
VisionLabs FaceEngine Handbook
written for LUNA SDK version 5.26.0

Contents

Introduction 10

Editions and Platforms 11

1 Core Concepts 12
1.1 SDK workflow . 12

1.1.1 Object lifetime . 12
1.1.2 Threading . 13
1.1.3 Detailed constraints . 14

1.2 Common Interfaces and Types . 15
1.2.1 Reference Counted Interface . 15
1.2.2 Automatic reference counting . 16

1.2.2.1 Referencing - without acquiring ownership of object lifetime 16
1.2.2.2 Acquiring - own object lifetime . 17

1.2.3 Serializable object interface . 17
1.2.4 Auxiliary types . 18

1.2.4.1 Image type . 18
1.3 Beta Mode . 18

2 FaceEngine Structure Overview 19

3 Core Facility 20
3.1 Common Interfaces . 20

3.1.1 Face Engine Object . 20
3.1.2 Settings Provider . 20

3.2 Helper Interfaces . 20
3.2.1 Archive Interface . 20

3.3 Sensor type . 21
3.4 Data Paths . 21

3.4.1 Model Data . 21
3.4.2 Configuration Data . 21

4 Detection facility 23
4.1 Overview . 23
4.2 Detection structure . 23
4.3 Face Detection . 23

4.3.1 Image coordinate system . 23
4.3.2 Face detection . 24
4.3.3 Redetect method . 24

VisionLabs B.V. 2 / 244

4.3.4 Orientation Estimation . 24
4.3.5 Detector variants . 25
4.3.6 FaceDetV2 Configuration . 27
4.3.7 FaceDetV3 Configuration . 27
4.3.8 Face Alignment . 27

4.3.8.1 Five landmarks . 27
4.3.8.2 Sixty-eight landmarks . 28

4.4 Face Landmarks Detector . 30
4.5 Human Detection . 31

4.5.1 Image coordinate system . 31
4.5.2 Human body detection . 31
4.5.3 Constraints . 31
4.5.4 Camera position requirements . 32
4.5.5 Human body redetection . 33
4.5.6 Human keypoints . 34
4.5.7 Main results of each detection . 35
4.5.8 HumanFace redetection . 36
4.5.9 Performance . 36
4.5.10 Main results . 36
4.5.11 minFaceSize . 37

4.6 Head Detection . 38
4.6.1 Image coordinate system . 38
4.6.2 Main results . 38
4.6.3 minHeadSize . 39

5 ImageWarping 40

6 Parameter Estimation Facility 41
6.1 Overview . 41
6.2 Use cases . 41

6.2.1 ISO estimation . 41
6.3 Best shot selection functionality . 42

6.3.1 BestShotQuality Estimation . 42
6.3.2 Image Quality Estimation . 46

6.4 Attributes estimation functionality . 53
6.4.1 Face Attribute Estimation . 53
6.4.2 Credibility Check Estimation . 56

6.5 Facial Hair Estimation . 59
6.6 Natural Light Estimation . 62
6.7 Fish Eye Estimation . 65

VisionLabs B.V. 3 / 244

6.8 Eyebrows Estimation . 68
6.9 Portrait Style Estimation . 70
6.10 DynamicRange Estimation . 73
6.11 Headwear Estimation . 75
6.12 Background Estimation . 79
6.13 Grayscale, color or infrared Estimation . 82
6.14 Face features extraction functionality . 84

6.14.1 Eyes Estimation . 84
6.14.2 Red Eyes Estimation . 87
6.14.3 Gaze Estimation . 90

6.15 Head Pose Estimation . 92
6.16 Approximate Garbage Score Estimation (AGS) . 94

6.16.1 Glasses Estimation . 95
6.16.2 Overlap Estimation . 97

6.17 Emotion estimation functionality . 98
6.17.1 Emotions Estimation . 98

6.18 Mouth Estimation Functionality . 100
6.19 Face Occlusion Estimation Functionality . 103
6.20 DeepFake estimation functionality . 106
6.21 Liveness check functionality . 109

6.21.1 LivenessFlyingFaces Estimation . 109
6.21.2 LivenessRGBM Estimation . 111
6.21.3 Depth Liveness Estimation (LivenessDepthEstimator) 113
6.21.4 Depth and RGB OneShotLiveness estimation . 115
6.21.5 Depth liveness estimation (DepthLivenessEstimator) 118
6.21.6 LivenessOneShotRGB Estimation . 121

6.21.6.1 Usage example . 123
6.21.7 NIR Liveness estimation . 125

6.22 Personal Protection Equipment Estimation . 127
6.23 Medical Mask Estimation Functionality . 130

6.23.1 MedicalMaskEstimator thresholds . 131
6.23.2 MedicalMask enumeration . 131
6.23.3 MedicalMaskEstimation structure . 132
6.23.4 MedicalMaskExtended enumeration . 133
6.23.5 MedicalMaskEstimationExtended structure . 133
6.23.6 Filtration parameters . 134

6.24 Human Attribute Estimation . 136
6.25 Crowd Estimation . 148
6.26 Fights Estimation . 150

VisionLabs B.V. 4 / 244

7 Descriptor Processing Facility 154
7.1 Overview . 154

7.1.1 Person Identification Task . 154
7.1.2 Person Reidentification Task . 154

7.2 Descriptor . 156
7.2.1 Descriptor Versions . 156

7.2.1.1 Face descriptor . 156
7.2.1.2 Human descriptor . 157

7.2.2 Descriptor Batch . 157
7.2.3 Descriptor Extraction . 158
7.2.4 Descriptor Matching . 159
7.2.5 Descriptor Indexing . 160

7.2.5.1 Using HNSW . 160
7.2.5.2 Index serialization . 161
7.2.5.3 Dynamic index evaluation scheme. This feature is experimental.

Backward compatibility is not guaranteed. 162

8 System Requirements 165
8.1 Windows OS installations . 165
8.2 Linux OS installations . 165

9 Hardware requirements 166
9.1 Server / PC installations . 166

9.1.1 General considerations . 166
9.1.2 CPU requirements . 168
9.1.3 GPU requirements . 169
9.1.4 The number of SDK threads while using GPU . 169
9.1.5 NPU requirements . 169
9.1.6 RAM requirements . 170
9.1.7 Storage requirements . 170
9.1.8 Approaches to software design targeting different hardware 170

9.1.8.1 CPU . 170
9.1.8.2 GPU/NPU . 171

9.1.9 Requirements for GPU acceleration . 173
9.2 Embedded installations . 173

9.2.1 CPU requirements . 173

10 Migration guide 174
10.1 Overview . 174

VisionLabs B.V. 5 / 244

10.2 v.5.24.0 . 174
10.2.1 IDetector . 174

10.3 v.5.23.0 . 174
10.3.1 IImageTransfer . 174
10.3.2 IDetector . 174

10.4 v.5.22.0 . 174
10.4.1 IHeadPoseEstimator . 174
10.4.2 IHeadPoseEstimator and IAGSEstimator . 175

10.5 v.5.20.0 . 175
10.5.1 ILivenessFlowEstimator . 175

10.6 v.5.19.0 . 175
10.6.1 ILivenessFlowEstimator . 175

10.7 v.5.18.0 . 175
10.7.1 IChildEstimator . 175
10.7.2 IHeadAndShouldersLivenessEstimator . 175

10.8 v.5.17.0 . 175
10.8.1 IHeadAndShouldersLivenessEstimator . 175
10.8.2 IChildEstimator . 176
10.8.3 Index . 177
10.8.4 FishEyeEstimator . 178

10.9 v.5.6.0 . 179
10.9.1 Vector2 . 179
10.9.2 BlackWhiteEstimator . 179

10.10 v.5.5.0 . 180
10.10.0.1 Examples of code . 180

10.11 v.5.2.0 . 181
10.12 v.5.1.0 . 181
10.13 v.5.0.0 . 181

10.13.1 Objects creation . 181
10.13.1.1 Examples of code . 181

10.13.2 Interface of ILicense . 182
10.13.2.1 Examples of code . 182

10.13.3 Interface of HumanLandmark . 184
10.13.3.1 HumanDetectionType . 184
10.13.3.2 HumanLandmarks17 . 184
10.13.3.3 IHumanLandmarksDetector . 184

10.13.4 Interface of IDescriptorBatch . 185
10.13.5 Interface of Detection . 185
10.13.6 Interface of IDetector . 185

VisionLabs B.V. 6 / 244

10.13.7 IFaceDetectionBatch . 186
10.13.8 Interface of IHumanDetector . 187
10.13.9 IHumanDetectionBatch . 188
10.13.10Interface of ILivenessFlyingFaces . 189

10.14 v.3.10.1 . 190
10.14.1 Detector FaceDetV3 changes . 190
10.14.2 Detector FaceDetV1, FaceDetV2 changes . 190

11 Best practices 191
11.1 Thread pools . 191
11.2 Estimator creation and inference . 191
11.3 Forking process . 191
11.4 Liveness estimator combination . 192

11.4.1 Changing the threshold . 192
11.4.2 Aggregating the scores . 192
11.4.3 Recommended thresholds . 192
11.4.4 Possible LivenessOneShotRGBEstimator model combinations 192

12 Device-specific constraints 194
12.1 Image constraints . 194

13 Collecting information for Technical Support 195
13.1 Contact Technical Support . 195
13.2 Specific error . 195
13.3 Non-specific error . 196
13.4 Unexpected Result . 196

14 Appendix A. Specifications 198
14.1 Classification performance . 198
14.2 Runtime performance for CentOS Linux environment . 198

14.2.1 CPU performance . 199
14.2.1.1 CPU. Detector performance . 199
14.2.1.2 CPU. HumanDetector performance . 200
14.2.1.3 CPU. HumanFaceDetector performance 201
14.2.1.4 CPU. HeadDetector performance . 201
14.2.1.5 CPU. Estimations performance with batch interface 202
14.2.1.6 CPU. Estimations performance without batch interface 206
14.2.1.7 CPU. Extractor performance . 207
14.2.1.8 CPU. Matcher performance . 209

14.2.2 GPU performance . 209
14.2.2.1 GPU. Detector performance . 210

VisionLabs B.V. 7 / 244

14.2.2.2 GPU. HumanDetector performance . 210
14.2.2.3 GPU. HeadDetector performance . 211
14.2.2.4 GPU. HumanFace detector performance 211
14.2.2.5 GPU. Estimations performance with batch interface 212
14.2.2.6 GPU. Estimations performance without batch interface 216
14.2.2.7 GPU. Extractor performance . 217

14.2.3 NPU Performance . 218
14.2.3.1 NPU. Detector performance . 218
14.2.3.2 NPU. Estimations performance with batch interface 219
14.2.3.3 NPU. Estimations performance without batch interface 220
14.2.3.4 NPU. Extractor performance . 220

14.2.4 Rockchip (Ubuntu 24.04 LTS) . 220
14.2.4.1 Rockchip (power) environment. Detector performance 220
14.2.4.2 Rockchip (power) environment. Extractor performance 221
14.2.4.3 Rockchip (power) environment. HeadDetector performance 222
14.2.4.4 Rockchip (power) environment. HumanDetector performance 222
14.2.4.5 Rockchip (power) Estimations performance without batch interface . . 224
14.2.4.6 Rockchip (power) environment. Estimations performance with batch

interface . 224
14.2.4.7 Rockchip (weak) environment. Detector performance 228
14.2.4.8 Rockchip (weak) environment. Extractor performance 229
14.2.4.9 Rockchip (weak) environment. HeadDetector performance 229
14.2.4.10 Rockchip (weak) environment. HumanDetector performance 230
14.2.4.11 Rockchip (weak) Estimations performance without batch interface . . . 232
14.2.4.12 Rockchip (weak) environment. Estimations performance with batch

interface . 232
14.3 Runtime performance for embedded environment . 236
14.4 Descriptor size . 236

15 Appendix B. Glossary 238
15.1 Descriptor . 238
15.2 Cooperative Photoshooting and Recognition . 238
15.3 Matching . 239

16 Appendix C. FAQ 240

17 Appendix D. Known issues 241
17.1 Overall known issues . 241

17.1.1 Warnings during the compilation of user code that utilizes the SDK libraries 241
17.1.2 Premature end of JPEG file . 241

VisionLabs B.V. 8 / 244

17.1.3 SDK stuck when run sdk algorithm in separate process after root FaceEngine
object initialized . 241

17.1.4 Undefined behaviour with multithreaded usage of the FaceEngine and algorithms 242
17.1.5 Floating point exceptions when working with images that have GPU memory

residence . 242
17.1.6 Coordinate differences for batched detections . 243

17.2 CentOS 8 known issues . 243
17.2.1 Archive unpacking . 243

VisionLabs B.V. 9 / 244

Introduction

This short guide describes core concepts of the product, shows main FaceEngine features and suggests
usage scenarios.

This document is not a full-featured API referencemanual nor a step by step tutorial. For reference pages,
please see Doxygen API documentation that is shipped with FaceEngine. For complete examples, please
head to our developer portal.

What this book does, however, is this:

• It describes ideas behind resourcemanagement and gives a clue why one or another decision was
made. With this in mind, you are ready to write efficient code with FaceEngine;

• It breaks down full face analysis and recognition pipeline in parts and shows how one part affects
all theothers. This informationwill help you toadaptFaceEngine toyourneeds,which is somewhat
more productive than blindly following tutorials;

• It details things that are important and omits things that are obvious, so you get information that
matters most.

This book is split up into several chapters. There are chapters dedicated to each FaceEngine facility; there
are chapters with conceptual overviews; there are chapters with generic information. We tried to write
the book starting from low-level concepts and moving on to face detection, description and recognition
tasks solving one problem at a time. Although sometimes we just had to give references to chapters
ahead, we tried to minimize such jumps.

The opening chapter of this book is called “Core concepts”. It will tell you about memory management
techniques, object creation and destruction strategies that are widely used across the entire FaceEngine.
The following chapters catch up telling how higher level FaceEngine components are created from those
building blocks.

VisionLabs B.V. 10 / 244

Editions and Platforms

FaceEngine supports multiple platforms. Supported software and hardware platforms differ depending
on editions.

This section includes information about features available for different platforms.

VisionLabs B.V. 11 / 244

1 Core Concepts

1.1 SDKworkflow

1.1.1 Object lifetime

Most of the SDK features are exposed via interfaces (C++ virtual classes) whose implementations
must be obtained by calling factory functions. Some of the factories are C-functions, such as
createFaceEngine(...). The latter one produces a root object IFaceEngine, which in turn
exposes many other factories of the IFaceEngine::createXYZ(...) form. A typical workflow
consists of obtaining IFaceEngine, then calling its factories and using the produced child objects.

You do not destroy SDK objects directly, but instead deal with fsdk::Ref<T>, reference-counted smart
pointers (see section “Automatic reference counting”) to SDK interfaces. You only need to release all
shared references, at which point fsdk::Ref<T> destroys the underlying object.

In terms of lifetime, IFaceEngine should outlast all its child objects.

Holding fsdk::Ref<T> objects in global variables is error-prone. If the variables are in different
translation units, their construction order is undefined, which means the destruction order is out of
control, too. Viable approaches include gathering all fsdk::Ref<T> objects in a single class or using
an explicit stack to store them, as well as storing all fsdk::Ref<T> as local variables on the call stack
in simple projects. In the case when it is necessary to store fsdk::Ref<T> objects as global or static

VisionLabs B.V. 12 / 244

variables, the correct order of releases should be guaranteed explicitly before the program ends:

//warning: a correct, but not a good example due to these global variables
fsdk::IFaceEnginePtr faceEngine = fsdk::createFaceEngine("./data");
fsdk::IDetectorPtr detector = faceEngine->createDetector();
fsdk::IBestShotQualityEstimator bestShotQualityEstimator = faceEngine->

createBestShotQualityEstimator();

int main() {
// application code here

bestShotQualityEstimator.reset();
detector.reset();
faceEngine.reset();
return 0;

}

1.1.2 Threading

The part of the SDK that instantiates and destroys objects is not thread-safe. The SDK requires
using one thread (let’s call it init-thread) for calling all factory functions, as well as releasing
the references to the produced objects. The SDK internally uses thread-local objects attached to
init-thread, which makes init-thread special: as long as the SDK is alive, init-thread
must be alive too. Therefore, there is a requirement that init-thread must outlast IFaceEngine.

VisionLabs B.V. 13 / 244

Once SDK objects (such as detectors and estimators, but not IFaceEngine) have been created, they are
thread-safe and can be used concurrently and on arbitrary threads. Before using an object concurrently
onmany threads, consider using asynchronous APIs of the SDK instead. For example, IDetector along
with a synchronous detect(...) function also provides asynchronous detectAsync(...).

It is required that an object cannot be destroyedwhile it has at least one incomplete call, synchronous or
asynchronous, on any thread.

1.1.3 Detailed constraints

Here is a more detailed list of lifetime and threading constraints:

• There should be at most one IFaceEngine object per process simultaneously. You can create
a new IFaceEngine object after destroying the previous one, just avoid holding multiple
IFaceEngine objects at the same time.

• There should be at most one ITrackEngine object per process simultaneously. You can create
a new ITrackEngine object after destroying the previous one, just avoid holding multiple
ITrackEngine objects at the same time.

• All factory functions should be called on init-thread (the thread that calls createFaceEngine
()). This also implies that factory code is not thread-safe and all factory calls should be serialized
in time. Factory functions include:

VisionLabs B.V. 14 / 244

– C-style functions of the form createXYZ(...) such as createFaceEngine(...),
createTrackEngine(...)

– member functions such as IFaceEngine::createXYZ(...), ITrackEngine::
createXYZ(...)

• activateLicense(...) is not thread-safe. There should be at most one invocation of
activateLicense(...) per process simultaneously.

• init-thread should live no shorter than IFaceEngine.

• IFaceEngine should live no shorter than ITrackEngine.

• IFaceEngine should live no shorter than its child objects (algorithms/estimators/detectors). I.e.,
IFaceEngine should be the last destroyed SDK object.

• IFaceEngine should be destroyed on init-thread.

• Algorithms/estimators/detectors should be destroyed on init-thread.

• Algorithms/estimators/detectors can be destroyed when there are no pending or unfinished
invocations of member functions of those objects, synchronous or asynchronous, on any threads.

• Track Engine requirements: all Track Engine streams should be stopped, then destroyed, then
ITrackEngine itself should be stopped, then destroyed.

• ITrackEngine and all its streams should be destroyed on init-thread.

The only part of the SDK that allows multithreading is using member functions of already instantiated
algorithms/estimators/detectors, such as IDetector:detect(...) and IAttributeEstimator::
estimate(...). The member functions can be called on arbitrary threads and in parallel. Before
resorting to this multithreaded scenario, please consider using asynchronous versions that accompany
many synchronous functions of the SDK.

1.2 Common Interfaces and Types

1.2.1 Reference Counted Interface

Everything in FaceEngine object system starts from here. The IRefCounted interface provides methods
for reference counter access, increment, and decrement. All reference counted objects imply a custom
memorymanagementmodel. Thisway they support automateddestructionwhen referencecountdrops
to zero as well as more sophisticated strategies of partial destruction and weak referencing required for
FaceEngine internal needs. The bare minimum of such functions is exposed to a user allowing:

• To notify the object that it is required by a client via retaining a reference to it.
• To notify the object that it is no longer required by releasing a reference to it.
• To get actual reference counter value.

VisionLabs B.V. 15 / 244

Reference counted objects expect some special treatment as well. Be sure never to call delete on
any pointer to object derived from IRefCounted! Doing so leads to heap corruption. Simply
calling release notifies the systemwhen the object should be destroyed and it does this properly for
you.

However, we do not recommend that you interact with the reference counting mechanism manually as
doing so may be error-prone. Instead, we recommend that you use smart pointers that are specially
designed to handle such objects and provided by FaceEngine. See section “Automatic reference
counting” for details.

1.2.2 Automatic reference counting

For your convenience, a special smart pointer class Ref is provided. It is capable of automatic reference
counter incrementing upon its creation and automatic decrementing upon its destruction. It also does
an assertion of the inner raw pointer being non-null, thus preventing errors.

Two ways of working with Ref are possible:

1.2.2.1 Referencing - without acquiring ownership of object lifetime
ISomeObject* createSomeObject();
{
/* Here createSomeObject returns an object with initial reference count of 1

(otherwise, it would be dead). Then Ref adds another one for itself
making a total reference count of 2!

*/
Ref<ISomeObject> objref = make_ref(createSomeObject());
/* Here we use the object in any way we want expecting it to be properly

destroyed when control will leave this scope.
*/

}
/* Here we have left the scope and Ref was automatically destroyed like any

other object created on the stack. At the same time, it decreased
reference count of its internal object by 1 making it 1 again.

*/

However, the object is not destroyed automatically! For this to happen, it should have precisely 0
references. Moreover, in this example, the raw pointer to the object is lost, so it is impossible to fix it in
any way; thus a memory leak is introduced.

VisionLabs B.V. 16 / 244

1.2.2.2 Acquiring - own object lifetime
Sokeeping that inmindwe introduceaconceptof ownershipacquiring. Byacquiringanobject, youmean
that its rawpointer is not going to be used and only a valid Ref to it is required. To acquire ownership, use
a special ::acquire() function. The fixed version of the above example would look like this:

ISomeObject* createSomeObject();
{
/* Here createSomeObject returns an object with initial reference count of 1

(otherwise, it would be dead). Then we acquire it leaving a total
reference count of 1.

*/
Ref<ISomeObject> objref = acquire(createSomeObject());
/* Here we use the object in any way we want.
*/
}

/* Here we have left the scope and Ref was automatically destroyed like any
other object created on the stack. At the same time, it decreased
reference count of its internal object by 1 making it 0. The object is
destroyed properly by the object system.

*/

Do not store or use raw pointers to the object when using the ::acquire() function, as ownership
acquiring invalidates them.

AcquiringwayofworkingwithRef is pretty like standard library shared_ptrown lifetimeof theobject
after it returned by std::make_shared().

You can statically cast object type during acquiring or referencing. To achieve this, use special versions
of the ::make_ref_as() and ::acquire_as() functions. It is your responsibility to ensure that such a cast is
possible.

Please refer to FaceEngine Reference Manual for more details on available convenience methods and
functions.

As a side note, be informed that typedefs for Ref’s to all reference counted types are declared. All of them
match the followingnaming convention: InterfaceNamePtr. So, for example, Ref<IDetector> is equivalent
to IDetectorPtr.

1.2.3 Serializable object interface

This interface represents an object. Object’s contents may be serialized to some data stream and then
read back. Think of this as loading and saving.

VisionLabs B.V. 17 / 244

To interact with the aforementioned data stream, the serializable object needs a user-provided adapter.
Suchadapter is called thearchive. Seeadetailedexplanationof it in section “Archive interface” in chapter
“Core facility”.

Serializable interfaces: IDescriptor, IDescriptorBatch.

1.2.4 Auxiliary types

1.2.4.1 Image type
Since FaceEngine is a computer vision library, it is natural for it to implement some image concept.
Therefore, an Image class exists. It is designed as a reference counted container for raw pixel color
data. Reference counting allows a single image to be shared by several objects. However, one should
understand, that each Image object is holding a reference to some data, so if the data is modified in any
way, this affects all other objects holding the same reference. To make a deep copy of an Image, one
should use the clone()method, since assignment operators just make a reference. It is also possible to
clip a part of an image into a new image bymeans of extract()method.

Pixel datamay be characterized by color channel layout, i.e., a number of color channels and their order.
The engine defines a Format structure for that. The Format determines:

• Number of color channels (e.g., RGB or grayscale);

• Order of color channel (e.g., RGB vs. BGR).

FaceEngine assumes 8 bits (i.e., 1 byte) per color channel and implements 8 BPP grayscale, 24 BPP
RGB/BGR and padded 32 BPP formats. Format conversion functions are also provided for convenience;
see the convert() function family.

The Image class supports data range mapping. It is possible to map a subset of bytes in a rectangular
area for reading or writing. The mapped pixels are represented by the SubImage structure. In contrast
to Image, SubImage is just a data view and is not reference counted. You are not supposed to store
SubImages longer that it is necessary to completedatamodification. See thedocumentationof themap()
function family for details.

The supports IO roitines to read/write OOM, JPEG, PNG and TIFF formats via FreeImage library.

The absence of image IO is dictated by the fact that FaceEngine focuses on being lightweight and with
theminimumpossible number of external dependencies. It is not designed solely with image processing
purpose in mind. I.e., one may treat video frames as Images and process them one by one. In this case,
an external (possibly proprietary) video codec is required.

1.3 Beta Mode

Some features in LUNA SDK are available just in Beta mode. This is experimental features which may be
unstable. If you want use them, you have to activate betaMode param in config (faceengine.conf).

VisionLabs B.V. 18 / 244

2 FaceEngine Structure Overview

FaceEngine is subdivided into several facilities. Each facility is dedicated toa single function. Below there
is a list of all facilities with short descriptions of functionality they provide. Detailed informationmay be
found in corresponding chapters of this handbook.

FaceEngine facility list:

• Core facility. This facility stores shared low-level FaceEngine types and factories. This facility
is responsible for normal functioning of all other facilities by providing settings accessors and
common interfaces. The core facility also contains themain FaceEngine root object that is used to
create instances of all higher level objects;

• Face detection facility. This facility is dedicated to object detection. It contains various object
detector implementations and factories;

• Parameter estimation facility. This facility is dedicated to various image parameter estimation,
such as blurriness, transformation and so forth. It contains various estimator implementations
and factories;

• Descriptor processing facility. This facility is dedicated to descriptor extraction andmatching. The
descriptor is a set of features, describing an object, invariant to object transformation, size or other
parameters. Descriptor matching allows judging with certain probability whether two objects are
the same. This facility contains various descriptor extractors and containers as well as factories,
required to produce them.

So, each facility is a set of classes dedicated to some common for them problem domain. Facilities are
independent of each other, with several exceptions, like that all higher level facilities depend on the core
facility. Interfacility dependencies are thoroughly described in corresponding chapters of this handbook.
The actual set of facilitiesmay vary depending on particular FaceEngine distributions as facilitiesmay be
licensed and shipped separately.

This handbook describes the very complete FaceEngine distribution, assuming all facilities are available.
The facilities are listed in order of increasing complexity. Applying functions from these facilities in this
order allows creating a complete face detection, analysis, recognition and matching pipeline with a
significant degree of flexibility. The following chapters break down such pipeline in details.

VisionLabs B.V. 19 / 244

3 Core Facility

3.1 Common Interfaces

3.1.1 Face Engine Object

TheFaceEngineobject is a rootobject of theentire FaceEngine. Everythingbeginswith it, so it is essential
to create an instance of it. To create a Face Engine instance call createFaceEngine function. Also, youmay
specify default dataPath and configPath in createFaceEngine parameters.

If you plan to use GPU acceleration, you should keep in mind CUDA runtime initialization and
shutdown. Specifically, CUDA creates global runtime object with implicit lifetime; see
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#initialization.

TopreventFaceEngine runtimeand lifetimemismatch, it is recommended toavoidcreatinga static global
instance of FaceEngine, as its destruction order is hard to keep track of and control.

3.1.2 Settings Provider

Settings provider is a special entity that loads settings from various locations. Since settings might be
shared among several objects, it is useful to cache them tominimize disk reads and provide a dictionary-
like interface for named value lookup.

This is what the provider does. The provider object stands somewhat aside FaceEngine facility structure
and is created by a separate factory function createSettingsProvider. This function accepts configuration
file path as a parameter (see section “Configuration data” for details). By default, the engine holds a
single provider instance for all facilities. Think of it as a reference counted config file. This provider is
passed by the Face Engine object to each factory it creates. The factory, in turn, can read its configuration
data from the object and pass it further to its child objects. In typical scenarios, you should not bother
with providers as the engine does everything for you. However, when relying on custom factory creation
parameters (see thedescription in section “Faceengineobject”), youhave tocreateandsupplyaprovider
wherever it is required manually.

3.2 Helper Interfaces

3.2.1 Archive Interface

Archive interface is used to provide serialization functions with a data source. It contains methods
primarily for data reading and writing. Note, that IArchive is not derived from IRefCounted, thus does not
imply any special memory management strategies.

A few points to keep in mind when implementing your archive:

VisionLabs B.V. 20 / 244

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#initialization

• FaceEngineobjects that use IArchive for serializationpurposes do call onlywrite() (during saving) or
only read() (during loading) but never both during the same process unless otherwise is explicitly
stated;

• During savingor loadingFaceEngineobjects are free towriteor read their data in chunks; e.g., there
may be several sequential calls to write() in the scope of a single serialization request. The same
is true for read(). Basically, read() andwrite() should behave pretty much like C fread() and fwrite()
standard library functions.

Any IArchive implementation should be aware of these notes.

Since these interface methods are pretty obvious and mostly self-explanatory, we advise you to check
out FaceEngine Reference Manual for the details.

3.3 Sensor type

SensorType determines which type of camera sensor is used to perform estimation. Currently two types
of SensorType are available: Visible, NIR. The user can indicate the required type of sensor when
creating an object by passing the appropriate parameter.

3.4 Data Paths

3.4.1 Model Data

VariousFaceEnginemodulesmay requiredata files tooperate. The files containvariousalgorithmmodels
and constants used at runtime. All the files are gathered together into a single data directory. The data
directory location is assumed to reside in:

• /opt/visionlabs/data on Linux
• ./data on Windows

One may override the data directory location by means of setDataDirectory()method which is available
in IFaceEngine. Current data location may be retrieved via getDataDirectory()method.

3.4.2 Configuration Data

Theconfiguration file is called faceengine.conf andstored in /datadirectorybydefault. ConfigurationGuide.pdf
with parameter description and default values is located at /doc package folder.

At runtime, the configuration file data is managed by a special object that implements ISettingsProvider
interface (seesection“Settingsprovider”). Theprovider is instantiatedbymeansof createSettingsProvider()
function that accepts configuration file location as a parameter or uses aforementioned defaults if not
specified.

VisionLabs B.V. 21 / 244

Onemay supply a different configuration to any factory object bymeans of setSettingsProvider()method,
which is available in each factory object interface, including IFaceEngine. Currently, bound settings
provider may be retrieved via getSettingsProvider()method.

VisionLabs B.V. 22 / 244

4 Detection facility

4.1 Overview

Object detection facility is responsible for quick and coarsedetection tasks, like finding a face in an image.

4.2 Detection structure

The detection structure represents an images-space bounding rectangle of the detected object aswell as
the detection score.

Detection score is a measure of confidence in the particular object classification result andmay be used
to pick the most “confident” face of many.

Detection score is the measure of classification confidence and not the source image quality. While the
score is related to quality (low-quality data generally results in a lower score), it is not a valid metric to
estimate the visual quality of an image.

Special estimators exist to fulfill this task (see section “Image Quality Estimation” in chapter “Parameter
estimation facility” for details).

4.3 Face Detection

Object detection is performed by the IDetector object. The function of interest is detect(). It requires an
image to detect on and an area of interest (to virtually crop the image and look for faces only in the given
location).

Also, face detector implements detectAsync()which allows you to asynchronously detect faces and their
parameters onmultiple images.

Note: Method detectAsync() is experimental, and it’s interface may be changed in the future.

Note: Method detectAsync() is not marked as noexcept andmay throw an exception.

4.3.1 Image coordinate system

The origin of the coordinate system for each processed image is located in the upper left corner.

VisionLabs B.V. 23 / 244

Figure 1: Source image coordinate system

4.3.2 Face detection

When a face is detected, a rectangular area with the face is defined. The area is represented using
coordinates in the image coordinate system.

4.3.3 Redetect method

Face detector implements redetect()method which is intended for face detection optimization on video
frame sequences. Instead of doing full-blown detection on each frame, one may detect() new faces at a
lower frequency (say, each5th frame) and just confirm them inbetweenwith redetect(). This dramatically
improves performance at the cost of detection recall. Note that redetect()updates face landmarks aswell.

Also, face detector implements redetectAsync() which allows you to asynchronously redetect faces on
multiple images based on the detection results for the previous frames.

Note: Method redetectAsync() is experimental, and it’s interface may be changed in the future.

Note: Method redetectAsync() is not marked as noexcept andmay throw an exception.

Detector works faster with larger value of minFaceSize.

4.3.4 Orientation Estimation

Name: OrientationEstimator

Algorithm description:

This estimator aims to detect an orientation of the input image. The next outputs are supported:

• The target image is normal oriented ;

VisionLabs B.V. 24 / 244

• The target image is turned to the left by 90 deg;
• The target image is flipped upside-down;
• The target image is turned to the right by 90 deg.

Implementation description:

The estimator (see IOrientationEstimator in IOrientationEstimator.h):

• Implements the estimate() function that accepts source image in R8G8B8 format and returns the
estimation result;

• Implements the estimate() function that accepts fsdk::Span of the source images in R8G8B8
format and fsdk::Span of the fsdk::OrientationType enums to return results of estimation.

TheOrientationType enumeration contains all possible results of the Orientation estimation:

enum OrientationType : uint32_t {
OT_NORMAL = 0, //!< Normal orientation of image
OT_LEFT = 1, //!< Image is turned left by 90 deg
OT_UPSIDE_DOWN = 2, //!< Image is flipped upsidedown
OT_RIGHT = 3 //!< Image is turned right by 90 deg

};

API structure name:

IOrientationEstimator

Plan files:

• orientation_v2_cpu.plan
• orientation_v2_cpu-avx2.plan
• orientation_v2_gpu.plan

4.3.5 Detector variants

Supported detector variants:

• FaceDetV2
• FaceDetV3

There are two basic detector families. The first of them includes FaceDetV2. The second family includes
FaceDetV3. FaceDetV3 is the most precise detector. For this type of detector can be passed sensor type.

User codemay specify necessary detector type while creating IDetector object using parameter.

FaceDetV2 performance depends on a number of faces in an image and image complexity.
FaceDetV3 performance depends only on the target image resolution.

VisionLabs B.V. 25 / 244

FaceDetV3 works faster with batched redetect.

FaceDetV3 supports asynchronous methods for detection and redetection. FaceDetV2 will return a
not implemented error.

VisionLabs B.V. 26 / 244

4.3.6 FaceDetV2 Configuration

FaceDetV2 detector’s performance depend on number of faces in image. FaceDetV3 doesn’t depend on
it.

4.3.7 FaceDetV3 Configuration

FaceDetV3 detects faces from minFaceSize to minFaceSize * 32. You can change theminimum size of
the faces that will be searched in the photo from the faceengine.conf configuration.

For example:

config->setValue("FaceDetV3::Settings", "minFaceSize", 20);

The logic of the detector is very understandable. The smaller the face size we need to find themore time
we need.

We recommend to use suchmeanings for minFaceSize: 20, 40 and 90. The size 90 pix is recommended
for recognition. If youwant to find faces with custom size value youwill need to point with size with: 95%
* value. For example we want to find faces with size of 50 pix, it means that in config we should set:

50 * 0.95 ~ 47 pix.

FaceDetV3 may provide accurate 5 landmarks only for faces with sizes greater than 40x40. For
smaller faces, it provides less accurate landmarks.

If you have few faces on target images and target face sizes after resize will less then 40x40, it’s
recommended to require 68 landmarks.

If you have many faces on target image (greater then 7) it will be faster increase minFaceSize to have
big enough faces for accurate landmarks estimation.

All last changes in Face Detection logic are described in chapter “Migration guide”.

4.3.8 Face Alignment

4.3.8.1 Five landmarks
Face alignment is the process of special key points (called “landmarks”) detection on a face. FaceEngine
does landmark detection at the same time as the face detection since some of the landmarks are by-
products of that detection.

At the very minimum, just 5 landmarks are required: two for eyes, one for a nose tip and two for mouth
corners. Using these coordinates, onemay warp the source photo image (see Chapter “Image warping”)
for use with all other FaceEngine algorithms.

All detector may provide 5 landmarks for each detection without additional computations.

VisionLabs B.V. 27 / 244

Typical use cases for 5 landmarks:

• Image warping for use with other algorithms:

– Quality and attribute estimators;
– Descriptor extraction.

4.3.8.2 Sixty-eight landmarks
More advanced 68-points face alignment is also implemented. Use this when you need precise
information about face and its parts. The detected points look like in the image below.

The 68 landmarks require additional computation time, so don’t use it if you don’t need precise
information about a face. If you use 68 landmarks , 5 landmarks will be reassigned to more precise
subset of 68 landmarks.

Figure 2: 68-point face alignment

The typical error for landmark estimation on a warped image (see Chapter “Image warping”) is in the

VisionLabs B.V. 28 / 244

table below.

Table 1: “Average point estimation error per landmark”

Point
Error
(pixels) Point

Error
(pixels) Point

Error
(pixels) Point

Error
(pixels)

1 ±3,88 18 ±3,77 35 ±1,62 52 ±1,65

2 ±3,53 19 ±2,83 36 ±1,90 53 ±2,01

3 ±3,88 20 ±2,70 37 ±1,78 54 ±2,00

4 ±4,30 21 ±3,06 38 ±1,69 55 ±1,93

5 ±4,67 22 ±3,92 39 ±1,63 56 ±2,18

6 ±4,87 23 ±3,46 40 ±1,52 57 ±2,17

7 ±4,67 24 ±2,59 41 ±1,54 58 ±1,99

8 ±4,01 25 ±2,53 42 ±1,60 59 ±2,32

9 ±3,46 26 ±2,95 43 ±1,55 60 ±2,33

10 ±3,87 27 ±3,84 44 ±1,60 61 ±2,06

11 ±4,56 28 ±1,88 45 ±1,74 62 ±1,97

12 ±4,94 29 ±1,75 46 ±1,72 63 ±1,56

13 ±4,55 30 ±1,92 47 ±1,68 64 ±1,86

14 ±4,45 31 ±2,20 48 ±1,65 65 ±1,94

15 ±4,13 32 ±1,97 49 ±1,99 66 ±2,00

16 ±3,68 33 ±1,70 50 ±1,99 67 ±1,70

17 ±4,09 34 ±1,73 51 ±1,95 68 ±2,12

Simple 5-point landmarks roughly correspond to:

• Average of positions 37, 40 for a left eye;
• Average of positions 43, 46 for a right eye;
• Number 31 for a nose tip;
• Numbers 49 and 55 for mouth corners.

The landmarks for both cases are output by the face detector via Landmarks5 and Landmarks68
structures. Note, that performance-wise 5-point alignment result comes free with a face detection,
whereas 68-point result does not. So you should generally request the lowest number of points for your
task.

VisionLabs B.V. 29 / 244

Typical use cases for 68 landmarks:

• Segmentation;
• Head pose estimation.

4.4 Face Landmarks Detector

Every kind of detector provides an interface to find face landmarks. If you have a face detection
without landmarks we provide additional interface to request them. The detection of landmarks is
performed by the IFaceLandmarksDetector object. The functions of interest are detectLandmarks5() and
detectLandmarks68. They need images and detections.

VisionLabs B.V. 30 / 244

4.5 Human Detection

This functionality enables you to detect human bodies in an image.

Human body detection is performed by the IHumanDetector object. The function of interest is detect
(). It requires an image to detect on.

Also, IHumanDetector implements detectAsync() which allows you to asynchronously detect
human body parameters onmultiple images.

Note: Method detectAsync() is experimental, and its interface may be changed in the future.

Note: Method detectAsync() is not marked as noexcept andmay throw an exception.

4.5.1 Image coordinate system

The origin of the coordinate system for each processed image is located in the upper left corner.

Figure 3: Source image coordinate system

4.5.2 Human body detection

When a human body is detected, a rectangular area with the body is defined. The area is represented
using coordinates in the image coordinate system.

4.5.3 Constraints

Human body detection has the following constraints:

• Human body detector works correctly only with adult humans in an image.

VisionLabs B.V. 31 / 244

• The detectormay detect a body of size from60 px to 640 px (in an imagewith a long side of 640 px).
You can change the input image size in the config. For details, see HumanDetector settings. The
image will be resized to the specified size by the larger side while maintaining the aspect ratio.

4.5.4 Camera position requirements

In general, you should locate the camera for human detection according to the image below.

Figure 4: Camera position for human detection

VisionLabs B.V. 32 / 244

../../ConfigurationGuide/020_0180_HumanDetector.md

Follow these recommendations to correctly detect human body and keypoints:

• A person’s body should face the camera.

• Keep angle of view as close to horizontal as possible.

• There should be about 60% of the person’s body in the frame (upper body).

• There must not be any objects that overlap the person’s body in the frame.

• The camera tilt angle is recommended from 0 (parallel to the ground) to 60 degrees.

The examples of wrong camera positions are shown in the image below.

Figure 5:Wrong camera positions

4.5.5 Human body redetection

Like any other detector in Face Engine SDK, human detector also implements redetection model. You
can make full detection only in a first frame, and then redetect the same human in the next “n” frames
thereby boosting performance of the whole image processing loop.

You canuse theredetectOne()method, if only a single humandetection is required. Formore complex
use cases, use redetect() to redetect humans frommultiple images.

Also, IHumanDetector implements redetectAsync() which allows you to asynchronously redetect
human body parameters onmultiple images.

Note: Method redetectAsync() is experimental, and its interface may be changed in the future.

Note: Method redetectAsync() is not marked as noexcept andmay throw an exception.

VisionLabs B.V. 33 / 244

4.5.6 Human keypoints

The detector gives an opportunity to detect human body keypoints in an image.

The image below shows the keypoints detected for a human body.

Figure 6: 17-points of human body

Point Body Part Point Body Part

0 Nose 9 LeftWrist

VisionLabs B.V. 34 / 244

Point Body Part Point Body Part

1 Left Eye 10 Right Wrist

2 Right Eye 11 Left Hip

3 Left Ear 12 Right Hip

4 Right Ear 13 Left Knee

5 Left Shoulder 14 Right Knee

6 Right Shoulder 15 Left Ankle

7 Left Elbow 16 Right Ankle

8 Right Elbow

Cases that increase the probability of error:

• Non-standard poses (head below the shoulders, vertical twine, lying head to the camera, and so
on).

• Camera position from above at a large angle.
• Sometimes estimator predicts invisible points with high score, especially for points of elbows,
wrists, ears.

4.5.7 Main results of each detection

Themain result of each detection is an array. Each array element consists of a point (fsdk:: Point2f)
and a score. If the score value is less than the threshold, then the value of “x” and “y” coordinates will be
equal to 0.

For more information about thresholds and other configuration parameters, see the HumanDetector
settings section oof Configuration Guide. ## HumanFace Detection. Face to body association
{#humanface-detection}

This functionality enables you to detect the bodies and faces of people and perform an association
between them, determining whether the detected face and body belong to the same person.

This detector contains the implementation of both Human and Face(FaceDetV3) detectors. This means
that all the requirements, constraints and recommendations for quality improvement imposed for these
detectors will be relevant for the HumanFace detector.

Detector operation algorithm:

• human detection
• face detection
• determination of an association for each detection

VisionLabs B.V. 35 / 244

../../ConfigurationGuide/020_0180_HumanDetector.md
../../ConfigurationGuide/020_0180_HumanDetector.md

Figure 7: HumanFace detection

4.5.8 HumanFace redetection

To perform redetection, you need to separately redetect body and face.

4.5.9 Performance

User can skip computation of associations by selecting according HumanFaceDetectionType for
detect() method, if he doesn’t need this functionality. In such case, we estimate performance gain
about 5% on cpu and about 20% on gpu devices. The more faces and bodies represented in image, the
more gain user will enjoy after association skip.

4.5.10 Main results

There are two output structures:

• HumanFaceBatch
• HumanFaceAssociations

TheHumanFaceBatch contains three arrays - face detections, human detections and associations:

struct IHumanFaceBatch : public IRefCounted {
virtual Span<const Detection> getHumanDetections(size_t index = 0)

const noexcept = 0;
virtual Span<const Detection> getFaceDetections(size_t index = 0)

const noexcept = 0;

VisionLabs B.V. 36 / 244

virtual Span<const HumanFaceAssociation> getAssociations(size_t
index = 0) const noexcept = 0;

};

TheHumanFaceAssociation structure contains results of the association:

struct HumanFaceAssociation {
uint32_t humanId;
uint32_t faceId;
float score;

};

There are two groups of fields:

1� The first group contains body and face detection indexes:

uint32_t humanId;
uint32_t faceId;

2� The second group contains association score:

float score;

The score is defined in [0,1] range.

Associations and detections whose scores are lower than the thresholdwill be rejected and not returned
in the results.

SeeConfigurationGuide.pdf (“HumanFace settings” section) formore information about thresholds
and configuration parameters.

4.5.11 minFaceSize

This detector could detect faces with size 20 px and more (minFaceSize parameter) and humans with
size 100 px and more. In case if such small faces and humans are not required, user could change the
minFaceSize parameter in the config.

Before processing, the images will be resized by minFaceSize/20 times. For example, if the value is
minFaceSize=50, then the image will be additionally resized by minFaceSize=50/20=2.5 times.

Detector works faster with larger value of minFaceSize.

VisionLabs B.V. 37 / 244

4.6 Head Detection

This functionality enables you to detect the heads of people.

This detector implementation is similar to Face(FaceDetV3) detectors. This means that all the
requirements, constraints and recommendations for quality improvement imposed for this detector will
be relevant for the Head detector.

Object detection is performed by the IHeadDetector. The function of interest is detect(). It requires an
image to detect on and an area of interest (to virtually crop the image and look for heads only in the
given location).

4.6.1 Image coordinate system

The origin of the coordinate system for each processed image is located in the upper left corner.

Figure 8: Source image coordinate system

4.6.2 Main results

Output structures:

• DetectionBatch

The DetectionBatch contains an array of head detections:

struct IDetectionBatch : public IRefCounted {

virtual size_t getSize() const noexcept = 0;

VisionLabs B.V. 38 / 244

virtual Span<const Detection> getDetections(size_t index = 0) const
noexcept = 0;

};

4.6.3 minHeadSize

This detector could detect heads with size 20 px and more (minHeadSize parameter). In case if such
small heads, user could change the minHeadSize parameter in the config.

Before processing, the images will be resized by minHeadSize/20 times. For example, if the value is
minHeadSize=50, then the image will be additionally resized by minHeadSize=50/20=2.5 times.

Detector works faster with larger value of minHeadSize.

VisionLabs B.V. 39 / 244

5 ImageWarping

Warping is theprocess of face imagenormalization. It requires landmarks and facedetection (see chapter
“Detection facility”) to operate. The purpose of the process is to:

• compensate image plane rotation (roll angle);
• center the image using eye positions;
• properly crop the image.

This way all warped images look the same and one can tell that, e.g., left eye is always in a box, defined
by the certain coordinates. This way certain transform invariance is achieved for input data so various
algorithms can perform better.

The warper (see IWarper in IWarper.h):

• Implements thewarp() function that accepts spanof sourcefsdk::Image in R8B8G8 format, span
of fsdk::Transformation and span of output fsdk::Image structures;

• Implements thewarpAsync() function that accepts span of source fsdk::Image in R8B8G8 format
and span of fsdk::Transformation.

Note: MethodwarpAsync() is experimental, and it’s interfacemaybechanged in the future. Note: Method
warpAsync() is not marked as noexcept andmay throw an exception.

Figure 9: Face warping

Be aware that imagewarping is not thread-safe, so you have to create awarper object per worker thread.

VisionLabs B.V. 40 / 244

6 Parameter Estimation Facility

6.1 Overview

The estimation facility is the only multi-purpose facility in FaceEngine. It is designed as a collection of
tools thathelp toestimate various imagesordepictedobjectproperties. Thesepropertiesmaybeused to
increase the precision of algorithms implementedby other FaceEngine facilities or to accomplish custom
user tasks.

6.2 Use cases

6.2.1 ISO estimation

LUNASDKprovidesalgorithms for imagecheckaccording to the requirementsof the ISO/IEC 19794-5:2011
standard and compatible standards.

The requirements can be found on the official website: https://www.iso.org/obp/ui/#iso:std:iso-iec:
19794:-5:en.

The following algorithms are provided:

• Head rotation angles (pitch, yaw, and roll angles). According to section “7.2.2 Pose” in the standard,
the angles shouldbe +/- 5 degrees from frontal in pitch and yaw, less than +/- 8 degrees from frontal
in roll. See additional information about the algorithm in section “Head Pose”.

• Gaze. See section “7.2.3 Expression” point “e” of the standard. See additional information about
the algorithm in section “Gaze Estimation”.

• Mouth state (opened, closed, occluded) and additional properties for smile (regular smile, smile
with teeths exposed) See section “7.2.3 Expression” points “a”, “b”, and “c” of the standard. See
additional information about the algorithm in section “Mouth Estimation”.

• Quality of the image:

– Contrast and saturation (insufficient or too large exposure). See sections “7.2.7 Subject and
scene lighting” and “7.3.2 Contrast and saturation” of the standard.

– Blurring. See section “7.3.3 Focus and depth of field” of the standard.
– Specularity. See section “7.2.8 Hot spots and specular reflections” and “7.2.12 Lighting
artefacts” of the standard.

– Uniformityof illumination. See sections “7.2.7Subject andscene lighting”and“7.2.12Lighting
artefacts” of the standard.

See additional information about the algorithm in section “Image Quality Estimation”.

• Glasses state (no glasses, glasses, sunglasses). See section “7.2.9 Eye glasses” of the standard. See
additional information about the algorithm in section “Glasses Estimation”.

VisionLabs B.V. 41 / 244

https://www.iso.org/obp/ui/#iso:std:iso-iec:19794:-5:en
https://www.iso.org/obp/ui/#iso:std:iso-iec:19794:-5:en

• Eyes state (for each eye: opened, closed, occluded). See sections “7.2.3 Expression” point “a”,
“7.2.11 Visibility of pupils and irises” and “7.2.13 Eye patches” of the standard. See additional
information about the algorithm in section “Eyes Estimation”.

• Natural light estimation. See section “7.3.4 Unnatural colour” of the standard. See additional
information about the algorithm in section “Natural Light Estimation”.

• Eybrows state: neutral, raised, squinting, frowning. See section “7.2.3 Expression” points “d”, “f”,
and “g” of the standard. See additional information about the algorithm in section “Eyebrows
estimation”.

• Position of a person’s shoulders in the original image: the shoulders are parallel to the camera or
not. See section “7.2.5 Shoulders” of the standard. See additional information about the algorithm
in section “Portrait Style Estimation”.

• Headwear. Checks if there is a headwear on a person or not. Several types of headwear can be
estimated. See section “B.2.7 Head coverings” of the standard. See additional information about
the algorithm in section “Headwear Estimation”.

• Red eyes estimation. Checks if there is a red eyes effect. See section “7.3.4 Unnatural colour” of
the standard. See additional information about the algorithm in section “Red Eyes Estimation”.

• Radial distortion estimation. See section “7.3.6 Radial distortion of the camera lens” of the
standard. See additional information about the algorithm in section “Fish Eye Estimation”.

• Image type estimation: color, grayscale, infrared. See section “7.4.4 Use of near infra-red cameras”
of the standard. See additional information about the algorithm in section “Grayscale, color or
infrared Estimation”.

• Background estimation: background uniformity and if a background is too light or too dark. See
section “B.2.9 Backgrounds” of the standard. See additional information about the algorithm in
section “Background Estimation”.

6.3 Best shot selection functionality

6.3.1 BestShotQuality Estimation

Name: BestShotQualityEstimator

Algorithm description:

The BestShotQuality estimator is designed to evaluate image quality to choose the best image before
descriptor extraction. The BestShotQuality estimator consists of two components - AGS (garbage score)
and Head Pose.

AGS aims to determine the source image score for further descriptor extraction andmatching.

VisionLabs B.V. 42 / 244

Estimation output is a float score which is normalized in range [0..1]. The closer score to 1, the better
matching result is received for the image.

When you have several images of a person, it is better to save the image with the highest AGS score.

Recommended threshold for AGS score is equal to 0.2. But it can be changed depending on the
purpose of use. Consult VisionLabs about the recommended threshold value for this parameter.

Head Pose determines person head rotation angles in 3D space, namely pitch, yaw and roll.

Figure 10: Head pose

Since 3D head translation is hard to determine reliably without camera-specific calibration, only 3D
rotation component is estimated.

Head pose estimation characteristics:

• Units (degrees);
• Notation (Euler angles);
• Precision (see table below).

Implementation description:

The estimator (see IBestShotQualityEstimator in IEstimator.h):

• Implements the estimate() function that needs fsdk::Image in R8G8B8 format, fsdk::
Detection structure of corresponding source image (see section “Detection structure” in chapter
“Face detection facility”), fsdk::IBestShotQualityEstimator::EstimationRequest
structureandfsdk::IBestShotQualityEstimator::EstimationResult to storeestimation
result;

• Implements the estimate() function that needs the span of fsdk::Image in R8G8B8 format, the
span of fsdk::Detection structures of corresponding source images (see section “Detection

VisionLabs B.V. 43 / 244

structure” in chapter “Face detection facility”), fsdk::IBestShotQualityEstimator::
EstimationRequest structure and span of fsdk::IBestShotQualityEstimator::
EstimationResult to store estimation results.

• Implements the estimateAsync() function that needs fsdk::Image in R8G8B8 format, fsdk::
Detection structure of corresponding source image (see section “Detection structure” in chapter
“Face detection facility”), fsdk::IBestShotQualityEstimator::EstimationRequest
structure;

Note: Method estimateAsync() is experimental, and it’s interface may be changed in the future. Note:
Method estimateAsync() is not marked as noexcept andmay throw an exception.

Before using this estimator, user is free to decide whether to estimate or not some listed attributes. For
this purpose, estimate()method takes one of the estimation requests:

• fsdk::IBestShotQualityEstimator::EstimationRequest::estimateAGS to make only
AGS estimation;

• fsdk::IBestShotQualityEstimator::EstimationRequest::estimateHeadPose to
make only Head Pose estimation;

• fsdk::IBestShotQualityEstimator::EstimationRequest::estimateAll to make both
AGS and Head Pose estimations;

The EstimationResult structure contains results of the estimation:

struct EstimationResult {
Optional<HeadPoseEstimation> headPose; //!< HeadPose estimation if

was requested, empty otherwise
Optional<float> ags; //!< AGS estimation if was

requested, empty otherwise
};

Head Pose accuracy:

Prediction precision decreases as a rotation angle increases. We present typical average errors for
different angle ranges in the table below.

Table 3: “Head pose prediction precision”

Range -45°…+45° < -45° or > +45°

Average prediction error (per axis) Yaw ±2.7° ±4.6°

Average prediction error (per axis) Pitch ±3.0° ±4.8°

Average prediction error (per axis) Roll ±3.0° ±4.6°

VisionLabs B.V. 44 / 244

Zero position corresponds to a face placed orthogonally to camera direction, with the axis of symmetry
parallel to the vertical camera axis.

API structure name:

IBestShotQualityEstimator

Plan files:

For more information see Approximate Garbage Score Estimation (AGS) and Head Pose
Estimation

VisionLabs B.V. 45 / 244

6.3.2 Image Quality Estimation

Name: QualityEstimator

Algorithm description:

The estimator is trained to work with warped images (see chapter “Image warping” for details).

This estimator is designed to determine the image quality. You can estimate the image according to the
following criteria:

• The image is blurred;
• The image is underexposed (i.e., too dark);
• The image is overexposed (i.e., too light);
• The face in the image is illuminated unevenly (there is a great difference between light and dark
regions);

• Image contains flares on face (too specular).

Examples are presented in the images below. Good quality images are shown on the right.

Figure 11: Blurred image (left), not blurred image (right)

VisionLabs B.V. 46 / 244

Figure 12: Dark image (left), good quality image (right)

Figure 13: Light image (left), good quality image (right)

VisionLabs B.V. 47 / 244

Figure 14: Image with uneven illumination (left), image with even illumination (right)

Figure 15: Image with specularity - image contains flares on face (left), good quality image (right)

Implementation description:

The general rule of thumb for quality estimation:

1. Detect a face, see if detection confidence is high enough. If not, reject the detection.
2. Produce a warped face image (see chapter “Descriptor processing facility”) using a face detection

and its landmarks.

VisionLabs B.V. 48 / 244

3. Estimate visual quality using the estimator, finally reject low-quality images.

While the scheme above might seem a bit complicated, it is the most efficient performance-wise, since
possible rejections on each step reduce workload for the next step.

At the moment estimator exposes two interface functions to predict image quality:

• virtual Result estimate(const Image&warp, Quality& quality);
• virtual Result estimate(const Image&warp, SubjectiveQuality& quality);

Each one of this functions use its own CNN internally and return slightly different quality criteria.

The first CNN is trained specifically on pre-warped human face images and will produce lower score
factors if one of the following conditions are satisfied:

• Image is blurred;
• Image is under-exposured (i.e., too dark);
• Image is over-exposured (i.e., too light);
• Image color variation is low (i.e., image is monochrome or close to monochrome).

Each one of this score factors is defined in [0..1] range, where higher value corresponds to better image
quality and vice versa.

The second interface function output will produce lower factor if:

• The image is blurred;
• The image is underexposed (i.e., too dark);
• The image is overexposed (i.e., too light);
• The face in the image is illuminated unevenly (there is a great difference between light and dark
regions);

• Image contains flares on face (too specular).

The estimator determines the quality of the image based on each of the aforementioned parameters. For
each parameter, the estimator function returns two values: the quality factor and the resulting verdict.

As with the first estimator function the second one will also return the quality factors in the range [0..1],
where 0 corresponds to low image quality and 1 to high image quality. E. g., the estimator returns low
quality factor for the Blur parameter, if the image is too blurry.

The resulting verdict is a quality output based on the estimated parameter. E. g., if the image is too blurry,
the estimator returns “isBlurred = true”.

The threshold (see below) can be specified for each of the estimated parameters. The resulting verdict
and the quality factor are linked through this threshold. If the received quality factor is lower than the
threshold, the image quality is low and the estimator returns “true”. E. g., if the image blur quality factor
is higher than the threshold, the resulting verdict is “false”.

If the estimated value for any of the parameters is lower than the corresponding threshold, the image is
considered of bad quality. If resulting verdicts for all the parameters are set to “False” the quality of the

VisionLabs B.V. 49 / 244

image is considered good.

The quality factor is a value in the range [0..1] where 0 corresponds to low quality and 1 to high quality.

Illumination uniformity corresponds to the face illumination in the image. The lower the difference
between light and dark zones of the face, the higher the estimated value. When the illumination is
evenly distributed throughout the face, the value is close to “1”.

Specularity is a face possibility to reflect light. The higher the estimated value, the lower the
specularity and the better the image quality. If the estimated value is low, there are bright glares
on the face.

The Quality structure contains results of the estimation made by first CNN. Each estimation is given in
normalized [0, 1] range:

struct Quality {
float light; //!< image overlighting degree. 1 - ok, 0 -

overlighted.
float dark; //!< image darkness degree. 1 - ok, 0 - too dark.
float gray; //!< image grayness degree 1 - ok, 0 - too gray.
float blur; //!< image blur degree. 1 - ok, 0 - too blured.
inline float getQuality() const noexcept; //!< complex estimation

of quality. 0 - low quality, 1 - high quality.
};

The SubjectiveQuality structure contains results of the estimation made by second CNN. Each
estimation is given in normalized [0, 1] range:

struct SubjectiveQuality {
float blur; //!< image blur degree. 1 - ok, 0 - too blured.
float light; //!< image brightness degree. 1 - ok, 0 - too

bright;
float darkness; //!< image darkness degree. 1 - ok, 0 - too dark

;
float illumination; //!< image illumination uniformity degree. 1 -

ok, 0 - is too illuminated;
float specularity; //!< image specularity degree. 1 - ok, 0 - is

not specular;
bool isBlurred; //!< image is blurred flag;
bool isHighlighted; //!< image is overlighted flag;
bool isDark; //!< image is too dark flag;
bool isIlluminated; //!< image is too illuminated flag;
bool isNotSpecular; //!< image is not specular flag;

VisionLabs B.V. 50 / 244

inline bool isGood() const noexcept; //!< if all boolean flags
are false returns true - high quality, else false - low quality.

};

Recommended thresholds:

Tablebelowcontains thresholds fromfaceengineconfiguration file (faceengine.conf) inQualityEstimator
::Settings section. By default, these threshold values are set to optimal.

Table 4: “Image quality estimator recommended thresholds”

Threshold Recommended value

blurThreshold 0.61

darknessThreshold 0.50

lightThreshold 0.57

illuminationThreshold 0.1

specularityThreshold 0.1

The most important parameters for face recognition are “blurThreshold”, “darknessThreshold” and
“lightThreshold”, so you should select them carefully.

You can select images of better visual quality by setting higher values of the “illuminationThreshold” and
“specularityThreshold”. Face recognition is not greatly affected by uneven illumination or glares.

Configurations:

See the “Quality estimator settings” section in the “ConfigurationGuide.pdf” document.

API structure name:

IQualityEstimator

Plan files:

• model_subjective_quality_<version>_cpu.plan
• model_subjective_quality_<version>_cpu-avx2.plan
• model_subjective_quality_<version>_gpu.plan

Note: usePlanV1 toggles the Quality estimation, usePlanV2 toggles the SubjectiveQuality
estimation. These parameters can enable or disable the corresponding functionality via the

faceengine.conf configuration file.

VisionLabs B.V. 51 / 244

<section name="QualityEstimator::Settings">
...

<param name="usePlanV1" type="Value::Int1" x="1" />
<param name="usePlanV2" type="Value::Int1" x="1" />

</section>

Note that you cannot disable both the parameters at the same time. In case you do this, you will receive
the fsdk::FSDKError::InvalidConfig error code and the following logs:

[27.06.2024 12:38:59] [Error] QualityEstimator::Settings Failed to create
QualityEstimator! The both parameters: "usePlanV1" and "usePlanV2" in
section "QualityEstimator::Settings" are disabled at the same time.

VisionLabs B.V. 52 / 244

6.4 Attributes estimation functionality

6.4.1 Face Attribute Estimation

Name: AttributeEstimator

Algorithm description:

The estimator is trained to work with warped images (see chapter “Image warping” for details).

The Attribute estimator determines face attributes. Currently, the following attributes are available:

• Age: determines person’s age;
• Gender: determines person’s gender;

The Attribute estimator returns Ethnicity estimation structure. Each estimation is given in
normalized [0, 1] range.

The Ethnicity estimation structure looks like the struct below:

struct EthnicityEstimation {
float africanAmerican;
float indian;
float asian;
float caucasian;

enum Ethnicities {
AfricanAmerican = 0,
Indian,
Asian,
Caucasian,
Count

};

/**
* @brief Returns ethnicity with greatest score.
* @see EthnicityEstimation::Ethnicities for more info.
* */

inline Ethnicities getPredominantEthnicity() const;

/**
* @brief Returns score of required ethnicity.
* @param [in] ethnicity ethnicity.
* @see EthnicityEstimation::Ethnicities for more info.
* */

inline float getEthnicityScore(Ethnicities ethnicity) const;
};

VisionLabs B.V. 53 / 244

Implementation description:

Before using attribute estimator, user is free todecidewhether to estimate or not some specific attributes
listed above through IAttributeEstimator::EstimationRequest structure, which later get passed in main
estimate()method. Estimator overrides IAttributeEstimator::AttributeEstimationResult output structure,
which consists of optional fields describing results of user requested attributes.

Recommended thresholds:

Tablebelowcontains thresholds fromfaceengineconfiguration file (faceengine.conf) inAttributeEstimator
::Settings section. By default, these threshold values are set to optimal.

Table 5: “Attribute estimator recommended thresholds”

Threshold Recommended value

genderThreshold 0.5

adultThreshold 0.2

Accuracy:

Age:

• For cooperative (see “Appendix B. Glossary”) conditions: average error depends onperson age, see
table below for additional details. Estimation accuracy is 2.3.

Gender:

• Estimation accuracy in cooperative mode is 99.81%with the threshold 0.5;
• Estimation accuracy in non-cooperative mode is 92.5%.

Table 6: “Average age estimation error per age group for cooperative conditions”

Age (years) Average error (years)

0-3 ±3.3

4-7 ±2.97

8-12 ±3.06

13-17 ±4.05

17-20 ±3.89

20-25 ±1.89

25-30 ±1.88

VisionLabs B.V. 54 / 244

Age (years) Average error (years)

30-35 ±2.42

35-40 ±2.65

40-45 ±2.78

45-50 ±2.88

50-55 ±2.85

55-60 ±2.86

60-65 ±3.24

65-70 ±3.85

70-75 ±4.38

75-80 ±6.79

In earlier releases of Luna SDK Attribute estimator worked poorly in non-cooperative mode (only
56% gender estimation accuracy), and did not estimate child’s age. Having solved these problems
average estimation error per age group got a bit higher due to extended network functionality.

Configurations:

See the “AttributeEstimator settings” section in the “ConfigurationGuide.pdf” document.

API structure name:

IAttributeEstimator

Plan files:

• attributes_estimation_v6_cpu.plan
• attributes_estimation_v6_cpu-avx2.plan
• attributes_estimation_v6_gpu.plan

VisionLabs B.V. 55 / 244

6.4.2 Credibility Check Estimation

Name: CredibilityCheckEstimator

Algorithm description:

This estimator estimates reliability of a person.

Implementation description:

The estimator (see ICredibilityCheckEstimator in ICredibilityCheckEstimator.h):

• Implements the estimate() function that accepts warped image in R8B8G8 format and fsdk::
CredibilityCheckEstimation structure.

• Implements the estimate() function that accepts span of warped images in R8B8G8 format and
span of fsdk::CredibilityCheckEstimation structures.

The CredibilityCheckEstimation structure contains results of the estimation:

struct CredibilityCheckEstimation {
float value; //!< estimation in [0,1] range

.
//!< The closer the score to

1,
//!< the more likely that

person is reliable.

CredibilityStatus credibilityStatus; //!< estimation result
//!< (@see CredibilityStatus

enum).
};

Enumeration of possible credibility statuses:

enum class CredibilityStatus : uint8_t {
Reliable = 1, //!< person is reliable
NonReliable = 2 //!< person is not reliable

};

Recommended thresholds:

Tablebelowcontains thresholds fromfaceengineconfiguration file (faceengine.conf) inCredibilityEstimator
::Settings section. By default, this threshold value is set to optimal.

VisionLabs B.V. 56 / 244

Table 7: “Credibility check estimator recommended threshold”

Threshold Recommended value

reliableThreshold 0.5

Filtration parameters:

The estimator is trained to work with face images that meet the following requirements:

Table 8: “Requirements for fsdk::HeadPoseEstimation”

Attribute Acceptable angle range(degrees)

pitch [-20…20]

yaw [-20…20]

roll [-20…20]

Table 9: “Requirements for fsdk::SubjectiveQuality”

Attribute Minimum value

blur 0.61

light 0.57

Table 10: “Requirements for fsdk::AttributeEstimationResult”

Attribute Minimum value

age 18

VisionLabs B.V. 57 / 244

Table 11: “Requirements for fsdk::OverlapEstimation”

Attribute State

overlapped false

Table 12: “Requirements for fsdk::Detection”

Attribute Minimum value

detection size 100

Detection size is detection width.

const fsdk::Detection detection = ... // somehow get fsdk::Detection object
const int detectionSize = detection.getRect().width;

Configurations:

See the “Credibility Estimator settings” section in the “ConfigurationGuide.pdf” document.

API structure name:

ICredibilityCheckEstimator

Plan files:

• credibility_check_cpu.plan
• credibility_check_cpu-avx2.plan
• credibility_check_gpu.plan

VisionLabs B.V. 58 / 244

6.5 Facial Hair Estimation

Name: FacialHairEstimator

Algorithm description:

This estimator aims to detect a facial hair type on the face in the source image. It can return the next
results:

• There is no hair on the face (see FacialHair::NoHair field in the FacialHair enum);
• There is stubble on the face (see FacialHair::Stubble field in the FacialHair enum);
• There is mustache on the face (see FacialHair::Mustache field in the FacialHair enum);
• There is beard on the face (see FacialHair::Beard field in the FacialHair enum).

Implementation description:

The estimator (see IFacialHairEstimator in IFacialHairEstimator.h):

• Implements the estimate() function that accepts source warped image in R8G8B8 format and
FacialHairEstimation structure to return results of estimation;

• Implements the estimate() function that accepts fsdk::Span of the source warped images
in R8G8B8 format and fsdk::Span of the FacialHairEstimation structures to return results of
estimation.

The FacialHair enumeration contains all possible results of the FacialHair estimation:

enum class FacialHair {
NoHair = 0, //!< no hair on the face
Stubble, //!< stubble on the face
Mustache, //!< mustache on the face
Beard //!< beard on the face

};

The FacialHairEstimation structure contains results of the estimation:

struct FacialHairEstimation {
FacialHair result; //!< estimation result (@see FacialHair

enum)
// scores
float noHairScore; //!< no hair on the face score
float stubbleScore; //!< stubble on the face score
float mustacheScore; //!< mustache on the face score
float beardScore; //!< beard on the face score

};

There are two groups of the fields:

VisionLabs B.V. 59 / 244

1� The first group contains only the result enum:

FacialHair result; //!< estimation result (@see FacialHair
enum)

Result enum field FacialHairEstimation contain the target results of the estimation.

2� The second group contains scores:

float noHairScore; //!< no hair on the face score
float stubbleScore; //!< stubble on the face score
float mustacheScore; //!< mustache on the face score
float beardScore; //!< beard on the face score

The scores group contains the estimation scores for each possible result of the estimation.

All scores are defined in [0,1] range. Sum of scores always equals 1.

Filtration parameters:

The estimator is trained to work with face images that meet the following requirements:

Table 13: “Requirements for fsdk::HeadPoseEstimation”

Attribute Acceptable angle range(degrees)

pitch [-40…40]

yaw [-40…40]

roll [-40…40]

Table 14: “Requirements for fsdk::MedicalMaskEstimation”

Attribute State

result fsdk::MedicalMask::NoMask

VisionLabs B.V. 60 / 244

Table 15: “Requirements for fsdk::Detection”

Attribute Minimum value

detection size 40

Detection size is detection width.

const fsdk::Detection detection = ... // somehow get fsdk::Detection object
const int detectionSize = detection.getRect().width;

API structure name:

IFacialHairEstimator

Plan files:

• face_hair_v2_cpu.plan
• face_hair_v2_cpu-avx2.plan
• face_hair_v2_gpu.plan

VisionLabs B.V. 61 / 244

6.6 Natural Light Estimation

Name: NaturalLightEstimator

Algorithm description:

This estimator aims to detect a natural light on the source face image. It can return the next results:

• Light is not natural on the face image (see LightStatus::NonNatural field in the LightStatus
enum);

• Light is natural on the face image (see LightStatus::Natural field in the LightStatus enum).

Implementation description:

The estimator (see INaturalLightEstimator in INaturalLightEstimator.h):

• Implements the estimate() function that accepts source warped image in R8G8B8 format and
NaturalLightEstimation structure to return results of estimation;

• Implements the estimate() function that accepts fsdk::Span of the source warped images in
R8G8B8 format and fsdk::Span of the NaturalLightEstimation structures to return results of
estimation.

The LightStatus enumeration contains all possible results of the NaturalLight estimation:

enum class LightStatus : uint8_t {
NonNatural = 0, //!< light is not natural
Natural = 1 //!< light is natural

};

The NaturalLightEstimation structure contains results of the estimation:

struct NaturalLightEstimation {
LightStatus status; //!< estimation result (@see

NaturalLight enum).
float score; //!< Numerical value in range [0,

1].
};

There are two groups of the fields:

1� The first group contains only the result enum:

LightStatus status; //!< estimation result (@see
LightStatus enum).

Result enum field NaturalLightEstimation contain the target results of the estimation.

VisionLabs B.V. 62 / 244

2� The second group contains scores:

float score; //!< Numerical value in range [0,
1].

The scores group contains the estimation scores for each possible result of the estimation.

All scores are defined in [0,1] range. Sum of scores always equals 1.

Recommended thresholds:

Tablebelowcontains thresholds fromfaceengineconfiguration file (faceengine.conf) inNaturalLightEstimator
::Settings section. By default, this threshold value is set to optimal.

Table 16: “Natural light estimator recommended threshold”

Threshold Recommended value

naturalLightThreshold 0.5

Filtration parameters:

The estimator is trained to work with face images that meet the following requirements:

Table 17: “Requirements for fsdk::MedicalMaskEstimation”

Attribute State

result fsdk::MedicalMask::NoMask

Table 18: “Requirements for fsdk::SubjectiveQuality”

Attribute Minimum value

blur 0.5

Also fsdk::GlassesEstimationmust not be equal to fsdk::GlassesEstimation::SunGlasses.

Configurations:

See the “Natural Light Estimator settings” section in the “ConfigurationGuide.pdf” document.

VisionLabs B.V. 63 / 244

API structure name:

INaturalLightEstimator

Plan files:

• natural_light_cpu.plan
• natural_light_cpu-avx2.plan
• natural_light_gpu.plan

VisionLabs B.V. 64 / 244

6.7 Fish Eye Estimation

Name: FishEyeEstimator

Algorithm description:

This estimator aims to detect a fish eye effect on the source face image. It can return the next fish eye
effect status results:

• There is no fisheyeeffecton the face image (seeFishEye::NoFishEyeEffect field in theFishEye
enum);

• There is fish eye effect on the face image (see FishEye::FishEyeEffect field in the FishEye
enum).

Implementation description:

The estimator (see IFishEyeEstimator in IFishEyeEstimator.h):

• Implements the estimate() function that accepts source image in R8G8B8 format, face detection
and FishEyeEstimation structure to return results of estimation;

• Implements the estimate() function that accepts fsdk::Span of the source images in R8G8B8
format, fsdk::Span of the face detections and fsdk::Span of the FishEyeEstimation structures
to return results of estimation.

The FishEye enumeration contains all possible results of the FishEye estimation:

enum class FishEye {
NoFishEyeEffect = 0, //!< no fish eye effect
FishEyeEffect = 1 //!< with fish eye effect

};

The FishEyeEstimation structure contains results of the estimation:

struct FishEyeEstimation {
FishEye result; //!< estimation result (@see FishEye enum)
float score; //!< fish eye effect score

};

There are two groups of the fields:

1� The first group contains only the result enum:

FishEye result; //!< estimation result (@see FishEye enum)

Result enum field FishEyeEstimation contain the target results of the estimation.

VisionLabs B.V. 65 / 244

2� The second group contains scores:

float score; //!< fish eye effect score

The scores group contains the estimation score.

Recommended thresholds:

Tablebelowcontains threshold fromfaceengineconfiguration file (faceengine.conf) inFishEyeEstimator
::Settings section. By default, this threshold value is set to optimal.

Table 19: “Fish Eye estimator recommended threshold”

Threshold Recommended value

fishEyeThreshold 0.5

Recommended scenarios of algorithm usage:

Data domain: Cooperative mode only. It is means:

• High image quality;
• Frontal face looking directly at the camera.

Filtration parameters:

The estimator is trained to work with face images that meet the following requirements:

Table 20: “Requirements for fsdk::HeadPoseEstimation”

Attribute Acceptable angle range(degrees)

pitch [-8…8]

yaw [-8…8]

roll [-8…8]

Table 21: “Requirements for fsdk::Detection”

Attribute Minimum value

detection size 80

VisionLabs B.V. 66 / 244

Detection size is detection width.

const fsdk::Detection detection = ... // somehow get fsdk::Detection object
const int detectionSize = detection.getRect().width;

Configurations:

See the “Fish Eye Estimator settings” section in the “ConfigurationGuide.pdf” document.

API structure name:

IFishEyeEstimator

Plan files:

• fisheye_v2_cpu.plan
• fisheye_v2_cpu-avx2.plan
• fisheye_v2_gpu.plan

VisionLabs B.V. 67 / 244

6.8 Eyebrows Estimation

Name: EyeBrowEstimator

Algorithm description:

This estimator is trained to estimate eyebrow expressions. The EyeBrowEstimator returning four scores
for each possible eyebrow expression. Which are - neutral, raised, squinting, frowning. Possible
scores are in the range [0, 1].

If score closer to1, itmeans that detected expressionon image ismore likely to real expression and closer
to 0 otherwise.

Alongwith the output score value estimator also returns an enumvalue (EyeBrowState). The index of the
maximum score determines the EyeBrow state.

Implementation description:

The estimator (see IEyeBrowEstimator in IEyeBrowEstimator.h):

• Implements the estimate() function acceptswarped source image. Warped image is received from
thewarper (seeIWarper::warp()); Outputestimation isa structurefsdk::EyeBrowEstimation
.

• Implements the estimate() function that needs the span of warped source images and span
of structure fsdk::EyeBrowEstimation. Output estimation is a span of structure fsdk::
EyeBrowEstimation.

The EyeBrowEstimation structure contains results of the estimation:

struct EyeBrowEstimation {
/**
* @brief EyeBrow estimator output enum.
* This enum contains all possible estimation results.

**/
enum class EyeBrowState {

Neutral = 0,
Raised,
Squinting,
Frowning

};

float neutralScore; //!< 0(not neutral)..1(neutral).
float raisedScore; //!< 0(not raised)..1(raised).
float squintingScore; //!< 0(not squinting)..1(squinting).
float frowningScore; //!< 0(not frowning)..1(frowning).
EyeBrowState eyeBrowState; //!< EyeBrow state

VisionLabs B.V. 68 / 244

};

Filtration parameters:

Table 22: “Requirements for fsdk::EyeBrowEstimation”

Attribute Acceptable values

headPose.pitch [-20…20]

headPose.yaw [-20…20]

headPose.roll [-20…20]

Table 23: “Requirements for fsdk::Detection”

Attribute Minimum value

detection size 80

Detection size is detection width.

const fsdk::Detection detection = ... // somehow get fsdk::Detection object
const int detectionSize = detection.getRect().width;

API structure name:

IEyeBrowEstimator

Plan files:

• eyebrow_estimation_v2_cpu.plan
• eyebrow_estimation_v2_cpu-avx2.plan
• eyebrow_estimation_v2_gpu.plan

VisionLabs B.V. 69 / 244

6.9 Portrait Style Estimation

Name: PortraitStyleEstimator

Algorithm description:

This estimator is designed to estimate the position of a person’s shoulders in the original image. It can
return the following results:

• The shoulders are not parallel to the camera (see the PortraitStyleStatus::NonPortrait
field in the PortraitStyleStatus enum);

• Shoulders are parallel to the camera (see the PortraitStyleStatus::Portrait field in the
PortraitStyleStatus enum);

• Shoulders are hidden (see the PortraitStyleStatus::HiddenShoulders field in the
PortraitStyleStatus enum);

Implementation description:

The Estimator (see IPortraitStyleEstimator in IPortraitStyleEstimator.h):

• Implementsestimate() function thatacceptsR8G8B8 source image, detectionandPortraitStyleEstimation
structure to return estimation results;

• Implements an estimate() function that accepts fsdk::Span of R8G8B8 source images, fsdk::
Span of detections, and fsdk::Span of PortraitStyleEstimation structures to return estimation
results.

The PortraitStyleStatus enumeration contains all possible results of the PortraitStyle estimation:

enum class PortraitStyleStatus : uint8_t {
NonPortrait = 0, //!< NonPortrait
Portrait = 1, //!< Portrait
HiddenShoulders = 2 //!< HiddenShoulders

};

The PortraitStyleEstimation structure contains results of the estimation:

struct PortraitStyleEstimation {
PortraitStyleStatus status; //!< estimation result (@see

PortraitStyleStatus enum).
float nonPortraitScore; //!< numerical value in range

[0, 1]
float portraitScore; //!< numerical value in range

[0, 1]
float hiddenShouldersScore; //!< numerical value in range

[0, 1]

VisionLabs B.V. 70 / 244

};

There are two groups of the fields:

1� The first group contains the enum:

PortraitStyleStatus status; //!< estimation result (@see
PortraitStyleStatus enum).

Result enum field PortraitStyleStatus contain the target results of the estimation.

2� The second group contains score:

float nonPortraitScore; //!< numerical value in range
[0, 1]

float portraitScore; //!< numerical value in range
[0, 1]

float hiddenShouldersScore; //!< numerical value in range
[0, 1]

The scores are defined in [0,1] range.

Recommended thresholds:

Tablebelowcontains threshold fromfaceengineconfiguration file (faceengine.conf) inPortraitStyleEstimator
::Settings section. By default, this threshold value is set to optimal.

Table 24: “Portrait Style estimator recommended threshold”

Threshold Recommended value

notPortraitStyleThreshold 0.2

portraitStyleThreshold 0.35

hiddenShouldersThreshold 0.2

Filtration parameters:

The estimator is trained to work with face images that meet the following requirements:

Type of preferable detector is FaceDetV3.

VisionLabs B.V. 71 / 244

Table 25: “Requirements for Detector”

Attribute Min face size

result 40

Table 26: “Requirements for fsdk::HeadPoseEstimation”

Attribute Maximum value

yaw 20.0

pitch 20.0

roll 20.0

Configurations:

See the “Portrait Style Estimator settings” section in the “ConfigurationGuide.pdf” document.

API structure name:

IPortraitStyleEstimator

Plan files:

• portrait_style_v3_cpu.plan
• portrait_style_v3_cpu-avx2.plan
• portrait_style_v3_gpu.plan

VisionLabs B.V. 72 / 244

6.10 DynamicRange Estimation

Name: DynamicRangeEstimator

Algorithm description:

This estimator is designed to estimate dynamic range of an original image with person’s face.

Implementation description:

The Estimator (see IDynamicRangeEstimator in IDynamicRangeEstimator.h):

• Implementsestimate() function thatacceptsR8G8B8 source image, detectionandDynamicRangeEstimation
structure to return estimation results;

• Implements an estimate() function that accepts fsdk::Span of R8G8B8 source images, fsdk::
Span of detections, and fsdk::Span of DynamicRangeEstimation structures to return estimation
results.

The DynamicRangeEstimation structure contains results of the estimation:

struct DynamicRangeEstimation {
float dynamicRangeScore; //!< numerical value in range

[0, 1]
};

Result estimation DynamicRangeEstimation contains the target score.

float dynamicRangeScore; //!< numerical value in range
[0, 1]

The score is defined in [0,1] range.

Recommended thresholds:

Table below contains recommended user’s threshold.

Table 27: “Dynamic Range estimator recommended threshold”

Threshold Recommended value

threshold 0.5

API structure name:

IDynamicRangeEstimator

VisionLabs B.V. 73 / 244

Plan files:

DynamicRangeEstimator does not use any additional models (plans, files and etc.), this is an ISO-based
algorithm that is currently only implemented on CPU devices.

VisionLabs B.V. 74 / 244

6.11 Headwear Estimation

Name: HeadWearEstimator

Algorithm description:

This estimator aims to detect a headwear status and headwear type on the face in the source image. It
can return the next headwear status results:

• There is headwear (see HeadWearState::Yes field in the HeadWearState enum);
• There is no headwear (see HeadWearState::No field in the HeadWearState enum);

And this headwear type results:

• There is no headwear on the head (see HeadWearType::NoHeadWear field in the HeadWearType
enum);

• There is baseball cap on the head (see HeadWearType::BaseballCap field in theHeadWearType
enum);

• There is beanie on the head (see HeadWearType::Beanie field in the HeadWearType enum);
• There is peaked cap on the head (see HeadWearType::PeakedCap field in the HeadWearType
enum);

• There is shawl on the head (see HeadWearType::Shawl field in the HeadWearType enum);
• There is hat with ear flaps on the head (see HeadWearType::HatWithEarFlaps field in the
HeadWearType enum);

• There is helmet on the head (see HeadWearType::Helmet field in the HeadWearType enum);
• There is hood on the head (see HeadWearType::Hood field in the HeadWearType enum);
• There is hat on the head (see HeadWearType::Hat field in the HeadWearType enum);
• There is something other on the head (see HeadWearType::Other field in the HeadWearType
enum);

Implementation description:

The estimator (see IHeadWearEstimator in IHeadWearEstimator.h):

• Implements the estimate() function that accepts warped image in R8G8B8 format and
HeadWearEstimation structure to return results of estimation;

• Implements the estimate() function that accepts fsdk::Span of the source warped images
in R8G8B8 format and fsdk::Span of the HeadWearEstimation structures to return results of
estimation.

TheHeadWearState enumeration contains all possible results of the Headwear state estimation:

enum class HeadWearState {
Yes = 0, //< there is headwear
No, //< there is no headwear
Count

VisionLabs B.V. 75 / 244

};

TheHeadWearType enumeration contains all possible results of the Headwear type estimation:

enum class HeadWearType : uint8_t {
NoHeadWear = 0, //< there is no headwear on the head
BaseballCap, //< there is baseball cap on the head
Beanie, //< there is beanie on the head
PeakedCap, //< there is peaked cap on the head
Shawl, //< there is shawl on the head
HatWithEarFlaps, //< there is hat with ear flaps on the head
Helmet, //< there is helmet on the head
Hood, //< there is hood on the head
Hat, //< there is hat on the head
Other, //< something other is on the head
Count

};

TheHeadWearStateEstimation structure contains results of the Headwear state estimation:

struct HeadWearStateEstimation {
HeadWearState result; //!< estimation result (@see HeadWearState

enum)
float scores[static_cast<int>(HeadWearState::Count)]; //!<

estimation scores

/**
* @brief Returns score of required headwear state.
* @param [in] state headwear state.
* @see HeadWearState for more info.
* */

inline float getScore(HeadWearState state) const;
};

There are two groups of the fields:

1� The first group contains only the result enum:

HeadWearState result; //!< estimation result (@see HeadWearState
enum)

2� The second group contains scores:

VisionLabs B.V. 76 / 244

float scores[static_cast<int>(HeadWearState::Count)]; //!<
estimation scores

TheHeadWearTypeEstimation structure contains results of the Headwear type estimation:

struct HeadWearTypeEstimation {
HeadWearType result; //!< estimation result (@see HeadWearType enum)
float scores[static_cast<int>(HeadWearType::Count)]; //!< estimation

scores

/**
* @brief Returns score of required headwear type.
* @param [in] type headwear type.
* @see HeadWearType for more info.
* */

inline float getScore(HeadWearType type) const;
};

There are two groups of the fields:

1� The first group contains only the result enum:

HeadWearType result; //!< estimation result (@see HeadWearType enum)

2� The second group contains scores:

float scores[static_cast<int>(HeadWearType::Count)]; //!< estimation
scores

TheHeadWearEstimation structure contains results of both Headwear state and type estimations:

struct HeadWearEstimation {
HeadWearStateEstimation state; //!< headwear state estimation

//!< (@see HeadWearStateEstimation)
HeadWearTypeEstimation type; //!< headwear type estimation

//!< (@see HeadWearTypeEstimation)
};

The scores group contains the estimation scores for each possible result of the estimation. All scores are
defined in [0,1] range. Sum of scores always equals 1.

Filtration parameters:

VisionLabs B.V. 77 / 244

Table 28: “Requirements for fsdk::Detection”

Attribute Minimum value

detection size 80

Note. Detection size is detection width.

const fsdk::Detection detection = ... // somehow get fsdk::Detection object
const int detectionSize = detection.getRect().width;

API structure name:

IHeadWearEstimator

Plan files:

• head_wear_v2_cpu.plan
• head_wear_v2_cpu-avx2.plan
• head_wear_v2_gpu.plan

VisionLabs B.V. 78 / 244

6.12 Background Estimation

Name: BackgroundEstimator

Algorithm description:

This estimator is designed to estimate the background in the original image. It can return the following
results:

• Thebackground isnon-solid (see theBackgroundStatus::NonSolid field in theBackgroundStatus
enum);

• The background is solid (see the BackgroundStatus::Solid field in the BackgroundStatus
enum);

Implementation description:

The estimator (see IBackgroundEstimator in IBackgroundEstimator.h):

• Implements an estimate() function that accepts R8G8B8 source image, detection and
BackgroundEstimation structure to return estimation results;

• Implements an estimate() function that accepts fsdk::Span of R8G8B8 source images, fsdk::
Span of detections, and fsdk::Span of BackgroundEstimation structures to return estimation
results.

The BackgroundStatus enumeration contains all possible results of the Background estimation:

enum class BackgroundStatus : uint8_t {
NonSolid = 0, //!< NonSolid
Solid = 1 //!< Solid

};

The BackgroundEstimation structure contains results of the estimation:

struct BackgroundEstimation {
BackgroundStatus status; //!< estimation result (@see

BackgroundStatus enum).
float backgroundScore; //!< numerical value in range [0, 1],

where 1 - is uniform background, 0 - is non uniform.
float backgroundColorScore; //!< numerical value in range [0, 1],

where 1 - is light background, 0 - is too dark.
};

There are two groups of the fields:

1� The first group contains the enum:

VisionLabs B.V. 79 / 244

BackgroundStatus status; //!< estimation result (@see
BackgroundStatus enum).

Result enum field BackgroundStatus contain the target results of the estimation.

2� The second group contains scores:

float backgroundScore; //!< numerical value in range [0, 1],
where 1 - is solid background, 0 - is non solid.

float backgroundColorScore; //!< numerical value in range [0, 1],
where 1 - is light background, 0 - is too dark.

The scores are defined in the [0,1] range. If two scores are above the threshold, then the background is
solid, otherwise the background is not solid.

Recommended thresholds:

The table below contains thresholds specified in BackgroundEstimator::Settings section of the
FaceEngine configuration file (faceengine.conf). By default, these threshold values are set to optimal.

Table 29: “Background estimator recommended thresholds”

Threshold Recommended value

backgroundThreshold 0.5

backgroundColorThreshold 0.3

Filtration parameters:

The estimator is trained to work with face images that meet the following requirements: The face in a
frame should be large in relation to frame sizes. The face should occupy about half of the frame area.

max(frameWidth, frameHeight) / max(faceWidth, faceHeight) <= 2.0

The type of preferable detector is FaceDetV3.

Table 30: “Requirements for Detector”

Attribute Min face size

result 40

VisionLabs B.V. 80 / 244

Table 31: “Requirements for fsdk::HeadPoseEstimation”

Attribute Maximum value

yaw 20.0

pitch 20.0

roll 20.0

Configurations:

See the “Background Estimator settings” section in the “ConfigurationGuide.pdf” document.

API structure name:

IBackgroundEstimator

Plan files:

• background_v2_cpu.plan
• background_v2_cpu-avx2.plan
• background_v2_gpu.plan

VisionLabs B.V. 81 / 244

6.13 Grayscale, color or infrared Estimation

Name: BlackWhiteEstimator

Algorithm description:

BlackWhite estimator has two interfaces.

The “By full frame” interface detects if an input image is grayscale or color. It is indifferent to image
content and dimensions; you can pass both face crops (including warped images) and full frames.

The “Bywarped frame” interface can be used only with warped images (see chapter “Imagewarping” for
details). Checks if an image is color, grayscale or infrared.

Implementation description:

The “By full frame” interface of estimator (see ImageColorEstimation in IBlackWhiteEstimator.h):

• Implements estimate() function that accepts source image andoutputs a boolean, indicating if the
image is grayscale (true) or not (false).

The “By warped frame” interface of estimator (see IBlackWhiteEstimator in IBlackWhiteEstimator.h):

• Implements the estimate() function that acceptswarped source image.

• Outputs ImageColorEstimation structures.

struct ImageColorEstimation {

float colorScore; //!< 0(grayscale)..1(color);
float infraredScore; //!< 0(infrared)..1(not infrared);

/**
* @brief Enumeration of possible image color types.
* */

enum class ImageColorType : uint8_t {
Color = 0, //!< image is color.
Grayscale, //!< Image is grayscale.
Infrared, //!< Image is infrared.

};

ImageColorType colorType;
};

ImageColorEstimation::ImageColorType presents color image type as enumwith possible values:
Color, Grayscale, Infrared.

VisionLabs B.V. 82 / 244

- For color image score `colorScore` will be close to 1.0 and the second one
`infraredScore` - to 0.0;

- for infrared image score `colorScore` will be close to 0.0 and the second
one `infraredScore` - to 1.0;

- for grayscale images both of scores will be near 0.0.

Both interfaces use different principles of color type estimation.

BlackWhite estimator is trained to work with real warped photo of faces. We do not guarantee
correctness when the people in the photo are fake (not real, such as the photo in the photo).

Recommended thresholds:

Tablebelowcontains threshold fromfaceengineconfiguration file (faceengine.conf) inBlackWhiteEstimator
::Settings section. By default, these threshold values are set to optimal.

Table 32: “Black and white estimator recommended thresholds”

Threshold Recommended value

colorThreshold 0.5

irThreshold 0.5

Configurations:

See the “BlackWhite Estimator settings” section in the “ConfigurationGuide.pdf” document.

API structure name:

IBlackWhiteEstimator

Plan files:

• black_white_and_ir_v1_cpu.plan
• black_white_and_ir_v1_cpu-avx2.plan
• black_white_and_ir_v1_gpu.plan

VisionLabs B.V. 83 / 244

6.14 Face features extraction functionality

6.14.1 Eyes Estimation

Name: EyeEstimator

Algorithm description:

The estimator is trained to work with warped images (see chapter “Image warping” for details).

For this type of estimator can be defined sensor type.

This estimator aims to determine:

• Eye state: Open, Closed, Occluded;
• Precise eye iris location as an array of landmarks;
• Precise eyelid location as an array of landmarks.

You can only passwarped imagewith detected face to the estimator interface. Better image quality leads
to better results.

Eye state classifier supports three categories: “Open”, “Closed”, “Occluded”. Poor quality images or ones
that depict obscured eyes (think eyewear, hair, gestures) fall into the “Occluded” category. It is always a
good idea to check eye state before using the segmentation result.

The precise location allows iris and eyelid segmentation. The estimator is capable of outputting iris and
eyelid shapes as an array of points together forming an ellipsis. You should only use segmentation results
if the state of that eye is “Open”.

Implementation description:

The estimator:

• Implements the estimate() function that accepts warped source image and warped landmarks,
either of type Landmarks5 or Landmarks68. The warped image and landmarks are received from
the warper (see IWarper::warp());

• Classifies eyes state and detects its iris and eyelid landmarks;

• Outputs EyesEstimation structures.

Orientation terms “left” and “right” refer to the way you see the image as it is shown on the screen.
It means that left eye is not necessarily left from the person’s point of view, but is on the left side
of the screen. Consequently, right eye is the one on the right side of the screen. More formally, the
label “left” refers to subject’s left eye (and similarly for the right eye), such that xright < xleft.

EyesEstimation::EyeAttributes presents eye state as enum EyeState with possible values: Open,
Closed, Occluded.

Iris landmarks are presented with a template structure Landmarks that is specialized for 32 points.

VisionLabs B.V. 84 / 244

Eyelid landmarks are presented with a template structure Landmarks that is specialized for 6 points.

The EyesEstimation structure contains results of the estimation:

struct EyesEstimation {
/**
* @brief Eyes attribute structure.
* */

struct EyeAttributes {
/**
* @brief Enumeration of possible eye states.
* */
enum class State : uint8_t {

Closed, //!< Eye is closed.
Open, //!< Eye is open.
Occluded //!< Eye is blocked by something not transparent

, or landmark passed to estimator doesn't point to an eye
.

};

static constexpr uint64_t irisLandmarksCount = 32; //!< Iris
landmarks amount.

static constexpr uint64_t eyelidLandmarksCount = 6; //!< Eyelid
landmarks amount.

/// @brief alias for @see Landmarks template structure with
irisLandmarksCount as param.

using IrisLandmarks = Landmarks<irisLandmarksCount>;

/// @brief alias for @see Landmarks template structure with
eyelidLandmarksCount as param

using EyelidLandmarks = Landmarks<eyelidLandmarksCount>;

State state; //!< State of an eye.

IrisLandmarks iris; //!< Iris landmarks.
EyelidLandmarks eyelid; //!< Eyelid landmarks

};

EyeAttributes leftEye; //!< Left eye attributes
EyeAttributes rightEye; //!< Right eye attributes

};

API structure name:

VisionLabs B.V. 85 / 244

IEyeEstimator

Plan files:

• eyes_estimation_flwr8_cpu.plan
• eyes_estimation_ir_cpu.plan
• eyes_estimation_flwr8_cpu-avx2.plan
• eyes_estimation_ir_cpu-avx2.plan
• eyes_estimation_ir_gpu.plan
• eyes_estimation_flwr8_gpu.plan
• eye_status_estimation_cpu.plan
• eye_status_estimation_cpu-avx2.plan
• eye_status_estimation_gpu.plan

VisionLabs B.V. 86 / 244

6.14.2 Red Eyes Estimation

Name: RedEyeEstimator

Algorithm description:

The estimator is trained to work with warped images (see chapter “Image warping” for details) and
warped landmarks.

Red Eye estimator evaluates whether a person’s eyes are red in a photo or not.

You can pass only warped images with detected faces to the estimator interface. Better image quality
leads to better results.

Implementation description:

The estimator (see IRedEyeEstimator in IEstimator.h):

• Implements the estimate() function that accepts warped source image in R8G8B8 format and
warped Landmarks5. The warped image and landmarks are received from the warper (see
IWarper::warp());.

• Implements the estimate() function that accepts fsdk::Span of the source warped images in
R8G8B8 format and fsdk::Span of warped Landmarks.

• Outputs RedEyeEstimation structure.

RedEyeEstimation structure consists of attributes for each eye. Eye attributes consists of a score of and
status. Scores is normalized float value in a range of [0..1] where 1 is red eye and 0 is not.

The RedEyeEstimation structure contains results of the estimation:

struct RedEyeEstimation {
/**
* @brief Eyes attribute structure.
* */

struct RedEyeAttributes {
RedEyeStatus status; //!< Status of an eye.
float score; //!< Score, numerical value in range

[0,1].
};

RedEyeAttributes leftEye; //!< Left eye attributes
RedEyeAttributes rightEye; //!< Right eye attributes

};

There are two groups of the fields in RedEyeAttributes:

1� The first field is a status:

VisionLabs B.V. 87 / 244

RedEyeStatus status; //!< Status of an eye.

2� The second field is a score, which defined in [0,1] range:

float score; //!< Score, numerical value in range [0, 1].

Enumeration of possible red eye statuses.

enum class RedEyeStatus : uint8_t {
NonRed, //!< Eye is not red.
Red, //!< Eye is red.

};

Recommended thresholds:

Tablebelowcontains threshold fromfaceengineconfiguration file (faceengine.conf) inRedEyeEstimator
::Settings section. By default, this threshold value is set to optimal.

Table 33: “Red eye estimator recommended threshold”

Threshold Recommended value

redEyeThreshold 0.5

Filtration parameters:

The estimator is trained to work with face images that meet the following requirements:

Table 34: “Requirements for fsdk::NaturalLight”

Attribute Minimum value

score 0.5

Table 35: “Requirements for fsdk::SubjectiveQuality”

Attribute Minimum value

blur 0.61

VisionLabs B.V. 88 / 244

Attribute Minimum value

light 0.57

darkness 0.5

illumination 0.1

specularity 0.1

Also fsdk::GlassesEstimationmust not be equal to fsdk::GlassesEstimation::SunGlasses.

Configurations:

See the “RedEyeEstimator settings” section in the “ConfigurationGuide.pdf” document.

API structure name:

IRedEyeEstimator

Plan files:

• red_eye_v1_cpu.plan
• red_eye_v1_cpu-avx2.plan
• red_eye_v1_gpu.plan

VisionLabs B.V. 89 / 244

6.14.3 Gaze Estimation

Name: GazeEstimator

Algorithm description:

This estimator is designed to determine gaze direction relatively to head pose estimation. Since 3D head
translation is hard todetermine reliablywithout camera-specific calibration, only 3D rotation component
is estimated.

For this type of estimator can be defined sensor type.

Estimation characteristics:

• Units (degrees);
• Notation (Euler angles);
• Accuracy (see table below).

Roll angle is not estimated, prediction accuracy decreases as a rotation angle increases. We present
typical average errors for different angle ranges in the table below.

Implementation description:

The GazeEstimation structure contains results of the estimation. Each angle is measured in degrees
and in [-180, 180] range:

struct GazeEstimation {
float yaw; //!< Eye yaw angle.
float pitch; //!< Eye pitch angle.

};

Metrics:

Table below contains gaze prediction accuracy values.

Table 36: “Gaze prediction accuracy”

Range -25°…+25° -25°… -45 ° or 25 °… +45°

Average prediction error (per axis) Yaw ±2.7° ±4.6°

Average prediction error (per axis) Pitch ±3.0° ±4.8°

Zero position corresponds to a gaze direction orthogonally to face plane, with the axis of symmetry
parallel to the vertical camera axis.

API structure name:

VisionLabs B.V. 90 / 244

IGazeEstimator

Plan files:

• gaze_v2_cpu.plan
• gaze_v2_cpu-avx2.plan
• gaze_v2_gpu.plan
• gaze_ir_v2_cpu.plan
• gaze_ir_v2_cpu-avx2.plan
• gaze_ir_v2_gpu.plan

VisionLabs B.V. 91 / 244

6.15 Head Pose Estimation

This estimator is designed to determine a camera-space head pose. Since the 3D head translation is hard
to reliably determinewithout a camera-specific calibration, only the 3D rotation component is estimated.

There are two head pose estimation methods available:

• Estimate by 68 face-aligned landmarks. You can get it from the Detector facility, see Chapter “Face
detection facility” for details.

• Estimate by the original input image in the RGB format.

An estimation by the image is more precise. If you have already extracted 68 landmarks for another
facilities, you can save time and use the fast estimator from 68 landmarks.

By default, all methods are available to use in the faceengine.conf configuration file in section
“HeadPoseEstimator”. You can disable these methods to decrease RAM usage and initialization time.

Estimation characteristics:

• Units (degrees)
• Notation (Euler angles)
• Precision (see table 37)

Note: Prediction precision decreases as a rotation angle increases. We present typical average
errors for different angle ranges in the table 37.

Table 37: “Head pose prediction precision”

Range -45°…+45° < -45° or > +45°

Average prediction error (per axis) Yaw ±2.7° ±4.6°

Average prediction error (per axis) Pitch ±3.0° ±4.8°

Average prediction error (per axis) Roll ±3.0° ±4.6°

Zero position corresponds to a face placed orthogonally to the camera direction, with the axis of
symmetry parallel to the vertical camera axis. See figure 16 for a reference.

VisionLabs B.V. 92 / 244

Figure 16: Head pose illustration

Note: In order towork, this estimator requiresprecise 68-point facealignment results, so familiarize
with section “Face alignment” in the “Face detection facility” chapter, as well.

VisionLabs B.V. 93 / 244

6.16 Approximate Garbage Score Estimation (AGS)

This estimator aims to determine the source image score for further descriptor extraction andmatching.
The higher the score, the better matching result is received for the image.

When you have several images of a person, it is better to save the image with the highest AGS score.

Contact VisionLabs for the recommended threshold value for this parameter.

The estimator (see IAGSEstimator in IEstimator.h):

• Implements theestimate() function that accepts the source image in theR8G8B8 format and the
fsdk::Detection structure of corresponding source image. For details, see section “Detection
structure” in chapter “Face detection facility”.

• Estimates garbage score of the input image.
• Outputs a garbage score value.

VisionLabs B.V. 94 / 244

6.16.1 Glasses Estimation

Name: GlassesEstimator

Algorithm description:

Glasses estimator is designed to determine whether a person is currently wearing any glasses or not.
There are 3 types of states the estimator is currently able to estimate:

• NoGlasses - Determines whether a person is wearing any glasses at all.
• EyeGlasses - Determines whether a person is wearing eyeglasses.
• SunGlasses - Determines whether a person is wearing sunglasses.

Note: The source input image must be warped for the estimator to work properly (see chapter “Image
warping” for details). Estimation quality depends on threshold values located in the faceengine.conf
configuration file.

Implementation description:

Enumeration of possible glasses estimation statuses:

enum class GlassesEstimation: uint8_t{
NoGlasses, //!< Person is not wearing glasses
EyeGlasses, //!< Person is wearing eyeglasses
SunGlasses, //!< Person is wearing sunglasses
EstimationError //!< failed to estimate

};

Recommended thresholds:

The table below contains thresholds specified in GlassesEstimator::Settings section of the
FaceEngine configuration file (faceengine.conf). By default, these threshold values are set to optimal.

Table 38: “Glasses estimator recommended thresholds”

Threshold Recommended value

noGlassesThreshold 1

eyeGlassesThreshold 1

sunGlassesThreshold 1

Configurations:

See the “GlassesEstimator settings” section in the “ConfigurationGuide.pdf” document.

Metrics:

VisionLabs B.V. 95 / 244

The table below contains true positive rates corresponding to the selected false positive rates.

Table 39: “Glasses estimator TPR/FPR rates”

State TPR FPR

NoGlasses 0.997 0.00234

EyeGlasses 0.9768 0.000783

SunGlasses 0.9712 0.000383

API structure name:

IGlassesEstimator

Plan files:

• glasses_estimation_v2_cpu.plan
• glasses_estimation_v2_cpu-avx2.plan
• glasses_estimation_v2_gpu.plan

VisionLabs B.V. 96 / 244

6.16.2 Overlap Estimation

Name: OverlapEstimator

Algorithm description:

This estimator tells whether the face is overlapped by any object. It returns a structure with value of
overlapping and Boolean answer. It returns a structure with 2 fields. One is the value of overlapping
in the range [0..1] where 0 is not overlapped and 1.0 is overlapped, the second is a Boolean answer. A
Boolean answer depends on the threshold listed below. If the value is greater than the threshold, the
answer returns true, else false.

Implementation description:

The estimator (see IOverlapEstimator in IOverlapEstimator.h):

• Implements the estimate() function that accepts source image in R8G8B8 format and fsdk::
Detection structure of corresponding source image (see section “Detection structure”);

• Estimates whether the face is overlapped by any object on input image;

• Outputs structure with value of overlapping and Boolean answer.

TheOverlapEstimation structure contains results of the estimation:

struct OverlapEstimation {
float overlapValue; //!< Numerical value of face overlapping in

range [0, 1].
bool overlapped; //!< Overlapped face (true) or not (false).

};

Recommended thresholds:

Tablebelowcontains threshold fromfaceengineconfiguration file (faceengine.conf) inOverlapEstimator
::Settings section. By default, this threshold value is set to optimal.

Table 40: “Overlap estimator recommended threshold”

Threshold Recommended value

overlapThreshold 0.01

Configurations:

See the “OverlapEstimator settings” section in the “ConfigurationGuide.pdf” document.

API structure name:

VisionLabs B.V. 97 / 244

IOverlapEstimator

Plan files:

• overlap_estimation_v1_cpu.plan
• overlap_estimation_v1_cpu-avx2.plan
• overlap_estimation_v1_gpu.plan

6.17 Emotion estimation functionality

6.17.1 Emotions Estimation

Name: EmotionsEstimator

Algorithm description:

The estimator is trained to work with warped images (see chapter “Image warping” for details).

This estimator aims to determinewhether a face depicted on an image expresses the following emotions:

• Anger
• Disgust
• Fear
• Happiness
• Surprise
• Sadness
• Neutrality

You can pass only warped images with detected faces to the estimator interface. Better image quality
leads to better results.

Implementation description:

The estimator (see IEmotionsEstimator in IEmotionsEstimator.h):

• Implements the estimate() function that acceptswarped source image. Warped image is received
from the warper (see IWarper::warp());

• Estimates emotions expressed by the person on a given image;

• Outputs EmotionsEstimation structure with aforementioned data.

EmotionsEstimation presents emotions as normalized float values in the range of [0..1] where 0 is lack of
a specific emotion and 1 is the maximum intensity of an emotion.

The EmotionsEstimation structure contains results of the estimation:

VisionLabs B.V. 98 / 244

struct EmotionsEstimation {
float anger; //!< 0(not angry)..1(angry);
float disgust; //!< 0(not disgusted)..1(disgusted);
float fear; //!< 0(no fear)..1(fear);
float happiness;//!< 0(not happy)..1(happy);
float sadness; //!< 0(not sad)..1(sad);
float surprise; //!< 0(not surprised)..1(surprised);
float neutral; //!< 0(not neutral)..1(neutral).

enum Emotions {
Anger = 0,
Disgust,
Fear,
Happiness,
Sadness,
Surprise,
Neutral,
Count

};

/**
* @brief Returns emotion with greatest score
* */

inline Emotions getPredominantEmotion() const;

/**
* @brief Returns score of required emotion
* @param [in] emotion emotion
* @see Emotions for details.
* */

inline float getEmotionScore(Emotions emotion) const;
};

API structure name:

IEmotionsEstimator

Plan files:

• emotion_recognition_v2_cpu.plan
• emotion_recognition_v2_cpu-avx2.plan
• emotion_recognition_v2_gpu.plan

VisionLabs B.V. 99 / 244

6.18 Mouth Estimation Functionality

Name: MouthEstimator

Algorithm description:

This estimator is designed to predict person’s mouth state.

Implementation description:

Mouth Estimation

It returns the following bool flags:

bool isOpened; //!< Mouth is opened flag
bool isSmiling; //!< Person is smiling flag
bool isOccluded; //!< Mouth is occluded flag

Each of these flags indicate specific mouth state that was predicted.

The combinedmouth state is assumed if multiple flags are set to true. For example there aremany cases
where person is smiling and its mouth is wide open.

Mouth estimator provides score probabilities for mouth states in case user need more detailed
information:

float opened; //!< mouth opened score
float smile; //!< person is smiling score
float occluded; //!< mouth is occluded score

Mouth Estimation Extended

This estimation is extended version of regular Mouth Estimation (see above). In addition, It returns the
following fields:

SmileTypeScores smileTypeScores; //!< Smile types scores
SmileType smileType; //!< Contains smile type if person "isSmiling"

If flag isSmiling is true, you can get more detailed information of smile using smileType variable.
smileType can hold following states:

enum class SmileType {
None, //!< No smile
SmileLips, //!< regular smile, without teeths exposed
SmileOpen //!< smile with teeths exposed

};

VisionLabs B.V. 100 / 244

If isSmiling is false, the smileType assigned to None. Otherwise, the field will be assigned with
SmileLips (person is smiling with closed mouth) or SmileOpen (person is smiling with open mouth,
with teeth’s exposed).

Extended mouth estimation provides score probabilities for smile type in case user need more detailed
information:

struct SmileTypeScores {
float smileLips; //!< person is smiling with lips score
float smileOpen; //!< person is smiling with open mouth score

};

smileType variable is set based on according scores hold by smileTypeScores variable - set based on
maximum score from smileLips and smileOpen or to None if person not smiling at all.

if (estimation.isSmiling)
estimation.smileType = estimation.smileTypeScores.smileLips >

estimation.smileTypeScores.smileOpen ?
fsdk::SmileType::SmileLips : fsdk::SmileType::SmileOpen;

else
estimation.smileType = fsdk::SmileType::None;

When you use Mouth Estimation Extended, the underlying computation are exactly the same as
if you use regular Mouth Estimation. The regular Mouth Estimation was retained for backward
compatibility.

These estimators are trained toworkwithwarped images (see Chapter “Imagewarping” for details).

Recommended thresholds:

The table below contains thresholds specified in the MouthEstimator::Settings section of the
FaceEngine configuration file (faceengine.conf). By default, these threshold values are set to optimal.

Table 41: “Mouth estimator recommended thresholds”

Threshold Recommended value

occlusionThreshold 0.5

smileThreshold 0.5

openThreshold 0.5

VisionLabs B.V. 101 / 244

Filtration parameters:

The estimator is trained to work with face images that meet the following requirements:

• Requirements for Detector:

Attribute Minimum value

detection size 80

Detection size is detection width.

const fsdk::Detection detection = ... // somehow get fsdk::Detection object
const int detectionSize = detection.getRect().width;

• Requirements for fsdk::MouthEstimator:

Attribute Acceptable values

headPose.pitch [-20…20]

headPose.yaw [-25…25]

headPose.roll [-10…10]

Configurations:

See the “Mouth Estimator settings” section in the “ConfigurationGuide.pdf” document.

API structure name:

IMouthEstimator

Plan files:

• mouth_estimation_v4_arm.plan
• mouth_estimation_v4_cpu.plan
• mouth_estimation_v4_cpu-avx2.plan
• mouth_estimation_v4_gpu.plan

VisionLabs B.V. 102 / 244

6.19 Face Occlusion Estimation Functionality

Name: FaceOcclusionEstimator

Algorithm description:

This estimator is designed to predict occlusions in different parts of the face, such as the forehead, eyes,
nose, mouth, and lower face. It also provides an overall occlusion score.

Implementation description:

Face Occlusion Estimation

The estimator returns the following occlusion states:

/**
* @brief FaceOcclusionType enum.
* This enum contains all possible facial occlusion types.
* */
enum class FaceOcclusionType : uint8_t {

Forehead = 0, //!< Forehead
LeftEye, //!< Left eye
RightEye, //!< Right eye
Nose, //!< Nose
Mouth, //!< Mouth
LowerFace, //!< Lower part of the face (chin, mouth, etc.)
Count //!< Total number of occlusion types

};

/**
* @brief FaceOcclusionState enum.
* This enum contains all possible facial occlusion states.
* */
enum class FaceOcclusionState : uint8_t {

NotOccluded = 0, //!< Face is not occluded
Occluded, //!< Face is occluded
Count //!< Total number of states

};

FaceOcclusionState states[static_cast<uint8_t>(FaceOcclusionType::Count)];
//!< Occlusion states for each face region

float typeScores[static_cast<uint8_t>(FaceOcclusionType::Count)]; //!<
Probability scores for occlusion types

FaceOcclusionState overallOcclusionState; //!< Overall occlusion state
float overallOcclusionScore; //!< Overall occlusion score
float hairOcclusionScore; //!< Hair occlusion score

VisionLabs B.V. 103 / 244

To get the occlusion score for a specific facial zone, you can use the following method:

float getScore(FaceOcclusionType type) const {
return typeScores[static_cast<uint8_t>(type)];

}

To get the occlusion state for a specific facial zone, use the following:

FaceOcclusionState getState(FaceOcclusionType type) const {
return states[static_cast<uint8_t>(type)];

}

This estimator is trained to work with warped images and Landmarks5 (see Chapter “Image
warping” for details).

Recommended thresholds:

The table below contains thresholds specified in the FaceOcclusion::Settings section of the FaceEngine
configuration file (faceengine.conf). These values are optimal by default.

Threshold Recommended value

normalHairCoeff 0.15

overallOcclusionThreshold 0.07

foreheadThreshold 0.2

eyeThreshold 0.15

noseThreshold 0.2

mouthThreshold 0.15

lowerFaceThreshold 0.2

Configurations

See the “Face Occlusion Estimator settings” section in the “ConfigurationGuide.pdf” document.

Filtration parameters:

VisionLabs B.V. 104 / 244

Name Threshold

Face Size >80px

Yaw, Pitch, Roll ±20

Blur (Subjective Quality) >0.61

API structure name:

IFaceOcclusionEstimator

Plan files:

• face_occlusion_v1_arm.plan
• face_occlusion_v1_cpu.plan
• face_occlusion_v1_cpu-avx2.plan
• face_occlusion_v1_gpu.plan

VisionLabs B.V. 105 / 244

6.20 DeepFake estimation functionality

Name: DeepFakeEstimator

Algorithm description:

This estimator is designed to predict whether the face detected in the input image is synthetic or not.

Important notes:

The current implementation is experimental and does not support backward compatibility. The API can
bemodified in upcoming versions.

Tests were carried out with images generated by technologies from the list below:

• Deepfacelive
• FaceSwap
• Face2Face
• NeuralTextures
• FSGAN
• StyleGAN (v1, v2)
• Roop (InsightFaceSwap)
• Deepfacelab
• SimSwap (also Dot)
• FaceFusion
• MidJourney (v5, v6)
• StableDiffusion
• Faceswapper
• PicsiAI
• SwapFace
• HeyGen
• PhotoAvatar
• Vidnoz
• BlendFace
• LivePortrait
• FakeAVCeleb
• AVLips

Implementation description:

DeepFakeEstimator returns the following structure:

struct DeepFakeEstimation {
enum class State {

Real = 0, //!< The person in image is real

VisionLabs B.V. 106 / 244

Fake //!< The person in image is fake (media is synthetic)
};

float score; //!< Estimation score
State state; //!< Liveness status

};

The estimation score normalized between 0.0 and 1.0, where 1.0 equals to 100% confidence that media
is not synthetic (real), and 0.0 equals to 0% that the media is synthetic (fake).

Requirements for a detected face in the source image:

• Minimum face height is 150 pixels.
• Yaw angles should not exceed 30 degrees.
• Pitch angles should not exceed 20 degrees.

Recommended thresholds:

The table below contains thresholds specified in DeepFakeEstimator::Settings section of the
FaceEngine configuration file (faceengine.conf). By default, these threshold values are set to optimal.

Table 46: “DeepFakeEstimator recommended settings”

Parameter Description Type Default value

realThreshold Threshold in [0..1] range. "Value::
Float1"

0.5

defaultEstimatorType Configuration of plan files
usage.

Value::Int1 2

Possible values for defaultEstimatorType:

Currently, the available values for selecting an estimation scenario are 1 and 2:

• Scenario M1 utilizes the first .plan file. This option exists primarily for backward compatibility.
• Scenario M2 utilizes the second .plan file.

No other configurations for .plan file usage are provided.

Configurations:

See the “DeepFake Estimator settings” section in the “ConfigurationGuide.pdf” document.

API structure name:

IDeepFakeEstimator

API namespace:

VisionLabs B.V. 107 / 244

fsdk::experimental::IDeepFakeEstimator

Plan files:

• deepfake_estimation_v7_model_1_cpu.plan

• deepfake_estimation_v7_model_1_cpu-avx2.plan

• deepfake_estimation_v7_model_1_gpu.plan

• deepfake_estimation_v7_model_2_cpu.plan

• deepfake_estimation_v7_model_2_cpu-avx2.plan

• deepfake_estimation_v7_model_2_gpu.plan

VisionLabs B.V. 108 / 244

6.21 Liveness check functionality

6.21.1 LivenessFlyingFaces Estimation

Name: LivenessFlyingFacesEstimator

Algorithm description:

This estimator tells whether the person’s face is real or fake (photo, printed image).

Implementation description:

The estimator (see ILivenessFlyingFacesEstimator in ILivenessFlyingFacesEstimator.h):

• Implements the estimate() function that needs fsdk::Image with valid image in R8G8B8 format
and fsdk::Detection of corresponding source image (see section “Detection structure” in
chapter “Face detection facility”).

• Implements the estimate() function that needs the spanoffsdk::Imagewith valid source images
in R8G8B8 formats and span of fsdk::Detection of corresponding source images (see section
“Detection structure” in chapter “Face detection facility”).

Those methods estimate whether different persons are real or not. Corresponding estimation output
with float scores which are normalized in range [0..1], where 1 - is real person, 0 - is fake.

The estimator is trained to work in combination with fsdk::ILivenessRGBMEstimator.

The LivenessFlyingFacesEstimation structure contains results of the estimation:

struct LivenessFlyingFacesEstimation {
float score; //!< Numerical value in range [0, 1].
bool isReal; //!< Is real face (true) or not (false).

};

Recommended thresholds:

Tablebelowcontains thresholds fromfaceengineconfiguration file (faceengine.conf) inLivenessFlyingFacesEstimator::Settings
section. By default, these threshold values are set to optimal.

Table 47: “Mouth estimator recommended thresholds”

Threshold Recommended value

realThreshold 0.5

aggregationCoeff 0.7

Filtration parameters:

VisionLabs B.V. 109 / 244

The estimator is trained to work with face images that meet the following requirements:

Table 48: “Requirements for fsdk::BestShotQualityEstimator::EstimationResult”

Attribute Acceptable values

headPose.pitch [-30…30]

headPose.yaw [-30…30]

headPose.roll [-40…40]

ags [0.5…1.0]

Table 49: “Requirements for fsdk::Detection”

Attribute Minimum value

detection size 80

Detection size is detection width.

const fsdk::Detection detection = ... // somehow get fsdk::Detection object
const int detectionSize = detection.getRect().width;

Configurations:

See the “LivenessFlyingFaces Estimator settings” section in the “ConfigurationGuide.pdf” document.

API structure name:

ILivenessFlyingFacesEstimator

Plan files:

• flying_faces_liveness_v4_cpu.plan
• flying_faces_liveness_v4_cpu-avx2.plan
• flying_faces_liveness_v4_gpu.plan

VisionLabs B.V. 110 / 244

6.21.2 LivenessRGBM Estimation

Name: LivenessRGBMEstimator

Algorithm description:

This estimator tells whether the person’s face is real or fake (photo, printed image).

Implementation description:

The estimator (see ILivenessRGBMEstimator in ILivenessRGBMEstimator.h):

• Implements the estimate() function that needs fsdk::Face with valid image in R8G8B8 format,
detection structure of corresponding source image (see section “Detection structure” in chapter
“Face detection facility”) and fsdk::Image with accumulated background. This method
estimates whether a real person or not. Output estimation structure contains the float score and
boolean result. The float score normalized in range [0..1], where 1 - is real person, 0 - is fake. The
boolean result has value true for real person and false otherwise.

• Implements theupdate() function thatneeds thefsdk::Imagewith current frame, numberof that
image and previously accumulated background. The accumulated backgroundwill be overwritten
by this call.

The LivenessRGBMEstimation structure contains results of the estimation:

struct LivenessRGBMEstimation {
float score = 0.0f; //!< Estimation score
bool isReal = false;//!< Where person is real or not

};

Recommended thresholds:

Tablebelowcontains thresholds fromfaceengineconfiguration file (faceengine.conf) inLivenessRGBMEstimator
::Settings section. By default, these threshold values are set to optimal.

Table 50: “LivenessRGBM estimator recommended thresholds”

Threshold Recommended value

backgroundCount 100

threshold 0.8

coeff1 0.222

coeff2 0.222

VisionLabs B.V. 111 / 244

Configurations:

See the “LivenessRGBM Estimator settings” section in the “ConfigurationGuide.pdf” document.

API structure name:

ILivenessRGBMEstimator

Plan files:

• rgbm_liveness_cpu.plan
• rgbm_liveness_cpu-avx2.plan
• rgbm_liveness_gpu.plan

VisionLabs B.V. 112 / 244

6.21.3 Depth Liveness Estimation (LivenessDepthEstimator)

Name: LivenessDepthEstimator

Algorithm description:

This estimator tells whether the person’s face is real or fake (photo, printed image).

Implementation description:

The estimator (see ILivenessDepthEstimator in ILivenessDepthEstimator.h):

• Implements the estimate() function that accepts source warped image (see chapter “Image
warping” for details) in R16 format and fsdk::DepthEstimation structure. This method
estimates whether or not depth map corresponds to the real person. Corresponding estimation
output with float score which is normalized in range [0..1], where 1 - is real person, 0 - is fake.

The DepthEstimation structure contains results of the estimation:

struct DepthEstimation {
float score; //!< confidence score in [0,1] range. The closer the

score to 1, the more likely that person is alive.
bool isReal; //!< boolean flag that indicates whether a person is

real.
};

Recommended thresholds:

Tablebelowcontains thresholds fromfaceengineconfiguration file (faceengine.conf) inDepthEstimator
::Settings section. By default, these threshold values are set to optimal.

Table 51: “Depth estimator recommended thresholds”

Threshold Recommended value

maxDepthThreshold 3000

minDepthThreshold 100

zeroDepthThreshold 0.66

confidenceThreshold 0.89

Filtration parameters:

The estimator is trained to work with face images that meet the following requirements:

VisionLabs B.V. 113 / 244

Table 52: “Requirements for fsdk::HeadPoseEstimation”

Attribute Acceptable angle range(degrees)

pitch [-15…15]

yaw [-15…15]

roll [-10…10]

Table 53: “Requirements for fsdk::Quality”

Attribute Minimum value

blur 0.94

light 0.90

dark 0.93

Table 54: “Requirements for fsdk::EyesEstimation”

Attribute State

leftEye Open

rightEye Open

Also, the minimum distance between the face bounding box and the frame borders should be greater
than 20 pixels.

Configurations:

See the “Depth Estimator settings” section in the “ConfigurationGuide.pdf” document.

API structure name:

ILivenessDepthEstimator

Plan files:

• depth_estimation_v2_1_cpu.plan
• depth_estimation_v2_1_cpu-avx2.plan
• depth_estimation_v2_1_gpu.plan

VisionLabs B.V. 114 / 244

6.21.4 Depth and RGB OneShotLiveness estimation

Name: LivenessDepthRGBEstimator

Algorithm description:

This estimator shows whether the person’s face is real or fake (photo, printed image). You can use this
estimator in payment terminals (POS) and self-service cash registers (KCO)with two cameras - Depth and
RGB.

The estimation is performed on the device with an Orbbec camera. The camera can be either built in a
POS or KCOdevice or connected to it. This allows to perform the estimation at a higher speed andmakes
itmore secure as data is not sent to the backend. Using the algorithmwithOrbbec cameras lets youwork
with deep data. It increases system reliability and accuracy, as 3D data lets you assess facial shapes and
detect fake masks more accurately.

The estimator is trained to work with warped images. For details, see chapter “Image warping”.

Supported devices

The estimator works only on the following devices:

• VLS LUNA CAMERA 3D
• VLS LUNA CAMERA 3D Embedded

Different models of Orbbec cameras have different spacing between sensors. If you need to use another
Orbbec Depth+RGB camera, you can change the calibration coefficients to match the device. Please,
contact VisionLabs for details.

Image requirements

This estimator works based on two images:

• RGB image from the RGB camera
• Depth image (or depth map) from the depth camera

Input images must meet the following requirements:

Parameter Requirements

Resolution 640 × 480 pixels

Compression No

Image cropping No

Image rotation No

Effects overlay No

Number of faces in the frame 1

VisionLabs B.V. 115 / 244

Parameter Requirements

Face detection bounding box size 200 pixels

Frame edges offset 10 pixels

Head pose -20 to +20 degrees for head pitch, yaw, and roll.

Image quality The face in the frame should not be
overexposed, underexposed, or blurred. For
details, see section “Image Quality Estimation”.

Implementation description:

The estimator implements the following:

• The estimate() function that needs the depth frame as the first fsdk::Image object, the RGB
frame as the second fsdk::Image object, fsdk::Detection and fsdk::Landmarks5 objects
(see section “Detection structure” in chapter “Face detection facility”). The estimation output is
the fsdk::DepthRGBEstimation srtucture.

• The estimate() function that needs the first span of depth frames as the fsdk::Image objects,
the second span of RGB frames as the fsdk::Image objects, a span of fsdk::Detection, and
a span of fsdk::Landmarks5 (see section “Detection structure” in chapter “Face detection
facility”).
The estimation output is a span of the fsdk::DepthRGBEstimation structure. The second
output value is the fsdk::DepthRGBEstimationstructure.

DepthRGBEstimation

The DepthRGBEstimation structure contains results of the estimation:

struct DepthRGBEstimation {
//!< confidence score in [0,1] range.
//!< The closer the score to 1, the more likely that person is alive.
float score;
//!< boolean flag that indicates whether a person is real.
bool isReal;

};

The estimation score is normalized in range [0..1], where 1 - is real person, 0 - is a fake.

ThevalueofisRealdependsonscoreandconfidenceThreshold. Thevalueof theconfidenceThreshold
canbechanged inconfiguration file faceengine.conf (seeConfigurationGuideLivenessDepthRGBEstimator
).

API structure name:

VisionLabs B.V. 116 / 244

ILivenessDepthRGBEstimator

See ILivenessDepthRGBEstimator in ILivenessDepthRGBEstimator.h.

Plan files:

• depth_rgb_v2_model_1_cpu.plan
• depth_rgb_v2_model_1_gpu.plan
• depth_rgb_v2_model_2_cpu.plan
• depth_rgb_v2_model_2_gpu.plan
• depth_rgb_v2_model_1_cpu-avx2.plan
• depth_rgb_v2_model_2_cpu-avx2.plan

VisionLabs B.V. 117 / 244

6.21.5 Depth liveness estimation (DepthLivenessEstimator)

Name: DepthLivenessEstimator

Algorithm description:

Given a face depth warp, the estimator tells whether the face is real or fake (photo, printed image).

The estimator aims to unify different use cases of depth liveness estimation, while increasing the
estimation accuracy compared to existing depth estimators.

The estimator can be used in payment terminals (POS) and self-service cash registers (KCO) with two
cameras - Depth and RGB.

The estimator is trained to work with warped depth images of faces. For details, see chapter “Image
warping”.

The estimator can be used together with LivenessDepthRGBEstimator or as standalone. When
DepthLivenessEstimator is used in conjunction with LivenessDepthRGBEstimator, the latter takes care
of necessary preprocessing of RGB and depth frames, producing depth warps of faces required by
DepthLivenessEstimator. When DepthLivenessEstimator is used as standalone, it is your responsibility
to prepare a warped depth image of a face for estimation, including handling such issues as:

1. detecting faces on RGB frames, quality checking of RGB frames and detections
2. [possibly required] mapping between a) RGB frames used for face detection and b) depth frames
3. obtaining depth warps of faces from depth frames

Supported devices

On itsown, theestimator requires just aproperlyprepareddepthwarpof a face, anddoesn’t constrain the
list of possible devices. However, if LivenessDepthRGBEstimator is involved, it has its own constraints.

Image requirements

The estimator works based on depth warps of faces. The warps must be 250x250 pixels, in the fsdk::
Format::R16 format. If you prepare depth warps yourself, there are some basic quality requirements
for RGB frames:

Parameter Requirements

Resolution 640 × 480 pixels

Compression No

Image cropping No

Image rotation No

Effects overlay No

Number of faces in the frame 1

VisionLabs B.V. 118 / 244

Parameter Requirements

Face detection bounding box size 200 pixels

Frame edges offset 10 pixels

Head pose -15 to +15 degrees for head pitch, yaw, and roll.

Image quality The face in the frame should not be
overexposed, underexposed, or blurred. For
details, see section “Image Quality Estimation”.

Implementation description:

The estimator (see IDepthLivenessEstimator.h) implements the following:

• The estimate() function that needs the depth warp as the first fsdk::Image object. The
estimation output is the returned fsdk::DepthLivenessEstimation structure.

• The estimate() function that needs a span of depth warps (fsdk::Image objects) as the first
parameter, and a span of fsdk::DepthLivenessEstimation as the second parameter. The
estimation output is saved in the second parameter.

DepthLivenessEstimation

The DepthLivenessEstimation structure contains results of the estimation:

struct DepthLivenessEstimation {
//!< confidence score in [0,1] range.
//!< The closer the score to 1, the more likely that person is alive.
float score;
//!< boolean flag that indicates whether a person is real.
bool isReal;

};

The estimation score is normalized in the range [0..1], where 1 - is real person, 0 - is a fake.

ThevalueofisRealdependsonscoreandconfidenceThreshold. Thevalueof theconfidenceThreshold
canbechanged inconfiguration file faceengine.conf (seeConfigurationGuideDepthLivenessEstimator
).

API structure name:

IDepthLivenessEstimator

See IDepthLivenessEstimator in IDepthLivenessEstimator.h.

Examples:

VisionLabs B.V. 119 / 244

• C++ example: example_depth_liveness
• Python example: example_depth_liveness.py

Plan files:

• depth_liveness_v2_arm.plan
• depth_liveness_v2_cpu.plan
• depth_liveness_v2_cpu-avx2.plan
• depth_liveness_v2_gpu.plan

VisionLabs B.V. 120 / 244

6.21.6 LivenessOneShotRGB Estimation

Name: LivenessOneShotRGBEstimator

Algorithm description:

This estimator shows whether the person’s face is real or fake by the following types of attacks:

• Printed Photo Attack. One or several photos of another person are used.
• Video Replay Attack. A video of another person is used.
• Printed Mask Attack. An imposter cuts out a face from a photo and covers his face with it.
• 3D Mask Attack. An imposer puts on a 3Dmask depicting the face of another person.

The requirements for the processed image and the face in the image are listed below.

Parameters Requirements

Minimum resolution for
mobile devices

720x960 pixels

Maximum resolution for
mobile devices

1080x1920 pixels

Minimum resolution for
webcams

1280x720 pixels

Maximum resolution for
webcams

1920x1080 pixels

Compression No

Image warping No

Image cropping No

Effects overlay No

Mask No

Number of faces in the
frame

1

Face detection bounding
box width

More than 200 pixels

Frame edges offset More than 10 pixels

Head pose -20 to +20 degrees for head pitch, yaw, and roll

Image quality The face in the frame should not be overexposed, underexposed, or
blurred.

VisionLabs B.V. 121 / 244

See image quality thresholds in the “Image Quality Estimation” section.

Implementation description:

The estimator (see ILivenessOneShotRGBEstimator in ILivenessOneShotRGBEstimator.h):

• Implements the estimate() function that needs fsdk::Image, fsdk::Detection and fsdk
::Landmarks5 objects (see section “Detection structure” in chapter “Face detection facility”).
Output estimation is a structure fsdk::LivenessOneShotRGBEstimation.

• Implements the estimate() function that needs the span of fsdk::Image, span of fsdk::
Detection and span of fsdk::Landmarks5 (see section “Detection structure” in chapter “Face
detection facility”).
The first output estimation is a span of structure fsdk::LivenessOneShotRGBEstimation.
The second output value (structure fsdk::LivenessOneShotRGBEstimation) is the result of
aggregation based on span of estimations announced above. Pay attention the second output
value (aggregation) is optional, i.e. default argument, which is nullptr.

The LivenessOneShotRGBEstimation structure contains results of the estimation:

struct LivenessOneShotRGBEstimation {
enum class State {

Alive = 0, //!< The person on image is real
Fake, //!< The person on image is fake (photo, printed image)
Unknown //!< The liveness status of person on image is Unknown

};

float score; //!< Estimation score
State state; //!< Liveness status
float qualityScore; //!< Liveness quality score

};

Estimation score is normalized in range [0..1], where 1 - is real person, 0 - is fake.

Liveness quality score is an image quality estimation for the liveness recognition.

This parameter is used for filtering if it is possible to make bestshot when checking for liveness.

The reference score is 0,5.

The value of State depends on score and qualityThreshold. The value qualityThreshold
can be given as an argument of method estimate (see ILivenessOneShotRGBEstimator), and in
configuration file faceengine.conf (see ConfigurationGuide LivenessOneShotRGBEstimator).

Recommended thresholds:

Table below contains thresholds from faceengine configuration file (faceengine.conf)
in the LivenessOneShotRGBEstimator::Settings section. By default, these threshold values are

VisionLabs B.V. 122 / 244

set to optimal.

Table 58: “LivenessOneShotRGB estimator recommended thresholds”

Threshold Recommended value

realThreshold 0.5

qualityThreshold 0.5

calibrationCoeff 0.925

Configurations:

See the “LivenessOneShotRGBEstimator settings” section in the “ConfigurationGuide.pdf” document.

API structure name:

ILivenessOneShotRGBEstimator

Plan files:

• oneshot_rgb_liveness_v9_model_1_cpu.plan
• oneshot_rgb_liveness_v9_model_2_cpu.plan
• oneshot_rgb_liveness_v9_model_3_cpu.plan
• oneshot_rgb_liveness_v9_model_4_cpu.plan
• oneshot_rgb_liveness_v9_model_1_cpu-avx2.plan
• oneshot_rgb_liveness_v9_model_2_cpu-avx2.plan
• oneshot_rgb_liveness_v9_model_3_cpu-avx2.plan
• oneshot_rgb_liveness_v9_model_4_cpu-avx2.plan
• oneshot_rgb_liveness_v9_model_1_gpu.plan
• oneshot_rgb_liveness_v9_model_2_gpu.plan
• oneshot_rgb_liveness_v9_model_3_gpu.plan
• oneshot_rgb_liveness_v9_model_4_gpu.plan

6.21.6.1 Usage example
The face in the image and the image itself should meet the estimator requirements.

You can find additional information in example (examples/example_estimation/main.cpp) or in
the code below.

// Minimum detection size in pixels.
constexpr int minDetSize = 200;

VisionLabs B.V. 123 / 244

// Step back from the borders.
constexpr int borderDistance = 10;

if (std::min(detectionRect.width, detectionRect.height) < minDetSize) {
std::cerr << "Bounding Box width and/or height is less than `minDetSize`

- " << minDetSize << std::endl;
return false;

}

if ((detectionRect.x + detectionRect.width) > (image.getWidth() -
borderDistance) || detectionRect.x < borderDistance) {
std::cerr << "Bounding Box width is out of border distance - " <<

borderDistance << std::endl;
return false;

}

if ((detectionRect.y + detectionRect.height) > (image.getHeight() -
borderDistance) || detectionRect.y < borderDistance) {
std::cerr << "Bounding Box height is out of border distance - " <<

borderDistance << std::endl;
return false;

}

// Yaw, pitch and roll.
constexpr int principalAxes = 20;

if (std::abs(headPose.pitch) > principalAxes ||
std::abs(headPose.yaw) > principalAxes ||
std::abs(headPose.roll) > principalAxes) {

std::cerr << "Can't estimate LivenessOneShotRGBEstimation. " <<
"Yaw, pith or roll absolute value is larger than expected value: "

<< principalAxes << "." <<
"\nPitch angle estimation: " << headPose.pitch <<
"\nYaw angle estimation: " << headPose.yaw <<
"\nRoll angle estimation: " << headPose.roll << std::endl;

return false;
}

WerecommendusingDetector type 3 (fsdk::ObjectDetectorClassType::FACE_DET_V3
).

VisionLabs B.V. 124 / 244

6.21.7 NIR Liveness estimation

Name: NIRLivenessEstimator

Algorithm description:

The estimator determines whether a person’s face is real or a fake representation, such as a photo or
printed image. This estimator relies on images captured by an infrared camera and provides a boolean
output indicating whether the face is real (true) or fake (false).

Implementation description:

The estimator (see INIRLivenessEstimator in INIRLivenessEstimator.h) implements the
estimate() function, which accepts a source warped image (see the chapter “Image Warping” for
details) in R16 format, along with the fsdk::NIRLivenessEstimation structure. This method
evaluateswhether the face in the input image corresponds to a real person. The output of the estimation
is a floating-point score normalized in the range [0..1], where a score of 1 indicates a real person and a
score of 0 indicates a fake representation.

The NIRLivenessEstimation structure contains results of the estimation:

struct NIRLivenessEstimation {
enum class State {

Real = 0,
Fake = 1,
Unknown

};

float score;
State state;

};

Recommended thresholds:

Tablebelowcontainsa threshold fromFaceEngineconfiguration file (faceengine.conf) inNIRLivenessEstimator
::Settings section. By default, the threshold value is set to optimal.

Table 59: “NIRLivenessEstimator estimator recommended threshold”

Threshold Description Recommended value

realThreshold Threshold in [0..1] range. 0.5

Configurations:

VisionLabs B.V. 125 / 244

See the “NIRLivenessEstimator settings” section in the “ConfigurationGuide.pdf” document.

API structure name:

INIRLivenessEstimator

.plan files:

• nir_liveness_v2_model_1_cpu.plan
• nir_liveness_v2_model_1_gpu.plan
• nir_liveness_v2_model_2_cpu.plan
• nir_liveness_v2_model_2_gpu.plan

VisionLabs B.V. 126 / 244

6.22 Personal Protection Equipment Estimation

Name: PPEEstimator

Algorithm description:

ThePersonal ProtectionEquipment (PPE) estimator predictswhether a person iswearingoneormultiple
types of protection equipment, such as:

• Helmet
• Hood
• Vest
• Gloves
• Safety harness

For each attribute, the estimator returns 3 prediction scores which indicate the possibility of person
wearing that attribute, not wearing it, and an “unknown” score which will be the highest of them all,
if the estimator wasn’t able to tell whether a person in the image is wearing a particular attribute.

To correctly determine a personal protective equipment, the following requirements must be met:

• Scene requirements:
– Moving objects must be visually separated from each other in the image.
– A backgroundmust be mostly static andmust not change rapidly.
– Maximum image shifts due to camera shakes is 1% of the frame size.
– Overlapping ofmoving objects by static objects, such as columns, industrial items, and so on,
must be minimal.

– The analyzed scenemust not have reflective surfaces. If any, they need to be disguised.
– Large obstacles should be avoided in the camera’s field of view. Pillars, tower cranes, stacked
materials, and so onwill cause tracks to break and also overlap people. If it is impossible, we
recommend that you do not place an obstacle in the center of the frame.

– Strong camera lights are allowed in a frame. Wedonot recommend that youpoint the camera
at spotlights and active welding zones, especially in the foreground, because it reduces the
visibility of people and the visibility of PPE on them.

– The camera lens should be kept clean and free of dust. We do not recommend that you place
cameras above amaterial unloading area or near ventilation shafts, because dust on the lens
reduces the visibility of people and the visibility of PPE on them.

– Shooting angle must be without tilting the camera too much. From a top-down perspective,
PPE (vest and gloves) can be less visible.

• Image requirements:
– A person and PPEmust be clearly visible to the human eye.
– Overlapping of a person or PPE with an obstacle or another person and cropping by frame
boundaries should not exceed 25%.

– The linear dimensions of PPE should not exceed 65% of the corresponding frame size.

VisionLabs B.V. 127 / 244

– The imagemust not benoisy or distortedby compressionalgorithmartifacts. The imagemust
be a color one.

– The duration of visibility of a PPEmust be at least 10-13 frames.
– The height of the image of a person in pixels must be not less than 100. The minimum pixel
density permeter (height of the object in pixels to theheight of theobject inmeters) is 60ppm.

– Theminimum height and color of an equipment on body parts must be as follows:

Equipment Minimum hight, in pixels Color

Vest 50 Light green (green), yellow,
orange

Helmet 20 White, yellow, orange, red

Hood 20 N/A

Gloves 20 White, gray, black

Safety harness 50 N/A

• Video stream requirements:

Parameter Requirement

Minimum resolution 640х360 pixels

Maximum resolution 1920х1080 pixels

Minimum frame frequency 13 frames per second

• Lighting requirements:

Parameter Requirement

Scene lighting 200 lux or more

Sudden changes in lighting None

Implementation description:

The Personal Protection Equipment Estimation structure for each attribute looks as follows:

struct OnePPEEstimation {
float positive = 0.0f;
float negative = 0.0f;

VisionLabs B.V. 128 / 244

float unknown = 0.0f;

enum class PPEState : uint8_t {
Positive, //!< person is wearing specific personal equipment;
Negative, //!< person isn't wearing specific personal equipment;
Unknown, //!< it's hard to tell wether person wears specific

personal equipment.
Count //!< state count

};

/**
* @brief returns predominant personal equipment state
* */

inline PPEState getPredominantState();
};

All three prediction scores sum up to 1.

The estimator takes an image and a human bounding box of a person for which attributes shall be
predicted as an input. Formore information about humandetector, see “HumanDetection” section.

API structure name:

IPPEEstimator

Plan files:

• ppe_estimation_v3_cpu.plan
• ppe_estimation_v3_cpu-avx2.plan
• ppe_estimation_v3_gpu.plan

VisionLabs B.V. 129 / 244

6.23 Medical Mask Estimation Functionality

Name: MedicalMaskEstimator

This estimator aims to detect a medical mask on the face in the source image. For the interface with
MedicalMaskEstimation it can return the next results:

• A medical mask is on the face (see MedicalMask::Mask field in the MedicalMask enum);
• There is no medical mask on the face (see MedicalMask::NoMask field in the MedicalMask enum);
• The face is occluded with something (see MedicalMask::OccludedFace field in the MedicalMask
enum);

For the interface with MedicalMaskEstimationExtended it can return the next results:

• A medical mask is on the face (see MedicalMaskExtended::Mask field in the MedicalMaskExtended
enum);

• There is no medical mask on the face (see MedicalMaskExtended::NoMask field in the
MedicalMaskExtended enum);

• A medical mask is not on the right place (see MedicalMaskExtended::MaskNotInPlace field in the
MedicalMaskExtended enum);

• The face is occluded with something (see MedicalMaskExtended::OccludedFace field in the
MedicalMaskExtended enum);

The estimator (see IMedicalMaskEstimator in IEstimator.h):

• Implements the estimate() function that accepts source warped image in R8G8B8 format and
medical mask estimation structure to return results of estimation;

• Implements the estimate() function that accepts source image in R8G8B8 format, face detection to
estimate andmedical mask estimation structure to return results of estimation;

• Implements theestimate() function thataccepts fsdk::Spanof the sourcewarped images inR8G8B8
format and fsdk::Span of the medical mask estimation structures to return results of estimation;

• Implements the estimate() function that accepts fsdk::Spanof the source images inR8G8B8 format,
fsdk::Span of face detections and fsdk::Span of the medical mask estimation structures to return
results of the estimation.

Every method can be used with MedicalMaskEstimation and MedicalMaskEstimationExtended.

The estimator was implemented for two use-cases:

1. When the user already has warped images. For example, when the medical mask estimation is
performed right before (or after) the face recognition.

2. When the user has face detections only.

Note: Calling the estimate() method with warped image and the estimate() method with image and
detection for the same image and the same face could lead to different results.

VisionLabs B.V. 130 / 244

6.23.1 MedicalMaskEstimator thresholds

The estimator returns several scores, one for each possible result. The final result is based on that scores
and thresholds. If some score is above the corresponding threshold, that result is estimated as final. If
none of the scores exceed the matching threshold, the maximum value will be taken. If some of the
scores exceed their thresholds, the results will take precedence in the following order for the case with
MedicalMaskEstimation:

Mask, NoMask, OccludedFace

and for the case with MedicalMaskEstimationExtended:

Mask, NoMask, MaskNotInPlace, OccludedFace

The default values for all thresholds are taken from the configuration file. See Configuration guide for
details.

6.23.2 MedicalMask enumeration

The MedicalMask enumeration contains all possible results of the MedicalMask estimation:

enum class MedicalMask {
Mask = 0, //!< medical mask is on the face
NoMask, //!< no medical mask on the face
OccludedFace //!< face is occluded by something

};

enum class DetailedMaskType {
CorrectMask = 0, //!< correct mask on the face (mouth

and nose are covered correctly)
MouthCoveredWithMask, //!< mask covers only a mouth
ClearFace, //!< clear face - no mask on the face
ClearFaceWithMaskUnderChin, //!< clear face with a mask around of

a chin, mask does not cover anything in the face region (from
mouth to eyes)

PartlyCoveredFace, //!< face is covered with not a
medical mask or a full mask

FullMask, //!< face is covered with a full mask
(such as balaclava, sky mask, etc.)

Count
};

VisionLabs B.V. 131 / 244

• Maskis according to CorrectMask or MouthCoveredWithMask;
• NoMaskis according to ClearFace or ClearFaceWithMaskUnderChin;
• OccludedFace is according to PartlyCoveredFace or FullMask.

Note - NoMaskmeans absence of medical mask or any occlusion in the face region (frommouth to eyes).
Note - DetailedMaskType is not supported for NPU-based platforms.

6.23.3 MedicalMaskEstimation structure

The MedicalMaskEstimation structure contains results of the estimation:

struct MedicalMaskEstimation {
MedicalMask result; //!< estimation result (@see

MedicalMask enum)
DetailedMaskType maskType; //!< detailed type (@see

DetailedMaskType enum)

// scores
float maskScore; //!< medical mask is on the face score
float noMaskScore; //!< no medical mask on the face score
float occludedFaceScore; //!< face is occluded by something score

float scores[static_cast<int>(DetailedMaskType::Count)]{}; //!<
detailed estimation scores

inline float getScore(DetailedMaskType type) const;
};

There are two groups of the fields:

1� The first group contains the result:

MedicalMask result;

Result enum field MedicalMaskEstimation contains the target results of the estimation. Also you can see
the more detailed type in MedicalMaskEstimation.

DetailedMaskType maskType; //!< detailed type

2� The second group contains scores:

float maskScore; //!< medical mask is on the face score

VisionLabs B.V. 132 / 244

float noMaskScore; //!< no medical mask on the face score
float occludedFaceScore; //!< face is occluded by something score

The score group contains the estimation scores for each possible result of the estimation. All scores are
defined in [0,1] range. They can be useful for users who want to change the default thresholds for this
estimator. If the default thresholds are used, the groupwith scores could be just ignored in the user code.
More detailed scores for every type of a detailed type of face covering are

float scores[static_cast<int>(DetailedMaskType::Count)]{}; //!< detailed
estimation scores

• maskScore is the sum of scores for CorrectMask, MouthCoveredWithMask;
• NoMask is the sum of scores for ClearFace and ClearFaceWithMaskUnderChin;
• occludedFaceScore is the sum of scores for PartlyCoveredFace and FullMask fields.

Note - DetailedMaskType, scores, getScore are not supported for NPU-based platforms. It means a
user cannot use this fields andmethods in code.

6.23.4 MedicalMaskExtended enumeration

The MedicalMask enumeration contains all possible results of the MedicalMask estimation:

enum class MedicalMaskExtended {
Mask = 0, //!< medical mask is on the face
NoMask, //!< no medical mask on the face
MaskNotInPlace, //!< mask is not on the right place
OccludedFace //!< face is occluded by something

};

6.23.5 MedicalMaskEstimationExtended structure

The MedicalMaskEstimationExtended structure contains results of the estimation:

struct MedicalMaskEstimationExtended {
MedicalMaskExtended result; //!< estimation result (@see

MedicalMaskExtended enum)
// scores
float maskScore; //!< medical mask is on the face score
float noMaskScore; //!< no medical mask on the face score
float maskNotInPlace; //!< mask is not on the right place
float occludedFaceScore; //!< face is occluded by something score

VisionLabs B.V. 133 / 244

};

There are two groups of the fields:

1� The first group contains only the result enum:

MedicalMaskExtended result;

Result enum field MedicalMaskEstimationExtended contains the target results of the estimation.

2� The second group contains scores:

float maskScore; //!< medical mask is on the face score
float noMaskScore; //!< no medical mask on the face score
float maskNotInPlace; //!< mask is not on the right place
float occludedFaceScore; //!< face is occluded by something score

The score group contains the estimation scores for each possible result of the estimation. All scores are
defined in [0,1] range.

6.23.6 Filtration parameters

The estimator is trained to work with face images that meet the following requirements:

Table 63: “Requirements for fsdk::MedicalMaskEstimator::EstimationResult”

Attribute Acceptable values

headPose.pitch [-40…40]

headPose.yaw [-40…40]

headPose.roll [-40…40]

ags [0.5…1.0]

Configurations:

See the “Medical mask estimator settings” section in the “ConfigurationGuide.pdf” document.

API structure name:

IMedicalMaskEstimator

Plan files:

• mask_clf_v3_cpu.plan

VisionLabs B.V. 134 / 244

• mask_clf_v3_cpu-avx2.plan
• mask_clf_v3_gpu.plan

VisionLabs B.V. 135 / 244

6.24 Human Attribute Estimation

Name: HumanAttributeEstimator

Algorithm description:

This estimator aims to detect next human attributes on the warped human image:

• Age;
• Gender;
• Sleeve size;
• The presence of a headwear;
• The color of a headwear;
• The presence of a backpack;
• Estimation of the lower body clothing type;
• The color of a lower body clothing;
• Outwear color.
• The color of the shoes;

Age estimation contains a single number - the number of years.

Gender estimation contains one of the next results (see HumanAttributeResult::Gender enum):

• Person’s gender is female;
• Person’s gender is male;
• Person’s gender is unknown.

Sleeve size estimation contains one of the next results (see HumanAttributeResult::SleeveSize
enum):

• Person’s sleeves are short;
• Person’s sleeves are long;
• Person’s sleeves size is unknown.

Hat estimation contains one of the next results (see HumanAttributeResult::Hat enum):

• There is no headwear;
• There is a headwear;
• Headwear state is unknown.

Backpack estimation contains one of the next results (see HumanAttributeResult::Backpack
enum):

• There is no backpack;
• There is a backpack;
• Backpack state is unknown.

LowerBodyClothing estimation contains one of the next results (see HumanAttributeResult::
LowerBodyClothing enum):

VisionLabs B.V. 136 / 244

• There are pants;
• There are shorts;
• There is skirt;
• Lower body clothing state is unknown.

Outwear color estimation contains the next results (see HumanAttributeResult::Color enum):

• Person’s outwear color is black;
• Person’s outwear color is blue;
• Person’s outwear color is green;
• Person’s outwear color is grey;
• Person’s outwear color is orange;
• Person’s outwear color is purple;
• Person’s outwear color is red;
• Person’s outwear color is white;
• Person’s outwear color is yellow;
• Person’s outwear color is pink;
• Person’s outwear color is brown;
• Person’s outwear color is beige;
• Person’s outwear color is khaki;
• Person’s outwear color is multicolored.

Apparent color estimation contains the next results (see HumanAttributeResult::ApparentColor
enum):

• Apparent color is black;
• Apparent color is white;
• Apparent color is some other color from full palette;
• Apparent color is unknown.

Outwear color vs Apparent color:

For now, we have two color palettes Outwear color and Apparent color. Outwear color palette represents
full palette supported by human attributes estimator. Apparent color palette is simplified version of
Outwear color. Color of some attributes can be classified only of small pool of colors - Black and White
for now. So, in sake of simplification for the user we introduce Apparent color palette. Apparent color
palette can be extended with colors in the future.

Implementation description:

The Gender enumeration contains all possible results of the Gender estimation:

enum class Gender {
Female, //!< person's gender is female
Male, //!< person's gender is male

VisionLabs B.V. 137 / 244

Unknown //!< person's gender is unknown
};

The SleeveSize enumeration contains all possible results of the SleeveSize estimation:

enum class SleeveSize {
Short, //!< sleeves are short
Long, //!< sleeves are long
Unknown //!< sleeves state is unknown

};

TheHat enumeration contains all possible results of the Hat estimation:

enum class Hat {
No, //< there is no headwear
Yes, //< there is a headwear
Unknown //< headwear state is unknown

};

The Backpack enumeration contains all possible results of the Backpack estimation:

enum class Backpack {
No, //< there is no backpack
Yes, //< there is a backpack
Unknown //< backpack state is unknown

};

The LowerBodyClothing enumeration contains all possible results of the LowerBodyClothing
estimation:

enum class LowerBodyClothing {
Pants, //< there is pants
Shorts, //< there is shorts
Skirt, //< there is skirt
Unknown //< lower body clothing state is unknown

};

The Color enumeration contains all possible results of the OutwearColor estimation:

enum class Color {
Black,
Blue,

VisionLabs B.V. 138 / 244

Green,
Grey,
Orange,
Purple,
Red,
White,
Yellow,
Pink,
Brown,
Beige,
Khaki,
Multicolored,
Count

};

The ApparentColor enumeration contains all possible results of the ApparentColor estimation:

enum class ApparentColor {
Black,
White,
Other,
Unknown,
Count

};

Human Attribute estimation request:

HumanAttributeRequest lists all possible estimation attributes that HumanAttributeEstimator is
currently able to estimate.

enum class HumanAttributeRequest {
EstimateAge = 1 << 0, //!< estimate age
EstimateGender = 1 << 1, //!< estimate gender
EstimateSleeveSize = 1 << 2, //!< estimate sleeves size
EstimateBackpack = 1 << 3, //!< estimate backpack state
EstimateOutwearColor = 1 << 4, //!< estimate outwear color
EstimateHeadwear = 1 << 5, //!< estimate headwear state
EstimateLowerBodyClothing = 1 << 7, //!< estimate lower body

clothing state
EstimateShoeColor = 1 << 8, //!< estimate shoe color
EstimateAll = 0xffff //!< estimate all attributes

};

The GenderEstimation structure contains results of the gender estimation:

VisionLabs B.V. 139 / 244

struct GenderEstimation {
Gender result; //!< estimation result (@see Gender enum).
float female; //!< female gender probability score
float male; //!< male gender probability score
float unknown; //!< unknown gender probability score

};

1� The first group contains only the result enum:

Gender result; //!< estimation result (@see Gender enum).

Result enum field GenderEstimation contain the target results of the estimation.

2� The second group contains scores:

float female; //!< female gender probability score
float male; //!< male gender probability score
float unknown; //!< unknown gender probability score

The scores group contains the estimation score.

The SleeveSizeEstimation structure contains results of the sleeves size estimation:

struct SleeveSizeEstimation {
SleeveSize result; //!< estimation result (@see SleeveSize enum).
float shortSize; //!< short sleeves size probability score
float longSize; //!< long sleeves size probability score
float unknown; //!< unknown sleeves size probability score

};

1� The first group contains only the result enum:

SleeveSize result; //!< estimation result (@see SleeveSize enum).

Result enum field SleeveSizeEstimation contain the target results of the estimation.

2� The second group contains scores:

float shortSize; //!< short sleeves size probability score
float longSize; //!< long sleeves size probability score
float unknown; //!< unknown sleeves size probability score

VisionLabs B.V. 140 / 244

The scores group contains the estimation score.

TheHatEstimation structure contains results of the hat estimation:

struct HatEstimation {
Hat result; //!< estimation result (@see Hat enum).
float noHat; //!< no hat probability score
float hat; //!< hat probability score
float unknown; //!< unknown hat state probability score

ApparentColorEstimation hatColor; //!< hat color estimation
};

1� The first group contains only the result enum:

Hat result; //!< estimation result (@see Hat enum).

Result enum field HatEstimation contain the target results of the estimation.

2� The second group contains scores:

float noHat; //!< no hat probability score
float hat; //!< hat probability score
float unknown; //!< unknown hat state probability score

The scores group contains the estimation score.

3� The third group contains color estimation:

ApparentColorEstimation hatColor; //!< hat color estimation.

The BackpackEstimation structure contains results of the backpack estimation:

struct BackpackEstimation {
Backpack result; //!< estimation result (@see Backpack enum).
float noBackpack; //!< no backpack probability score
float backpack; //!< backpack probability score
float unknown; //!< unknown backpack state probability score

};

1� The first group contains only the result enum:

Backpack result; //!< estimation result (@see Backpack enum).

VisionLabs B.V. 141 / 244

Result enum field BackpackEstimation contain the target results of the estimation.

2� The second group contains scores:

float noBackpack; //!< no backpack probability score
float backpack; //!< backpack probability score
float unknown; //!< unknown backpack state probability score

The scores group contains the estimation score.

The LowerBodyClothingEstimation structure contains results of the lower body clothing estimation:

struct LowerBodyClothingEstimation {
LowerBodyClothing result; //!< estimation result.
float pants; //!< pants probability score
float shorts; //!< shorts probability score
float skirt; //!< skirt probability score
float unknown; //!< unknown state probability score

OutwearColorEstimation lowerBodyClothingColor; //!< lower body
clothing color estimation.

};

1� The first group contains only the result enum:

LowerBodyClothing result; //!< estimation result.

Result enum field LowerBodyClothingEstimation contain the target results of the estimation.

2� The second group contains scores:

float pants; //!< pants probability score
float shorts; //!< shorts probability score
float skirt; //!< skirt probability score
float unknown; //!< unknown state probability score

The scores group contains the estimation score.

3� The third group contains color estimation:

OutwearColorEstimation lowerBodyClothingColor; //!< lower body
clothing color estimation.

TheOutwearColorEstimation structure contains results of outwear color estimation:

VisionLabs B.V. 142 / 244

struct OutwearColorEstimation {
bool isBlack; //!< outwear is black
bool isBlue; //!< outwear is blue
bool isGreen; //!< outwear is green
bool isGrey; //!< outwear is grey
bool isOrange; //!< outwear is orange
bool isPurple; //!< outwear is purple
bool isRed; //!< outwear is red
bool isWhite; //!< outwear is white
bool isYellow; //!< outwear is yellow
bool isPink; //!< outwear is pink
bool isBrown; //!< outwear is brown
bool isBeige; //!< outwear is beige
bool isKhaki; //!< outwear is khaki
bool isMulticolored; //!< outwear is

multicolored
float scores[static_cast<int>(Color::Count)]; //!< estimation scores

/**
* @brief Returns score of required outwear color.
* @param [in] color outwear color.
* @see Color for more info.
* */

inline float getScore(Color color) const;
};

1� The first group contains plain answer:

bool isBlack; //!< outwear is black
bool isBlue; //!< outwear is blue
bool isGreen; //!< outwear is green
bool isGrey; //!< outwear is grey
bool isOrange; //!< outwear is orange
bool isPurple; //!< outwear is purple
bool isRed; //!< outwear is red
bool isWhite; //!< outwear is white
bool isYellow; //!< outwear is yellow
bool isPink; //!< outwear is pink
bool isBrown; //!< outwear is brown
bool isBeige; //!< outwear is beige
bool isKhaki; //!< outwear is khaki
bool isMulticolored; //!< outwear is

multicolored

VisionLabs B.V. 143 / 244

2� The second group contains scores:

float scores[static_cast<int>(Color::Count)]; //!< estimation scores

Note Not all color flags and according float scores in OutwearColorEstimation have valid values. Some
colorswere added to interface to support future colors expansion andwill store valid values as algorithm
will evolve release by release. Currently, Pink, Beige, Khaki and Multicolored are zeroed internally.

The ApparentColorEstimation structure contains results of apparent color estimation:

struct ApparentColorEstimation {
bool isBlack; //!<

attribute is black
bool isWhite; //!<

attribute is white
bool isOther; //!<

attribute is some other
bool isUnknown; //!<

attribute is unknown
float scores[static_cast<int>(ApparentColor::Count)]; //!<

estimation scores

/**
* @brief Returns score of required color.
* @param [in] color color.
* @see ApparentColor for more info.
* */

inline float getScore(ApparentColor color) const;
};

1� The first group contains plain answer:

bool isBlack; //!<
attribute is black

bool isWhite; //!<
attribute is white

bool isOther; //!<
attribute is some other

bool isUnknown; //!<
attribute is unknown

2� The second group contains scores:

VisionLabs B.V. 144 / 244

float scores[static_cast<int>(ApparentColor::Count)]; //!<
estimation scores

The HumanAttributeResult structure contains optional results of all estimations depending on
HumanAttributeRequest.

/**
* @brief Age estimation by human body.
* @note This estimation may be very different from estimation by

face.
* */

Optional<float> age;
/**
* @brief Gender estimation by human body.
* @note This estimation may be very different from estimation by

face.
* */

Optional<GenderEstimation> gender;
Optional<SleeveSizeEstimation> sleeve; //!<

sleeve estimation.
Optional<HatEstimation> headwear; //!<

headwear estimation.
Optional<BackpackEstimation> backpack; //!<

backpack estimation.
Optional<OutwearColorEstimation> outwearColor; //!<

outwear color estimation.
Optional<LowerBodyClothingEstimation> lowerBodyClothing; //!<

lower body clothing estimation.
Optional<ApparentColorEstimation> shoeColor; //!<

shoe color color estimation.

HumanAttribute Aggregation:

The HumanAttribute provides a method to aggregate output results of a batch estimate call. All valid
features are counted and the result is amean of them. Invalid fields will be skipped and do not influence
on aggregation result.

/**
* @brief Aggregate human body attributes.
* @details All invalid fields will be skipped and do not influence

on aggregation result
* @param [in] estimations span of estimation results.
* @param [in] request estimation request.

VisionLabs B.V. 145 / 244

* @param [out] result aggregated result.
* @return Result with error code.
* @see Span, HumanAttributeResult, IHumanAttributeEstimator::

EstimationRequest, Result and FSDKError for details.
* @note all spans should be based on user owned continuous

collections.
* @note all spans should be equal size.
* */

virtual Result<FSDKError> aggregate(
Span<const HumanAttributeResult> estimations,
HumanAttributeRequest request,
HumanAttributeResult& result) const noexcept = 0;

Attribute dependencies:

Some attribute results are influenced by the outcomes of other attributes. Specifically, the color flag and
scoreof anattributedependon its predicted type. For example, it is notmeaningful to assign color values
to an attribute classified as Unknown. These rules also apply to aggregation results.

Dependency rules:

• In the HatEstimation struct:
– The hatColor field depends on the result field.
– If the result field has value No or Unknown, hatColor will be set to isUnknown = true,
and all scores will be reset to zero.

• In the LowerBodyClothingEstimation struct:
– The lowerBodyClothingColor field depends on the result field.
– If the result field has value Unknown, all flags in lowerBodyClothingColorwill be set to
false, and all scores will be reset to zero.

• In the HumanAttributeResult struct:
– The shoeColor field depends on the result field of LowerBodyClothingEstimation.
– If the result field of LowerBodyClothingEstimation is Unknown, then shoeColor will
be set to isUnknown = true, and all scores will be reset to zero.

Recommended thresholds:

Human Attribute estimator sets outwear color bool values and age by comparing an output score
with a corresponding threshold value listed in faceengine.conf file in HumanAttributeEstimator::
Settings section. By default, these threshold values are set to optimal.

Table 64: “Human Attribute Estimator recommended thresholds”

Thresholds Recommended values

blackUpperThreshold 0.740

VisionLabs B.V. 146 / 244

Thresholds Recommended values

blueUpperThreshold 0.655

brownUpperThreshold 0.985

greenUpperThreshold 0.700

greyUpperThreshold 0.710

orangeUpperThreshold 0.420

purpleUpperThreshold 0.650

redUpperThreshold 0.600

whiteUpperThreshold 0.820

yellowUpperThreshold 0.670

blackLowerThreshold 0.700

blueLowerThreshold 0.840

brownLowerThreshold 0.850

greenLowerThreshold 0.700

greyLowerThreshold 0.690

orangeLowerThreshold 0.760

purpleLowerThreshold 0.890

redLowerThreshold 0.600

whiteLowerThreshold 0.540

yellowLowerThreshold 0.930

adultThreshold 0.940

Configurations:

See the “Human Attribute Estimator settings” section in the “ConfigurationGuide.pdf” document.

API structure name:

IHumanAttributeEstimator

Plan files:

• human_attributes_v2_cpu.plan
• human_attributes_v2_cpu-avx2.plan
• human_attributes_v2_gpu.plan

VisionLabs B.V. 147 / 244

6.25 Crowd Estimation

Name: CrowdEstimator

Algorithm description:

This estimator aims to count a humans (heads) in the input image. It returns a count and center
coordinates of heads (optional).

There are several possible CrowdEstimator work modes:

• Single network - Crowd estimation network is used. It works good with small heads in the image,
but can lose big heads (which are closer to the camera).

• Two networksmode - two networks are be used: Crowd estimationwith HumanDetector or Crowd
estimation with HeadDetector. This mode causes more accurate results, but the execution of the
algorithms takesmore time. Two variants of detector are possible. They are “HumanDetector” and
“HeadDetector”. User can change the detectorType parameter in the config.

Implementation description:

The estimator (see ICrowdEstimator in ICrowdEstimator.h):

• Implements the estimate() function that accepts source image in R8G8B8 format, the region
of interest (ROI), fsdk::ICrowdEstimator::EstimationRequest structure and returns the
estimation result;

• Implements the estimate() function that accepts fsdk::Span of the source images in R8G8B8
format, fsdk::Span of ROIs, fsdk::ICrowdEstimator::EstimationRequest structure and
fsdk::Span of the fsdk::CrowdEstimation structures to return results of estimation.

User is free to choose anestimation type. For this purpose, estimate()method takesoneof the estimation
requests:

• fsdk::ICrowdEstimator::EstimationRequest::estimateHeadCount to return people
(heads) count only;

• fsdk::ICrowdEstimator::EstimationRequest::estimateHeadCountAndCoords to
return people (heads) count as well as head center coordinates;

The CrowdEstimation structure contains all possible results of the Crowd estimation:

struct CrowdEstimation {
size_t count; //!< The number of people (heads) in the image.
IPointBatchPtr points; //!< Coordinates of people heads. Empty if

not requested.
};

minHeadSize

VisionLabs B.V. 148 / 244

This estimator can estimate heads with size 3 px and more. In case when such small heads are not
required (or not possible in the use-case), user can change the minHeadSize parameter in the config.

Before processing, the images will be resized by minHeadSize/3 times. For example, if the value is
minHeadSize=12, then the image will be additionally resized by minHeadSize=12/3=4 times.

Estimator works faster with larger value of minHeadSize.

CrowdEstimatorType

The CrowdEstimation CrowdEstimatorType contains all possible working modes of the Crowd
estimator:

enum CrowdEstimatorType {
CET_DEFAULT = 0, //!< Default type which is specified in

config file. @see ISettingsProvider
CET_SINGLE_NET = 1, //!< Single network mode - only Crowd

estimation will be used
CET_TWO_NETS = 2, //!< Double network mode - Crowd +

HeadDetector
CET_COUNT

};

Here are:

• CET_DEFAULT - the default mode which is recommended to use. The result working mode will be
determines by the value in the configuration file faceengine.conf.

• CET_SINGLE_NET - single network working mode. Only Crowd estimation will be used.
• CET_TWO_NETS - twonetworksmode: CrowdestimationandHumanDetectororCrowdestimation
and HeadDetector.

• CET_COUNT - just a stub to check an input correctness, do not use it.

API structure name:

ICrowdEstimator

Plan files:

• crowd_v2_cpu.plan
• crowd_v2_cpu-avx2.plan
• crowd_v2_gpu.plan

VisionLabs B.V. 149 / 244

6.26 Fights Estimation

Name: FightsEstimator

Algorithm description:

This estimator detects fights on a video by processing several images sequences (batches) one by one
from the target video.

This estimator works based on the several image sequences (batches). Each batch should contain the
IFightsEstimator::getBatchSize() frames.

Every IFightsEstimator::estimate estimation call returns a context structure as a result. This
context structure should be passed to the next estimation call for the current video. If several videos
should be processed in parallel, you should keep different context structures - one for each video.
For the first estimation call, the context structure should be empty (nullptr). After estimating
the IFightsEstimator::getMinBatchCount() batches, the context structure will contain
IFightsEstimatorContext::State::Ready. You can then take an estimation result by calling
the IFightsEstimatorContext::getResult() method. If more frames should be processed, the
succeeding IFightsEstimator::estimate calls are required with passing the context structure.

Input requirements:

• Frames should be in the fsdk::Format::R8B8G8 format.
• Video should be about 30 FPS.
If the video contains more FPS (for example, 60 FPS), we recommend that you do not pass every
frame to the estimator (for example, every second frame for the 60 FPS video).

Content requirements:

• Human bounding box heights in the video should be >=30% frames hight.
For example, for the video with 640 x 480 resolution the minimum humans bounding box height
should be (640 * 0.3) = 192 px.
For details, see the Human Detection section in the Face detection facility chapter.

Camera requirements:

• A camera should be static.
• An RGB camera. The estimator performance on IR cameras is worse.
• The perspective should be from top to bottom, as on CCTV cameras. The recommended range is
30 to 60 degrees. The images below show examples of suitable angles.

VisionLabs B.V. 150 / 244

VisionLabs B.V. 151 / 244

Implementation description:

The estimator (see IFightsEstimator in IFightsEstimator.h):

• Implements the estimate() function that needs the fsdk::Span (batch) of fsdk::Image
objects and the fsdk::IFightsEstimatorContextPtr context object. The result is an error
code with updated fsdk::IFightsEstimatorContextPtr context object.

The context structure (see IFightsEstimatorContext in IFightsEstimator.h):

• Implements the getState() function that takes no arguments. The result is the current
estimation state.
Value IFightsEstimatorContext::State::Ready means that the estimation is completed

VisionLabs B.V. 152 / 244

and the result could be taken from the structure. Value IFightsEstimatorContext::State::
NoReadymeans that the estimation requires more frames to proceed.

• Implements the getResult() function that takes no arguments. The result is the current
estimation result (FightsEstimation structure).

The FightsEstimation structure contains results of the estimation:

struct FightsEstimation {
enum class State {

NoFight, //!< There is no fight on the input frames
Fight //!< Fight detected on the input frames

};
State state; //!< Estimation status
float score; //!< Estimation score normalized to [0..1] range

};

Estimation score is normalized in range [0..1], where 1 - is a real person, 0 - is a fake.

The valueofstatedependsonthreshold. You can change thethreshold value in the faceengine.conf
configuration file. For details, see the FightsEstimator settings section in Configuration Guide.

API structure name:

IFightsEstimator

Plan files:

• fights_v2_cpu.plan
• fights_v2_cpu-avx2.plan
• fights_v2_gpu.plan

VisionLabs B.V. 153 / 244

../../ConfigurationGuide/020_0660_FightsEstimator.md

7 Descriptor Processing Facility

7.1 Overview

The section describes descriptors and all the processes and objects corresponding to them.

Descriptor itself is a set of object parameters that are specially encoded. Descriptors are typically more
or less invariant to various affine object transformations and slight color variations. This property allows
efficient use of such sets to identify, lookup, and compare real-world objects images.

To receive a descriptor you should perform a special operation called descriptor extraction.

The general case of descriptors usage iswhen you compare twodescriptors and find their similarity score.
Thus you can identify persons by comparing their descriptors with your descriptors database.

All descriptor comparison operations are called matching. The result of the two descriptors matching
is a distance between components of the corresponding sets that are mentioned above. Thus, from a
magnitude of this distance, we can tell if two objects are presumably the same.

There are two different tasks solved using descriptors: person identification and person reidentification.

7.1.1 Person Identification Task

Facial recognition is the task ofmaking an identification of a face in a photo or video image against a pre-
existing database of faces. It begins with detection - distinguishing human faces from other objects in
the image - and thenworks on the identification of those detected faces. To solve this problem, we use a
face descriptor, which extracted from an image face of a person. A person’s face is invariable throughout
his life.

In a case of the face descriptor, the extraction is performed from object image areas around some
previously discovered facial landmarks, so the quality of the descriptor highly depends on them and the
image it was obtained from.

The process of face recognition consists of 4 main stages:

• face detection in an image;
• warping of face detection – compensation of affine angles and centering of a face;
• descriptor extraction;
• comparing of extracted descriptors (matching).

Additionally you can extract face features (gender, age, emotions, etc) or image attributes (light,
dark, blur, specularity, illumination, etc.).

7.1.2 Person Reidentification Task

Note! This functionality is experimental.

VisionLabs B.V. 154 / 244

The person reidentification enables you to detect a person who appears on different cameras. For
example, it is used when you need to track a human, who appears on different supermarket cameras.
Reidentification can be used for:

• building of human traffic warmmaps;
• analysing of visitors movement across cameras network;
• tracking of visitors across cameras network;
• search for a person across the cameras network in case when face was not captured (e.g. across
CCTV cameras in the city);

• etc.

For reidentification purposes, we use so-called human descriptors. The extraction of the human
descriptor is performed using the detected area with a person’s body on an image or video frame. The
descriptor is a unique data set formed based on a person’s appearance. Descriptors extracted for the
same person in different clothes will be significantly different.

The face descriptor and the human descriptor are almost the same from the technical point of view,
but they solve fundamentally different tasks.

The process of reidentifications consists of the following stages:

• human detection in an image;
• warping of human detection – centering and cropping of the human body;
• descriptor extraction;
• comparing of extracted descriptors (matching).

The human descriptor does not support the descriptor score at all. The returned value of the
descriptor score is always equal to 1.0.

The human descriptor is based on to the following criteria:

• clothes (type and color);
• shoes;
• accessories;
• hairstyle;
• body type;
• anthropometric parameters of the body.

Note. The human reidentification algorithm is trained to work with input data that meets the following
requirements:

• input images should be in R8G8B8 format (will work worse in night mode);
• the smaller side of input crop should be greater than 60 px;
• inside of same crop, one person should occupymore than 80% (sometimes several persons fit into
the same frame).

VisionLabs B.V. 155 / 244

7.2 Descriptor

Descriptor object stores a compact set of packed properties aswell as some helper parameters that were
used to extract these properties from the source image. Together these parameters determine descriptor
compatibility. Not all descriptors are compatible with each other. It is impossible to batch and match
incompatible descriptors, so you should pay attention towhat settings do you usewhen extracting them.
Refer to section “Descriptor extraction” for more information on descriptor extraction.

7.2.1 Descriptor Versions

Face descriptor algorithm evolves with time, so newer FaceEngine versions contain improvedmodels of
the algorithm.

Descriptors of different versions are incompatible! Thismeans that you cannotmatch descriptors
with different versions. This does not apply to base and mobilenet versions of the same model:
they are compatible.

See chapter “Appendix A. Specifications” for details about performance and precision of different
descriptor versions.

Descriptor version 65 is the most precise one. And it works well with the personal protective equipment
on face like medical mask.

Descriptor versionmay be specified in the configuration file (see section “Configuration data” in chapter
“Core facility”).

7.2.1.1 Face descriptor
7.2.1.1.1 Available versions Currently, the following versions are available: 58, 59, 60, 62, and 65.
These descriptors have two implementation types:

• Backend: High-precision implementation
• Mobilenet: Faster implementation with smaller model files

7.2.1.1.2 Version compatibility

• Versions 58, 62, and 65 support only the backend implementation.
• Backend versions offer higher precision.
• Mobilenet versions provide faster processing and smaller model files.

For detailed performance and precision comparisons, see Appendix A.1 and A.2.

7.2.1.1.3 GPU compatibility for CNN65 CNN65 requires a GPU with NVIDIA Turing architecture
or newer for correct operation. Older GPU architectures are not supported and may experience
performance issues or complete failure.

VisionLabs B.V. 156 / 244

7.2.1.2 Human descriptor
Versions of human descriptors are available: 102, 103, 104, 105, 106, 107, 108, 109, 110, 112, 113, 115, 116

Versions 102, 103, 104, 105, 106, 107, 109, 110 are deprecated.

To create a human descriptor, human batch, human descriptor extractor, human descriptormatcher you
must pass the human descriptor version

• DV_MIN_HUMAN_DESCRIPTOR_VERSION = 102 or
• HDV_TRACKER_HUMAN_DESCRIPTOR_VERSION = 102, //!< Deprecated. human descriptor for
tracking of people on one camera, light and fast version

• HDV_PRECISE_HUMAN_DESCRIPTOR_VERSION = 103, //!< Deprecated. precise human descriptor,
heavy and slow

• HDV_REGULAR_HUMAN_DESCRIPTOR_VERSION = 104, //!< Deprecated. regular human descriptor,
use it by default for multi-cameras tracking

• HDV_TRACKER_V2 = 105, //!< human descriptor for tracking of people, light and fast version.
• HDV_PRECISE_V2 = 106, //!< precise human descriptor, heavy and slow.
• HDV_REGULAR_V2 = 107, //!< regular human descriptor.
• HDV_TRACKER_V3 = 108, //!< human descriptor for tracking of people, light and fast version.
• HDV_PRECISE_V3 = 109, //!< precise human descriptor, heavy and slow.
• HDV_REGULAR_V3 = 110, //!< regular human descriptor.
• HDV_PRECISE_V4 = 112, //!< precise human descriptor, heavy and slow.
• HDV_REGULAR_V4 = 113 //!< regular human descriptor.
• HDV_PRECISE_V5 = 115, //!< precise human descriptor, heavy and slow.
• HDV_REGULAR_V5 = 116 //!< regular human descriptor.

7.2.2 Descriptor Batch

Whenmatching significant amounts of descriptors, it is desired that they reside continuously inmemory
for performance reasons (think cache-friendly data locality and coherence). This is where descriptor
batches come into play. While descriptors are optimized for faster creation and destruction, batches are
optimized for long life and better descriptor data representation for the hardware.

A batch is created by the factory like any other object. Aside from type, a size of the batch should be
specified. Size is a memory reservation this batch makes for its data. It is impossible to add more data
than specified by this reservation.

Next, the batch must be populated with data. You have the following options:

• add an existing descriptor to the batch;
• load batch contents from an archive.

The following notes should be kept in mind:

VisionLabs B.V. 157 / 244

• Whenadding anexistingdescriptor, its data is copied into thebatch. Thismeans that thedescriptor
object may be safely released.

• When adding the first descriptor to an empty batch, initial memory allocation occurs. Before that
moment the batch does not allocate. At the samemoment, internal descriptor helper parameters
are copied into the batch (if there are any). This effectively determines compatibility possibilities
of the batch. When the batch is initialized, it does not accept incompatible descriptors.

After initialization, a batch may bematched pretty much the same way as a simple descriptor.

Like any other data storage object, a descriptor batch implements the ::clear()method. An effect of this
method is the batch translation to a non-initialized state except memory deallocation. In other words,
batch capacity stays the same, and nomemory is reallocated. However, an actual number of descriptors
in the batch and their parameters are reset. This allows re-populating the batch.

Memory deallocation takes place when a batch is released.

Care should be taken when serializing and deserializing batches. When a batch is created, it is assigned
with a fixed-sizememory buffer. The size of the buffer is embedded into the batch BLOBwhen it is saved.
So, when allocating a batch object for reading the BLOB into, make sure its size is at least the same as
it was for the batch saved to the BLOB (even if it was not full at the moment). Otherwise, loading fails.
Naturally, it is okay to deserialize a smaller batch into a larger another batch this way.

7.2.3 Descriptor Extraction

Descriptor extractor is the entity responsible for descriptor extraction. Like any other object, it is created
by the factory. To extract a descriptor, aside from the source image, you need:

• a face detection area inside the image (see chapter “Detection facility”)
• a pre-allocated descriptor (see section “Descriptor”)
• a pre-computed landmarks (see chapter “Image warping”)

A descriptor extractor object is responsible for this activity. It is represented by the straightforward
IDescriptorExtractor interface with only one method extract(). Note, that the descriptor object must be
created prior to calling extract() by calling an appropriate factory method.

Landmarks are used as a set of coordinates of object points of interest, that in turn determine source
image areas, the descriptor is extracted from. This allows extracting only data that matters most for
a particular type of object. For example, for a human face we would want to know at least definitive
properties of eyes, nose, andmouth to be able to compare it to another face. Thus, we should first invoke
a feature extractor to locate where eyes, nose, andmouth are and put these coordinates into landmarks.
Then the descriptor extractor takes those coordinates and builds a descriptor around them.

Descriptor extraction is one of themost computation-heavy operations. For this reason, threadingmight
be considered. Be aware that descriptor extraction is not thread-safe, so you have to create an extractor
object per a worker thread.

VisionLabs B.V. 158 / 244

It should be noted, that the face detection area and the landmarks are required only for image warping,
the preparation stage for descriptor extraction (see chapter “Image warping”). If the source image
is already warped, it is possible to skip these parameters. For that purpose, the IDescriptorExtractor
interface provides a special extractFromWarpedImage()method.

Descriptor extraction implementation supports execution on GPUs.

The IDescriptorExtractor interface provides extractFromWarpedImageBatch() method which allows
you to extract batch of descriptors from the image array in one call. This method achieve higher
utilization of GPU and better performance (see the “GPU mode performance” table in appendix A
chapter “Specifications”).

Also IDescriptorExtractor returns descriptor score for each extracted descriptor. Descriptor score is
normalized value in range [0,1], where 1 - face in the warp, 0 - no face in the warp. This value allows you
filter descriptors extracted from false positive detections.

The IDescriptorExtractor interface provides extractFromWarpedImageBatchAsync()methodwhich allows
you to extract batch of descriptors from the image array asynchronously in one call. Thismethod achieve
higher utilization of GPU and better performance (see the “GPUmode performance” table in appendix A
chapter “Specifications”).

Note: Method extractFromWarpedImageBatchAsync() is experimental, and it’s interfacemay be changed
in the future.

Note: Method extractFromWarpedImageBatchAsync() is not marked as noexcept and may throw an
exception.

7.2.4 Descriptor Matching

It is possible to match a pair (or more) previously extracted descriptors to find out their similarity. With
this information, it is possible to implement face search and other analysis applications.

VisionLabs B.V. 159 / 244

Figure 17:Matching

By means ofmatch function defined by the IDescriptorMatcher interface it is possible to match a pair of
descriptors with each other or a single descriptor with a descriptor batch (see section “Descriptor batch”
for details on batches).

A simple rule to help you decide which storage to opt for:

• when searching among less than a hundred descriptors use separate IDescriptor objects;
• when searching among bigger number of descriptors use a batch.

When working with big data, a common practice is to organize descriptors in several batches keeping a
batch per worker thread for processing.

Be aware that descriptormatching is not thread-safe, so youhave to create amatcher object per aworker
thread.

7.2.5 Descriptor Indexing

7.2.5.1 Using HNSW
To accelerate a descriptor matching process, you can create a special index for a descriptor batch. With
the index, matching becomes a two-stage process:

VisionLabs B.V. 160 / 244

First stage: build an indexed data structure — index — by using IIndexBuilder. This is quite a slow
process, so it is not supposed to be done frequently. To build it, you can:

- Append the `IDescriptor` or `IDescriptorBatch` objects
- Use the `IIndexBuilder::buildIndex` build method

Second stage: use the index to quickly search the nearest neighbors for passed descriptors.

There are two types of indexes:

• IDenseIndex
Read-only. Loading faster than IDynamicIndex. Once loaded, there are no performance
differences in terms of searching between the two indexes.

• IDynamicIndex
Editable. Allows you to append and remove descriptors. If you remove descriptors, they are
removed from the graph for searching.
To save IDynamicIndex with removed descriptors, first, call eraseRemovedDescriptors from
IDynamicIndex structure. The state of the stored dynamic search index is not guaranteed for
implementation reasons. If the descriptors are successfully erased, the remaining ID will move
up. The shift depends on the number of removed handles. If the index state after erasing is valid,
you can continue to use it for searching, otherwise you will have to rebuild it. > Important:
We recommend to avoid operations that remove descriptors and rebuild the index by calling
IIndexBuilder::buildIndex from a new set of descriptors and save the result as the dynamic
index onemore time.

You can only build a dynamic index. To get a dense index, you need to make it via deserialization. If you
have several processes that might need to search in the index, do one of the following:

• Build an index for every process separately.
>Warning: Building an index is a slow process.

• Build an index once and serialize it to a file.

7.2.5.2 Index serialization
To serialize an index, use the IDynamicIndex::saveToDenseIndex or IDynamicIndex::
saveToDynamicIndexmethods.

Todeserializean index, use theIFaceEngine::loadDenseIndexorIFaceEngine::loadDynamicIndex
methods.

Important notes:

• Index files are not cross-platform. If you serialize an index on some platform, it is only usable
on that exact platform. An operating system, as well as a different CPU architecture, may break
compatibility.

VisionLabs B.V. 161 / 244

• Embedded and 32-bit desktop platforms do not support the HNSW index.
• After large index files are loaded into RAM, the first lookupmay take additional time due to process
allocations. We recommend that you perform an idle search of descriptors to warm up.

7.2.5.3 Dynamic index evaluation scheme. This feature is experimental. Backward compatibility is not
guaranteed.

In LUNA SDK v.5.17.0 and later, you can remove descriptors from a dynamic index in amounts of up to
80-90%of the total count. Deleting descriptors affects the internal structure of the index. The number of
removed descriptors increases. For this reason, youmust assess an index state.

7.2.5.3.1 Simple rules

• Call isValidForSearch every 10% of deletions from the original number of descriptors.
• Call evaluate after removing of 60% descriptors and every 10% of deletions after.
• Rebuilding an index is mandatory in a case of getting DIS_INVALID.
• Rebuilding an index is recommended if your index coefficient values are less than the ones in the
table below (searchForEvaluation = 20):

Index size Value

10M 0.5

20M 0.4

30M 0.4

40M 0.35

7.2.5.3.2 isValidForSearchmethod Call the isValidForSearchmethod after every removal of 10%
of the original descriptor count. This method returns an index state. If the received state differs from
DIS_VALID, you must rebuild the index to avoid unpredictable behavior.

The method specification is presented below:

virtual ResultValue<FSDKError, DynamicIndexState> isValidForSearch() const
noexcept = 0;

Where available range of DynamicIndexState is:

enum DynamicIndexState : uint8_t {
DIS_INVALID = 0, //!< DIS_INVALID - index is invalid for search.

VisionLabs B.V. 162 / 244

DIS_VALID, //!< DIS_VALID - index is valid for search.
DIS_UNKNOWN, //!< DIS_UNKNOWN - index state is unknown.
DIS_COUNT

};

7.2.5.3.3 evaluate method Call the evaluatemethod after removing 60% of the original descriptor
count.

The evaluate method takes significantly longer to run compared to isValidForSearch. You can
specify searchForEvaluation and numThreads in the IndexBuilder::Settings section in
faceengine.conf to tune it. The number of threads numThreads should be selected not greater than
the number of cores in the system and not less than 0. By default, the number of threads is 0 and
corresponds to the number of available cores.

The larger the searchForEvaluation value is, the more precise the evaluation will be, and the longer
evaluate()method will run.

The method specification is presented below:

virtual ResultValue<FSDKError, float> evaluate() const noexcept = 0;

Themethod returns the status and the numerical value. The score is in the range [0, 1]

The table below shows estimated execution time, in minutes:

searchForEvaluation is LengthSearch.

Index size LengthSearch 20 LengthSearch 50 LengthSearch 100 LengthSearch 200

1.6M 1.65 2.44 2.73 3.19

10M 5.60 8.61 16.56 28.43

30M 22.10 32.03 39.60 58.63

Processor: Intel Xeon Skylake (IBRS)
Number of CPU cores: 32
CPU clock speed: 2.1 GHz
RAM capacity: 113 GB

It is necessary to rebuild the index after receiving the DIS_INVALID state regardless of the value. We
recommend you to rebuild the index in the DIS_VALID state when the value is below the threshold.

VisionLabs B.V. 163 / 244

If the index state is DIS_INVALID, you can save it to a file and load subsequently. The followingmethod
can be used to get a descriptor using its identifier:

virtual Result<FSDKError> descriptorByIndex(const DescriptorId index,
IDescriptor* descriptor) const noexcept = 0;

VisionLabs B.V. 164 / 244

8 System Requirements

8.1 Windows OS installations

We support 64-bit versions of the following operating systems:

Desktop/workstation environment:

• Windows 10 version 1909 or newer is required. Older versions are not supported.

Server environment:

• Windows Server 2016 or newer is required. Older versions are not supported.

Supported compiler:

• Visual Studio 17 2022. Other compilers may work but were not tested.

Note 1: FaceEngine requires a 64-bit version of Visual C++ Redistributable for Visual Studio 2022 to
operate. The redistributable installer may be obtained fromMicrosoft via this link:

https://learn.microsoft.com/en-us/cpp/windows/latest-supported-vc-redist

8.2 Linux OS installations

We support the following operating systems:

• CentOS 8.2 64-bit
• AlmaLinux 8
• Ubuntu 2404 LTS 64-bit.

Supported compiler for CentOS 8.2 64-bit:

• GCC = GNU 7.5.0

Supported compiler for Ubuntu 2404 LTS 64-bit:

• GCC = GNU 13.2.0

Other compilers may work but were not tested.

Important notes:

• 32-bit OS on x86_64 CPU are not supported.
• Your OS should run glibc version 2.17 (CentOS) or 2.39 (Ubuntu), or newer.
• System locale must be US English. Specifically LC_NUMERIC=en_US.UTF-8.

VisionLabs B.V. 165 / 244

https://learn.microsoft.com/en-us/cpp/windows/latest-supported-vc-redist

9 Hardware requirements

9.1 Server / PC installations

See “Appendix A. Specifications” for information about hardware used for performancemeasurements.

9.1.1 General considerations

Bewarned, that not all algorithms in the SDKhaveGPUorNPU implementations. If the desired algorithm
doesn’t haveaGPUorNPU implementation, a fallback to theCPU implementationhas tobemade. In this
case, one should take careof possiblememory transfers and latency they cause. Please see thealgorithm
implementation matrix for details.

Neural network CPU CPU AVX2 NPU Atlas GPU

FaceDet_v2_<detector_type>_first_<device>.plan yes yes

FaceDet_v2_<detector_type>_second_<device>.plan yes yes yes

FaceDet_v2_<detector_type>_third_<device>.plan yes yes yes

FaceDet_v3_<version>_<device>.plan yes yes yes yes

FaceDet_v3_redetect_<version>_<device>.plan yes yes yes

model_subjective_quality_<version>_<device>.plan yes yes yes

headpose_v3_<device>.plan yes yes yes yes

ags_v3_<device>.plan yes yes yes yes

attributes_estimation_<device>.plan yes yes yes

portrait_style_<version>_<device>.plan yes yes yes

background_<version>_<device>.plan yes yes yes

emotion_recognition_<version>_<device>.plan yes yes yes

glasses_estimation_v2_<device>.plan yes yes yes

eyes_estimation_flwr8_<device>.plan yes yes yes

eye_status_estimation_<device>.plan yes yes yes

eyes_estimation_ir_<device>.plan yes yes yes

gaze_<version>_<device>.plan yes yes yes

red_eye_<version>_<device>.plan yes yes yes

gaze_ir_<version>_<device>.plan yes yes yes

overlap_estimation_v1_<device>.plan yes yes yes

VisionLabs B.V. 166 / 244

Neural network CPU CPU AVX2 NPU Atlas GPU

mouth_estimation_<version>_<device>.plan yes yes yes

face_occlusion_v1_<device>.plan yes yes yes

mask_clf_<version>_<device>.plan yes yes yes

ppe_estimation_<version>_<device>.plan yes yes yes

orientation_<device>.plan yes yes yes

LNet_precise_<version>_<device>.plan yes yes yes

LNet_ir_precise_<version>_<device>.plan yes yes yes

slnet_<version>_<device>.plan yes yes yes

liveness_model_<version>_<device>.plan yes yes yes

depth_estimation_<device>.plan yes yes yes

ir_liveness_universal_<device>.plan yes yes yes

eyebrow_estimation_<version>_<device>.plan yes yes yes

flying_faces_liveness_<version>_<device>.plan yes yes yes

rgbm_liveness_<device>.plan yes yes yes

rgbm_liveness_pp_hand_frg_<device>.plan yes yes yes

natural_light_<device>.plan yes yes yes

head_wear_<version>_<device>.plan yes yes yes

fisheye_<version>_<device>.plan yes yes yes

human_<version>_<device>.plan yes yes yes

human_redetect_<device>.plan yes yes yes

human_attributes_<version>_<device>.plan yes yes yes

reid_<reid_type>_102_<device>.plan (deprecated) yes yes yes

reid_<reid_type>_103_<device>.plan (deprecated) yes yes yes

reid_<reid_type>_104_<device>.plan (deprecated) yes yes yes

reid_<reid_type>_105_<device>.plan (deprecated) yes yes yes

reid_<reid_type>_106_<device>.plan (deprecated) yes yes yes

reid_<reid_type>_107_<device>.plan (deprecated) yes yes yes

reid_<reid_type>_108_<device>.plan yes yes yes

reid_<reid_type>_109_<device>.plan (deprecated) yes yes yes

VisionLabs B.V. 167 / 244

Neural network CPU CPU AVX2 NPU Atlas GPU

reid_<reid_type>_110_<device>.plan (deprecated) yes yes yes

reid_<reid_type>_112_<device>.plan yes yes yes

reid_<reid_type>_113_<device>.plan yes yes yes

cnn56b_<device>.plan yes yes yes

cnn56m_<device>.plan yes yes yes

cnn57b_<device>.plan yes yes yes yes

cnn58b_<device>.plan yes yes yes

cnn59m_<device>.plan yes yes yes yes

cnn60b_<device>.plan yes yes yes

cnn62b_<device>.plan yes yes yes

cnn65b_<device>.plan yes yes yes

oneshot_rgb_liveness_<version>_model_1_<device>.plan yes yes yes

oneshot_rgb_liveness_<version>_model_2_<device>.plan yes yes yes

oneshot_rgb_liveness_<version>_model_3_<device>.plan yes yes yes

oneshot_rgb_liveness_<version>_model_4_<device>.plan yes yes yes

crowd_<version>_<device>.plan yes yes yes

depth_liveness_v2_<device>.plan yes yes yes yes

depth_rgb_<version>_<model_id>_<device>.plan yes yes yes yes

vlTracker_detection_<device>.plan yes yes yes yes

vlTracker_template_<device>.plan yes yes yes yes

vlTracker_update_<device>.plan yes yes yes yes

9.1.2 CPU requirements

For NN with ”*_cpu.plan” in names, CPU should support at least the SSE4.2 instruction set.

For NN with ”*_cpu-avx2.plan” in names, AVX2 instruction set support is required for the best
performance.

Only 64-bit CPUs are supported.

If in doubt, consider checking your CPU specifications at the following websites:

VisionLabs B.V. 168 / 244

• Intel CPU: http://ark.intel.com

• AMD CPU: http://products.amd.com.

9.1.3 GPU requirements

For GPU acceleration an NVIDIA GPU is required. The following architectures are supported:

• Pascal or newer
• Compute Capability. The version depends on the platform (see “Requirements for GPU
acceleration”)

A minimum of 6GB or dedicated video RAM is required. 8 GB or more VRAM recommended.

9.1.4 The number of SDK threads while using GPU

If Runtime::numThreads in runtime.conf is not -1, then the SDK creates numThreads - 1 worker
threads. Besides, the user-created thread that initializes the SDK is used as a worker thread too.

In addition to worker threads, the SDK creates approximately GPU_count + 1 CUDA threads, where
GPU_count is the number of GPUs in the system. The number of CUDA threads may slightly vary
depending on drivers.

Example Assume Runtime::numThreads=4 and there is 1 GPU. If we list all threads in the process, we
get something like the following:

thread id=4162 (unittest_core_t)
thread id=4170 (Worker 1)
thread id=4171 (Worker 2)
thread id=4172 (Worker 3)
thread id=4186 (cuda00001400006)
thread id=4273 (cuda-EvtHandlr)

Here the thread unittest_core_t is created by the user (“main thread”) and is used to initialize the
SDK. It will be used as one of worker threads by the SDK. Worker 1, Worker 2, Worker 3 are 3workers
created by the SDK. The 2 CUDA threads are also created by the SDK (1 GPU + 1).

9.1.5 NPU requirements

Huawei Atlas NPU was utilized with the following drivers and additional SW installed:

Drivers:

• Version = 20.2.0
• ascendhal_version = 4.0.0

VisionLabs B.V. 169 / 244

http://ark.intel.com
http://products.amd.com/en-us/

• aicpu_version = 1.0
• tdt_version = 1.0
• log_version = 1.0
• prof_version = 2.0
• dvppkernels_version = 1.1
• tsfw_version = 1.0
• required_firmware_firmware_version = 1.0

Firmware:

• Version = 1.76.22.3.220
• firmware_version = 1.0

Toolkit:

• Version = 1.76.22.3.220

9.1.6 RAM requirements

Systemmemory consumption differs depending on a usage scenario and is proportional to the number
of worker threads. This is true for both CPU (think system RAM) and GPU (think VRAM) execution modes.

For example, in CPU execution mode 1GB RAM is enough for a typical pipeline, which consists of a face
detector and a face descriptor extractor running on a single core (one worker thread) and processing
1080p input images with 10-12 faces on average. If this setup is scaled up to 8 worker threads, overall
memory consumption grows up to 8GB.

It is recommended to assume at least 1GB of free RAM per worker thread.

9.1.7 Storage requirements

FaceEngine requires 1GBof free space to install. This includesmodeldata forbothCPUandGPUexecution
modes that should be redistributedwith your application. If only one executionmode is planned, reduce
space requirements by half.

9.1.8 Approaches to software design targeting different hardware

When performing inference on different hardware, several key differences should be taken into account
to reachmaximum possible performance:

9.1.8.1 CPU
Key points:

VisionLabs B.V. 170 / 244

• Memory used by the inference engine is physically located on the same chips where OS and
business logic data reside. Source data (images/video frames) also reside there.

• The CPU is general-purpose hardware, not tailored for many operations specific to NN inference.

Implications:

• No memory transfers ever performed, memory access latency is low. the CPU is easily saturated
with work.

• Both memory and CPUmay receive additional pressure from background processes.

Recommendations:

• Don’t expect profit from batching. If the software isn’t expected to ever run/support GPU or NPU,
don’t implement it at all. Instead, consider culling computation-heavy algorithms early (e.g. check
head pose and AGS score before attempting to extract a descriptor in order to avoid the extraction
for bad faces).

• Use tools like taskset() to isolate different types of workload on process level on servers.
• Consider running a separate SDK process per node on NUMA systems. Note, that SDK itself is not
NUMA-aware.

9.1.8.2 GPU/NPU
Key points:

• Memory used by the inference engine is physically located on the device and source data
(images/video frames) is on the host memory.

• While servers typically use DDR memory, GPU/NPU devices prefer GDDR, which offers higher
throughput at the cost of higher latency.

• GPU/NPU devices process excessive amounts of data in hundreds/thousands of threads without
external interference. In addition, they implement specialized instructions for many typical NN
inference operations.

• GPU/NPU are fed with work by the CPU.

Implications:

• Memory transfers should be taken into account. Such transfers typically takeplace bymeans of the
PCI-e bus and the bus may become the performance bottleneck. GPU/NPU generally needs much
more input data to saturate it with work.

Recommendations:

• Batch multiple source images together and do inference for the entire match at once. This helps
to saturate both the bus and the device. See recommended batch sizes in chapter Appendix A.
Specifications.

• Take care of memory residence. While SDK will do an implicit memory transfer for you, in some
cases it is beneficial to do this yourself. E. g. Both Tesla and Atlas cards implement on-board

VisionLabs B.V. 171 / 244

hardwareaccelerateddecoders for JPEGandh264 formats. If your softwareutilizes thesedecoders,
don’t transfer the decoder output to the host memory. Instead, pass the device pointer to the SDK
directly. Note, that SDFK Image class can wrap an existing memory pointer at no cost.

• Take care of device work scheduling. The general rule of thumb:

– Don’t acces the same device from multiple threads/processes, this may involve kernel level
locks or be unsupported at all

– Access different devices from different threads/processes. This way work scheduling is less
likely to be CPU-bound.

– Workload isolation recommendations for the CPU also apply here.

SDK algorithms are device-bound. To supportmultiple devices in one process, you are required to create
each algorithm implementation you need on a per-device basis and bind it to the corresponding device
as shown in the example below:

int32_t npuDeviceIndex = 1;
fsdk::LaunchOptions launchOptions;
launchOptions.deviceClass = fsdk::DeviceClass::NPU_ASCEND;
launchOptions.npuDevice = npuDeviceIndex;

auto result = faceEngine->createDetector(
detectorType,
fsdk::SensorType::Visible,
&launchOptions

);
ASSERT_TRUE(result.isOk());

auto detector = result.getValue();

GPU specific recommendations

GPUs tend to be harder to saturate with work. Consider bigger batches.

NPU specific recommendations

Atlas 300I NPU is designed such that there are 4 different NPU devices per accelerator card. This means
that you have to design your software for multi-device scenarios from the ground up to achieve the best
performance. The card has a PCI-e x8 bus connector and eachNPUdevice consumes x2 lanes from it; the
bus is likely tobecome thebottleneck. Atlas 300INPU is saturatedwithworkquite easily; batchingmakes
sense for some particularly lightweight NNs mostly. Memory operations on the device (copy, clears) are
particularly slow.

VisionLabs B.V. 172 / 244

9.1.9 Requirements for GPU acceleration

Recommended versions of CUDA:

• For Win64 - CUDA Toolkit 11.6

• For Linux(CentOS, AlmaLinux) - CUDA Toolkit 11.4

• For Linux(Ubuntu) - CUDA Toolkit 12.4

The most current version of these release notes can be found online at http://docs.nvidia.com/cuda/
cuda-toolkit-release-notes/index.html.

Important: ForWin64 and Linux (CentOS, AlmaLinux) there are additional requirements - Compute
Capability 6.1 or higher.

CUDA version on Linux can be found using command below:

$nvidia-smi

CUDA version onWindows can be found in Control Panel\Programs\Programs and Features as
in figure below

Figure 18: CUDA version on Win

We recommend that you use suggested version of CUDA for your operating system. But if your
version is older than required, we do not guarantee, that it will work successfully. For details about
CUDA Compatibility, see https://docs.nvidia.com/deploy/cuda- compatibility/index.html.

9.2 Embedded installations

9.2.1 CPU requirements

Supported CPU architectures:

• ARMv7-A;
• ARMv8-A (ARM64).

VisionLabs B.V. 173 / 244

https://developer.nvidia.com/cuda-11-6-0-download-archive
https://developer.nvidia.com/cuda-11-4-0-download-archive
https://developer.nvidia.com/cuda-12-4-0-download-archive
http://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html
http://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html
https://docs.nvidia.com/deploy/cuda-compatibility/index.html

10 Migration guide

10.1 Overview

Here you can find information about important changes in the next releases of LUNA SDK.

10.2 v.5.24.0

10.2.1 IDetector

The FaceDetV1 has been removed since v.5.24.0.

10.3 v.5.23.0

10.3.1 IImageTransfer

Since version 5.23.0, a method for a single image in the IImageTransfer interface has been removed.

Example of code (before version 5.23.0):

auto result = imageTransfer->transfer(image, fsdk::Image::
MemoryResidence::MemoryGPU);

// or
auto result = imageTransfer->transfer(images, fsdk::Image::

MemoryResidence::MemoryGPU);

Example of code (from version 5.23.0):

auto result = imageTransfer->transfer(images, fsdk::Image::
MemoryResidence::MemoryGPU);

10.3.2 IDetector

The FaceDetV1 has been deprecated since v.5.23.0. Use FaceDetV3 instead.

10.4 v.5.22.0

10.4.1 IHeadPoseEstimator

Since version v.5.22.0, an estimation method of IHeadPoseEstimator, based on Landmarks68 has
been dropped. Accordingly, the configuration block - "HeadPoseEstimator::Settings", which
allows the user to define which method to use, has also been dropped.

VisionLabs B.V. 174 / 244

10.4.2 IHeadPoseEstimator and IAGSEstimator

Since version v.5.22.0, IHeadPoseEstimator and IAGSEstimator have been reconsidered and
reinstated.

10.5 v.5.20.0

10.5.1 ILivenessFlowEstimator

Since v.5.20.0 the ILivenessFlowEstimator estimator has been removed.

10.6 v.5.19.0

10.6.1 ILivenessFlowEstimator

Since v.5.19.0 the ILivenessFlowEstimator estimator has been deprecated. If you still need this
estimator, please, contact VisionLabs for details.

10.7 v.5.18.0

10.7.1 IChildEstimator

Since v.5.18.0 the IChildEstimator estimator has been removed. Use the IAttributeEstimator
(SeeIAttributeEstimator.h)withIAttributeEstimator::EstimationRequest::estimateAge
instead.

10.7.2 IHeadAndShouldersLivenessEstimator

Since v.5.18.0 the IHeadAndShouldersLivenessEstimator estimator has been removed. If you still
need this estimator, please, contact VisionLabs for details.

10.8 v.5.17.0

10.8.1 IHeadAndShouldersLivenessEstimator

Since v.5.17.0 the estimator IHeadAndShouldersLivenessEstimator has been deprecated (See
IHeadAndShouldersLivenessEstimator.h). If you need this estimator, please, contact VisionLabs
for details.

VisionLabs B.V. 175 / 244

10.8.2 IChildEstimator

Since v.5.17.0 the estimator IChildEstimator has been deprecated (See IChildEstimator.h).
Use the IAttributeEstimator (See IAttributeEstimator.h) with IAttributeEstimator::
EstimationRequest::estimateAge instead.

Example of code (before version v.5.17.0):

// Create child estimator.
auto resChildEstimator = faceEngine->createChildEstimator();
if(!resChildEstimator) {

std::cerr << "Failed to create child estimator instance. Reason: "
<< resChildEstimator.what();

std::cerr << std::endl;
return -1;

}
fsdk::IChildEstimatorPtr childEstimator = resChildEstimator.getValue();

// Get child estimation.
fsdk::ChildEstimation childEstimation;
fsdk::Result<fsdk::FSDKError> childEstimationResult = childEstimator->

estimate(warp, childEstimation);
if(childEstimationResult.isOk()) {

std::cout << "\nChild estimate:";
std::cout << "\nchildScore: " << childEstimation.childScore << " (

range [0, 1])";
std::cout << "\nis child: " << childEstimation.isChild << " (1 - is

child, 0 - is adult)";
std::cout << std::endl;

} else {
std::cerr << "Failed child estimation. Reason: " <<

childEstimationResult.what() << std::endl;
}

Example of code (from version v.5.17.0):

// Create attribute estimator.
auto resAttributeEstimator = faceEngine->createAttributeEstimator();
if(!resAttributeEstimator) {

std::cerr << "Failed to create attribute estimator instance. Reason:
" << resAttributeEstimator.what();

std::cerr << std::endl;
return -1;

}

VisionLabs B.V. 176 / 244

fsdk::IAttributeEstimatorPtr attributeEstimator = resAttributeEstimator.
getValue();

// Get attribute estimation.
using AttrsRequest = fsdk::IAttributeEstimator::EstimationRequest;
AttrsRequest attributesRequest = AttrsRequest::estimateAge;
fsdk::IAttributeEstimator::EstimationResult attributeEstimation;

fsdk::Result<fsdk::FSDKError> attributeEstimatorResult =
attributeEstimator->estimate(warp, attributesRequest,

attributeEstimation);

if(attributeEstimatorResult.isOk()) {
std::cout << "\nAttribute estimate:";
std::cout << "\nage: " << attributeEstimation.age.value() << " (in

years)" << std::endl;
std::cout << std::endl;

} else {
std::cerr << "Failed to make attribute estimation. Reason: " <<

attributeEstimatorResult.what();
std::cerr << std::endl;

}

10.8.3 Index

Since v.5.17.0 IDynamicIndex can be saved as a file to hard disc after removing of descriptors.

Example of code (before version v.5.17.0):

// index with removed descriptors could not be saved
for (std::size_t i = 0; i < nRemoved; ++i) {

auto resRemove = index->removeDescriptor(i);
if (resRemove.isError()) {

// process error
...

}
}

Example of code (from version v.5.17.0):

// remove descriptors

VisionLabs B.V. 177 / 244

for (std::size_t i = 0; i < nRemoved; ++i) {
auto resRemove = index->removeDescriptor(i);
if (resRemove.isError()) {

// process error
...

}
}

// erase descriptors
auto resEraseRemovedDescs = index->eraseRemovedDescriptors();
if(resEraseRemovedDescs.isError()) {

// process error
...

}

// get map of new descriptors
auto map = resEraseRemovedDescs.getValue();
for (std::size_t i = 0; i < count; ++i) {

// if the old ID is not found, the error InvalidDescriptorId will be
returned

auto resMapFind = map->getId(i);
if (resMapFind.isError()) {

// process error or skip not found id
...

}
// we can get new id by old id
auto newId = resMapFind.getValue();

}

// now we can save index
auto resSave = index->saveToDynamicIndex("your_index_name.bin");
if (resSave.isError()) {

// process error
}

10.8.4 FishEyeEstimator

Since v.5.13.0 method estimate of IFishEyeEstimator by crop and detection has been deprecated
(See IFishEyeEstimator.h). Use estimate by warped image instead.

Example of code (before version 5.13.0):

fsdk::FishEyeEstimation estimation;

VisionLabs B.V. 178 / 244

fsdk::Result<fsdk::FSDKError> res = fishEyeEstimator->estimate(image,
detection, estimation);

Example of code (from version 5.13.0):

fsdk::FishEyeEstimation estimation;
fsdk::Result<fsdk::FSDKError> res = fishEyeEstimator->estimate(warp,

estimation);

10.9 v.5.6.0

10.9.1 Vector2

Since v.5.6.0, the member array in fsdk::Vector2 has been removed. You should use the x andy
members instead of the removed array one.

Example of code (before version 5.6.0):

fsdk::Vector2<int> vector2;
vector2.x = 10;
vector2.y = 20;
// or
vector2.array[0] = 10;
vector2.array[1] = 20;

Example of code (from version 5.6.0):

fsdk::Vector2<int> vector2;
vector2.x = 10;
vector2.y = 20;

10.9.2 BlackWhiteEstimator

Since v.5.6.0 method estimate of IBlackWhiteEstimator by full image has been deprecated (See
IBlackWhiteEstimator.h). Use estimate by warped image instead.

Example of code (before version 5.6.0):

bool isGray = false;
Result<FSDKError> res = BlackWhiteEstimator->estimate(fullImage, isGray)

;

VisionLabs B.V. 179 / 244

Example of code (from version 5.6.0):

fsdk::ImageColorEstimation estimation;
Result<FSDKError> res = BlackWhiteEstimator->estimate(warp, estimation);

10.10 v.5.5.0

From v.5.5.0 the default value of numThreads (runtime.conf) was replaced by -1. Which means that
will be taken the maximum number of available threads. This number of threads is equal to according
number of available processor cores.

Example of setting (before version 5.5.0):

<param name="numThreads" type="Value::Int1" x="4" />

Example of setting (from version 5.5.0):

<param name="numThreads" type="Value::Int1" x="-1" />

From v.5.5.0 the method loadFromFile(const char* path) (See ILicense.h) is deprecated. The
use is allowed, but can be useless. Please use the method loadFromFile(const char* path,
const fsdk::ISettingsProvider* settings) instead.

10.10.0.1 Examples of code
Example of code (before version 5.5.0):

const bool isLicenseFileLoadedSuccessfully = license->loadFromFile(path)
.isOk());

Example of code (from version 5.5.0):

auto resSettings = fsdk::createSettingsProvider("License Config Path");
if (!resSettings.isOk()) {

return -1;
}

fsdk::ISettingsProviderPtr settings = resSettings.getValue();

// Create new license from file

VisionLabs B.V. 180 / 244

const bool isLicenseFileLoadedSuccessfully = license->loadFromFile(path,
settings).isOk());

10.11 v.5.2.0

From v.5.2.0 the 101 version of human descriptor is not supported, it was changed by 104. Currently,
three versions are available: 102 (tracker), 103 (precise), 104 (regular). It means that all instances (such
as IDescriptorExtractor, IDescriptorMatcher and etc.) cannot be created with the version 101.

10.12 v.5.1.0

From version v.5.1.0 IHeadPoseEstimatorPtr and IAGSEstimatorPtr are deprecated. Use
IBestShotQualityEstimatorPtr instead.

Note. AGSscore thresholdsaredifferent forIAGSEstimatorPtrandIBestShotQualityEstimatorPtr
. Readmore on the BestShotQuality estimation page.

10.13 v.5.0.0

10.13.1 Objects creation

The fsdk::acquire(...) method for the pointer acquiring for IFaceEngine objects is not allowed
for usage starting from version 5.0.0. In addition, the types of values returned from the createmethods
of IFaceEnginewere changed.

Most of the create methods now return the following structure - fsdk::ResultValue<fsdk::
FSDKError, ObjectClassPtr> Thus it is easy to check the correctness of the result (using one of
the following methods result.isOk() or result.isError()) and get an error (using the result
.getError() method). The result.what() method can be used to get the text description of the
error.

10.13.1.1 Examples of code
Example of code (before version 5.0.0):

fsdk::IAttributeEstimatorPtr estimator = fsdk::acquire(faceEngine->
createAttributeEstimator());

if (estimator.isNull()) {
std::cout << "Object pointer is nullptr" << std::endl;
... // process error

}

VisionLabs B.V. 181 / 244

Example of code (from version 5.0.0):

fsdk::ResultValue<fsdk::FSDKError, fsdk::IAttributeEstimatorPtr>
resEstimator = faceEngine->createAttributeEstimator();

if (resEstimator.isError()) {
std::cout << "Error: " << resEstimator.what() << std::endl;
... // process error

}

fsdk::IAttributeEstimatorPtr estimator = resEstimator.getValue();

10.13.2 Interface of ILicense

From version v.5.0.0 we changed the interface of ILicense. Now all methods of this class return
fsdk::Result<fsdk::FSDKError>, fsdk::ResultValue<fsdk::FSDKError, bool> or fsdk::
ResultValue<fsdk::FSDKError, uint32_t> instead of bool.

10.13.2.1 Examples of code
Example of code (before version 5.0.0):

const bool res = license->isActivated();
if (!res) {

/* error case code */
}

Example of code (from version 5.0.0):

const fsdk::ResultValue<fsdk::FSDKError, bool> result = license->
isActivated();

if (result.isError()) {
/* error case code */

}

const bool value = result.getValue();
if (!value) {

/* false case code */
}

Fromversionv.5.0.0wechanged theargumentsofmethodsgetExpirationDateandcheckFeatureId
in class ILicense. Now the input arguments of getExpirationDate and checkFeatureId is
fsdk::LicenseFeature instead of uint32_t. And the second argument of getExpirationDate

VisionLabs B.V. 182 / 244

was removed. The return value of getExpirationDate is fsdk::ResultValue<fsdk::FSDKError
, uint32_t>.

Example of code (before version 5.0.0):

long long expDate = 0;
const bool result =

license->getExpirationDate(static_cast<uint32_t>(fsdk::
LicenseFeature::Detection), expDate);

if (result == false) {
/* error case code */

}

Example of code (from version 5.0.0):

const fsdk::ResultValue<fsdk::FSDKError, uint32_t> result =
license->getExpirationDate(fsdk::LicenseFeature::Detection);

if (result.isError()) {
/* error case code */

}

const uint32_t expDate = result.getValue();

Example of code (before version 5.0.0):

const bool res = license->checkFeatureId(static_cast<uint32_t>(fsdk::
LicenseFeature::Detection));

if (!res) {
/* error case code */

}

Example of code (from version 5.0.0):

const fsdk::ResultValue<fsdk::FSDKError, bool> result = license->
checkFeatureId(fsdk::LicenseFeature::Detection);

if (result.isError()) {
/* error case code */

}

const bool value = result.getValue();
if (!value) {

VisionLabs B.V. 183 / 244

/* false case code */
}

10.13.3 Interface of HumanLandmark

From version v.5.0.0 we changed the interface of HumanLandmark. Now member point doesn’t store
zero coordinates in the case when it is not visible. For this purposes we added member visiblewhich
stores true if point is visible.

Example of code (before version 5.0.0):

if (humanLandmark.point.x == 0 && humanLandmark.point.y == 0) {
// point is not visible case code

}
else {

// point is visible case code
}

Example of code (from version 5.0.0):

if (humanLandmark.visible == false) {
// point is not visible case code

}
else {

// point is visible case code
}

10.13.3.1 HumanDetectionType
Since v.5.19.0 the HDT_POINTS was dropped, but the the enum HumanDetectionType kept for
backward compatibility

10.13.3.2 HumanLandmarks17
Since v.5.19.0 were dropped the HumanLandmarks17, special points for the body parts visible in the
image, and themember function getLandmarks17, whichwas intended to return HumanLandmarks17
Span.

10.13.3.3 IHumanLandmarksDetector
Sincev.5.19.0weredropped theIHumanLandmarksDetector - ahuman landmark(HumanLandmarks17
) detector.

VisionLabs B.V. 184 / 244

10.13.4 Interface of IDescriptorBatch

From version v.5.0.0 we renamed method IDescriptorBatch::getDescriptorSize() to
IDescriptorBatch::getDescriptorLength().

Example of code (before version 5.0.0):

uint32_t descriptorLength = descriptorBatch->getDescriptorSize();

Example of code (from version 5.0.0):

uint32_t descriptorLength = descriptorBatch->getDescriptorLength();

10.13.5 Interface of Detection

From version v.5.0.0 we changed the interface of the Detection structure. Now all members of this
structure are private and could be available through the public methods.

Example of code (before version 5.0.0):

fsdk::Detection detection = ...; // Somehow initialized detection object
fsdk::Rect rect = detection.rect; // Get the detection rect
float score = detection.score; // Get the detection score

Example of code (from version 5.0.0):

fsdk::Detection detection = ...; // Somehow initialized detection object
fsdk::Rect rect = detection.getRect(); // Get the detection rect
float score = detection.getScore(); // Get the detection score

10.13.6 Interface of IDetector

From version v.5.0.0 we changed the interface of IDetector structure. Now method detect returns
ResultValue<FSDKError, Ref<IFaceDetectionBatch>> instead of ResultValue<FSDKError,
Ref<IResultBatch<Face>>>.

Example of code (before version 5.0.0):

fsdk::ResultValue<fsdk::FSDKError, fsdk::Ref<fsdk::IResultBatch<fsdk::Face
>>> detectorResult = faceDetector->detect(

fsdk::Span<const fsdk::Image>(&image, 1),

VisionLabs B.V. 185 / 244

fsdk::Span<const fsdk::Rect>(&imageRect, 1),
detectionsCount,
fsdk::DT_ALL);

Example of code (from version 5.0.0):

fsdk::ResultValue<fsdk::FSDKError, fsdk::Ref<fsdk::IFaceDetectionBatch>>
detectorResult = faceDetector->detect(

fsdk::Span<const fsdk::Image>(&image, 1),
fsdk::Span<const fsdk::Rect>(&imageRect, 1),
detectionsCount,
fsdk::DT_ALL);

Also we changed input and output parameters of the method redetectOne. Now it takes Image and
Detection instead of Face. And returns ResultValue<FSDKError, Face> instead of ResultValue
<FSDKError, bool>.

Example of code (before version 5.0.0):

fsdk::ResultValue<fsdk::FSDKError, bool> redetectResult = faceDetector->
redetectOne(face);

Example of code (from version 5.0.0):

fsdk::ResultValue<fsdk::FSDKError, fsdk::Face> redetectResult = faceDetector
->redetectOne(image, detection);

10.13.7 IFaceDetectionBatch

We added IFaceDetectionBatch structure to replace IResultBatch<Face>.

Example of code (before version 5.0.0):

fsdk::Ref<IResultBatch<Face>> resultBatch = ...; // Somehow get the
IResultBatch<Face>

for (std::size_t i = 0; i < resultBatch->getSize(); ++i) {
fsdk::Span<fsdk::Face> faces = resultBatch->getResults(i);
for (auto& face : faces) {

const fsdk::Rect& rect = face.detection.rect;
const float score = face.detection.score;
const fsdk::Landmarks5& lm5 = face.landmarks5.value();
const fsdk::Landmarks68& lm68 = face.landmarks68.value();

VisionLabs B.V. 186 / 244

// Some code which uses received objects
}

}

Example of code (from version 5.0.0):

fsdk::Ref<fsdk::IFaceDetectionBatch> faceDetectionBatch = ...; // Somehow
get the IFaceDetectionBatch

for (std::size_t i = 0; i < faceDetectionBatch->getSize(); ++i) {
fsdk::Span<const fsdk::Detection> detections = faceDetectionBatch->

getDetections(i);
fsdk::Span<const fsdk::Landmarks5> landmarks5 = faceDetectionBatch->

getLandmarks5(i);
fsdk::Span<const fsdk::Landmarks68> landmarks68 = faceDetectionBatch->

getLandmarks68(i);
for (std::size_t j = 0; j < detections.size(); ++j) {

const fsdk::Rect& rect = detections[j].getRect();
const float score = detections[j].getScore();
const fsdk::Landmarks5& lm5 = landmarks5[j];
const fsdk::Landmarks68& lm68 = landmarks68[j];
// Some code which uses received objects

}
}

10.13.8 Interface of IHumanDetector

From version v.5.0.0 we changed the interface of IHumanDetector structure. Now method detect
returns ResultValue<FSDKError, Ref<IHumanDetectionBatch>> instead of ResultValue<
FSDKError, Ref<IResultBatch<Human>>>.

Example of code (before version 5.0.0):

fsdk::ResultValue<fsdk::FSDKError, fsdk::Ref<fsdk::IResultBatch<fsdk::Human
>>> detectResult = humanDetector->detect(

fsdk::Span<const fsdk::Image>(&image, 1),
fsdk::Span<const fsdk::Rect>(&imageRect, 1),
detectionsCount,
fsdk::DCT_ALL);

Example of code (from version 5.0.0):

fsdk::ResultValue<fsdk::FSDKError, fsdk::Ref<fsdk::IHumanDetectionBatch>>
detectResult = humanDetector->detect(

VisionLabs B.V. 187 / 244

fsdk::Span<const fsdk::Image>(&image, 1),
fsdk::Span<const fsdk::Rect>(&imageRect, 1),
detectionsCount,
fsdk::HDT_ALL);

Also we changed input and output parameters of the method redetectOne. Now it takes Image
and Detection instead of Human. And returns ResultValue<FSDKError, Human> instead of
ResultValue<FSDKError, bool>.

Example of code (before version 5.0.0):

fsdk::ResultValue<fsdk::FSDKError, bool> redetectResult = humanDetector->
redetectOne(human);

Example of code (from version 5.0.0):

fsdk::ResultValue<fsdk::FSDKError, fsdk::Human> redetectResult =
humanDetector->redetectOne(image, detection);

10.13.9 IHumanDetectionBatch

Since v.5.19.0 were dropped the member function getLandmarks17, which was intended to return
HumanLandmarks17 Span.

We added IHumanDetectionBatch structure to replace IResultBatch<Human>.

Example of code (before version 5.0.0):

fsdk::Ref<IResultBatch<Human>> resultBatch = ...; // Somehow get the
IResultBatch<Human>

for (std::size_t i = 0; i < resultBatch->getSize(); ++i) {
fsdk::Span<fsdk::Human> humans = resultBatch->getResults(i);
for (auto& human : humans) {

const fsdk::Rect& rect = human.detection.rect;
const float score = human.detection.score;
const fsdk::Landmarks17& lm17 = face.landmarks5.value();
// Some code which uses received objects

}
}

Example of code (from version 5.0.0):

VisionLabs B.V. 188 / 244

const fsdk::Ref<fsdk::IHumanDetectionBatch> humanDetectionBatch = ...; //
Somehow get the IHumanDetectionBatch

for (std::size_t i = 0; i < humanDetectionBatch->getSize(); ++i) {
fsdk::Span<const fsdk::Detection> detections = humanDetectionBatch->

getDetections(i);
fsdk::Span<const fsdk::HumanLandmarks17> landmarks = humanDetectionBatch

->getLandmarks17(i);
for (std::size_t j = 0; j < detections.size(); ++j) {

const fsdk::Rect rect = detections[j].getRect();
const float score = detections[j].getScore();
const fsdk::HumanLandmarks17 lm17 = landmarks[j];
// Some code which uses received objects

}
}

10.13.10 Interface of ILivenessFlyingFaces

From version v.5.0.0 we changed the interface of ILivenessFlyingFaces structure. Now both
methods estimate take Image and Detection instead of Face.

Example of code (before version 5.0.0):

fsdk::LivenessFlyingFacesEstimation flyingFacesEstimation;
Result<fsdk::FSDKError> flyingFacesResult = livenessFlyingFacesEstimator->

estimate(face, flyingFacesEstimation);

Example of code (from version 5.0.0):

fsdk::LivenessFlyingFacesEstimation flyingFacesEstimation;
Result<fsdk::FSDKError> flyingFacesResult = livenessFlyingFacesEstimator->

estimate(
image,
detection,
flyingFacesEstimation);

Example of code (before version 5.0.0):

Result<fsdk::FSDKError> flyingFacesResult = livenessFlyingFacesEstimator->
estimate(

fsdk::Span<const fsdk::Face>(&face, 1),
fsdk::Span<fsdk::LivenessFlyingFacesEstimation>(&estimation, 1));

VisionLabs B.V. 189 / 244

Example of code (from version 5.0.0):

fsdk::LivenessFlyingFacesEstimation flyingFacesEstimation;
Result<fsdk::FSDKError> flyingFacesResult = livenessFlyingFacesEstimator->

estimate(
fsdk::Span<const fsdk::Image>(&image, 1),
fsdk::Span<const fsdk::Detection>(&detection, 1),
fsdk::Span<fsdk::LivenessFlyingFacesEstimation>(&

flyingFacesEstimation, 1));

10.14 v.3.10.1

10.14.1 Detector FaceDetV3 changes

From version 3.10.1 we changed the logic for image resizing in FaceDetV3 detector. Now you can
change the minimum and maximum sizes of the faces that will be searched in the photo from the
faceengine.conf configuration. To get new parameter which will be identical to old setting you need
to set minFaceSize:

The old recommended imageSize=640 will be identical to newmeaning of setting minFaceSize=20

config->setValue("FaceDetV3::Settings", "minFaceSize", 20);

and imageSize=320 will be identical to newmeaning of setting minFaceSize=40

config->setValue("FaceDetV3::Settings", "minFaceSize", 40);

10.14.2 Detector FaceDetV1, FaceDetV2 changes

Fromversion3.10.1we changed thenameof parameterminSize tominFaceSize infaceengine.conf
for FaceDetV1, FaceDetV2 detector types. The logic and default value for image resizing left unchanged.

VisionLabs B.V. 190 / 244

11 Best practices

This section provides a set of recommendations and performance tips that you should follow to get
optimal performance when running the LUNA SDK algorithms on your target device.

11.1 Thread pools

We recommend that you use thread pools for user-created threads when running LUNA SDK algorithms
in amultithreaded environment. For each thread, LUNASDK caches someamount of thread local objects
under the hood in order to make its algorithms run faster next time the same thread is used at the cost
of higher memory footprint. For this reason, we recommend that you reuse threads from a pool to avoid
caching new internal objects and to reduce penalty of creating or destroying new user threads.

11.2 Estimator creation and inference

Create face engine objects once and reuse them when you need to make a new estimate to reduce
RAM usage and increase performance. The reason is that recreating of estimators leads to reopen the
corresponding plan file every time. These plan files are cached separately for every load and will be
removed only when they are flushed from the cache or after calling the destructor of FaceEngine root
object.

11.3 Forking process

UNIX-like operating systems implement a mechanism to duplicate a process. It creates a new
child process and copies its parents’ memory space into the child’s one. This is typically done
programmatically by calling the fork() system function in the parent process.

Care should be taken when forking a process running the SDK.

Important: Always fork before the first instance of IFaceEngine is created!
This is because the SDK internally maintains a pool of worker threads, which is created lazily at the
time the very first IFaceEngine object is born and destroyed right after the last IFaceEngine
object is released. When using GPU or NPU devices, their runtime is initialized and shut down in the
samemanner.

Thehazard comes from the fact thatwhilefork() copies processmemory, it only creates just one thread
- the main thread. For details, see https://man7.org/linux/man-pages/man2/fork.2.html.

As a result, if at least one IFaceEngine object is alive at the time the process is being forked, the child
processes will inherit the knowledge of the object, and therefore, the implicit thread pool (and device
runtime, when appropriate). But there will be no worker threads actually running (in both, the inherited
pool and the runtime, when appropriate) and attempting to call certain SDK functions will cause a
deadlock.

VisionLabs B.V. 191 / 244

https://man7.org/linux/man-pages/man2/fork.2.html

11.4 Liveness estimator combination

Depending on your device and its camera, you can enhance the accuracy of themodel by simultaneously
using a combination of two universal liveness estimators. For example, youmight use:

• LivenessDepthRGBEstimator and NIRLivenessEstimator
• LivenessDepthEstimator and LivenessOneShotRGBEstimator

To implement this, you need to aggregate the rates from each liveness estimator and adjust the
thresholds in the faceengine.conf configuration file.

11.4.1 Changing the threshold

All models are calibrated so that the base threshold is 0.5 for any model of any modality.

If you need greater protection against hacking, then the threshold can be raised, and if the convenience
of real users is more important, then lowered. We recommend that you configure specific values for
changing the threshold in deviation from the basic one on a client basis.

11.4.2 Aggregating the scores

Any of two liveness modalities can be aggregated with each other. To do this, you need to multiply the
speeds of the corresponding networks. The threshold in this case is also multiplied and becomes equal
to 0.25.

11.4.3 Recommended thresholds

The recommended threshold is an optimal balance between TPR and FPR.

11.4.4 Possible LivenessOneShotRGBEstimator model combinations

You can use the LivenessOneShotRGBEstimator models in the following combinations:

• Use these models in the backend as an analogue of server LivenessOneShotRGBEstimator.
– oneshot_rgb_liveness_v9_model_1_cpu-avx2.plan
– oneshot_rgb_liveness_v9_model_2_cpu-avx2.plan
– oneshot_rgb_liveness_v9_model_3_cpu-avx2.plan
– oneshot_rgb_liveness_v9_model_4_cpu-avx2.plan

• Use these models on smartphones as an analogue of LivenessOneShotRGBEstimator.
– oneshot_rgb_liveness_v9_model_3_cpu-avx2.plan
– oneshot_rgb_liveness_v9_model_4_cpu-avx2.plan

• Use the belowmodel on devices with Orbbec cameras, such as payment terminals (POS) and self-
service cash registers (KCO):

VisionLabs B.V. 192 / 244

– oneshot_rgb_liveness_v9_model_4_cpu-avx2.plan

VisionLabs B.V. 193 / 244

12 Device-specific constraints

12.1 Image constraints

Whenmemory is allocated for Imagepixel data storage, the following constraints are enforceddepending
on the requestedmemory residence:

• Image::MemoryResidence::CPU: base address alignment is 32 bytes;
• Image::MemoryResidence::GPU: base address alignment is 128 bytes;
• Image::MemoryResidence::NPU: base address alignment is 128 bytes;
• Image::MemoryResidence::NPU_DPP: base address alignment is 128 bytes.

Also, in case of Image::MemoryResidence::NPU_DPP image width must be multiple of 16 and image
height must be multiple of 2.

When Image is initialized as a wrapper for a user-provided memory block, whose residence is said to
be Image::MemoryResidence::NPU or Image::MemoryResidence::NPU_DPP, the above requirements are
checked upon the initialization.

Image class implements limited functionality for device-side data. Only the following operations are
supported:

• construction (both with Image-owned memory and as a wrapper for a user-defined memory) and
assignment (including deep copy);

• destruction;

• set() family of functions (functionally the same as construction/assignment);

• convert() function, but only in transfermode; Thismeans that both source and destination formats
mustmatch, onlymemory residencymay differ. This function supports only synchronousmemory
transfers in the following directions:

– host <-> GPU
– GPU <-> GPU
– host <-> NPU
– NPU <-> NPU.

Full range of functionality (including format conversions) is currently only available for Images with host
memory data residence.

The following operations are NOT supported:

• compressed format encoding/decoding;
• format/color space conversion;
• subimage views (i.e. map() function);
• padding and cropping (i.e. extract() function);
• manipulation (e.g. getPixel(), setPixel(), etc.).

VisionLabs B.V. 194 / 244

13 Collecting information for Technical Support

To efficiently resolve a problemwith LUNA SDK, collect all necessary information based on the error type
and provide it to VisionLabs Technical Support. Possible error types include:

• Specific error
• Non-specific error
• Unexpected result

13.1 Contact Technical Support

You can contact our Technical Support in either of the following ways:

• Via email: support@visionlabs.ai
• Via Service Portal: https://jira.visionlabs.ru/servicedesk/customer/portal/2

13.2 Specific error

These errors usually occur when LUNA SDK is used incorrectly. Examples include:

• An estimator or detector does not work, resulting in an error when creating or using it.
• An error occurs when launching on a GPU device.
• A license error is received.

In such cases, study the full launch logs and understand what was launched and where.

To get detailed logging in LUNA SDK, follow these steps:

1� In the luna-sdk/data/runtime.conf configuration file, set the verboseLogging parameter to 4.

<param name="verboseLogging" type="Value::Int1" x="4" />

2� In the luna-sdk/data/faceengine.conf configuration file, set the verboseLogging parameter to 4.

<param name="verboseLogging" type="Value::Int1" x="4" />

3� In the luna-sdk/data/trackengine.conf configuration file, set the severity parameter to 0.

<param name="severity" type="Value::Int1" x="0" />

If you knowwhichmodule the error occurs in, provide only that module’s log by changing the value only
in the relevant configuration file. If unsure, collect all logs.

VisionLabs B.V. 195 / 244

https://jira.visionlabs.ru/servicedesk/customer/portal/2

13.3 Non-specific error

Examples of non-specific errors include:

• An application crashes at an uncertain time.
• An application freezes unexpectedly.
• There is a memory leak.

In such cases, you need to understand in detail the application operation scenario, including what is
called and in what sequence.

Provide the following information:

• The exact version of LUNA SDK (e.g., v.5.22.2, build for CentOS 8).
• Information about the environment where the application runs (e.g., Docker container, launch via
Python bindings).

• Full launch logs.
• Additional information like crash dumps, reports from third-party utilities, and system logs.
• Code reproducing the problem, if any.

13.4 Unexpected Result

Unexpected results may occur due to:

• Incorrect use of LUNA SDK
• Algorithm errors
• Launching in unexpected conditions

Examples include:

• A face is present in a photo or video, but the detector doesn’t see it.
• A person is smiling, but the emotion estimator indicates sadness.

Reasons for unexpected results vary, such as:

• Incorrect use of LUNA SDK, for example, a wrong threshold in a configuration file.
• Incorrect input data, such as a poor-quality video or heavily compressed frames.
• Occasional algorithm errors.
• New data for the algorithm.

To understand and address the issue, provide:

• Full launch logs.
• All configuration files used during the launch:

– luna-sdk/data/runtime.conf
– luna-sdk/data/faceengine.conf
– luna-sdk/data/trackengine.conf

VisionLabs B.V. 196 / 244

• An estimate of how often the unexpected result occurs, for example, every frame or once in a
thousand frames.

• Examples of data that produce unexpected results.

VisionLabs B.V. 197 / 244

14 Appendix A. Specifications

14.1 Classification performance

Classification performance was measured on a two datasets:

• Cooperative dataset (containing 20K images from various sources obtained at several banks);
• Non cooperative dataset (containing 20K).

The two tables below contain true positive rates corresponding to select false positive rates.

Table 68: “Classification performance@ low FPR on cooperative dataset”

FPR
TPR
CNN 58

TPR CNN
59

TPR CNN
59m

TPR CNN
60

TPR CNN
60m

TPR CNN
62

TPR CNN
65

10-7 0.9910 0.9911 0.9809 0.9917 0.979 0.9916 0.9909

10-6 0.9916 0.9915 0.9876 0.9917 0.989 0.9917 0.9950

10-5 0.9918 0.9919 0.9904 0.9919 0.990 0.9918 0.9976

10-4 0.9919 0.9921 0.9915 0.9921 0.991 0.9920 0.9988

Table 69: “Classification performance@ low FPR on non cooperative dataset”

FPR
TPR CNN
58

TPR CNN
59

TPR CNN
59m

TPR CNN
60

TPR CNN
60m

TPR CNN
62

TPR CNN
65

10-7 0.9834 0.9850 0.9059 0.9862 0.9279 0.9909 0.9909

10-6 0.9914 0.9907 0.9454 0.9931 0.9523 0.9950 0.9950

10-5 0.9954 0.9956 0.9705 0.9967 0.9752 0.9976 0.9976

10-4 0.9983 0.9983 0.9868 0.9987 0.9888 0.9988 0.9988

14.2 Runtime performance for CentOS Linux environment

Facedetectionperformancedepends on input imageparameters such as resolution andbit depth aswell
as the size of the detected face.

Input data characteristics:

• Image resolution: 1920x1080px;
• Image format: 24 BPP RGB;

VisionLabs B.V. 198 / 244

Performance measurements are presented for CPU, GPU and NPU execution modes in tables below.
Measured values are averages of at least 100 experiments.

Estimated values of memory consumption are also presented for CPU and GPU. These values are highly
depend on the input data and the conditions of the experiment.

The results for minimum batch size and optimal batch size are shown in the tables below. All the
intermediate and non-optimal values are omitted.

Face detections are performed using FaceDetV3 NN.

All types of face detection and redetect performedwith capturing boundingboxes and 5 facial landmarks.

14.2.1 CPU performance

Benchmarking for CPU was performed on the server with the following hardware configuration:

CPU:

• Intel(R) Xeon(R) Silver 4210 CPU@ 2.20GHz;
• CPU(s): 40
• Thread(s) per core: 2
• Core(s) per socket: 10
• Socket(s): 2
• NUMA node(s): 2
• CPU with AVX2 instruction set was used

OS: CentOS Linux release 8.3.2011

RAM: 128 GB DDR4 (Clock Speed: 2133 MHz)

In experiments listed in tables below face detection and descriptor extraction algorithms used all
available CPU cores, whereas matching performance is specified per-core.

Descriptor matching is only implemented on CPU.

14.2.1.1 CPU. Detector performance
The table below shows the performance of FaceDetV3 Detector on the CPU.

Measurement
CPU

threads BatchSize
Average
(ms)

RAMMemory
(Mb)

Detector (minFaceSize=20) 1 1 373.92 1889.0

Detector (minFaceSize=20) 8 1 152.73 2076.0

Detector (minFaceSize=20) 8 4 147.26 4411.0

Detector (minFaceSize=20) 8 8 148.32 7329.0

VisionLabs B.V. 199 / 244

Measurement
CPU

threads BatchSize
Average
(ms)

RAMMemory
(Mb)

Detector (minFaceSize=50) 1 1 63.23 1261.0

Detector (minFaceSize=50) 8 1 27.52 1482.0

Detector (minFaceSize=50) 8 4 23.43 1810.0

Detector (minFaceSize=50) 8 8 24.61 2358.0

Detector (minFaceSize=90) 1 1 23.11 1184.0

Detector (minFaceSize=90) 8 1 11.62 1364.0

Detector (minFaceSize=90) 8 4 8.03 1470.0

Detector (minFaceSize=90) 8 8 8.23 1748.0

Redetect 1 1 0.63 1252.0

Redetect 8 1 0.83 1284.0

Redetect 8 4 0.32 1673.0

Redetect 8 8 0.25 2153.0

FaceLandmarks5Detector 1 1 0.22 1225.0

FaceLandmarks5Detector 8 1 0.37 1225.0

FaceLandmarks5Detector 8 8 0.09 1226.0

FaceLandmarks68Detector 1 1 3.2 1226.0

FaceLandmarks68Detector 8 1 2.0 1230.0

FaceLandmarks68Detector 8 8 1.0 1237.0

14.2.1.2 CPU. HumanDetector performance
The table below shows the performance of HumanDetector on the CPU.

Measurement
CPU

threads BatchSize
Average
(ms)

RAMMemory
(Mb)

HumanDetector (resize to 320) 1 1 10.05 1740.0

HumanDetector (resize to 320) 8 1 6.18 1813.0

HumanDetector (resize to 320) 8 8 3.53 1978.0

HumanDetector (resize to 640) 1 1 35.03 1776.0

HumanDetector (resize to 640) 8 1 14.71 1865.0

VisionLabs B.V. 200 / 244

Measurement
CPU

threads BatchSize
Average
(ms)

RAMMemory
(Mb)

HumanDetector (resize to 640) 8 8 11.55 2234.0

HumanRedetect 1 1 2.61 1239.0

HumanRedetect 8 1 2.76 1545.0

HumanRedetect 8 4 1.24 1770.0

HumanRedetect 8 8 1.26 1987.0

14.2.1.3 CPU. HumanFaceDetector performance
The table below shows the performance of HumanFaceDetector on the CPU.

Measurement CPU threads BatchSize Average (ms)
RAMMemory

(Mb)

HumanFaceDetector
(minFaceSize=20)

1 1 425.37 2558

HumanFaceDetector
(minFaceSize=20)

8 1 183.5 2600

HumanFaceDetector
(minFaceSize=20)

8 8 182.35 9340

HumanFaceDetector
(minFaceSize=50)

1 1 66.97 1783

HumanFaceDetector
(minFaceSize=50)

8 1 28.9 1812

HumanFaceDetector
(minFaceSize=50)

8 8 29.17 2900

HumanFaceDetector
(minFaceSize=90)

1 1 22.6 1734

HumanFaceDetector
(minFaceSize=90)

8 1 10.71 1758

HumanFaceDetector
(minFaceSize=90)

8 8 9.17 2072

14.2.1.4 CPU. HeadDetector performance

VisionLabs B.V. 201 / 244

Type
CPU

threads Batch Size
Average
(ms)

RAMMemory
(Mb)

HeadDetector (minHeadSize=20) 1 1 322.93 2156.0

HeadDetector (minHeadSize=20) 8 1 118.41 2223.0

HeadDetector (minHeadSize=20) 8 8 109.41 5578.0

HeadDetector (minHeadSize=50) 1 1 57.97 1781.0

HeadDetector (minHeadSize=50) 8 1 23.99 1823.0

HeadDetector (minHeadSize=50) 8 8 19.94 2485.0

HeadDetector (minHeadSize=90) 1 1 23.37 1708.0

HeadDetector (minHeadSize=90) 8 1 10.9 1779.0

HeadDetector (minHeadSize=90) 8 8 7.32 2036.0

14.2.1.5 CPU. Estimations performance with batch interface
The table below shows the performance of Estimations on the CPU for estimators that have a batch
interface. All these measurements are performed with minFaceSize=50.

Measurement CPU threads BatchSize Average (ms)
RAMMemory

(Mb)

Eyes (INFRA_RED,
useStatusPlan=0)

1 1 0.76 1525.0

Eyes (INFRA_RED,
useStatusPlan=0)

8 1 0.35 1530.0

Eyes (INFRA_RED,
useStatusPlan=0)

8 8 0.19 1529.0

Eyes (RGB, useStatusPlan=0) 1 1 1.22 1599.0

Eyes (RGB, useStatusPlan=0) 8 1 0.42 1629.0

Eyes (RGB, useStatusPlan=0) 8 8 0.24 1626.0

Eyes (INFRA_RED,
useStatusPlan=1)

1 1 0.76 1524.0

Eyes (INFRA_RED,
useStatusPlan=1)

8 1 0.34 1538.0

Eyes (INFRA_RED,
useStatusPlan=1)

8 8 0.19 1532.0

Eyes (RGB, useStatusPlan=1) 1 1 1.21 1601.0

VisionLabs B.V. 202 / 244

Measurement CPU threads BatchSize Average (ms)
RAMMemory

(Mb)

Eyes (RGB, useStatusPlan=1) 8 1 0.4 1626.0

Eyes (RGB, useStatusPlan=1) 8 8 0.24 1634.0

Infra-Red 1 1 2 1191.0

Infra-Red 8 1 1.0 1209.0

Infra-Red 8 8 0.7 1218.0

AGS 1 1 0.24 1735.0

AGS 8 1 0.15 1763.0

AGS 8 8 0.08 1804.0

HeadPoseByImage 1 1 0.24 1648.0

HeadPoseByImage 8 1 0.15 1672.0

HeadPoseByImage 8 8 0.06 1712.0

Warper 1 1 2.1 1180.0

Warper 8 1 2.2 1219.0

Warper 8 8 0.9 1230.0

BlackWhite 1 1 1.3 1249.0

BlackWhite 8 1 0.7 1265.0

BlackWhite 8 8 1.2 1263.0

BestShotQuality 1 1 0.5 1833.0

BestShotQuality 8 1 0.22 1857.0

BestShotQuality 8 8 0.1 1896.0

MedicalMask 1 1 5.6 1258.0

MedicalMask 8 1 3.2 1287.0

MedicalMask 8 8 2.8 1318.0

LivenessOneShotRGBEstimator 1 1 199.57 2119.0

LivenessOneShotRGBEstimator 8 1 51.62 2204.0

LivenessOneShotRGBEstimator 8 8 47.39 2570.0

Orientation 1 1 5.06 1609.0

Orientation 8 1 3.33 1682.0

VisionLabs B.V. 203 / 244

Measurement CPU threads BatchSize Average (ms)
RAMMemory

(Mb)

Orientation 8 8 1.86 1875.0

CredibilityCheck 1 1 120.3 1332.0

CredibilityCheck 8 1 35.1 1351.0

CredibilityCheck 8 8 34.1 1558.0

FacialHair 1 1 12.86 1751.0

FacialHair 8 1 4.84 1770.0

FacialHair 8 8 4.24 1794.0

PortraitStyle 1 1 1.54 1738.0

PortraitStyle 8 1 2.2 1846.0

PortraitStyle 8 8 0.95 1915.0

Background 1 1 1.1 1239.0

Background 8 1 1.2 1258.0

Background 8 8 1.7 1305.0

NaturalLight 1 1 2.37 1250.0

NaturalLight 8 1 1.49 1267.0

NaturalLight 8 8 1.97 1276.0

FishEye 1 1 12.8 1747.0

FishEye 8 1 4.8 1747.0

FishEye 8 8 0.6 1771.0

RedEye 1 1 5.7 1241.0

RedEye 8 1 1.9 1260.0

RedEye 8 8 1.6 1264.0

HeadWear 1 1 4.09 1742.0

HeadWear 8 1 2.63 1769.0

HeadWear 8 8 1.2 1773.0

EyeBrowEstimator 1 1 13.06 1751.0

EyeBrowEstimator 8 1 4.82 1769.0

EyeBrowEstimator 8 8 4.27 1781.0

VisionLabs B.V. 204 / 244

Measurement CPU threads BatchSize Average (ms)
RAMMemory

(Mb)

HumanAttributeEstimator 1 1 11.93 1624.0

HumanAttributeEstimator 8 1 5.83 1651.0

HumanAttributeEstimator 8 8 3.78 1699.0

Mouth 1 1 6.64 1252.0

Mouth 8 1 2.64 1271.0

Mouth 8 8 2.12 1290.0

CrowdEstimator (Single,
minHeadSize=6)

1 1 3157.74 2613.0

CrowdEstimator (Single,
minHeadSize=6)

8 1 900.79 2631.0

CrowdEstimator (Single,
minHeadSize=6)

8 8 615.48 8676.0

CrowdEstimator (Single,
minHeadSize=12)

1 1 801.6 1969.0

CrowdEstimator (Single,
minHeadSize=12)

8 1 231.88 1990.0

CrowdEstimator (Single,
minHeadSize=12)

8 8 147.72 3535.0

CrowdEstimator (TwoNets,
minHeadSize=6)

1 1 3085.82 2641.0

CrowdEstimator (TwoNets,
minHeadSize=6)

8 1 906.33 2714.0

CrowdEstimator (TwoNets,
minHeadSize=6)

8 8 613.95 9073.0

CrowdEstimator (TwoNets,
minHeadSize=12)

1 1 819.59 2005.0

CrowdEstimator (TwoNets,
minHeadSize=12)

8 1 239.66 2072.0

CrowdEstimator (TwoNets,
minHeadSize=12)

8 8 162.99 3955.0

DynamicRange 1 1 1.49 1721.0

DynamicRange 8 1 1.61 1749.0

VisionLabs B.V. 205 / 244

Measurement CPU threads BatchSize Average (ms)
RAMMemory

(Mb)

DynamicRange 8 8 0.81 1793.0

LivenessDepthRGB 1 1 8.06 1757.0

LivenessDepthRGB 8 1 4.13 1796.0

LivenessDepthRGB 8 8 2.96 1839.0

Glasses 1 1 0.86 1743.0

Glasses 8 1 1.01 1768.0

Glasses 8 8 0.42 1768.0

DeepFake 1 1 232.14 1808.0

DeepFake 8 1 70.03 1922.0

DeepFake 8 8 80.65 2443.0

NIRLivenessEstimator 1 1 17.63 1549.0

NIRLivenessEstimator 8 1 12.06 1562.0

NIRLivenessEstimator 8 8 10.71 1664.0

LivenessRGBMEstimator 1 1 29.1 1968.0

LivenessRGBMEstimator 8 1 10.71 2037.0

LivenessRGBMEstimator 8 8 8.74 2356.0

DepthLivenessEstimator 1 1 2.15 1856.0

DepthLivenessEstimator 8 1 1.35 1876.0

DepthLivenessEstimator 8 8 0.84 1894.0

Attributes 1 1 68.89 1994.0

Attributes 8 1 24.7 2023.0

Attributes 8 8 19.32 2274.0

FaceOcclusionBatch 1 1 7.35 1303.0

FaceOcclusionBatch 1 8 3.61 1469.0

FaceOcclusionBatch 8 8 3.03 1455.0

14.2.1.6 CPU. Estimations performance without batch interface
The tablebelowshows theperformanceof Estimationson theCPU for estimators thatdonothaveabatch
interface. All these measurements are performed with minFaceSize=50.

VisionLabs B.V. 206 / 244

Measurement CPU threads Average (ms) RAMMemory (Mb)

EyesGaze 1 2.2 1250

EyesGaze 8 1.4 1270

Emotions 1 13.6 1262

Emotions 8 4.9 1275

Quality 1 1.2 1178

Quality 8 0.6 1220

Overlap 1 4.5 1248

Overlap 8 1.3 1267

PPE 1 11.74 1711.0

PPE 8 5.6 1733.0

LivenessFlyingFaces 1 15.07 1804

LivenessFlyingFaces 8 7.21 1913

LivenessFPR 1 44.2 1263

LivenessFPR 8 19.9 1293

Fights 1 250.26 1876

Fights 8 63.9 1895

14.2.1.7 CPU. Extractor performance
The table below shows the performance of Extractor on the CPU.

Model CPU threads Batch Size Average (ms) RAMMemory (Mb)

58 1 1 219.3 1470

58 8 8 58.0 1543

59 1 1 219.7 1473

59 8 8 58.2 1550

60 1 1 258.0 1473

60 8 8 51.1 1550

62 1 1 254.36 2007

62 8 1 67.54 2008

VisionLabs B.V. 207 / 244

Model CPU threads Batch Size Average (ms) RAMMemory (Mb)

62 8 8 71.48 2025

65 1 1 364.93 1992

65 8 1 120.88 1993

65 8 8 93.0 2616

105 1 1 1.66 1604

105 8 8 0.71 1657

106 1 1 140.76 1892

106 8 8 39.01 1954

107 1 1 12.0 1637

107 8 8 3.7 1723

108 1 1 1.69 1606

108 8 8 0.72 1671

109 1 1 133.7 1822

109 8 8 37.33 1889

110 1 1 15.53 1640

110 8 8 5.39 1733

112 1 1 112.33 1823.0

112 8 1 39.73 1839.0

112 8 8 32.95 1884.0

113 1 1 15.17 1640.0

113 8 1 6.57 1656.0

113 8 8 4.7 1727.0

115 1 1 117.12 1920.0

115 8 1 41.21 1947.0

115 8 8 33.19 1967.0

116 1 1 16.79 1739.0

116 8 1 7.23 1759.0

116 8 8 5.07 1811.0

VisionLabs B.V. 208 / 244

14.2.1.8 CPU. Matcher performance
The table below shows the performance of Matcher on the CPU. The table includes average matcher per
second for descriptors received using the following CNNmodel versions:

• face descriptors: 59, 60, 62
• human body descriptors: 105, 106, 107, 108, 109, 110, 112, 113, 115, 116

Model CPU threads Batch Size Average (matches/sec) RAMMemory (Mb)

58 1 1000 28 M 15.0

59 1 1000 28 M 15.0

60 1 1000 28 M 15.0

62 1 1000 28 M 15.0

65 1 1000 28 M 15.0

105 1 1000 27.78 M 113

106 1 1000 28.67 M 112

107 1 1000 27.34 M 113

108 1 1000 31.89 M 117

109 1 1000 29.23 M 114

110 1 1000 27.41 M 112

112 1 1000 30 M 109.0

113 1 1000 28.32 112.0

115 1 1000 31.6 112.0

116 1 1000 28.7 112.0

Note: The above value is the maximum performance of the matcher on a particular piece of hardware.
Performance in general does not depend on the size of the batch, but may be limited by memory
performance at large values of the batch size.

14.2.2 GPU performance

Benchmarking for GPU was performed on the following hardware configuration:

GPU: NVIDIA Tesla T4.

OS: CentOS Linux release 8.3.2011

VisionLabs B.V. 209 / 244

14.2.2.1 GPU. Detector performance
The table below shows the performance of FaceDetV3 Detector on the GPU.

Measurement
Batch
Size

Average
(ms)

GPU Memory
(Mb)

RAMMemory
(Mb)

Detector (minFaceSize=20) 1 29.02 1485.0 1663.0

Detector (minFaceSize=20) 4 34.37 3611.0 1691.0

Detector (minFaceSize=20) 8 38.09 6539.0 1741.0

Detector (minFaceSize=50) 1 7.46 847.0 1653.0

Detector (minFaceSize=50) 4 6.56 1207.0 1682.0

Detector (minFaceSize=50) 8 6.24 1779.0 1702.0

Detector (minFaceSize=90) 1 4.95 835.0 1655.0

Detector (minFaceSize=90) 4 3.44 907.0 1669.0

Detector (minFaceSize=90) 8 3.17 1381.0 1694.0

Redetect 1 2.52 847.0 1657.0

Redetect 4 1.64 1207.0 1660.0

Redetect 8 1.47 1779.0 1663.0

Redetect 16 1.38 2781.0 1667.0

FaceLandmarks5Detector 1 2.33 821.0 1651.0

FaceLandmarks5Detector 8 0.32 821.0 1651.0

FaceLandmarks5Detector 16 0.17 821.0 1657.0

FaceLandmarks68Detector 1 2.6 821.0 1669.0

FaceLandmarks68Detector 8 1.5 821.0 1668.3

FaceLandmarks68Detector 16 1.4 949.0 1663.0

14.2.2.2 GPU. HumanDetector performance
The table below shows the performance of HumanDetector on the GPU.

Measurement
Batch
Size

Average
(ms)

GPU Memory
(Mb)

RAMMemory
(Mb)

HumanDetector (resize to 320) 1 4.17 779.0 1778.0

HumanDetector (resize to 320) 4 2.46 819.0 1792.0

VisionLabs B.V. 210 / 244

Measurement
Batch
Size

Average
(ms)

GPU Memory
(Mb)

RAMMemory
(Mb)

HumanDetector (resize to 320) 8 2.17 909.0 1815.0

HumanDetector (resize to 640) 1 5.42 827.0 1784.0

HumanDetector (resize to 640) 4 4.14 1013.0 1796.0

HumanDetector (resize to 640) 8 3.92 1371.0 1824.0

HumanRedetect 1 2.74 789.0 1696.0

HumanRedetect 4 1.67 1013.0 1695.0

HumanRedetect 8 1.47 1251.0 1689.0

HumanRedetect 16 1.4 1867.0 1709.0

14.2.2.3 GPU. HeadDetector performance
The table below shows the performance of HeadDetector on the GPU.

Type Batch Size
Average
(ms)

GPU Memory
(Mb)

RAMMemory
(Mb)

HeadDetector (minHeadSize=20) 1 24.38 1561.0 1730.0

HeadDetector (minHeadSize=20) 4 31.35 4103.0 1745.0

HeadDetector (minHeadSize=20) 8 35.85 7491.0 1799.0

HeadDetector (minHeadSize=50) 1 6.63 837.0 1716.0

HeadDetector (minHeadSize=50) 4 5.74 1367.0 1749.0

HeadDetector (minHeadSize=50) 8 5.45 1931.0 1767.0

HeadDetector (minHeadSize=90) 1 4.41 749.0 1720.0

HeadDetector (minHeadSize=90) 4 3.04 905.0 1734.0

HeadDetector (minHeadSize=90) 8 2.8 1103.0 1759.0

14.2.2.4 GPU. HumanFace detector performance
The table below shows the performance of HumanFaceDetector on the GPU.

VisionLabs B.V. 211 / 244

Measurement Batch Size
Average
(ms)

GPU Memory
(Mb)

RAMMemory
(Mb)

HumanFaceDetector
(minFaceSize=20)

1 34.1 1675.0 1703.0

HumanFaceDetector
(minFaceSize=20)

4 42.6 4415.0 1774.0

HumanFaceDetector
(minFaceSize=20)

8 50.32 8041.0 1889.0

HumanFaceDetector
(minFaceSize=50)

1 7.99 903.0 1674.0

HumanFaceDetector
(minFaceSize=50)

4 7.15 1487.0 1706.0

HumanFaceDetector
(minFaceSize=50)

8 6.83 2067.0 1764.0

HumanFaceDetector
(minFaceSize=90)

1 5.3 903.0 1672.0

HumanFaceDetector
(minFaceSize=90)

4 3.52 929.0 1685.0

HumanFaceDetector
(minFaceSize=90)

8 3.24 1125.0 1719.0

14.2.2.5 GPU. Estimations performance with batch interface
The table below shows the performance of Estimations on the GPU for estimators that have a batch
interface. All these measurements are performed with minFaceSize=50.

Measurement Batch Size Average (ms)
GPU Memory

(Mb)
RAMMemory

(Mb)

HeadPoseByImage 1 2.26 785.0 1692.0

HeadPoseByImage 16 1.45 881.0 1775.0

HeadPoseByImage 32 1.42 975.0 1873.0

Warper 1 0.11 739.0 1672.0

Warper 32 0.03 931.0 1672.0

Eyes (INFRA_RED,
useStatusPlan=0)

1 0.51 600.0 1654.0

VisionLabs B.V. 212 / 244

Measurement Batch Size Average (ms)
GPU Memory

(Mb)
RAMMemory

(Mb)

Eyes (INFRA_RED,
useStatusPlan=0)

16 0.11 600.0 1652.0

Eyes (INFRA_RED,
useStatusPlan=0)

32 0.09 632.0 1654.0

Eyes (RGB, useStatusPlan=0) 1 0.82 712.0 1659.0

Eyes (RGB, useStatusPlan=0) 16 0.11 744.0 1656.0

Eyes (RGB, useStatusPlan=0) 32 0.1 744.0 1655.0

Eyes (INFRA_RED,
useStatusPlan=1)

1 0.55 600.0 1653.0

Eyes (INFRA_RED,
useStatusPlan=1)

16 0.11 600.0 1645.0

Eyes (INFRA_RED,
useStatusPlan=1)

32 0.1 632.0 1648.0

Eyes (RGB, useStatusPlan=1) 1 0.88 712.0 1663.0

Eyes (RGB, useStatusPlan=1) 16 0.12 744.0 1662.0

Eyes (RGB, useStatusPlan=1) 32 0.11 744.0 1667.0

Infra-Red 1 1.11 811.0 1666.0

Infra-Red 32 0.54 811.0 1679.0

AGS 1 2.28 899.0 1689.0

AGS 16 1.42 899.0 1777.0

AGS 32 1.39 1089.0 1874.0

BlackWhite 1 1.05 821.0 1676.0

BlackWhite 16 0.4 853.0 1677.0

BestShotQuality 1 3.11 855.0 1821.0

BestShotQuality 16 1.44 855.0 1914.0

BestShotQuality 32 1.41 1045.0 2008.0

MedicalMask 1 5.01 821.0 1702.0

MedicalMask 16 1.69 917.0 1791.0

LivenessOneShotRGBEstimator 1 13.44 1046.0 2091.0

LivenessOneShotRGBEstimator 8 10.61 1614.0 2092.0

VisionLabs B.V. 213 / 244

Measurement Batch Size Average (ms)
GPU Memory

(Mb)
RAMMemory

(Mb)

LivenessOneShotRGBEstimator 16 10.3 2062.0 2091.0

Orientation 1 3.12 799.0 1670.0

Orientation 16 1.73 963.0 1664.0

Orientation 32 1.69 1141.0 1669.0

CredibilityCheck 1 5.54 947.0 1774.0

CredibilityCheck 16 3.72 1339.0 1771.0

FacialHair 1 1.86 853.0 1687.0

FacialHair 16 0.32 853.0 1683.0

FacialHair 32 0.28 853.0 1685.0

PortraitStyle 1 2.84 895.0 1671.0

PortraitStyle 16 1.51 915.0 1770.0

PortraitStyle 32 1.48 1085.0 1861.0

Background 1 2.6 821.0 1679.0

Background 16 1.5 917.0 1770.0

NaturalLight 1 3.61 853.0 1692.0

NaturalLight 16 0.27 853.0 1695.0

FishEye 1 2.37 895.0 1692.0

FishEye 16 0.14 895.0 1694.0

RedEye 1 1.1 821.0 1675.0

RedEye 16 0.15 821.0 1675.0

HeadWear 1 4.14 853.0 1696.0

HeadWear 16 0.36 853.0 1699.0

HeadWear 32 0.27 853.0 1697.0

EyeBrowEstimator 1 2.56 895.0 1694.0

EyeBrowEstimator 16 0.8 895.0 1693.0

EyeBrowEstimator 32 0.76 803.0 1079.0

HumanAttributeEstimator 1 5.53 853.0 1691.0

HumanAttributeEstimator 16 0.57 853.0 1722.0

VisionLabs B.V. 214 / 244

Measurement Batch Size Average (ms)
GPU Memory

(Mb)
RAMMemory

(Mb)

Mouth 1 4.03 853.0 1690.0

Mouth 16 0.42 949.0 1691.0

Mouth 32 0.37 1043.0 1690.0

Glasses 1 1.41 901.0 1695.0

Glasses 16 0.2 901.0 1689.0

Glasses 32 0.16 901.0 1686.0

CrowdEstimator (Single,
minHeadSize=6)

1 64.57 1569.0 1843.0

CrowdEstimator (Single,
minHeadSize=6)

4 65.7 3185.0 1873.0

CrowdEstimator (Single,
minHeadSize=6)

8 66.96 3334.0 1904.0

CrowdEstimator (Single,
minHeadSize=12)

1 22.15 985.0 1834.0

CrowdEstimator (Single,
minHeadSize=12)

4 21.38 1433.0 1857.0

CrowdEstimator (Single,
minHeadSize=12)

8 21.67 1496.0 1883.0

CrowdEstimator (TwoNets,
minHeadSize=6)

1 69.7 1745.0 1854.0

CrowdEstimator (TwoNets,
minHeadSize=6)

4 71.11 3570.0 1903.0

CrowdEstimator (TwoNets,
minHeadSize=6)

8 72.04 4164.0 1925.0

CrowdEstimator (TwoNets,
minHeadSize=12)

1 26.89 1083.0 1846.0

CrowdEstimator (TwoNets,
minHeadSize=12)

4 23.8 1770.0 1871.0

CrowdEstimator (TwoNets,
minHeadSize=12)

8 25.44 2208.0 1904.0

DeepFake 1 14.48 0.0 1807.0

DeepFake 16 13.09 0.0 1914.0

VisionLabs B.V. 215 / 244

Measurement Batch Size Average (ms)
GPU Memory

(Mb)
RAMMemory

(Mb)

DeepFake 32 13.15 0.0 1985.0

LivenessDepthRGB 1 4.79 931.0 1717.0

LivenessDepthRGB 16 3.91 975.0 1809.0

LivenessDepthRGB 32 3.9 1127.0 1914.0

NIRLivenessEstimator 1 8.99 610.0 1659.0

NIRLivenessEstimator 16 8.15 708.0 1757.0

NIRLivenessEstimator 32 8.14 836.0 1852.0

LivenessRGBMEstimator 1 6.56 871.0 1938.0

LivenessRGBMEstimator 16 4.18 1625.0 2085.0

LivenessRGBMEstimator 32 4.9 2225.0 2238.0

DepthLivenessEstimator 1 2.08 737.0 1927.0

DepthLivenessEstimator 16 0.44 771.0 1932.0

DepthLivenessEstimator 32 0.38 805.0 1936.0

Attributes 1 3.75 871.0 1984.0

Attributes 16 1.97 1373.0 1980.0

Attributes 32 1.9 1895.0 1991.0

FaceOcclusionBatch 1 1.64 620.0 1281.0

FaceOcclusionBatch 16 0.76 844.0 1330.0

FaceOcclusionBatch 32 0.73 1036.0 1324.0

14.2.2.6 GPU. Estimations performance without batch interface
The table below shows the performance of Estimations on the GPU for estimators that do not have a
batch interface. All these measurements are performed with minFaceSize=50.

Measurement Average (ms) GPU Memory (Mb) RAMMemory (Mb)

EyesGaze 1.65 821 1675

Emotions 1.99 821 1689

Quality 0.98 731 1665

Overlap 1.23 821 1688

VisionLabs B.V. 216 / 244

Measurement Average (ms) GPU Memory (Mb) RAMMemory (Mb)

PPE 3.32 803.0 1718.0

LivenessFlyingFaces 6.39 927 1694

LivenessFPR 12.56 885 1697

Fights 14.56 1093 1874

14.2.2.7 GPU. Extractor performance
The table below shows the performance of Extractor on the GPU.

Model Batch Size Average (ms) GPU Memory (Mb) RAMMemory (Mb)

58 1 10.2 989.0 1835

58 16 6.4 1781.0 1825

59 1 10.2 929.0 1833

59 16 6.4 1341.0 1837

60 1 16.0 931.0 1840

60 16 8.9 1343.0 1845

62 1 11.23 1043.0 2009.0

62 8 7.81 1227.0 2006.0

62 16 7.75 1437.0 2016.0

65 1 6.48 949.0 1995

65 8 3.47 1911.0 1996

65 16 3.34 2439.0 1996

105 1 3.48 785 1664

105 16 0.3 815 1673

106 1 6.28 973 1893

106 16 9.38 1371 1894

107 1 3.41 807 1698

107 16 0.59 911 1696

108 1 3.47 785 1654

108 16 0.3 815 1672

VisionLabs B.V. 217 / 244

Model Batch Size Average (ms) GPU Memory (Mb) RAMMemory (Mb)

109 1 6.22 933 1833

109 16 7.83 1261 1833

110 1 3.38 809 1693

110 16 0.76 939 1693

112 1 6.52 901.0 1836.0

112 8 3.71 1029.0 1834.0

112 16 3.57 1209.0 1835.0

113 1 3.13 809.0 1696.0

113 8 0.82 873.0 1697.0

113 16 0.68 937.0 1703.0

115 1 6.56 877.0 1925.0

115 8 5.51 1001.0 1931.0

115 16 5.43 1141.0 1932.0

116 1 2.92 753.0 1783.0

116 8 0.85 819.0 1804.0

116 16 0.73 885.0 1804.0

14.2.3 NPU Performance

Benchmarking for NPU was performed on the server with the following hardware configuration:

NPU: Huawei Atlas 300I (inference card).

OS: Ubuntu 18.04

CPU: Intel(R) Xeon(R) Gold 5118 CPU@ 2.30GHz x 48

RAM: 64GB

14.2.3.1 NPU. Detector performance
The table below shows the performance of Detector on the NPU.

Measurement BatchSize Average (ms)

Detector (minFaceSize=20) 1 24.4

VisionLabs B.V. 218 / 244

Measurement BatchSize Average (ms)

Detector (minFaceSize=20) 4 18.01

Detector (minFaceSize=20) 8 17.73

Detector (minFaceSize=50) 1 24.53

Detector (minFaceSize=50) 4 18.0

Detector (minFaceSize=50) 8 17.74

Detector (minFaceSize=90) 1 24.44

Detector (minFaceSize=90) 4 17.91

Detector (minFaceSize=90) 8 17.44

Redetect 1 7.56

Redetect 8 4.31

Redetect 16 4.08

14.2.3.2 NPU. Estimations performance with batch interface
The table below shows the performance of Estimations on the NPU for estimators that have a batch
interface. All these measurements are performed with minFaceSize=50.

Measurement BatchSize Average (ms)

HeadPoseByImage 1 8.0

HeadPoseByImage 16 4.2

HeadPoseByImage 32 3.9

AGS 1 6.6

AGS 16 3.7

AGS 32 3.7

BestShotQuality 1 15.6

BestShotQuality 16 7.8

BestShotQuality 32 7.6

MedicalMask 1 6.1

MedicalMask 16 3.8

MedicalMask 32 3.7

VisionLabs B.V. 219 / 244

14.2.3.3 NPU. Estimations performance without batch interface
The table below shows the performance of Estimations on the NPU for estimators that do not have a
batch interface. All these measurements are performed with minFaceSize=50.

Measurement Average (ms)

Warper 2.1

14.2.3.4 NPU. Extractor performance
The table below shows the performance of Extractor on the NPU.

Type Model Batch Size Average (ms)

Extractor 57 1 10.9

Extractor 57 16 7.4

14.2.4 Rockchip (Ubuntu 24.04 LTS)

The number of threads auto means that will be taken the maximum number of available threads.
For this mode use the -1 value for the numThreads parameter in the runtime.conf. This number
of threads is equal to according number of available processor cores. We strongly recommend you
to follow this recommendation; otherwise, performance can be significantly reduced. Description of
according settings you can find in “Configuration Guide - Runtime settings”.

The performancemeasurements are presented for device with configurations as below:

Architecture: aarch64 Byte Order: Little Endian CPU(s): 8 On-line CPU(s) list: 0-7 Thread(s) per core: 1
Core(s) per socket: 4 Socket(s): 1 Vendor ID: ARM Model: 0 Model name: Cortex-A55 Stepping: r2p0 CPU
max MHz: 1800.0000 CPU min MHz: 408.0000 BogoMIPS: 48.00 Flags: fp asimd evtstrm aes pmull sha1
sha2 crc32 atomics fphp asimdhp cpuid asimdrdm lrcpc dcpop asimddp

The number of threads you can find in tables below.

*Note: In the case of these tests, power and weak refer to a Linux command (taskset -c j,k, where j and
k are CPU cores) that explicitly sets the CPU affinity of a process. In simple terms, it tells the system to
run the process only on the specified CPU cores. Power stands for taskset -c 4-7 and weak stands
for taskset -c 0-3.

14.2.4.1 Rockchip (power) environment. Detector performance
The table below shows the performance of Detector on the Rockchip (power) environment.

VisionLabs B.V. 220 / 244

Type
CPU

threads Batch Size
Percentile 95

(ms)
RAMMemory

(Mb)

Detector (minFaceSize=20) 1 1 4048.29 604.0

Detector (minFaceSize=20) 2 1 4218.24 601.0

Detector (minFaceSize=20) 2 8 4148.53 4495.0

Detector (minFaceSize=50) 1 1 548.7 132.0

Detector (minFaceSize=50) 2 1 559.4 136.0

Detector (minFaceSize=50) 2 8 552.05 809.0

Detector (minFaceSize=90) 1 1 157.16 71.0

Detector (minFaceSize=90) 2 1 170.72 73.0

Detector (minFaceSize=90) 2 8 179.77 326.0

Redetect 1 1 3.41 126.0

Redetect 2 1 3.47 127.0

Redetect 2 8 3.26 768.0

Landmarks5Detector 1 1 1.13 136.0

Landmarks5Detector 2 1 1.18 137.0

Landmarks5Detector 2 8 1.15 137.0

Landmarks68Detector 1 1 8.62 136.0

Landmarks68Detector 2 1 8.62 137.0

Landmarks68Detector 2 8 8.82 137.0

14.2.4.2 Rockchip (power) environment. Extractor performance
The table below shows the performance of Extractor on the Rockchip (power) environment.

Model CPU threads Batch Size Percentile 95 (ms) RAMMemory (Mb)

62 1 1 2130.74 389.0

62 2 1 2110.69 387.0

62 2 8 2216.14 387.0

VisionLabs B.V. 221 / 244

14.2.4.3 Rockchip (power) environment. HeadDetector performance
The table below shows the performance of HeadDetector on the Rockchip (power) environment.

Type
CPU

threads Batch Size
Percentile 95

(ms)
RAMMemory

(Mb)

HeadDetector (minHeadSize=20) 1 1 4153.01 599.0

HeadDetector (minHeadSize=20) 2 1 4261.43 596.0

HeadDetector (minHeadSize=50) 1 1 539.03 131.0

HeadDetector (minHeadSize=50) 2 1 556.37 132.0

HeadDetector (minHeadSize=50) 2 8 550.99 809.0

HeadDetector (minHeadSize=90) 1 1 154.06 71.0

HeadDetector (minHeadSize=90) 2 1 156.39 71.0

HeadDetector (minHeadSize=90) 2 8 179.22 324.0

14.2.4.4 Rockchip (power) environment. HumanDetector performance
The table below shows the performance of HumanDetector on the Rockchip (power) environment.

Type
CPU

threads
Batch
Size

Percentile 95
(ms)

RAM
Memory
(Mb)

HumanDetector (resize to 320) 1 1 70.32 56.0

HumanDetector (resize to 320) 2 1 80.67 55.0

HumanDetector (resize to 320) 2 8 83.49 177.0

HumanDetector (resize to 640) 1 1 316.34 89.0

HumanDetector (resize to 640) 2 1 321.24 90.0

HumanDetector (resize to 640) 2 8 352.26 454.0

HumanRedetect 1 1 14.49 88.0

HumanRedetect 2 1 14.38 88.0

HumanRedetect 2 8 14.42 413.0

HumanFaceDetectorBoxesAndAssociations
(minFaceSize=20)

1 1 4665.39 788.0

HumanFaceDetectorBoxesAndAssociations
(minFaceSize=20)

2 1 4757.78 788.0

VisionLabs B.V. 222 / 244

Type
CPU

threads
Batch
Size

Percentile 95
(ms)

RAM
Memory
(Mb)

HumanFaceDetectorBoxesAndAssociations
(minFaceSize=20)

2 8 4833.92 6015.0

HumanFaceDetectorBoxesAndAssociations
(minFaceSize=50)

1 1 625.86 161.0

HumanFaceDetectorBoxesAndAssociations
(minFaceSize=50)

2 1 631.68 162.0

HumanFaceDetectorBoxesAndAssociations
(minFaceSize=50)

2 8 631.79 1058.0

HumanFaceDetectorBoxesAndAssociations
(minFaceSize=90)

1 1 188.8 80.0

HumanFaceDetectorBoxesAndAssociations
(minFaceSize=90)

2 1 181.36 80.0

HumanFaceDetectorBoxesAndAssociations
(minFaceSize=90)

2 8 202.62 406.0

HumanFaceDetectorBoxes
(minFaceSize=20)

1 1 4532.06 735.0

HumanFaceDetectorBoxes
(minFaceSize=20)

2 1 4478.3 735.0

HumanFaceDetectorBoxes
(minFaceSize=20)

2 8 4707.63 5617.0

HumanFaceDetectorBoxes
(minFaceSize=50)

1 1 593.94 153.0

HumanFaceDetectorBoxes
(minFaceSize=50)

2 1 604.22 153.0

HumanFaceDetectorBoxes
(minFaceSize=50)

2 8 597.29 992.0

HumanFaceDetectorBoxes
(minFaceSize=90)

1 1 187.39 77.0

HumanFaceDetectorBoxes
(minFaceSize=90)

2 1 171.93 78.0

HumanFaceDetectorBoxes
(minFaceSize=90)

2 8 193.81 384.0

VisionLabs B.V. 223 / 244

Type
CPU

threads
Batch
Size

Percentile 95
(ms)

RAM
Memory
(Mb)

HumanWarper 1 1 0.64 51.0

HumanWarper 2 1 0.59 52.0

HumanWarper 2 8 1.02 93.0

HumanWarper 1 1 0.64 86.0

HumanWarper 2 1 0.61 87.0

HumanWarper 2 8 1.01 128.0

14.2.4.5 Rockchip (power) Estimations performance without batch interface
The tablebelowshows theperformanceof Estimationson theCPU for estimators thatdonothaveabatch
interface. All these measurements are performed with minFaceSize=50.

Type CPU threads Percentile 95 (ms)
RAMMemory

(Mb)

LivenessFPR 2 179.91 152.0

LivenessFPR 1 350.14 150.0

PPE 2 38.26 100.0

PPE 1 69.45 100.0

Overlap 2 15.91 139.0

Overlap 1 29.76 140.0

14.2.4.6 Rockchip (power) environment. Estimations performance with batch interface
The table below shows the performance of Estimations on the Rockchip (power) environment for
estimators that have a batch interface.

Type
CPU

threads Batch Size
Percentile 95

(ms)
RAMMemory

(Mb)

HeadPose 1 1 0.92 139.0

HeadPose 2 1 0.91 138.0

HeadPose 2 8 0.99 179.0

Warper 1 1 5.82 130.0

VisionLabs B.V. 224 / 244

Type
CPU

threads Batch Size
Percentile 95

(ms)
RAMMemory

(Mb)

Warper 2 1 5.85 130.0

Warper 2 8 5.84 131.0

Eyes 1 1 5.4 132.0

Eyes 2 1 5.67 133.0

Eyes 2 8 5.94 137.0

Eyes 1 1 5.4 132.0

Eyes 2 1 5.68 133.0

Eyes 2 8 6.39 133.0

Eyes 1 1 2.63 48.0

Eyes 2 1 2.9 48.0

Eyes 2 8 3.02 54.0

Eyes 1 1 2.65 48.0

Eyes 2 1 2.76 48.0

Eyes 2 8 2.91 54.0

InfraRed 1 1 13.86 51.0

InfraRed 2 1 7.78 51.0

InfraRed 2 8 11.29 70.0

AGS 1 1 0.95 138.0

AGS 2 1 0.95 138.0

AGS 2 8 0.96 179.0

BestShotQuality 1 1 1.99 139.0

BestShotQuality 2 1 2.04 141.0

BestShotQuality 2 8 1.92 182.0

MedicalMask 1 1 37.75 157.0

MedicalMask 2 1 38.42 158.0

MedicalMask 2 8 38.2 200.0

LivenessOneShotRGBEstimator 1 1 1518.52 271.0

LivenessOneShotRGBEstimator 2 1 1505.27 272.0

VisionLabs B.V. 225 / 244

Type
CPU

threads Batch Size
Percentile 95

(ms)
RAMMemory

(Mb)

Orientation 1 1 61.14 37.0

Orientation 2 1 50.35 40.0

Orientation 2 8 68.16 85.0

FacialHair 1 1 115.42 150.0

FacialHair 2 1 127.69 149.0

FacialHair 2 8 132.92 149.0

CredibilityCheck 1 1 1088.63 224.0

CredibilityCheck 2 1 1178.26 223.0

CredibilityCheck 2 8 1252.27 223.0

BlackWhite 1 1 7.71 136.0

BlackWhite 2 1 4.33 137.0

BlackWhite 2 8 4.46 138.0

NaturalLight 1 1 15.15 140.0

NaturalLight 2 1 15.7 140.0

NaturalLight 2 8 14.56 140.0

PortraitStyle 1 1 6.77 138.0

PortraitStyle 2 1 7.17 139.0

PortraitStyle 2 8 7.62 180.0

FishEye 1 1 16.59 141.0

FishEye 2 1 18.1 143.0

FishEye 2 8 20.93 143.0

EyeBrow 1 1 116.83 150.0

EyeBrow 2 1 114.04 149.0

EyeBrow 2 8 132.6 149.0

HumanAttribute 1 1 94.86 59.0

HumanAttribute 2 1 97.65 59.0

HumanAttribute 2 8 96.34 75.0

RedEye 1 1 17.87 134.0

VisionLabs B.V. 226 / 244

Type
CPU

threads Batch Size
Percentile 95

(ms)
RAMMemory

(Mb)

RedEye 2 1 30.42 135.0

RedEye 2 8 19.22 135.0

HeadWear 1 1 26.8 150.0

HeadWear 2 1 27.28 149.0

HeadWear 2 8 24.6 149.0

Background 1 1 6.61 138.0

Background 2 1 7.05 139.0

Background 2 8 7.54 180.0

Mouth 1 1 51.22 141.0

Mouth 2 1 52.67 141.0

Mouth 2 8 60.71 141.0

Attributes 1 1 590.98 182.0

Attributes 2 1 531.96 182.0

Attributes 2 8 552.64 274.0

Quality 1 1 6.28 133.0

Quality 2 1 6.33 132.0

Quality 2 8 7.44 132.0

Emotions 1 1 114.09 149.0

Emotions 2 1 116.42 149.0

Emotions 2 8 135.98 149.0

EyesGaze 1 1 16.11 137.0

EyesGaze 2 1 9.09 137.0

EyesGaze 2 8 9.97 139.0

Glasses 1 1 6.33 133.0

Glasses 2 1 6.85 133.0

Glasses 2 8 7.33 133.0

LivenessFlyingFaces 1 1 86.67 155.0

LivenessFlyingFaces 2 1 92.49 158.0

VisionLabs B.V. 227 / 244

Type
CPU

threads Batch Size
Percentile 95

(ms)
RAMMemory

(Mb)

LivenessFlyingFaces 2 8 100.76 197.0

DynamicRange 1 1 0.52 135.0

DynamicRange 2 1 0.49 136.0

DynamicRange 2 8 0.64 178.0

Ethnicity 1 1 120.67 149.0

Ethnicity 2 1 114.94 149.0

Ethnicity 2 8 134.65 149.0

NIRLivenessEstimator 1 1 84.74 44.0

NIRLivenessEstimator 2 1 48.97 44.0

NIRLivenessEstimator 2 8 59.09 144.0

LivenessRGBMEstimator 1 1 235.84 142.0

LivenessRGBMEstimator 2 1 121.32 141.0

LivenessRGBMEstimator 2 8 136.67 407.0

YUV12toRGB 1 1 2.52 28.0

YUV12toRGB 2 1 2.53 28.0

YUV12toRGB 2 8 2.57 28.0

YUV21toRGB 1 1 2.51 29.0

YUV21toRGB 2 1 2.58 29.0

YUV21toRGB 2 8 2.6 29.0

FaceOcclusion 1 1 58.56 133.0

FaceOcclusion 2 1 50.53 133.0

FaceOcclusion 2 8 67.4 133.0

14.2.4.7 Rockchip (weak) environment. Detector performance
The table below shows the performance of Detector on the Rockchip (weak) environment.

Type
CPU

threads Batch Size
Percentile 95

(ms)
RAMMemory

(Mb)

Detector (minFaceSize=20) 1 1 13280.8 604.0

VisionLabs B.V. 228 / 244

Type
CPU

threads Batch Size
Percentile 95

(ms)
RAMMemory

(Mb)

Detector (minFaceSize=20) 4 1 6632.62 625.0

Detector (minFaceSize=20) 4 8 6952.72 4536.0

Detector (minFaceSize=50) 1 1 1886.54 136.0

Detector (minFaceSize=50) 4 1 963.36 157.0

Detector (minFaceSize=50) 4 8 998.26 829.0

Detector (minFaceSize=90) 1 1 598.28 75.0

Detector (minFaceSize=90) 4 1 295.25 89.0

Detector (minFaceSize=90) 4 8 321.53 344.0

Redetect 1 1 12.1 130.0

Redetect 4 1 8.21 134.0

Redetect 4 8 7.18 787.0

Landmarks5Detector 1 1 4.37 140.0

Landmarks5Detector 4 1 2.66 141.0

Landmarks5Detector 4 8 2.27 141.0

Landmarks68Detector 1 1 36.15 140.0

Landmarks68Detector 4 1 22.36 141.0

Landmarks68Detector 4 8 19.07 141.0

14.2.4.8 Rockchip (weak) environment. Extractor performance
The table below shows the performance of Extractor on the Rockchip (weak) environment.

Type
CPU

threads Batch Size
Percentile 95

(ms)
RAMMemory

(Mb)

Extractor 1 1 8613.25 389.0

Extractor 4 1 4397.11 387.0

14.2.4.9 Rockchip (weak) environment. HeadDetector performance
The table below shows the performance of HeadDetector on the Rockchip (weak) environment.

VisionLabs B.V. 229 / 244

Type
CPU

threads Batch Size
Percentile 95

(ms)
RAMMemory

(Mb)

HeadDetector (minHeadSize=20) 1 1 13286.9 599.0

HeadDetector (minHeadSize=20) 4 1 6614.01 620.0

HeadDetector (minHeadSize=50) 1 1 1863.81 132.0

HeadDetector (minHeadSize=50) 4 1 922.59 153.0

HeadDetector (minHeadSize=50) 4 8 992.9 830.0

HeadDetector (minHeadSize=90) 1 1 566.68 71.0

HeadDetector (minHeadSize=90) 4 1 295.05 85.0

HeadDetector (minHeadSize=90) 4 8 322.76 345.0

14.2.4.10 Rockchip (weak) environment. HumanDetector performance
The table below shows the performance of HumanDetector on the Rockchip (weak) environment.

Type
CPU

threads
Batch
Size

Percentile 95
(ms)

RAM
Memory
(Mb)

HumanDetector (resize to 320) 1 1 305.31 56.0

HumanDetector (resize to 320) 4 1 150.85 66.0

HumanDetector (resize to 320) 4 8 160.52 189.0

HumanDetector (resize to 640) 1 1 1250.47 89.0

HumanDetector (resize to 640) 4 1 630.89 103.0

HumanDetector (resize to 640) 4 8 650.26 469.0

HumanRedetect 1 1 57.47 88.0

HumanRedetect 4 1 31.58 98.0

HumanRedetect 4 8 28.3 432.0

HumanFaceDetectorBoxesAndAssociations
(minFaceSize=20)

1 1 14889.2 788.0

HumanFaceDetectorBoxesAndAssociations
(minFaceSize=20)

4 1 7502.5 812.0

HumanFaceDetectorBoxesAndAssociations
(minFaceSize=20)

4 8 7977.97 6050.0

VisionLabs B.V. 230 / 244

Type
CPU

threads
Batch
Size

Percentile 95
(ms)

RAM
Memory
(Mb)

HumanFaceDetectorBoxesAndAssociations
(minFaceSize=50)

1 1 2058.62 158.0

HumanFaceDetectorBoxesAndAssociations
(minFaceSize=50)

4 1 1091.52 173.0

HumanFaceDetectorBoxesAndAssociations
(minFaceSize=50)

4 8 1142.59 1076.0

HumanFaceDetectorBoxesAndAssociations
(minFaceSize=90)

1 1 661.33 76.0

HumanFaceDetectorBoxesAndAssociations
(minFaceSize=90)

4 1 340.6 91.0

HumanFaceDetectorBoxesAndAssociations
(minFaceSize=90)

4 8 363.05 430.0

HumanFaceDetectorBoxes
(minFaceSize=20)

1 1 14223.4 732.0

HumanFaceDetectorBoxes
(minFaceSize=20)

4 1 7091.03 760.0

HumanFaceDetectorBoxes
(minFaceSize=20)

4 8 7600.78 5854.0

HumanFaceDetectorBoxes
(minFaceSize=50)

1 1 2010.47 150.0

HumanFaceDetectorBoxes
(minFaceSize=50)

4 1 1043.17 165.0

HumanFaceDetectorBoxes
(minFaceSize=50)

4 8 1086.0 1016.0

HumanFaceDetectorBoxes
(minFaceSize=90)

1 1 657.1 74.0

HumanFaceDetectorBoxes
(minFaceSize=90)

4 1 315.94 94.0

HumanFaceDetectorBoxes
(minFaceSize=90)

4 8 346.75 396.0

HumanWarper 1 1 2.56 48.0

HumanWarper 4 1 2.73 49.0

VisionLabs B.V. 231 / 244

Type
CPU

threads
Batch
Size

Percentile 95
(ms)

RAM
Memory
(Mb)

HumanWarper 4 8 1.8 90.0

HumanWarper 1 1 2.93 83.0

HumanWarper 4 1 2.77 84.0

HumanWarper 4 8 1.82 125.0

14.2.4.11 Rockchip (weak) Estimations performance without batch interface
The tablebelowshows theperformanceof Estimationson theCPU for estimators thatdonothaveabatch
interface. All these measurements are performed with minFaceSize=50.

Type CPU threads Percentile 95 (ms)
RAMMemory

(Mb)

LivenessFPR 4 353.95 153.0

LivenessFPR 1 1199.35 150.0

PPE 4 88.89 100.0

PPE 1 277.88 100.0

Overlap 4 32.46 139.0

Overlap 1 110.82 140.0

14.2.4.12 Rockchip (weak) environment. Estimations performance with batch interface
The table below shows the performance of Estimations on the Rockchip (weak) environment for
estimators that have a batch interface.

Type
CPU

threads Batch Size
Percentile 95

(ms)
RAMMemory

(Mb)

HeadPose 1 1 3.5 139.0

HeadPose 4 1 2.06 138.0

HeadPose 4 8 1.76 180.0

Warper 1 1 20.44 130.0

Warper 4 1 20.54 130.0

Warper 4 8 7.96 134.0

VisionLabs B.V. 232 / 244

Type
CPU

threads Batch Size
Percentile 95

(ms)
RAMMemory

(Mb)

Eyes 1 1 29.38 132.0

Eyes 4 1 9.26 134.0

Eyes 4 8 9.3 138.0

Eyes 1 1 24.3 132.0

Eyes 4 1 9.26 133.0

Eyes 4 8 9.51 138.0

Eyes 1 1 10.86 48.0

Eyes 4 1 5.7 48.0

Eyes 4 8 6.53 50.0

Eyes 1 1 10.34 48.0

Eyes 4 1 5.81 48.0

Eyes 4 8 6.05 50.0

InfraRed 1 1 58.77 51.0

InfraRed 4 1 27.7 50.0

InfraRed 4 8 18.89 71.0

AGS 1 1 3.79 138.0

AGS 4 1 2.11 138.0

AGS 4 8 1.83 180.0

BestShotQuality 1 1 9.18 139.0

BestShotQuality 4 1 3.85 140.0

BestShotQuality 4 8 2.71 181.0

MedicalMask 1 1 188.66 157.0

MedicalMask 4 1 94.59 158.0

MedicalMask 4 8 79.46 200.0

LivenessOneShotRGBEstimator 1 1 5594.06 271.0

LivenessOneShotRGBEstimator 4 1 2081.39 274.0

Orientation 1 1 191.35 37.0

Orientation 4 1 117.68 39.0

VisionLabs B.V. 233 / 244

Type
CPU

threads Batch Size
Percentile 95

(ms)
RAMMemory

(Mb)

Orientation 4 8 115.67 86.0

FacialHair 1 1 472.92 150.0

FacialHair 4 1 229.6 150.0

FacialHair 4 8 246.54 149.0

CredibilityCheck 1 1 4416.06 224.0

CredibilityCheck 4 1 2282.76 224.0

BlackWhite 1 1 31.55 136.0

BlackWhite 4 1 9.45 137.0

BlackWhite 4 8 8.52 139.0

NaturalLight 1 1 73.6 140.0

NaturalLight 4 1 37.34 141.0

NaturalLight 4 8 30.47 141.0

PortraitStyle 1 1 28.69 138.0

PortraitStyle 4 1 16.51 139.0

PortraitStyle 4 8 13.78 180.0

FishEye 1 1 67.47 141.0

FishEye 4 1 36.53 142.0

FishEye 4 8 36.28 142.0

EyeBrow 1 1 478.45 150.0

EyeBrow 4 1 227.36 150.0

EyeBrow 4 8 241.39 150.0

HumanAttribute 1 1 381.31 59.0

HumanAttribute 4 1 193.87 59.0

HumanAttribute 4 8 183.91 75.0

RedEye 1 1 69.41 134.0

RedEye 4 1 34.43 135.0

RedEye 4 8 32.69 136.0

HeadWear 1 1 137.64 150.0

VisionLabs B.V. 234 / 244

Type
CPU

threads Batch Size
Percentile 95

(ms)
RAMMemory

(Mb)

HeadWear 4 1 70.05 149.0

HeadWear 4 8 54.17 150.0

Background 1 1 28.18 138.0

Background 4 1 16.72 138.0

Background 4 8 13.63 180.0

Mouth 1 1 209.62 141.0

Mouth 4 1 101.53 141.0

Mouth 4 8 101.41 141.0

Attributes 1 1 2477.58 182.0

Attributes 4 1 1252.85 182.0

Attributes 4 8 1274.17 274.0

Quality 1 1 22.3 133.0

Quality 4 1 12.21 132.0

Quality 4 8 12.29 133.0

Emotions 1 1 518.51 149.0

Emotions 4 1 226.84 148.0

Emotions 4 8 245.28 149.0

EyesGaze 1 1 72.56 137.0

EyesGaze 4 1 19.67 138.0

EyesGaze 4 8 19.29 139.0

Glasses 1 1 26.92 133.0

Glasses 4 1 14.24 133.0

Glasses 4 8 13.09 134.0

LivenessFlyingFaces 1 1 318.71 155.0

LivenessFlyingFaces 4 1 147.77 176.0

LivenessFlyingFaces 4 8 138.81 213.0

DynamicRange 1 1 1.55 135.0

DynamicRange 4 1 1.62 136.0

VisionLabs B.V. 235 / 244

Type
CPU

threads Batch Size
Percentile 95

(ms)
RAMMemory

(Mb)

DynamicRange 4 8 0.81 177.0

Ethnicity 1 1 515.58 149.0

Ethnicity 4 1 252.94 148.0

Ethnicity 4 8 243.93 150.0

NIRLivenessEstimator 1 1 347.37 44.0

NIRLivenessEstimator 4 1 186.14 45.0

NIRLivenessEstimator 4 8 200.63 144.0

LivenessRGBMEstimator 1 1 753.06 142.0

LivenessRGBMEstimator 4 1 233.67 141.0

LivenessRGBMEstimator 4 8 239.51 406.0

FaceOcclusion 1 1 172.69 133.0

FaceOcclusion 4 1 99.17 134.0

FaceOcclusion 4 8 110.91 133.0

14.3 Runtime performance for embedded environment

Facedetectionperformancedepends on input imageparameters such as resolution andbit depth aswell
as the size of the detected face.

Input data characteristics:

• Image resolution: 640x480px;
• Image format: 24 BPP RGB;

The results for minimum batch size and optimal batch size are shown in the tables below. All the
intermediate and non-optimal values are omitted.

Face detections are performed using FaceDetV3 NN.

14.4 Descriptor size

Table below shows size of serialized face descriptors to estimate memory requirements.

VisionLabs B.V. 236 / 244

Table 101: “Descriptor size”

Face descriptor version Data size (bytes) Metadata size (bytes) Total size

CNN 56 512 8 520

CNN 57 512 8 520

CNN 58 512 8 520

CNN 59 512 8 520

CNN 60 512 8 520

CNN 62 512 8 520

CNN 65 512 8 520

Table below shows size of serialized human descriptors to estimate memory requirements. Human
descriptors are used only for reidentification tasks.

Table 102: “Human descriptor size (used only for reidentification tasks)”

Human descriptor version Data size (bytes) Metadata size (bytes) Total size

CNN 102 (deprecated) 2048 8 2056

CNN 103 (deprecated) 2048 8 2056

CNN 104 (deprecated) 2048 8 2056

CNN 105 (deprecated) 512 8 520

CNN 106 (deprecated) 512 8 520

CNN 107 (deprecated) 512 8 520

CNN 108 512 8 520

CNN 109 (deprecated) 512 8 520

CNN 110 (deprecated) 512 8 520

CNN 112 512 8 520

CNN 113 512 8 520

Metadata includes signature and version information that may be omitted during serialization if the
NoSignature flag is specified.

VisionLabs B.V. 237 / 244

When estimating individual descriptor size inmemory or serialization storage requirements with default
options, consider using values from the “Total size” column.

When estimating memory requirements for descriptor batches, use values from the “Data size” column
instead, since a descriptor batch does not duplicate metadata per descriptor and thus is more memory-
efficient.

These numbers are for approximate computation only, since they do not include overhead like
memory alignment for accelerated SIMD processing and the like.

15 Appendix B. Glossary

Table 103: Glossary

Term Description

Host memory Computer system RAM

Device memory On-board RAM of GPU or NPU card

Memory transfer Operation that copies memory from host to device or vice-versa

15.1 Descriptor

A set of features meant to describe a real-world object (e.g., a person’s face). Computed by means of
computer vision algorithms, such features are typicallymatched to eachother todetermine the similarity
of represented objects.

15.2 Cooperative Photoshooting and Recognition

A procedure of taking person face photograph characterized by person awareness of the matter and
his/her will to assist.

Typical highlights:

• Close to frontal head pose;
• Neutral facial expression;
• No occlusions (i.e., hair, hats, non-transparent eyewear, hands, other objects obscuring the face);
• No extreme lighting conditions (i.e., reasonable illuminance, no direct sunlight);
• Steady and well-tuned optics (i.e., no motion blur, depth of field, digital post-processing except
noise cancellation).

VisionLabs B.V. 238 / 244

Cooperative photoshooting is opposite to the so-called “in the wild” photoshooting, which is also called
non-cooperative shooting (or recognition).

15.3 Matching

The process of descriptors comparison. Matching is usually implemented as a distance function applied
to the feature sets anddistances comparison later on. The smaller thedistance, the closer aredescriptors,
hence, the more similar are the objects.

For convenience, helper functions exist to convert distance to a normalized similarity score, where 100%
means completely identical, and 0%means completely different.

VisionLabs B.V. 239 / 244

16 Appendix C. FAQ

Q: This document contains high-level descriptions and no code examples nor reference. Where can
one find them?

A: The complete type and function reference are provided as an interactive web-based documentation;
see the doc/fsdk/index.html inside the LUNA SDK package. The examples are located in the /examples
folder and “ExamplesGuide.pdf” is located in /doc folder of LUNA SDK package.

Q: Does FaceEngine support multicore / multiprocessor systems?

A: Yes, all internal algorithm implementations are multithreaded by design and take advantage of multi-
core systems. The number of threads may be controlled via the configuration file; see configuration
manual “ConfigurationGuide.pdf” or comments in the configuration file for details.

Q: What is the state of GPU support?

A: As of version 2.7 the GPU support is implemented for face detection and descriptor extraction
algorithms. Starting from version 2.9 GPU implementations are considered stable.

Q: What speedupmay be expected from GPUs?

A: Typically GPUs allow accelerating algorithms by the factor of 2-4 times depending onmicroprocessor
architecture and input data.

Q: Are there any official bindings/wrappers for other languages (C#, Java)?

A: No, such bindings are not provided. FaceEngine officially implements C++ API only, bindings to other
languages should be created by users themselves. There are tools to automate this process, like, e.g.,
SWIG.

Q: Does FaceEngine support DBMS systems?

A: No, FaceEngine implements just computer vision algorithms. Users should implement DBMS
communication themselves using serialization methods described in section “Serializable object
interface” of chapter “Core concepts” and section “Archive interface” of chapter “Core facility”.

Q: What image formats does FaceEngine support?

A: FaceEngine does not implement image format encoding functions. If such functions are required, one
should use a third-party library, e.g., FreeImage.

FaceEngine functions typically expect image data in the form of uncompressed unencoded pixel data
(RGB color 24 bits per pixel or grayscale 8 bits per pixel).

FaceEngine implements convenience functions like RGB -> grayscale and RGB<-> BGR color conversions.
The rationale of this design is explained in section “Image type” of chapter “Core concepts”.

VisionLabs B.V. 240 / 244

17 Appendix D. Known issues

17.1 Overall known issues

17.1.1 Warnings during the compilation of user code that utilizes the SDK libraries

For example:

warning: 'fsdk::IQualityEstimator' has virtual functions but non-virtual
destructor [-Wnon-virtual-dtor]

struct IQualityEstimator : IRefCounted {

This is a normal and expected behavior. For details, see Core Concepts - Reference Counted Interface.

17.1.2 Premature end of JPEG file

Sometimes you canmeet such a log:

[Error] [Image] FreeImage error: format=1, msg=Premature end of JPEG file.

This issue occurs if your JPEG file was not previously recorded or saved properly. You can find more
information on this error on the Internet. Fortunately, this error is not fatal and you can continueworking
with the image and get valid detection, landmarks and warped image. You can also try to re-save this
image.

17.1.3 SDK stuck when run sdk algorithm in separate process after root FaceEngine object
initialized

For example:

void simpleDetect(const fsdk::Image& image, const fsdk::IDetectorPtr&
faceDetector) {
fsdk::ResultValue<fsdk::FSDKError, fsdk::Face> result = faceDetector->

detectOne(
image,
image.getRect(),
fsdk::DetectionType::DT_BBOX

);
}

int main()
{

VisionLabs B.V. 241 / 244

auto resFaceEngine = fsdk::createFaceEngine("./data");
fsdk::IFaceEnginePtr faceEngine = resFaceEngine.getValue();

fsdk::ILicense* license = faceEngine->getLicense();
fsdk::activateLicense(license, "./data/license.conf");

fsdk::Image image;
const string imagePath {"image_720.jpg"};
image.load(imagePath.c_str(), fsdk::Format::R8G8B8);

auto detRes = faceEngine->createDetector(fsdk::FACE_DET_V3);
fsdk::IDetectorPtr faceDetector = detRes.getValue();

// Run detection in separate process
pid_t ch_pid = fork();
if (ch_pid == -1) {

perror("fork");
exit(EXIT_FAILURE);

} else if (ch_pid > 0) {
cout << "spawn child with pid - " << ch_pid << endl;

} else {
simpleDetect(image, faceDetector);

}

pid_t child_pid;
while ((child_pid = wait(nullptr)) > 0)

cout << "child " << child_pid << " terminated" << endl;

return 0;
}

Cause deadlock. This behaviour observed since sdk version 5.4 and above. The problem can be solved
if youmake all forks before creating the FaceEngine object. More reading in Best practices

17.1.4 Undefined behaviour withmultithreaded usage of the FaceEngine and algorithms

Creation and destroying Luna SDK algorithms from the different threads is prohibited due to internal
implementation restrictions. In such case undefined behaviour is possible - segmentation faults or
invalid results. More reading in Best practices

17.1.5 Floating point exceptions whenworking with images that have GPUmemory residence

If you’re getting floating point exceptions when using images with GPU memory residence please make
sure that Luna SDK runtime has been initialised with at least 2 worker threads. For more info about

VisionLabs B.V. 242 / 244

runtime configuration please refer to Runtime settings chapter in ConfigurationGuide handbook.

17.1.6 Coordinate differences for batched detections

It is possible to obtain some small differences in detected image boxes and landmarks for different
placement of images within batches, when the sizes of different images are close to each other. This
note is correct for all detector types, including face detectors, human detectors, face+human detectors
etc.

17.2 CentOS 8 known issues

17.2.1 Archive unpacking

We have detected such behavior on CentOS 8.

unzip *.zip;
error: invalid zip file with overlapped components (possible zip bomb)

while unpacking archives. The bug is caused by unzip-6.0-45.el8 package. We recommend to
downgrade it:

rpm -q unzip-6.0-45.el8 && yum remove unzip && yum install unzip-6.0-44.el8

VisionLabs B.V. 243 / 244

Possible content of test.xcent:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/
DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

<dict>

<key>com.apple.security.get-task-allow</key>

<true/>

</dict>

</plist>

VisionLabs B.V. 244 / 244

	Introduction
	Editions and Platforms
	Core Concepts
	SDK workflow
	Object lifetime
	Threading
	Detailed constraints

	Common Interfaces and Types
	Reference Counted Interface
	Automatic reference counting
	Referencing - without acquiring ownership of object lifetime
	Acquiring - own object lifetime

	Serializable object interface
	Auxiliary types
	Image type

	Beta Mode

	FaceEngine Structure Overview
	Core Facility
	Common Interfaces
	Face Engine Object
	Settings Provider

	Helper Interfaces
	Archive Interface

	Sensor type
	Data Paths
	Model Data
	Configuration Data

	Detection facility
	Overview
	Detection structure
	Face Detection
	Image coordinate system
	Face detection
	Redetect method
	Orientation Estimation
	Detector variants
	FaceDetV2 Configuration
	FaceDetV3 Configuration
	Face Alignment
	Five landmarks
	Sixty-eight landmarks

	Face Landmarks Detector
	Human Detection
	Image coordinate system
	Human body detection
	Constraints
	Camera position requirements
	Human body redetection
	Human keypoints
	Main results of each detection
	HumanFace redetection
	Performance
	Main results
	minFaceSize

	Head Detection
	Image coordinate system
	Main results
	minHeadSize

	Image Warping
	Parameter Estimation Facility
	Overview
	Use cases
	ISO estimation

	Best shot selection functionality
	BestShotQuality Estimation
	Image Quality Estimation

	Attributes estimation functionality
	Face Attribute Estimation
	Credibility Check Estimation

	Facial Hair Estimation
	Natural Light Estimation
	Fish Eye Estimation
	Eyebrows Estimation
	Portrait Style Estimation
	DynamicRange Estimation
	Headwear Estimation
	Background Estimation
	Grayscale, color or infrared Estimation
	Face features extraction functionality
	Eyes Estimation
	Red Eyes Estimation
	Gaze Estimation

	Head Pose Estimation
	Approximate Garbage Score Estimation (AGS)
	Glasses Estimation
	Overlap Estimation

	Emotion estimation functionality
	Emotions Estimation

	Mouth Estimation Functionality
	Face Occlusion Estimation Functionality
	DeepFake estimation functionality
	Liveness check functionality
	LivenessFlyingFaces Estimation
	LivenessRGBM Estimation
	Depth Liveness Estimation (LivenessDepthEstimator)
	Depth and RGB OneShotLiveness estimation
	Depth liveness estimation (DepthLivenessEstimator)
	LivenessOneShotRGB Estimation
	Usage example

	NIR Liveness estimation

	Personal Protection Equipment Estimation
	Medical Mask Estimation Functionality
	MedicalMaskEstimator thresholds
	MedicalMask enumeration
	MedicalMaskEstimation structure
	MedicalMaskExtended enumeration
	MedicalMaskEstimationExtended structure
	Filtration parameters

	Human Attribute Estimation
	Crowd Estimation
	Fights Estimation

	Descriptor Processing Facility
	Overview
	Person Identification Task
	Person Reidentification Task

	Descriptor
	Descriptor Versions
	Face descriptor
	Human descriptor

	Descriptor Batch
	Descriptor Extraction
	Descriptor Matching
	Descriptor Indexing
	Using HNSW
	Index serialization
	Dynamic index evaluation scheme. This feature is experimental. Backward compatibility is not guaranteed.

	System Requirements
	Windows OS installations
	Linux OS installations

	Hardware requirements
	Server / PC installations
	General considerations
	CPU requirements
	GPU requirements
	The number of SDK threads while using GPU
	NPU requirements
	RAM requirements
	Storage requirements
	Approaches to software design targeting different hardware
	CPU
	GPU/NPU

	Requirements for GPU acceleration

	Embedded installations
	CPU requirements

	Migration guide
	Overview
	v.5.24.0
	IDetector

	v.5.23.0
	IImageTransfer
	IDetector

	v.5.22.0
	IHeadPoseEstimator
	IHeadPoseEstimator and IAGSEstimator

	v.5.20.0
	ILivenessFlowEstimator

	v.5.19.0
	ILivenessFlowEstimator

	v.5.18.0
	IChildEstimator
	IHeadAndShouldersLivenessEstimator

	v.5.17.0
	IHeadAndShouldersLivenessEstimator
	IChildEstimator
	Index
	FishEyeEstimator

	v.5.6.0
	Vector2
	BlackWhiteEstimator

	v.5.5.0
	Examples of code

	v.5.2.0
	v.5.1.0
	v.5.0.0
	Objects creation
	Examples of code

	Interface of ILicense
	Examples of code

	Interface of HumanLandmark
	HumanDetectionType
	HumanLandmarks17
	IHumanLandmarksDetector

	Interface of IDescriptorBatch
	Interface of Detection
	Interface of IDetector
	IFaceDetectionBatch
	Interface of IHumanDetector
	IHumanDetectionBatch
	Interface of ILivenessFlyingFaces

	v.3.10.1
	Detector FaceDetV3 changes
	Detector FaceDetV1, FaceDetV2 changes

	Best practices
	Thread pools
	Estimator creation and inference
	Forking process
	Liveness estimator combination
	Changing the threshold
	Aggregating the scores
	Recommended thresholds
	Possible LivenessOneShotRGBEstimator model combinations

	Device-specific constraints
	Image constraints

	Collecting information for Technical Support
	Contact Technical Support
	Specific error
	Non-specific error
	Unexpected Result

	Appendix A. Specifications
	Classification performance
	Runtime performance for CentOS Linux environment
	CPU performance
	CPU. Detector performance
	CPU. HumanDetector performance
	CPU. HumanFaceDetector performance
	CPU. HeadDetector performance
	CPU. Estimations performance with batch interface
	CPU. Estimations performance without batch interface
	CPU. Extractor performance
	CPU. Matcher performance

	GPU performance
	GPU. Detector performance
	GPU. HumanDetector performance
	GPU. HeadDetector performance
	GPU. HumanFace detector performance
	GPU. Estimations performance with batch interface
	GPU. Estimations performance without batch interface
	GPU. Extractor performance

	NPU Performance
	NPU. Detector performance
	NPU. Estimations performance with batch interface
	NPU. Estimations performance without batch interface
	NPU. Extractor performance

	Rockchip (Ubuntu 24.04 LTS)
	Rockchip (power) environment. Detector performance
	Rockchip (power) environment. Extractor performance
	Rockchip (power) environment. HeadDetector performance
	Rockchip (power) environment. HumanDetector performance
	Rockchip (power) Estimations performance without batch interface
	Rockchip (power) environment. Estimations performance with batch interface
	Rockchip (weak) environment. Detector performance
	Rockchip (weak) environment. Extractor performance
	Rockchip (weak) environment. HeadDetector performance
	Rockchip (weak) environment. HumanDetector performance
	Rockchip (weak) Estimations performance without batch interface
	Rockchip (weak) environment. Estimations performance with batch interface

	Runtime performance for embedded environment
	Descriptor size

	Appendix B. Glossary
	Descriptor
	Cooperative Photoshooting and Recognition
	Matching

	Appendix C. FAQ
	Appendix D. Known issues
	Overall known issues
	Warnings during the compilation of user code that utilizes the SDK libraries
	Premature end of JPEG file
	SDK stuck when run sdk algorithm in separate process after root FaceEngine object initialized
	Undefined behaviour with multithreaded usage of the FaceEngine and algorithms
	Floating point exceptions when working with images that have GPU memory residence
	Coordinate differences for batched detections

	CentOS 8 known issues
	Archive unpacking

