monitoring_aggregated” bucket in the Influx
database and enable statistics collection (see section “Requests and
estimations statistics gathering” in the administrator manual).
List of available named arguments: --he'lp, --verbose, --config,
--luna-config, --ignore-integrity, -—-platform_version,
--profile, —-dry, ——LUNA_MONITORING.

database Enables creating databases, adding VLMatch functionality, creating and
managing migration scripts for LUNA PLATFORM databases (PostgreSQL or
Oracle).
List of available named arguments: --help, --verbose, --config,
--luna-config, --ignore-integrity, -—-platform_version,
--profile, --db-password, --db-user,
--ADDITIONAL_SERVICES_USAGE, Arguments for passing database settings
tags.

configs Migrates Configurator service settings.
List of available named arguments: --he'lp, --verbose, --config,
--luna-config,--ignore-integrity, —-platform_version,

--profile,—-configs-revision

all_entities Uses positional arguments 1is_bucket, influx_bucket,
aggregated_influx_bucket, database and configs.
List of available named arguments: all of the above and --dump-file.

Specifying service for preparing environment using one positional
argument from the list above

<service_name Name of the service (configurator, remote_sdk, etc.) for which you need to
> prepare the environment.
The entity for preparing the environment is specified separately in the named
argument --entiity, available for each service.
Seethe luna_prepare prepare <service> --helpcommand for a list of
available named arguments.

A description of all named arguments is given in the table “Named arguments”.

VisionLabs B.V. 1n/21

Important: There is no positional argument that prepares the environment for all services. The profile
(a link to a list of services) is specified in the named argument --profile, which is available for all
positional arguments except <service_name>. For the positional argument <service_name> there
is a separate logic for selecting the environment for preparation, specified in the --entity flag. If the
named argument --enti ty is not specified, then an environment for all entities will be prepared.

See the example of the prepare command in the “Upgrade environment scenario” section.

3.4 Setting up custom schema for databases

The custom schema for databases can be set using an environment variable LUNA_PG_SCHEMA.

LUNA_PG_SCHEMA specifies the schema name of PostgreSQL when creating a table. The default value is
luna. If LUNA_PG_SCHEMA is not present, this schema will be used by default for new tables, making it
the default schema for the corresponding user.

Important: If the schema name differs from the user name (the user name lunais specified in the launch
command for PostgreSQl), the table will be created in the public schema.

Example command to assign a schema name:

docker run \

--rm \

--network=host \

-—env=LUNA_PG_SCHEMA=custom_schema \

-v /var/lib/luna/current/extras/conf/storages_config.conf:/srv/
storages_config.conf \

dockerhub.visionlabs.ru/luna/storages:v.0.5.9 \

bash -c "luna_prepare prepare all_entities \
-—-platform_version=v.5.95.0"

Here:

+ ——env=LUNA_PG_SCHEMA=custom_schema — specifying an environmentvariable LUNA_PG_SCHEMA
containing the schema name of “custom_schema”.

3.5 Load_dump command

The load_dump command enables you to load user settings into the Configurator service.

The following arguments are available for the Toad_dump command:

+ —help
» -verbose
+ —config

VisionLabs B.V. 12/ 21

https://www.postgresql.org/docs/16/ddl-schemas.html

« —clear-database
o —dump-file

For example, you can load the supplied custom settings using the following command:

docker run \
--rm \
--network=host \

-v /var/lib/luna/current/extras/conf/platform_settings.json:/srv/

platform_settings.json \

dockerhub.visionlabs.ru/luna/storages:v.0.5.9 \

bash -c "luna_prepare load_dump \

-v \

-—dump-file=/srv/platform_settings.json"

Example of successful command execution:

[2024-02-07 16:25:33+0300] [storages]

[2024-02-07 16:25:33+0300] [storages]

[2024-02-07 16:25:34+0300] [storages]
ADDITIONAL_SERVICES_USAGE'

[2024-02-07 16:25:34+0300] [storages]
LICENSE_VENDOR'

[2024-02-07 16:25:34+0300] [storages]
[2024-02-07 16:25:34+0300] [storages]

3.6 Logs command

[INFO]:
[INFO]:
[INFO]:

[INFO]:

[INFO]:
[INFO]:

getting settings-dump file
start updating settings
update setting with name '

update setting with name '

applied settings: 20 out o
database 1is ready to use

f 20

The logs command enables you to get special logs in JSON format created during the environment

preparation stage. Each log contains the following information about the action performed:

« migration_action — Performed action (create, update, downgrade or delete).

« migration_datetime — Time of execution of the action.

« migration_problems — Problems encountered.

« migration_source — Source (for example, the source revision version).

« migration_target — Target (for example, the revision version to which the migration was

performed).

+ target_version — Version of LUNA PLATFORM corresponding to the action being performed.

Not all log fields may be filled in (for example, migration_problems' :

missing if no problems occurred (for example, entity preparation logs influx_bucket).

VisionLabs B.V.

None). Also, some logs may be

13/ 21

Receiving logs is optional. It is recommended to configure the receipt of logs in case of problems
that require contacting VisionLabs specialists.

Logs are saved in a separate file in SQLite database format.
The following arguments are available for the Togs command:

« —save-file
« —tail

To ensure that logs are recorded during environment preparation, the following is required:

« Create a directory to store the SQLite database file.

+ Change the owner and group for the specified directory.

« In the environment preparation command, mount the created directory.

« In the environment preparation command, set the environment variable “DB_PATH”, which will
indicate the path to the mounted directory (by default “/srv/sqlite_db/data”).

3.6.1 Example of Prepare command with logging enabled

Create a directory to store the SQLite database file:

mkdir -p /var/lib/luna/sqlite_db/data

Change the owner and group for the specified directory:

chown -R 1001:0 /var/lib/luna/sqlite_db/data

Prepare the environment and save logs to a SQLite database file:

docker run \

--rm \

-—env=DB_PATH="/srv/my_data" \

-v /var/lib/luna/sqlite_db/data/:/srv/my_data \

--network=host \

dockerhub.visionlabs.ru/luna/storages:v.0.5.9 \

bash -c "luna_prepare prepare all_entities \
--platform_version=v.5.57.0"

Here:

+ -v /root/my_data/:/srv/sqlite_db/data \ — Mount the directory for storing the SQLite
database file.

VisionLabs B.V. 14 /21

« ——env=DB_PATH="/srv/my_data"\ — Specifying an environment variable containing the path
to the directory with the SQLite database file inside the container.

3.6.2 Example of Logs command to get environment preparation logs

After preparing the environment, you can get logs using the following command:

docker run \

-=rm \

--network=host \

--env=DB_PATH="/srv/sqlite_db/data" \

-v /var/lib/luna/sqlite_db/data/:/srv/sqlite_db/data \

dockerhub.visionlabs.ru/luna/storages:v.0.5.9 \

bash -c "luna_prepare logs \
--save-file=/srv/sqlite_db/data/storages_logs.log \
--tail=30"

Here:

« ——save-file=/srv/sqlite_db/data/storages_logs.log — Address inside the container
where the log file should be saved. In this case, the file will be saved in a mounted directory and
will be available on the host machine.

+ ——tail=30 — Number of lines with logs in the storages_logs. logfile.

VisionLabs B.V. 15/ 21

4 Named arguments

Named arguments are intended for detailed configuration of all commands for the luna_prepare script.

Each command has a specific set of named arguments available. A list of named arguments for each
command can be obtained using the reference argument:

docker run \

-=rm \

--network=host \
dockerhub.visionlabs.ru/luna/storages:v.0.5.9 \

bash -c "luna_prepare <command> <named_argument> --help"

If the prepare command is used, then named arguments are specified after positional ones (see
“Types of passed arguments” section).

The table below provides a description for all named arguments.

Named Description Default
arguments value/behavior
--helpor-h Show help information. None
--verboseor Enabledebug output. Not used
-V
--config™ The path to the config. conf configuration file of the /srv/storages/
Storages utility, which contains the settings necessary for storages/
the utility to prepare the environment. config
--Tluna- The address of the running Configurator service for reading 127.0.0.1:5070
config the settings required by the Storages utility to prepare the

*

environment.

--profile Profile: common
« common — Create environment for all LUNA
PLATFORM services, with the exception of Backport 3
and Backport 4 services.
+ backports — Create environment for all LUNA
PLATFORM services, including Backport 3 and
Backport 4 services.

- LUNA PLATFORM version. Latest version
platform_vers from the list
command

VisionLabs B.V. 16 /21

--s3- Enables you to use direct queries to S3 instead of using local ~ Settings from the
buckets Image Store buckets. configuration
--local- Path to the local directory with buckets. The directory must Directory from the
buckets be mounted to the Storages container. configuration
----bucket- Lifetime of objects in a bucket. Not used
ttl
--clear- Remove all existing settings and restrictions from the Not used
database Configurator database before adding them from the dump
file.
--entity Selecting an entity to prepare the environment of a All entities
separate service.
--dump-file Path tothe dump file with settings for Configurator. The —
dump file must be mounted to the Storages container.
--configs- Revision of settings for performing migration. Accepts the Revision for
revision following values: specified LP
+ Revision hash version
+ head — Latest revision**
« -1 — Previous revision relative to current
--db-user DB user. Required to override the default user in settings*** Not used
--db- DB password. Required to override the default passwordin ~ Not used
password settings***
--dry Argument that enables you to avoid modifying data while false
preparing aggregated InfluxDB buckets.
--ignore- Argument that determines whether errors in the existence Not used
integrityor ofobjects (databases, buckets, etc.) should be ignored. If
—i1 the argument is disabled, the existence of objects will be
treated as an error.
--save-file Name of the file where the logs will be saved. —
-—tail Number of logs. 10

* to get the Storages utility settings, you can use either the --config argument or the --luna-config
argument. See “Setting Storages configuration” for details.

** |atest revision does not always mean a revision for the latest version of LUNA PLATFORM. If you need
a revision of the latest version of LP, then you don’t have to specify the --configs-revision flag,

VisionLabs B.V. 17/ 21

because the default value means using the revision corresponding to the LUNA PLATFORM version
specified in the --platform_version flag.

*** named arguments can be used in the case when you need to create a database from one user and use
it from another.

Also, when using the --luna-config argument, you can pass the following named arguments
containing the configuration tag in the Configurator service:

e ——LUNA_LAMBDA_DB
« ——LUNA_FACES_DB
+ ——LUNA_BACKPORT3_DB
« ——LUNA_ACCOUNTS_DB
e ——LUNA_TASKS_DB
 ——LUNA_HANDLERS_DB

« ——LUNA_EVENTS_DB

« ——DATABASE_NUMBER

e ——LUNA_IMAGE_STORE_FACES_SAMPLES_ADDRESS
o ——LUNA_IMAGE_STORE_TASK_RESULT_ADDRESS

o ——LUNA_IMAGE_STORE_IMAGES_ADDRESS

e ——LUNA_IMAGE_STORE_PORTRAITS_ADDRESS
 ——LUNA_IMAGE_STORE_OBJECTS_ADDRESS

¢+ ——LUNA_IMAGE_STORE_BODIES_SAMPLES_ADDRESS
« ——LAMBDA_S3

* ——LUNA_MONITORING

o+ ——ADDITIONAL_SERVICES_USAGE

4.0.1 Environment parameters

+ LUNA_PG_SCHEMA sets the PostgreSQL schema name for table creation. The default value is Tuna.
If LUNA_PG_SCHEMA is empty, this default schema will be used for new tables, making it the default
schema for the corresponding user.

Note: that if the schema name differs from the user name, the table will be created in the public

schema.

VisionLabs B.V. 18 /21

https://www.postgresql.org/docs/17/ddl-schemas.html

5 Environment upgrade scenario

For example, a user wants to upgrade from LUNA PLATFORM v.5.53.0 to LUNA PLATFORM v.5.57.0 and has
four servers where old LUNA PLATFORM services are deployed:

+ Server A with databases — PostgreSQL, InfluxDB and Redis databases.
+ Server B with the Image Store service.

« Server C with the Licenses service.

« Server D with all other LUNA PLATFORM services.

In fact, all environment preparation can be done with one or two commands. The main thing is to
correctly specify the necessary settings for the Storages utility. The Storages utility can receive settings
from the running Configurator service or from a configuration file (see “Setting Storages configuration”).
Ifitis possible to specify all the necessary settings in the configuration file, then executing one command
with the argument -config will be enough. If all parameters for connecting to the database, services, etc.
have already been set in the existing Configurator service and there is no desire to refill the Storages
configuration, then to prepare the environment for all services, you can use the existing Configurator
settings (argument -luna-config), having previously separately updated the environment for the
Configurator service. In this example, we will first update the environment for the Configurator service,
and then we will use all its settings to update the environment of the remaining services.

To prepare the environment for the Configurator service, you need to perform the following steps on any
of the servers:

+ Configure the “LUNA_CONFIGURATOR_DB” section to obtain the Configurator DB address in the
Storages configuration file:

vi /var/lib/luna/current/extras/conf/storages_config.conf

By default, the configuration file specifies the location of the Configurator database at 127.0.0.1. In
ourexample, PostgreSQL and Configurator are located on different servers, so you need to explicitly
set the database address. If Configurator and PostgreSQL were on the same server, then it would
be possible not to edit the configuration file and use the default one inside the container without
passing the --configargument.

If necessary, you can set the environment preparation settings for all services at once in the
Storages configuration file and immediately proceed to preparing the environment for all services.
This example specifically reflects both options for using settings.

+ Migrate the Configurator service database:

docker run \
-—rm \

VisionLabs B.V. 19/ 21

--network=host \
- -v /var/lib/luna/current/extras/conf/storages_config.conf:/srv/
storages_config.conf \
dockerhub.visionlabs.ru/luna/storages:v.0.5.9 \
bash -c "luna_prepare prepare configurator \
--entity=database \
-—-platform_version=v.5.57.0 \
--config=/srv/storages_config.conf"

Note that when using a configuration file other than the default one, it must be mounted to the
Storages container.

« Migrate Configurator service settings:

docker run \

-=-rm \

-—-network=host \

- -v /var/lib/luna/current/extras/conf/storages_config.conf:/srv/
storages_config.conf \

dockerhub.visionlabs.ru/luna/storages:v.0.5.9 \

bash -c "luna_prepare prepare configurator \
--entity=configs \
--platform_version=v.5.57.0 \
--config=/srv/storages_config.conf"

If necessary, you can run both of the above commands as one command with the argument --
entity=all_entities, because all_entities for the Configurator service means using the
database, configs and influx_bucket entities. However, the InfluxDB bucket (the last entity)
will be prepared inthe prepare all_entities --profile=commoncommand below, also that
there is no point in preparing it at this stage. If you nevertheless prepare it at this stage, then in
the environment preparation command for all services it will be re-created, but only if the named
argument ——1i1 is specified (whether existing objects should be ignored).

« Stop the old version of Configurator and start the new version of the service.

Now that there is a current version of the Configurator service with the current environment, you can use
its settings when preparing the environment for other services.

The environment preparation command looks like this:

docker run \

-=rm \

--network=host \
dockerhub.visionlabs.ru/luna/storages:v.0.5.9 \

VisionLabs B.V. 20/ 21

bash -c "luna_prepare prepare all_entities \
-—-platform_version=v.5.57.0 \
-—profile=common \
--luna-config=<configurator_address>"

The environment preparation command can be launched from any server if all addresses are
specified correctly in the Configurator settings.

This command will do the following on the respective servers using the Configurator settings on server

D:

+ Creates buckets (if they are missing) in InfluxDB for monitoring work on server A (positional
argument influx_bucket).

+ Creates buckets (if they are missing) in the Image Store service on server D (positional argument
1is_bucket).

+ Will prepare the InfluxDB (if it has not been prepared previously) for collecting aggregated statistics
by the Admin service on server A (positional argument aggregated_influx_bucket).

« Will migrate the databases on server A (positional argument database).

« Will migrate settings to the Configurator database on server D (positional argument configs).

Migration of settings to the Configurator database will not be performed in this case, because they
have already been migrated at the stage of preparing the environment for the Configurator service.

The Storages utility will check for the presence of buckets in the launched Image Store service
in accordance with the Configurator settings. If the Image Store service is not launched, you can
explicitly specify the location of the buckets using the --1local-buckets command.

Example of command execution:

[2024-02-07 15:05:40+0300] [storages] [INFO]: The surrounding state was
prepared according to platform version 'v.5.57.0'
[2024-02-07 15:05:40+0300] [storages] [INFO]: Actual services versions:
[2024-02-07 15:05:40+0300] [storages] [INFO]: Service "“luna_accounts’
version - "v.0.2.6°
[2024-02-07 15:05:40+0300] [storages] [INFO]: Service "“luna_admin’ version -
‘v.5.5.6"

After executing this command, you need to stop all LUNA PLATFORM services on the corresponding

servers, update the settings in the Configurator (optional) and launch their new versions.

VisionLabs B.V. 21/ 21

	Introduction
	Use cases for Storages utility
	Launch from scratch
	Upgrade/downgrade
	Recommendations services behavior during environment preparation

	Setting Storages configuration
	Utility commands
	List command
	Check command
	Prepare command
	Types of passed arguments

	Setting up custom schema for databases
	Load_dump command
	Logs command
	Example of Prepare command with logging enabled
	Example of Logs command to get environment preparation logs

	Named arguments
	Environment parameters

	Environment upgrade scenario

