VisionLabs

MACHINES CAN SEE

VisionLabs LUNA PLATFORM 5

Example of deployment in Kubernetes cluster

v.5.95.0



Contents

Introduction

1 Unpacking the distribution

2 Symbolic link creation

3 Notes before upgrading/downgrading

4 Uninstall old Helm charts and manifests

5 License activation

5.1 Actions from License activationmanual . . . . . ... ... ... ...

6 Enabling GPU

7 Database configuration

71 ConfiguringInfluxDB . . . . . . ... ... ... . ...
7.2 VLMatch library compilation . . . . ... ... ... .. ... . ...
7.3 Createdatabaseuser . . . . . . .. ... . . e
7.4 Install PostGIS for Eventsdatabase . . .. ... ... .........

8 Define LUNA PLATFORM settings

8.1 HASPlicensesettings . . . . . . . . . ..
8.2 Guardantlicensesettings . . . . .. ... ...
8.3 GPUsettings . . . . . . . . . e e

9 Configuring Storages
10 Prepare environment

11 Install Helm charts

111 Helmchartsetting . . . . . . . . .. .

11.1.1 GPU setup for Remote SDK and Video Agent

11.2 Startinstallationof Helmcharts . . . . . .. .. .. ... ... ....

12 Additional information

12.1 Create Docker registry authenticationsecret . . . . .. ... ... ..
12.2 Backports . . . . . .. e e
12.2.1 Prepareenvironment . . ... ... ... ... .. ...
12.3 Startinstallationof Helmcharts . . . . . .. ... ... ... .....
12.4 LaunchlLambda . . ... ... ... ... ... ...
12.4.1 Prepare user Docker registry forLambda . . . . . . ... ...

VisionLabs B.V.

10

1

........... n
........... 12
........... 13
........... 13

15

........... 16
........... 16
........... 17

18

19

2]

........... 21
........... 21
........... 22

2/29



12.4.2 ConfiguringaccessforLambda . . . . .. ... .. ... ... . .. 26

12.4.3 Startinstallation of Helm chartforLambda . . . . . ... .. ... ... ..... 27
12.5 UseGPUinMinikube . . . . . . . . . e e 27
12.6 VLMatch library compilationforOracle . . . ... ... ... ... ... .......... 28

VisionLabs B.V. 3/29



Introduction

This document describes:

+ Preparing LUNA PLATFORM environment in Kubernetes using Storages utility and corresponding
manifests from the distribution package.
+ Running LUNA PLATFORM services in Kubernetes using Helm charts from the distribution package.

The main section of the document provides an example of launching and preparing the
environment for all services except the Lambda service and the Backport 3, Backport 4, Ul 3,
and Ul 4 services. Information on preparing the environment for these services is described in the
“Launch Lambda” and “Backports” sections of the additional information.

Using the document, you can either install LUNA PLATFORM from scratch, or perform an update or
downgrade.

See detailed information about Storages in the Storages utility manual.

The administrator must have a Kubernetes cluster deployed and configured to use Helm charts and
manifests. It is assumed that the user’s Kubernetes cluster:

+ PostgreSQL/Oracle DBMS and InfluxDB and Redis databases are running.
+ There is access to S3-like object storage for storing buckets.

Important: The documentation and distribution package do not include out-of-the-box solutions for
managing PostgreSQL/Oracle, InfluxDB and Redis databases in Kubernetes. The user should configure
the databases themselves for better fault tolerance and scalability. The sample commands in this
document are for demonstration purposes and may need to be customized for your project’s specific
environment or requirements.

Monitoring in the format of sending data to InfluxDB and collecting query statistics is enabled by
default. If access to InfluxDB is not configured, LUNA PLATFORM services will not start. You can also
configure Prometheus metrics generation for further integration with Prometheus deployed in a custom
Kubernetes cluster (see the “LUNA_SERVICE_METRICS” setting).

This document does not include guidance on how to use Kubernetes. Please refer to the Kubernetes
documentation for more details:

https://kubernetes.io/docs

VisionLabs B.V. 4/29


https://kubernetes.io/docs

1 Unpacking the distribution

The distribution is an archive luna_v.5.95.0, where v.5.95.0 is a numeric identifier denoting the version
of LUNA PLATFORM.

The archive includes the configuration files required for installation and use. It does not include the
Docker service images, these need to be downloaded from the Internet separately.

Move the distribution to a directory on your server before installing. For example, move the files to the
/root/ directory. It should not contain any other distribution or license files other than the target files.

Create a directory to unzip the distribution file.

mkdir -p /var/lib/luna

Move the distribution to the directory with LUNA PLATFORM.

mv /root/luna_v.5.95.0.zip /var/lib/luna

Open the distribution folder.

cd /var/1lib/luna

Unzip the files.

unzip luna_v.5.95.0.z1ip

VisionLabs B.V. 5/29



2 Symbolic link creation

Create a symbolic link. The link indicates that the current version of the distribution file is used to run
LUNA PLATFORM.

In -s luna_v.5.95.0 current

Go to the working directory with Kubernetes files for further work:

cd /var/lib/luna/current/extras/k8s/

VisionLabs B.V. 6/29



3 Notes before upgrading/downgrading

Note: Skip this section if you are deploying LUNA PLATFORM from scratch.
During an update/downgrade, you must perform the following steps:

« Plan the impact on running services that use databases. See the “Recommendations services
behavior during environment preparation” section of the Storages utility manual for details.

+ When downgrading, specify the desired version of LUNA PLATFORM in the --platform-version
variable in the following files:

- storages/overlays/check/overlay-check.yaml

- storages/overlays/prepare/overlay-prepare.yaml
See “Prepare environment”.

+ Uninstall old Helm charts and environment preparation manifests before installing new ones. See
“Uninstall old Helm charts and manifests”.

VisionLabs B.V. 7/29



4 Uninstall old Helm charts and manifests

Note: Skip this section if you are deploying LUNA PLATFORM from scratch.

Uninstall old Helm charts of all LUNA PLATFORM services using the helm uninstall command. For

example, helm uninstall luna-configurator.

Delete old jobs and configmaps that were used to prepare the previous environment, if they have not
already been deleted:

kubectl delete configmap storages-config
kubectl delete configmap storages—-dump
kubectl delete job storages—prepare
kubectl delete job storages-load-dump

VisionLabs B.V. 8/29



5 License activation

To activate the license, follow these steps:

« Follow the steps from license activation manual.
« Set settings for HASP license or Guardant license.

5.1 Actions from License activation manual

Open the license activation manual and follow the necessary steps.

The license activation guide provides steps to activate the license on a specific server. HASP/Guardant
has not been tested in a Kubernetes cluster.

Note: This action is mandatory. The license will not work without following the steps to activate the
license from the corresponding manual.

VisionLabs B.V. 9/29



6 Enabling GPU

Note: Skip this section if you do not intend to use the GPU.
GPU can be enabled for Remote SDK services, Video Agent, and for individual Lambda instances.
To enable GPU, you need to do the following:

+ configure GPU in user dump
«» configure GPU in Helm chart

Follow the steps above for the appropriate configuration steps.

VisionLabs B.V. 10/29



7 Database configuration

For LUNA PLATFORM to work correctly, you must configure the databases as follows:

+ Configure InfluxDB.

« Compile the VLMatch library and transfer it to the DBMS.
+ Create database user.

« Install PostGIS for Events database.

VLMatch is a function for performing descriptor matching calculations. The VLMatch library is
compiled for a specific version of the database. Do not use a library created for a different version
of the database. For example, a library created for PostgreSQL version 16 cannot be used for
PostgreSQL version 12.

Storages will automatically add VLMatch functions to the PostgreSQL DBMS and activate Postgis.

The sections below provide commands for PostgreSQL. For Oracle, only the VLMatch library compilation
commands are given (see “VLMatch library compilation for Oracle” in the “Additional information”
section).

7.1 Configuring InfluxDB

If InfluxDB is already deployed in your Kubernetes cluster, make sure the following information is set
correctly:

« Username and password
+ Bucket and organization name
« Administrator Token

Important: The above data must be specified in the LUNA PLATFORM settings dump file in order for
services to access InfluxDB. However, Configurator service settings cannot be specified in the dump file,
so they must be specified in the Configurator service Helm chart as follows:

env:

- name: VL_SETTINGS.LUNA_MONITORING.STORAGE_TYPE
value: "dinflux"

- name: VL_SETTINGS.LUNA_MONITORING.SEND_DATA_FOR_MONITORING
value: "1"

- name: VL_SETTINGS.LUNA_MONITORING.ORGANIZATION
value: "luna"

- name: VL_SETTINGS.LUNA_MONITORING.TOKEN
value: "12345678"

- name: VL_SETTINGS.LUNA_MONITORING.BUCKET

VisionLabs B.V. 11/29



value: "luna_monitoring"

- name: VL_SETTINGS.LUNA_MONITORING.HOST
value: "influxdb"

- name: VL_SETTINGS.LUNA_MONITORING.PORT
value: "8086"

- name: VL_SETTINGS.LUNA_MONITORING.USE_SSL

value: "o"
- name: VL_SETTINGS.LUNA_MONITORING.FLUSHING_PERIOD
value: "1"

InfluxDB settings can also be specified in environment variables in the Helm chart of each service.

7.2 VLMatch library compilation

Note: The following instructions provide an example for PostgreSQL 16 DBMS on Almalinux 8.

All files required to compile the user-defined extension (UDx) into VLMatch can be found in the following
directory:

/var/1lib/luna/current/extras/VLMatch/postgres/

To compile the VLMatch UDx function, you need to:

« Install the RPM repository:

dnf dinstall -y https://download.postgresql.org/pub/repos/yum/reporpms/EL-8-
x86_64/pgdg-redhat-repo-latest.noarch.rpm

+ Install PostgreSQL:

dnf install postgresqll6-server

+ Install development environment:

dnf dinstall postgresqll6-devel

« Install the gcc package:

dnf dinstall gcc-c++

« Install CMAKE. Version 3.5 or higher is required.

VisionLabs B.V. 12/29



« Open the make.sh script in a text editor. It includes the paths to the currently used PostgreSQL
version. Change the following values (if necessary):

SDK_HOME specifies the path to the PostgreSQL home directory. The default is /usr/pgsql-16/

include/server.

LIB_ROOT specifies the path to the PostgreSQL library root directory. The default is /usr/pgsql
-16/11b.

« Open the make. sh script directory and run it:

cd /var/lib/luna/current/extras/VLMatch/postgres/

chmod +x make.sh

. /make.sh

Move the generated VLMatchSource. so file to the PostgreSQL DBMS in the \srv directory.

7.3 Create database user

This section provides sample commands for creating a user using the PostgreSQL DBMS as an example.

Create a database user.

psql -U postgres -c 'create role lunaj'

Assign a password to the user.

psql -U postgres -c "ALTER USER luna WITH PASSWORD 'Tluna';"

Note: Note that the username and password are specified in LUNA PLATFORM settings to connect
services to the database.

Storages will automatically create the necessary databases and grant all necessary rights according to
the user name from the Storages configuration file.

7.4 Install PostGIS for Events database

The Events service requires a PostGIS extension to work with coordinates.

Since PostGlISis an extension for PostgreSQL, its version usually corresponds to the version of PostgreSQL
with which it is compatible.

VisionLabs B.V. 13/29



Install the extension yourself for the PostgreSQL version you are using, using official documentation.

PostgreSQL 16 requires PostGIS version 3.4.

VisionLabs B.V. 14 /29


https://postgis.net/

8 Define LUNA PLATFORM settings

The following settings must be set for LUNA PLATFORM to work minimally:

« LICENSE_VENDOR — License settings.

+ LUNA_MONITORING — Settings for monitoring and connection to the InfluxDB database.

« LUNA_ATTRIBUTES_DB — Redis database address for storing temporary attributes.

+ TASKS_REDIS_DB_ADDRESS — Redis database address for the Tasks service.

+ LUNA_<SERVICE>_DB — Settings of connection to service databases.

+ LUNA_<SERVICE>_ADDRESS — Settings with service addresses.

+ REDIS_DB_ADDRESS — Redis database address for Sender service (when using Sender service).

+ LUNA_RETRANSLATOR_DB_ADDRESS — Redis database address for Streams Retranslator service
(when using Streams Retranslator service).

« LUNA_IMAGE_STORE_<BUCKET>_ADDRESS — Settings for access to bucket (when using Image
Store service).

+ STORAGE_TYPE — Type of storage for bucket storage (S3 or local, when using Image Store service).

+ S3 — Settings of S3-like storage for storing bucket (when using Image Store service and
STORAGE_TYPE = S3).

« LAMBDA_S3 — Settings of S3-like storage for storing archives with modules (when using Lambda
service).

To enable optional services you also need to update the ADDITIONAL_SERVICE_USAGE setting.

Launching the Lambda service is described in the “Launch Lambda” section in the additional
information.

The settings can be specified in the storages/files/platform_settings.jsondump file, whichis
automatically loaded into the Configurator database during the load_dump command execution. The
dump file contains a template that must be updated by entering the correct user data.

Important: The downloaded dump file contains the minimum required list of settings. If necessary,
you can add additional settings using the full dump file located at /var/lib/luna/current/extras
/conf/luna_platform_<version>_dump.json asanexample.

Update the dump file to be loaded using the following command:

vi /var/lib/luna/current/extras/k8s/storages/files/platform_settings.json

HASP and Guardant license settings are set differently. Select the section below to configure the license
based on the required protection mechanism:

+ HASP
o Guardant

VisionLabs B.V. 15/29



8.1 HASP license settings

Note: Follow the steps in this section only if you are activating the license with HASP. If you need to

activate a Guardant license, follow the steps in “Guardant license settings”.

Specify the IP address of the server with your HASP key in the “server_address” field:

{
"value": {
"vendor": "hasp",
"server_address": '"<your-server-address>"
} )
"description":"License vendor config",
"name" :"LICENSE_VENDOR",
"tags":[]
} J
Save the file.

8.2 Guardant license settings

Note: Follow the steps in this section only if you are activating the license with Guardant. If you need to

activate a HASP license, follow the steps in “HASP license settings”.
Set the following details:

« IP address of the server with your Guardant key in the “server_address” field.

+ LicenseID in the format @x<your_license_1id> obtained in the section “Saving the license ID” in

the license activation guide, in the field “license_id™:

{
"value": {
"vendor": "guardant",
"server_address": "<your-server-address>",
"license_id": "Ox92683BEA"
b
"description":"License vendor config",
"name" :"LICENSE_VENDOR",
"tags":[]
s
Save file.

VisionLabs B.V.

16 /29



8.3 GPU settings

Note: Skip this section if you do not intend to use the GPU.
GPU can be enabled for Remote SDK and Video Agent services and for individual Lambda instances.
GPU settings for individual Lambda instances are set at creation time (see the “create lambda” request).

Launching the Lambda service is described in the “Launch Lambda” section in the additional

information.
The Remote SDK and Video Agent services do not use the GPU by default.

If you want to use the GPU for all estimators and detectors at once, you must use the “global_-
device_class” parameter in the “LUNA_REMOTE_SDK_RUNTIME_SETTINGS” or “LUNA_VIDEO_AGENT_-
RUNTIME_SETTINGS” section. All estimators and detectors will use the value of this parameter if the
“device_class” parameter of their own settings is set to “global” (default).

If you want to use the GPU for a specific estimator or detector, you must use the “device_class” parameter
in sections like “LUNA_REMOTE_SDK_estimator-or-detector-name_SETTINGS.runtime_settings”.

Note: The storages/files/platform_settings.json dump file from the delivery set contains
only the “LUNA_REMOTE_SDK_RUNTIME_SETTINGS” and “LUNA_VIDEO_AGENT_RUNTIME_SETTINGS”
sections, which allows enabling GPU for all estimators and detectors at once. If necessary, you can add
settings for the required estimator or detector to the dump file yourself, using the full dump file located
at the path /var/lib/luna/current/extras/conf/luna_platform_<version>_dump.json as

an example.

Note that the “LUNA_REMOTE_SDK_RUNTIME_SETTINGS” and “LUNA_VIDEO_AGENT_RUNTIME_-
SETTINGS” sections in the dump file have the “gpu” tag specified. To use the settings from this
section, you need to transfer the tagged section using the “EXTEND_CMD” environment variable in
the Helm chart of the Remote SDK or Video Agent service. An example of passing a tagged setting is
commented out in the values.yaml file for the Remote SDK and Video Agent services.

VisionLabs B.V. 17 /29



9 Configuring Storages

To prepare the environment correctly, you must configure the Storages configuration so that the utility
is able to interact with various services, databases, bucket and other resources. The necessary Storages
settings can be specified using:

« Configuration file of the Storages service
+ Running Configurator service (when upgrading/downgrading).

In the manifests in the distribution package, the settings are transferred by specifying a configuration file
to befilled in.

Important: It is especially important to pay attention to the following settings:

+ LUNA_MONITORING — Settings for monitoring and connecting to the InfluxDB.
+ S3 — Settings for an S3-like storage for storing buckets.

Note. It is necessary to enable the use of an S3-like storage in the “STORAGE_TYPE” setting in the custom
dump file.

Update the Storages configuration file using the following command:

vi /var/lib/luna/current/extras/k8s/storages/files/storages_config.conf

If the SEND_DATA_FOR_MONITORING parameter in the Storages configuration is disabled, the
environment preparation for InfluxDB buckets will not be performed.

VisionLabs B.V. 18 /29



10 Prepare environment

The environment is prepared using the Storages utility.

Make sure you are in the working directory with the Kubernetes files:

cd /var/lib/luna/current/extras/k8s/

Using the utility, you can prepare the environment for installation from scratch, upgrade or downgrade.
By default, the -—-platform-version argument is set to the current version of LUNA PLATFORM. To
downgrade, you must specify the appropriate version of LUNA PLATFORM.

Important: When preparing your environment for an upgrade or downgrade, it is important to carefully
plan the impact on running services that use databases. See the “Recommendations services behavior
during environment preparation” section of the Storages utility manual for details.

The following settings must be set according to the user logic:

+ storages/files/platform_settings.json-Dump file to override the default settings using
the load_dump command.

+ storages/files/storages_config.conf - Storages settings, allowing the utility to go to the
database, S3, etc.

+ storages/overlays/<command_name> - Storages positional arguments.

Environment preparation is performed with the Kustomize tool without using Helm. The storages/
base/base.yaml file defines a template on which layers from the storages/overlays directory are
overlaid. There are 4 layers available - check, list, load_dump, prepare, each corresponding to a
specific command of the positional argument luna_prepare.

To load an image from a VisionLabs registry, you must also fill in the imagePullSecrets parameterin
the storages/base/base.yaml manifest (see “Create Docker Registry authentication secret” section).

To prepare the environment, run the following commands:

1) Create a Configmap to load the Storages settings and dump file:

kubectl create configmap storages-config --from-file=storages/files/
storages_config.conf

kubectl create configmap storages—-dump --from-file=storages/files/
platform_settings.json

2) Perform environment preparation using the prepare command:

kubectl apply -k storages/overlays/prepare
kubectl get pods

VisionLabs B.V. 19/29



kubectl logs storages-prepare-xxxxx

By default, the environment for all entities is prepared (positional argument all_entites). To
prepare individual entities, edit the storages/overlays/prepare/overlay-prepare.yaml

file accordingly.

3) Load the user dump file using the Toad_dump command:

kubectl apply -k storages/overlays/load_dump

kubectl get pods
kubectl logs storages-load-dump-xxxxx

Once executed, pods will have a Completed status and will not be automatically deleted. To
correctly delete the manifest, you must run the command kubectl delete -k storages/

overlays/<storages_command>.
If necessary, you can use the 1ist and check commands similar to the above examples.

The manifest set does not include an example of using the Tlogs command.

VisionLabs B.V. 20/29



11 Install Helm charts

Make sure you are in the working directory with the Kubernetes files:

cd /var/lib/luna/current/extras/k8s/

11.1 Helm chart setting

The supplied Helm charts are not suitable for full operation in the production loop. You need to customize
the charts according to your business logic before installing them.

Configure in the luna-<service-name>/values.yaml files all the necessary parameters, especially
paying attention to:

+ resources section for specifying resources (e.g. CPU and memory) for the service containers.

+ ingress section to configure routing of incoming traffic to the service.

+ pullSecrets parameter in the image section to specify the secret to be used when extracting
the container image from the registry (see “Create Docker registry authentication secret” in the
“Additional information” section).

Note: It is recommended to configure the nginx.ingress.kubernetes.io/proxy-body-size
annotation to the API service (or any other service to which image requests are sent) depending on the
size requirements of the images being transmitted. The APl service Helm chart gives an example of how
to use this annotation.

These settings play an important role in ensuring the performance and availability of your application in

a productive environment.

11.1.1 GPU setup for Remote SDK and Video Agent

Note: Skip this section if you do not intend to use the GPU.

GPU usage for the Remote SDK and Video Agent service is enabled by passing the appropriate key in the
resources section of the values.yaml file of the corresponding Helm chart.

For example, you can configure access to a single GPU as follows:

resources:
limits:
cpu: 5000m
memory: 10Gi
nvidia.com/gpu: 1
requests:
cpu: 5000m

VisionLabs B.V. 21/29



memory: 10Gi
nvidia.com/gpu: 1

Note: Also, to enable estimations/detections on the GPU, the necessary settings must be set (see “GPU
settings”). If necessary, you can use the EXTEND_CMD variable to pass the tagged settings.

env:
- name: EXTEND_CMD
value: " --LUNA_REMOTE_SDK_RUNTIME_SETTINGS gpu"

11.2 Start installation of Helm charts

Run the Helm charts installation for the required services using the following commands:

helm dinstall --wait --timeout 10m luna-configurator ./luna-configurator

helm install --wait --timeout 10m luna-image-store ./luna-image-store

helm install --wait --timeout 10m luna-licenses ./luna-licenses

helm install --wait --timeout 10m luna-faces ./luna-faces

helm dinstall --wait --timeout 10m luna-events ./luna-events

helm install --wait --timeout 10m luna-python-matcher ./luna-python-matcher

helm install --wait --timeout 10m luna-remote-sdk ./luna-remote-sdk

helm install --wait --timeout 10m luna-handlers ./luna-handlers

helm install --wait --timeout 10m luna-sender ./luna-sender

helm dinstall --wait --timeout 10m luna-tasks-worker ./luna-tasks-worker

helm install --wait --timeout 10m luna-tasks ./luna-tasks

helm install --wait --timeout 10m luna-accounts ./luna-accounts

helm install --wait --timeout 10m luna-video—-manager ./luna-video-manager

helm dinstall --wait --timeout 10m luna-video-agent ./luna-video-agent

helm install --wait --timeout 10m luna-streams-retranslator ./luna-streams-
retranslator

helm install --wait --timeout 10m luna-api ./Lluna-api

helm install --wait --timeout 10m luna-admin ./luna-admin

After installing Helm charts, it is recommended that you thoroughly test LUNA PLATFORM in an
environment that meets your performance and security requirements.

VisionLabs B.V. 22/29



12 Additional information

This section provides the following additional information:

« Steps to create a Docker registry-authentication-secret.
Steps to prepare the environment and start Backports services.

Steps to launch Lambda.

Nuances of using GPU in Minikube.

VLMatch library compilation example for Oracle.

12.1 Create Docker registry authentication secret

To download images with LUNA PLATFORM services you need to authorize in the Docker registry.

Create a credentials file, such as viabs-credentials. json, containing the login and password:

{
"auths": {
"dockerhub.visionlabs.ru": {
"username": "your_username",
"password": "your_password"
}
+
+

Grant Kubernetes access to the registry with Docker images.

kubectl create secret generic my-dockerhub-secret --from-file=.
dockerconfigjson=vlabs-credentials.json —--type=kubernetes.io/
dockerconfigjson

If you have previously authorized via the docker login command, you can grant Kubernetes access

using the following command:

kubectl create secret generic my-dockerhub-secret --from-file=.
dockerconfigjson=$HOME/.docker/config.json --type=kubernetes.io/
dockerconfigjson

The secret can be specified during Helm chart setting.

VisionLabs B.V. 23/29



12.2 Backports
12.2.1 Prepare environment

To prepare the environment, you need to enable the backports profile in the storages/overlays/

prepare/overlay-prepare.yaml file:

command: ["/bin/bash", "-c", "luna_prepare prepare all_entities \
--s3-buckets \

--ignore-integrity \

-—-platform_version={{.LUNA_PLATFORM_TAG}} \

--profile=backports \

--config=/srv/storages_config.conf"]

Next, you need to prepare the environment similarly to the description in the “Prepare environment”
section.

12.3 Start installation of Helm charts

Run the Helm charts installation for the required services using the following commands:

helm 1install --wait --timeout 10m luna-backport3 ./luna-backport3
helm 1install --wait --timeout 10m luna-backport4 ./luna-backport4

Before starting the Ul 4 and Ul 3 services, you must perform additional actions in the Helm charts:

« Update the LUNA_API_URL parameter for both Helm charts, which is the internal address of
Backport 3 and Backport 4 respectively.

+ Update the BASIC_AUTH parameter for Helm chart Ul 4, specifying the authorization data for an
account of user type in user@mail.com:password format encoded in Base64.

It is necessary to create an account of type “user” using the “create account” request to the API
service or using the Admin service.

Run the Helm charts installation for the Ul 4 and Ul 3 services using the following commands:

helm install --wait --timeout 10m luna3-ui ./luna3-ui
helm install --wait --timeout 10m luna4-ui ./luna4-ui

12.4 Launch Lambda

To run Lambda, you need to do some additional steps.

VisionLabs B.V. 24 /29



12.4.1 Prepare user Docker registry for Lambda

Note: Skip this section if you are not going to use the Lambda service.

You need to prepare the user registry for storing Lambda images. Transfer the base images and the
container assembly tool to your registry using the commands below.

Upload the images from the remote repository to the local image repository:

docker pull dockerhub.visionlabs.ru/luna/lpa-lambda-base-fsdk:v.0.8.0

docker pull dockerhub.visionlabs.ru/luna/lpa-lambda-base:v.0.8.0

Upload the used container build tool image:

docker pull dockerhub.visionlabs.ru/luna/kaniko-executor:latest

Add new names to the images by replacing new-registry with your own. The names of the baseimages
in the custom registry should be the same as in the dockerhub.visionlabs.visionlabs.ru/luna
registry.

docker tag dockerhub.visionlabs.ru/luna/lpa-lambda-base-fsdk:v.0.8.0 new-
registry/lpa-lambda-base-fsdk:v.0.8.0

docker tag dockerhub.visionlabs.ru/luna/lpa-lambda-base:v.0.8.0 new-registry
/1lpa-lambda-base:v.0.8.0

docker tag dockerhub.visionlabs.ru/luna/kaniko-executor:latest new-registry/
kaniko-executor:latest

Send local images to your remote repository, replacing new-registry with your own.

docker push new-registry/lpa-lambda-base-fsdk:v.0.8.0

docker push new-registry/lpa-lambda-base:v.0.8.0

docker push new-registry/kaniko-executor:latest

VisionLabs B.V. 25/29



12.4.2 Configuring access for Lambda

Note: Skip this section if you are not going to use the Lambda service.

For the Lambda service to work properly, access to Kubernetes resources must be properly configured to
ensure the security and efficient management of the service. This can be done, for example, by defining
roles and role bindings using the Role Based Access Control (RBAC) mechanism.

The example below shows how to configure accesses using RBAC in Kubernetes for the Lambda service:

 Define an object of type ServiceAccount, which represents the identifier used by the service to
interact with the Kubernetes APl server:

apiVersion: vl
kind: ServiceAccount
metadata:

name: lambda-user

+ Define a Role object type that defines a set of permissions for the resources your service will work
with:

kind: Role
apiVersion: rbac.authorization.k8s.i0/v1
metadata:
namespace: production
name: lambda-admin-role
rules:
- apiGroups: ["", "apps", "networking.k8s.i0"]
resources: ["deployments", "pods", "pods/log", "pods/status'", "services",
"services/proxy", "ingresses'"]
verbs: ["get", "watch", "list", "create", "delete", "patch"]

Here, services/proxy means the ability to send requests to the /lambdas/\ {lambda_id\}/proxy
resource of the Lambda service.

+ Define a RoleBinding object type that binds a role to the created ServiceAccount type,
determining which resources and operations are available to the Lambda service:

kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1l
metadata:
name: admin-lambda
namespace: production
subjects:

VisionLabs B.V. 26 /29



- kind: ServiceAccount
name: lambda-user
namespace: production
roleRef:
apiGroup: rbac.authorization.k8s.i0
kind: Role
name: lambda-admin-role

12.4.3 Startinstallation of Helm chart for Lambda

Navigate to the directory with the Helm charts.

cd /var/lib/luna/current/extras/k8s

Run the Helm charts installation for the required services using the following commands:

helm install --wait --timeout 10m luna-lambda ./luna-lambda

12.5 Use GPU in Minikube

Minikube is a tool for locally installing and managing a Kubernetes cluster. It is used by developers and
testers to build and test applications in a local environment before deploying them to larger Kubernetes
clusters.

The use of GPUs in Minikube is only supported from version 1.32.

Each LUNA PLATFORM service that supports GPU running automatically creates GPU processes,
regardless of which resources (CPU or GPU) are installed. If more than one GPU service is running, the
GPU resources must be shared between them to avoid possible errors caused by video card access
conflicts.

See official NVIDIA documentation for more information about GPU resource sharing.
To isolate services from the GPU and prevent them from creating additional processes, set the

CUDA_VISIBLE_DEVICES/NVIDIA_VISIBLE_DEVICES environment variable to none for those
services that use the GPU and should not be used.

env:
- name: CUDA_VISIBLE_DEVICES
value: none

VisionLabs B.V. 27/29


https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/latest/gpu-sharing.html

12.6 VLMatch library compilation for Oracle

Note: The following instructions describe the installation for Oracle 21c.

All files required to compile a user-defined extension (UDx) into VLMatch can be found in the following

directory:

/var/lib/luna/current/extras/VLMatch/oracle

To compile the VLMatch UDx function you need to:

« Install the required environment, see. requirements:

sudo yum install gcc g++

+ Change the SDK_HOME — oracle sdk root variable (default is SORACLE_HOME /b n, check that the
$ORACLE_HOME environment variable is set) in the makefile.

vi /var/lib/luna/current/extras/VLMatch/oracle/make.sh

« Open the directory and run the “make.sh” file.

cd /var/lib/luna/current/extras/VLMatch/oracle

chmod +x make.sh

./make.sh

+ Define the library and function inside the database (from the database console):

CREATE OR REPLACE LIBRARY VLMatchSource AS 'SORACLE_HOME/bin/VLMatchSource.
so';
CREATE OR REPLACE FUNCTION VLMatch(descriptorFst IN RAW, descriptorSnd IN
RAW, length IN BINARY_INTEGER)
RETURN BINARY_FLOAT
AS
LANGUAGE C
LIBRARY VLMatchSource
NAME "VLMatch"
PARAMETERS (descriptorFst BY REFERENCE, descriptorSnd BY REFERENCE,
length UNSIGNED SHORT, RETURN FLOAT);

VisionLabs B.V. 28 /29


https://docs.oracle.com/en/database/oracle/oracle-database/21/lacli/installation-requirements-for-programming-environments-for-linux-x86-64.html

« Test the function by calling (from the database console):

SELECT VLMatch(HEXTORAW('
1234567890123456789012345678901234567890123456789012345678901234") ,

HEXTORAW ('
0123456789012345678901234567890123456789012345678901234567890123"), 32)

FROM DUAL;

The result should be “0.4765625”.

Transfer the generated VLMatchSource. so file to the Oracle DBMS.

VisionLabs B.V. 29/29



	Introduction
	Unpacking the distribution
	Symbolic link creation
	Notes before upgrading/downgrading
	Uninstall old Helm charts and manifests
	License activation
	Actions from License activation manual

	Enabling GPU
	Database configuration
	Configuring InfluxDB
	VLMatch library compilation
	Create database user
	Install PostGIS for Events database

	Define LUNA PLATFORM settings
	HASP license settings
	Guardant license settings
	GPU settings

	Configuring Storages
	Prepare environment
	Install Helm charts
	Helm chart setting
	GPU setup for Remote SDK and Video Agent

	Start installation of Helm charts

	Additional information
	Create Docker registry authentication secret
	Backports
	Prepare environment

	Start installation of Helm charts
	Launch Lambda
	Prepare user Docker registry for Lambda
	Configuring access for Lambda
	Start installation of Helm chart for Lambda

	Use GPU in Minikube
	VLMatch library compilation for Oracle


