Skip to content

Appendix A. Specifications#

Classification performance#

Classification performance was measured on a two datasets:

  • Cooperative dataset (containing 20K images from various sources obtained at several banks);
  • Non cooperative dataset (containing 20K).

The two tables below contain true positive rates corresponding to select false positive rates.

"Classification performance @ low FPR on cooperative dataset"

FPR TPR CNN 58 TPR CNN 59 TPR CNN 59m TPR CNN 60 TPR CNN 60m TPR CNN 62 TPR CNN 65
10^-7^ 0.9910 0.9911 0.9809 0.9917 0.979 0.9916 0.9909
10^-6^ 0.9916 0.9915 0.9876 0.9917 0.989 0.9917 0.9950
10^-5^ 0.9918 0.9919 0.9904 0.9919 0.990 0.9918 0.9976
10^-4^ 0.9919 0.9921 0.9915 0.9921 0.991 0.9920 0.9988

"Classification performance @ low FPR on non cooperative dataset"

FPR TPR CNN 58 TPR CNN 59 TPR CNN 59m TPR CNN 60 TPR CNN 60m TPR CNN 62 TPR CNN 65
10^-7^ 0.9834 0.9850 0.9059 0.9862 0.9279 0.9909 0.9909
10^-6^ 0.9914 0.9907 0.9454 0.9931 0.9523 0.9950 0.9950
10^-5^ 0.9954 0.9956 0.9705 0.9967 0.9752 0.9976 0.9976
10^-4^ 0.9983 0.9983 0.9868 0.9987 0.9888 0.9988 0.9988

Runtime performance for CentOS Linux environment#

Face detection performance depends on input image parameters, including resolution, bit depth, and the size of the detected face.

Input data characteristics:

  • Image resolution: 1920x1080px
  • Image format: 24 BPP RGB

Performance measurements for CPU, GPU, and NPU execution modes are presented in the tables below. The measured values represent averages from at least 100 experiments.

Estimated memory consumption values are also provided for CPU and GPU. These values are highly dependent on the input data and the experimental conditions.

The results for both minimum and optimal batch sizes are shown in the tables below, while all intermediate and non-optimal values have been omitted.

Face detection is performed using the FaceDetV3 neural network. All types of face detection and re-detection include capturing bounding boxes and five facial landmarks.

CPU performance#

Benchmarking for CPU was performed on a server with the following hardware configuration:

CPU:

  • Intel(R) Xeon(R) Silver 4210 CPU @ 2.20GHz;
  • CPU(s): 40
  • Thread(s) per core: 2
  • Core(s) per socket: 10
  • Socket(s): 2
  • NUMA node(s): 2
  • CPU with AVX2 instruction set was used

OS: CentOS Linux release 8.3.2011

RAM: 128 GB DDR4 (Clock Speed: 2133 MHz)

In experiments listed in tables below, face detection and descriptor extraction algorithms used all available CPU cores, while the matching performance is specified on a per-core basis.

Descriptor matching is only implemented on the CPU.

CPU. Detector performance#

The table below shows the performance of FaceDetV3 Detector on the CPU.

Measurement CPU threads BatchSize Percentile 95 (ms) RAM Memory (Mb)
Detector (minFaceSize=20) 1 1 339.83 2005.0
Detector (minFaceSize=20) 8 1 116.0 2154.0
Detector (minFaceSize=20) 8 8 111.1 5385.0
Detector (minFaceSize=50) 1 1 56.25 1616.0
Detector (minFaceSize=50) 8 1 22.74 1707.0
Detector (minFaceSize=50) 8 8 19.04 2356.0
Detector (minFaceSize=90) 1 1 20.58 1566.0
Detector (minFaceSize=90) 8 1 10.07 1628.0
Detector (minFaceSize=90) 8 8 6.79 1897.0
Redetect 1 1 0.65 1609.0
Redetect 8 1 0.79 1651.0
Redetect 8 8 0.23 2223.0
Landmarks5Detector 1 1 0.22 1614.0
Landmarks5Detector 8 1 0.29 1639.0
Landmarks5Detector 8 8 0.08 1642.0
Landmarks68Detector 1 1 4.08 1619.0
Landmarks68Detector 8 1 2.08 1639.0
Landmarks68Detector 8 8 1.11 1650.0

CPU. HumanDetector performance#

The table below shows the performance of HumanDetector on the CPU.

Measurement CPU threads Batch Size Percentile 95 (ms) RAM Memory (Mb)
HumanDetector (resize to 320) 1 1 10.38 1542.0
HumanDetector (resize to 320) 8 1 5.98 1590.0
HumanDetector (resize to 320) 8 8 3.51 1817.0
HumanDetector (resize to 640) 1 1 36.18 1573.0
HumanDetector (resize to 640) 8 1 14.48 1631.0
HumanDetector (resize to 640) 8 8 11.66 2019.0
HumanRedetect 1 1 2.61 1572.0
HumanRedetect 8 1 2.4 1632.0
HumanRedetect 8 8 1.11 1941.0
HumanWarper 1 1 0.35 1536.0
HumanWarper 8 1 0.4 1544.0
HumanWarper 8 8 0.12 1582.0
HumanWarper 1 1 0.39 1558.0
HumanWarper 8 1 0.4 1584.0
HumanWarper 8 8 0.12 1622.0

CPU. HumanFaceDetector performance#

The table below shows the performance of HumanFaceDetector on the CPU.

Measurement CPU threads BatchSize Percentile 95 (ms) RAM Memory (Mb)
HumanFaceDetectorBoxesAndAssociations (minFaceSize=20) 1 1 393.26 2710.0
HumanFaceDetectorBoxesAndAssociations (minFaceSize=20) 8 1 119.93 2851.0
HumanFaceDetectorBoxesAndAssociations (minFaceSize=20) 8 8 120.66 6316.0
HumanFaceDetectorBoxesAndAssociations (minFaceSize=50) 1 1 60.06 2183.0
HumanFaceDetectorBoxesAndAssociations (minFaceSize=50) 8 1 19.25 2361.0
HumanFaceDetectorBoxesAndAssociations (minFaceSize=50) 8 8 15.32 3027.0
HumanFaceDetectorBoxesAndAssociations (minFaceSize=90) 1 1 21.83 2133.0
HumanFaceDetectorBoxesAndAssociations (minFaceSize=90) 8 1 8.3 2264.0
HumanFaceDetectorBoxesAndAssociations (minFaceSize=90) 8 8 5.16 2587.0
HumanFaceDetectorBoxes (minFaceSize=20) 1 1 357.48 2560.0
HumanFaceDetectorBoxes (minFaceSize=20) 8 1 91.36 2841.0
HumanFaceDetectorBoxes (minFaceSize=20) 8 8 86.12 6233.0
HumanFaceDetectorBoxes (minFaceSize=50) 1 1 58.24 2174.0
HumanFaceDetectorBoxes (minFaceSize=50) 8 1 23.31 2349.0
HumanFaceDetectorBoxes (minFaceSize=50) 8 8 14.36 3006.0
HumanFaceDetectorBoxes (minFaceSize=90) 1 1 21.77 2123.0
HumanFaceDetectorBoxes (minFaceSize=90) 8 1 7.79 2259.0
HumanFaceDetectorBoxes (minFaceSize=90) 8 8 5.05 2597.0

CPU. HeadDetector performance#

Measurement CPU threads Batch Size Percentile 95 (ms) RAM Memory (Mb)
HeadDetector (minHeadSize=20) 1 1 340.62 1992.0
HeadDetector (minHeadSize=20) 8 1 115.54 2151.0
HeadDetector (minHeadSize=20) 8 8 111.67 5380.0
HeadDetector (minHeadSize=50) 1 1 55.13 1610.0
HeadDetector (minHeadSize=50) 8 1 22.28 1690.0
HeadDetector (minHeadSize=50) 8 8 18.86 2348.0
HeadDetector (minHeadSize=90) 1 1 20.85 1558.0
HeadDetector (minHeadSize=90) 8 1 9.7 1648.0
HeadDetector (minHeadSize=90) 8 8 6.79 1909.0

CPU. Estimations performance with batch interface#

The table below shows the performance of Estimations on the CPU for estimators that have a batch interface. All these measurements are performed with minFaceSize=50.

Measurement CPU threads Batch Size Percentile 95 (ms) RAM Memory (Mb)
HeadPose 1 1 0.26 1646.0
HeadPose 8 1 0.17 1801.0
HeadPose 8 8 0.07 1840.0
Warper 1 1 2.08 1653.0
Warper 8 1 2.35 1804.0
Warper 8 8 0.57 1803.0
Eyes (RGB, useStatusPlan=0) 1 1 1.44 1644.0
Eyes (RGB, useStatusPlan=0) 8 1 0.44 1796.0
Eyes (RGB, useStatusPlan=0) 8 8 0.24 1802.0
Eyes (RGB, useStatusPlan=1) 1 1 1.43 1646.0
Eyes (RGB, useStatusPlan=1) 8 1 0.45 1797.0
Eyes (RGB, useStatusPlan=1) 8 8 0.24 1791.0
Eyes (INFRA RED, useStatusPlan=0) 1 1 0.8 1560.0
Eyes (INFRA RED, useStatusPlan=0) 8 1 0.37 1636.0
Eyes (INFRA RED, useStatusPlan=0) 8 8 0.19 1626.0
Eyes (INFRA RED, useStatusPlan=1) 1 1 0.8 1557.0
Eyes (INFRA RED, useStatusPlan=1) 8 1 0.38 1632.0
Eyes (INFRA RED, useStatusPlan=1) 8 8 0.19 1624.0
InfraRed 1 1 2.06 1562.0
InfraRed 8 1 0.94 1641.0
InfraRed 8 8 0.72 1640.0
AGS 1 1 0.25 1641.0
AGS 8 1 0.17 1788.0
AGS 8 8 0.08 1844.0
BestShotQuality 1 1 0.46 1652.0
BestShotQuality 8 1 0.22 1806.0
BestShotQuality 8 8 0.1 1837.0
MedicalMask 1 1 5.86 1656.0
MedicalMask 8 1 3.21 1819.0
MedicalMask 8 8 1.58 1860.0
LivenessOneShotRGBEstimator 1 1 170.0 1809.0
LivenessOneShotRGBEstimator 8 1 43.22 2003.0
LivenessOneShotRGBEstimator 8 8 41.63 2140.0
Orientation 1 1 6.89 1543.0
Orientation 8 1 3.82 1567.0
Orientation 8 8 2.13 1615.0
FacialHair 1 1 13.72 1663.0
FacialHair 8 1 4.5 1820.0
FacialHair 8 8 3.96 1806.0
CredibilityCheck 1 1 124.03 1765.0
CredibilityCheck 8 1 34.23 1896.0
CredibilityCheck 8 8 34.47 2181.0
BlackWhite 1 1 1.28 1650.0
BlackWhite 8 1 0.5 1816.0
BlackWhite 8 8 0.48 1803.0
NaturalLight 1 1 2.21 1650.0
NaturalLight 8 1 1.4 1799.0
NaturalLight 8 8 0.73 1806.0
PortraitStyle 1 1 1.01 1639.0
PortraitStyle 8 1 1.05 1792.0
PortraitStyle 8 8 0.44 1841.0
FishEye 1 1 2.29 1653.0
FishEye 8 1 1.38 1807.0
FishEye 8 8 0.95 1823.0
EyeBrow 1 1 13.5 1662.0
EyeBrow 8 1 4.42 1821.0
EyeBrow 8 8 3.88 1807.0
HumanAttribute 1 1 12.79 1565.0
HumanAttribute 8 1 6.02 1589.0
HumanAttribute 8 8 3.77 1648.0
RedEye 1 1 2.64 1648.0
RedEye 8 1 0.87 1791.0
RedEye 8 8 0.79 1800.0
HeadWear 1 1 4.49 1657.0
HeadWear 8 1 2.63 1816.0
HeadWear 8 8 1.19 1822.0
Background 1 1 1.04 1644.0
Background 8 1 1.03 1794.0
Background 8 8 0.44 1859.0
Mouth 1 1 6.88 1657.0
Mouth 8 1 2.55 1810.0
Mouth 8 8 2.1 1801.0
Attributes 1 1 62.91 1704.0
Attributes 8 1 19.57 1843.0
Attributes 8 8 18.07 2106.0
Quality 1 1 1.24 1646.0
Quality 8 1 0.62 1794.0
Quality 8 8 0.36 1799.0
Emotions 1 1 13.53 1662.0
Emotions 8 1 4.59 1819.0
Emotions 8 8 3.88 1814.0
EyesGaze 1 1 2.32 1656.0
EyesGaze 8 1 1.3 1801.0
EyesGaze 8 8 0.65 1794.0
Glasses 1 1 0.93 1647.0
Glasses 8 1 0.95 1786.0
Glasses 8 8 0.4 1800.0
LivenessFlyingFaces 1 1 14.89 1680.0
LivenessFlyingFaces 8 1 6.55 1878.0
LivenessFlyingFaces 8 8 4.78 1989.0
DynamicRange 1 1 1.37 1643.0
DynamicRange 8 1 1.69 1799.0
DynamicRange 8 8 0.39 1831.0
Ethnicity 1 1 13.24 1665.0
Ethnicity 8 1 4.45 1812.0
Ethnicity 8 8 3.87 1808.0
DeepFake 1 1 231.24 1767.0
DeepFake 8 1 69.92 1929.0
DeepFake 8 8 80.54 2300.0
Fights 1 1 230.46 1798.0
Fights 8 1 58.68 1825.0
NIRLivenessEstimator 1 1 16.14 1547.0
NIRLivenessEstimator 8 1 11.01 1561.0
NIRLivenessEstimator 8 8 10.3 1665.0
LivenessRGBMEstimator 1 1 27.83 1661.0
LivenessRGBMEstimator 8 1 10.52 1830.0
LivenessRGBMEstimator 8 8 8.53 2163.0
DepthLivenessEstimator 1 1 2.03 1524.0
DepthLivenessEstimator 8 1 1.23 1547.0
DepthLivenessEstimator 8 8 0.83 1569.0
YUV12toRGB 1 1 6.26 112.0
YUV12toRGB 8 1 6.33 112.0
YUV12toRGB 8 8 6.26 111.0
YUV21toRGB 1 1 6.71 110.0
YUV21toRGB 8 1 6.76 111.0
YUV21toRGB 8 8 6.72 112.0
Rotation 1 1 12.02 120.0
Rotation 8 1 11.97 118.0
FaceOcclusion 1 1 7.58 1664.0
FaceOcclusion 8 1 3.51 1807.0
FaceOcclusion 8 8 2.94 1819.0

CPU. Estimations performance without batch interface#

The table below shows the performance of Estimations on the CPU for estimators that do not have a batch interface. All these measurements are performed with minFaceSize=50.

Measurement CPU threads Percentile 95 (ms) RAM Memory (Mb)
LivenessFPR 8 19.41 1671.0
LivenessFPR 1 42.55 1644.0
PPE 8 5.78 1602.0
PPE 1 12.17 1584.0
Overlap 8 1.22 1636.0
Overlap 1 4.83 1612.0

CPU. Extractor performance#

The table below shows the performance of Extractor on the CPU.

Model CPU threads Batch Size Percentile 95 (ms) RAM Memory (Mb)
58 1 1 213.91 1814.0
58 8 1 57.36 1835.0
58 8 8 61.0 1950.0
59 1 1 214.29 1810.0
59 8 1 56.84 1823.0
59 8 8 60.93 1957.0
60 1 1 215.24 1803.0
60 8 1 57.74 1830.0
60 8 8 61.25 1944.0
62 1 1 256.36 1866.0
62 8 1 65.44 1885.0
62 8 8 72.15 1985.0
65 1 1 364.93 1992
65 8 1 120.88 1993
65 8 8 93.0 2616
105 1 1 1.66 1604
105 8 8 0.71 1657
106 1 1 140.76 1892
106 8 8 39.01 1954
107 1 1 12.0 1637
107 8 8 3.7 1723
108 1 1 2.41 1522.0
108 8 1 2.27 1541.0
108 8 8 0.81 1598.0
109 1 1 133.7 1822
109 8 8 37.33 1889
110 1 1 15.53 1640
110 8 8 5.39 1733
112 1 1 118.69 1713.0
112 8 1 42.07 1727.0
112 8 8 34.05 1802.0
113 1 1 15.85 1553.0
113 8 1 6.8 1576.0
113 8 8 4.72 1633.0
115 1 1 119.36 1715.0
115 8 1 40.21 1736.0
115 8 8 34.06 1803.0
116 1 1 16.86 1550.0
116 8 1 7.2 1570.0
116 8 8 4.97 1638.0

CPU. Matcher performance#

The table below shows the performance of Matcher on the CPU. The table includes average matcher per second for descriptors received using the following CNN model versions:

Model CPU threads Batch Size PerSecond RAM Memory (Mb)
58 1 1000 41163.9 97.0
59 1 1000 41580.1 101.0
60 1 1000 41386.2 97.0
62 1 1000 41309.8 98.0
108 1 1000 41220.8 98.0
112 1 1000 41652.3 97.0
113 1 1000 41796.1 97.0
115 1 1000 41408.9 97.0
116 1 1000 41487.4 99.0

Note: The value above represents the maximum performance of the matcher on a specific piece of hardware. Overall performance does not depend on batch size; however, it may be limited by memory performance when using large batch sizes.

CPU. CrowdEstimator performance#

The table below shows the performance of CrowdEstimator on the CPU.

Measurement CPU threads Batch Size Percentile 95 (ms) RAM Memory (Mb)
CrowdEstimator (Single, minHeadSize=6) 1 1 3110.01 2488.0
CrowdEstimator (Single, minHeadSize=6) 8 1 922.77 2490.0
CrowdEstimator (Single, minHeadSize=6) 8 8 611.5 8649.0
CrowdEstimator (Single, minHeadSize=12) 1 1 774.76 1826.0
CrowdEstimator (Single, minHeadSize=12) 8 1 235.78 1844.0
CrowdEstimator (Single, minHeadSize=12) 8 8 139.94 3395.0
CrowdEstimator (TwoNets, minHeadSize=6) 1 1 3185.38 2501.0
CrowdEstimator (TwoNets, minHeadSize=6) 8 1 930.5 2679.0
CrowdEstimator (TwoNets, minHeadSize=6) 8 8 636.19 9149.0
CrowdEstimator (TwoNets, minHeadSize=12) 1 1 787.35 1854.0
CrowdEstimator (TwoNets, minHeadSize=12) 8 1 237.6 1977.0
CrowdEstimator (TwoNets, minHeadSize=12) 8 8 146.16 3790.0

GPU performance#

Benchmarking for the GPU was performed on the following hardware configuration:

GPU: NVIDIA Tesla T4.

OS: CentOS Linux release 8.3.2011

GPU. Detector performance#

The table below shows the performance of FaceDetV3 Detector on the GPU.

Measurement Batch Size Percentile 95 (ms) GPU Memory (Mb) RAM Memory (Mb)
Detector (minFaceSize=20) 1 24.93 1436.0 1674.0
Detector (minFaceSize=20) 4 29.52 3946.0 1687.0
Detector (minFaceSize=20) 8 32.65 7338.0 1742.0
Detector (minFaceSize=50) 1 7.01 712.0 1664.0
Detector (minFaceSize=50) 4 5.78 1242.0 1696.0
Detector (minFaceSize=50) 8 5.42 1806.0 1717.0
Detector (minFaceSize=90) 1 4.66 624.0 1658.0
Detector (minFaceSize=90) 4 3.11 780.0 1681.0
Detector (minFaceSize=90) 8 2.85 978.0 1700.0
Redetect 1 2.3 712.0 1624.0
Redetect 8 0.29 1758.0 1641.0
Redetect 16 0.23 2834.0 1674.0
Landmarks5Detector 1 2.13 712.0 1670.0
Landmarks5Detector 8 0.31 712.0 1670.0
Landmarks5Detector 16 0.2 712.0 1678.0
Landmarks68Detector 1 2.38 712.0 1610.0
Landmarks68Detector 8 0.54 744.0 1671.0
Landmarks68Detector 16 0.25 744.0 1612.0

GPU. HumanDetector performance#

The table below shows the performance of HumanDetector on the GPU.

Measurement Batch Size Percentile 95 (ms) GPU Memory (Mb) RAM Memory (Mb)
HumanDetector (resize to 320) 1 3.99 598.0 1606.0
HumanDetector (resize to 320) 4 2.59 670.0 1610.0
HumanDetector (resize to 320) 8 2.16 892.0 1641.0
HumanDetector (resize to 640) 1 6.41 646.0 1594.0
HumanDetector (resize to 640) 4 4.04 864.0 1624.0
HumanDetector (resize to 640) 8 3.83 1222.0 1651.0
HumanRedetect 1 2.59 646.0 1661.0
HumanRedetect 8 0.41 1206.0 1664.0
HumanRedetect 16 0.21 1778.0 1665.0
HumanWarper 1 0.05 604.0 1592.0
HumanWarper 4 0.03 622.0 1609.0
HumanWarper 8 0.03 648.0 1621.0
HumanWarper 1 0.04 652.0 1591.0
HumanWarper 4 0.03 670.0 1608.0
HumanWarper 8 0.03 696.0 1621.0

GPU. HeadDetector performance#

The table below shows the performance of HeadDetector on the GPU.

Measurement Batch Size Percentile 95 (ms) GPU Memory (Mb) RAM Memory (Mb)
HeadDetector (minHeadSize=20) 1 24.61 1436.0 1614.0
HeadDetector (minHeadSize=20) 4 29.29 3978.0 1637.0
HeadDetector (minHeadSize=20) 8 34.19 7366.0 1681.0
HeadDetector (minHeadSize=50) 1 6.36 712.0 1602.0
HeadDetector (minHeadSize=50) 4 5.64 1242.0 1625.0
HeadDetector (minHeadSize=50) 8 5.34 1806.0 1656.0
HeadDetector (minHeadSize=90) 1 4.01 624.0 1602.0
HeadDetector (minHeadSize=90) 4 2.99 780.0 1617.0
HeadDetector (minHeadSize=90) 8 2.76 978.0 1638.0

GPU. HumanFace detector performance#

The table below shows the performance of HumanFaceDetector on the GPU.

Measurement Batch Size Percentile 95 (ms) GPU Memory (Mb) RAM Memory (Mb)
HumanFaceDetectorBoxesAndAssociations (minFaceSize=20) 1 68.43 1660.0 2259.0
HumanFaceDetectorBoxesAndAssociations (minFaceSize=20) 4 72.72 4794.0 2354.0
HumanFaceDetectorBoxesAndAssociations (minFaceSize=20) 8 74.05 8814.0 2454.0
HumanFaceDetectorBoxesAndAssociations (minFaceSize=50) 1 10.09 742.0 2260.0
HumanFaceDetectorBoxesAndAssociations (minFaceSize=50) 4 9.25 1402.0 2269.0
HumanFaceDetectorBoxesAndAssociations (minFaceSize=50) 8 8.98 2108.0 2325.0
HumanFaceDetectorBoxesAndAssociations (minFaceSize=90) 1 5.33 634.0 2258.0
HumanFaceDetectorBoxesAndAssociations (minFaceSize=90) 4 4.16 820.0 2266.0
HumanFaceDetectorBoxesAndAssociations (minFaceSize=90) 8 3.9 1060.0 2289.0
HumanFaceDetectorBoxes (minFaceSize=20) 1 40.37 1564.0 2260.0
HumanFaceDetectorBoxes (minFaceSize=20) 4 48.78 4454.0 2288.0
HumanFaceDetectorBoxes (minFaceSize=20) 8 50.92 8302.0 2331.0
HumanFaceDetectorBoxes (minFaceSize=50) 1 9.71 730.0 2259.0
HumanFaceDetectorBoxes (minFaceSize=50) 4 8.86 1370.0 2259.0
HumanFaceDetectorBoxes (minFaceSize=50) 8 8.63 2000.0 2296.0
HumanFaceDetectorBoxes (minFaceSize=90) 1 5.21 630.0 2259.0
HumanFaceDetectorBoxes (minFaceSize=90) 4 4.0 804.0 2264.0
HumanFaceDetectorBoxes (minFaceSize=90) 8 3.76 1028.0 2306.0

GPU. Estimations performance with batch interface#

The table below shows the performance of Estimations on the GPU for estimators that have a batch interface. All these measurements are performed with minFaceSize=50.

Measurement Batch Size Percentile 95 (ms) GPU Memory (Mb) RAM Memory (Mb)
HeadPose 1 1.97 712.0 1699.0
HeadPose 16 1.43 712.0 1785.0
HeadPose 32 1.4 902.0 1882.0
Warper 1 0.09 718.0 1685.0
Warper 16 0.05 814.0 1678.0
Warper 32 0.03 916.0 1673.0
Eyes (RGB, useStatusPlan=0) 1 0.71 712.0 1699.0
Eyes (RGB, useStatusPlan=0) 16 0.14 744.0 1694.0
Eyes (RGB, useStatusPlan=0) 32 0.13 744.0 1695.0
Eyes (RGB, useStatusPlan=1) 1 0.96 712.0 1701.0
Eyes (RGB, useStatusPlan=1) 16 0.14 744.0 1691.0
Eyes (RGB, useStatusPlan=1) 32 0.11 744.0 1702.0
Eyes (INFRA RED, useStatusPlan=0) 1 0.59 600.0 1684.0
Eyes (INFRA RED, useStatusPlan=0) 16 0.11 600.0 1692.0
Eyes (INFRA RED, useStatusPlan=0) 32 0.11 632.0 1680.0
Eyes (INFRA RED, useStatusPlan=1) 1 0.49 600.0 1688.0
Eyes (INFRA RED, useStatusPlan=1) 16 0.1 600.0 1686.0
Eyes (INFRA RED, useStatusPlan=1) 32 0.12 632.0 1690.0
InfraRed 1 0.92 600.0 1658.0
InfraRed 16 0.52 638.0 1697.0
InfraRed 32 0.52 674.0 1702.0
AGS 1 1.99 712.0 1677.0
AGS 16 1.42 712.0 1778.0
AGS 32 1.39 902.0 1864.0
BestShotQuality 1 2.38 712.0 1683.0
BestShotQuality 16 1.44 744.0 1775.0
BestShotQuality 32 1.41 934.0 1864.0
MedicalMask 1 4.36 712.0 1725.0
MedicalMask 16 1.79 770.0 1810.0
MedicalMask 32 1.6 952.0 1896.0
LivenessOneShotRGBEstimator 1 14.11 888.0 1815.0
LivenessOneShotRGBEstimator 8 11.23 1436.0 1818.0
LivenessOneShotRGBEstimator 16 10.97 1884.0 1821.0
Orientation 1 2.6 580.0 1634.0
Orientation 16 0.65 696.0 1636.0
Orientation 32 0.64 824.0 1640.0
FacialHair 1 2.03 712.0 1717.0
FacialHair 16 0.72 712.0 1708.0
FacialHair 32 0.7 896.0 1716.0
CredibilityCheck 1 5.07 712.0 1789.0
CredibilityCheck 16 3.44 1330.0 1772.0
CredibilityCheck 32 3.38 1948.0 1802.0
BlackWhite 1 1.08 712.0 1699.0
BlackWhite 16 0.3 744.0 1698.0
BlackWhite 32 0.29 744.0 1708.0
NaturalLight 1 2.01 744.0 1710.0
NaturalLight 16 0.22 744.0 1702.0
NaturalLight 32 0.21 744.0 1705.0
PortraitStyle 1 2.4 712.0 1649.0
PortraitStyle 16 1.52 712.0 1795.0
PortraitStyle 32 1.48 902.0 1883.0
FishEye 1 1.22 712.0 1686.0
FishEye 16 0.23 744.0 1684.0
FishEye 32 0.21 712.0 1688.0
EyeBrow 1 2.05 712.0 1706.0
EyeBrow 16 0.74 712.0 1707.0
EyeBrow 32 0.7 896.0 1714.0
HumanAttribute 1 3.15 602.0 1722.0
HumanAttribute 16 0.9 704.0 1718.0
HumanAttribute 32 0.64 836.0 1717.0
RedEye 1 1.08 712.0 1684.0
RedEye 16 0.2 712.0 1681.0
RedEye 32 0.18 712.0 1678.0
HeadWear 1 2.32 712.0 1722.0
HeadWear 16 0.41 744.0 1724.0
HeadWear 32 0.27 712.0 1710.0
Background 1 2.42 712.0 1630.0
Background 16 1.54 712.0 1780.0
Background 32 1.45 902.0 1879.0
Mouth 1 1.65 744.0 1716.0
Mouth 16 0.45 744.0 1719.0
Mouth 32 0.42 940.0 1699.0
Attributes 1 3.4 712.0 1769.0
Attributes 16 1.99 1214.0 1753.0
Attributes 32 1.9 1736.0 1759.0
Quality 1 0.62 712.0 1691.0
Quality 16 0.13 744.0 1695.0
Quality 32 0.13 744.0 1693.0
Emotions 1 1.95 712.0 1707.0
Emotions 16 0.74 712.0 1714.0
Emotions 32 0.72 896.0 1712.0
EyesGaze 1 1.17 712.0 1626.0
EyesGaze 16 0.45 712.0 1700.0
EyesGaze 32 0.42 712.0 1706.0
Glasses 1 0.97 712.0 1699.0
Glasses 16 0.17 712.0 1693.0
Glasses 32 0.15 712.0 1695.0
LivenessFlyingFaces 1 3.58 744.0 1713.0
LivenessFlyingFaces 16 1.95 1034.0 1808.0
LivenessFlyingFaces 32 1.91 1220.0 1892.0
DynamicRange 1 1.76 712.0 1625.0
DynamicRange 16 1.46 712.0 1715.0
DynamicRange 32 1.46 902.0 1810.0
Ethnicity 1 1.79 712.0 1714.0
Ethnicity 16 0.72 712.0 1710.0
Ethnicity 32 0.71 896.0 1701.0
DeepFake 1 14.33 756.0 1805.0
DeepFake 16 13.16 1566.0 1897.0
DeepFake 32 13.32 2476.0 1982.0
Fights 1 14.31 928.0 1855.0
NIRLivenessEstimator 1 8.55 610.0 1655.0
NIRLivenessEstimator 16 7.86 708.0 1753.0
NIRLivenessEstimator 32 7.81 836.0 1853.0
LivenessRGBMEstimator 1 7.46 712.0 1696.0
LivenessRGBMEstimator 16 4.25 1466.0 1821.0
LivenessRGBMEstimator 32 4.48 2066.0 1956.0
DepthLivenessEstimator 1 1.87 654.0 1676.0
DepthLivenessEstimator 16 0.46 612.0 1662.0
DepthLivenessEstimator 32 0.39 646.0 1675.0
YUV12toRGB 1 2.61 114.0 229.0
YUV12toRGB 16 2.63 114.0 228.0
YUV12toRGB 32 2.56 114.0 227.0
YUV21toRGB 1 3.16 126.0 248.0
YUV21toRGB 16 3.07 126.0 247.0
YUV21toRGB 32 3.09 126.0 246.0
Rotation 1 0.91 114.0 210.0
FaceOcclusion 1 1.96 744.0 1673.0
FaceOcclusion 16 0.79 968.0 1672.0
FaceOcclusion 32 0.76 1160.0 1678.0

GPU. Estimations performance without batch interface#

The table below shows the performance of Estimations on the GPU for estimators that do not have a batch interface. All these measurements are performed with minFaceSize=50.

Measurement Percentile 95 (ms) GPU Memory (Mb) RAM Memory (Mb)
LivenessFPR 10.07 776.0 1687.0
PPE 3.09 678.0 1676.0
Overlap 0.7 744.0 1665.0

GPU. Extractor performance#

The table below shows the performance of Extractor on the GPU.

Model Batch Size Percentile 95 (ms) GPU Memory (Mb) RAM Memory (Mb)
58 1 9.57 0.0 1844.0
58 8 6.58 0.0 1835.0
58 16 6.24 0.0 1837.0
59 1 9.66 0.0 1848.0
59 8 6.68 0.0 1834.0
59 16 6.34 0.0 1836.0
60 1 9.67 0.0 1844.0
60 8 6.68 0.0 1842.0
60 16 6.32 0.0 1839.0
62 1 11.05 0.0 1877.0
62 8 7.97 0.0 1875.0
62 16 7.71 0.0 1878.0
65 1 6.48 949.0 1995
65 8 3.47 1911.0 1996
65 16 3.34 2439.0 1996
105 1 3.48 785 1664
105 16 0.3 815 1673
106 1 6.28 973 1893
106 16 9.38 1371 1894
107 1 3.41 807 1698
107 16 0.59 911 1696
108 1 2.65 0.0 1675.0
108 8 0.5 0.0 1671.0
108 16 0.35 0.0 1675.0
109 1 6.22 933 1833
109 16 7.83 1261 1833
110 1 3.38 809 1693
110 16 0.76 939 1693
112 1 5.6 0.0 1766.0
112 8 4.31 0.0 1775.0
112 16 2.95 0.0 1772.0
113 1 2.65 0.0 1695.0
113 8 0.78 0.0 1680.0
113 16 0.97 0.0 1687.0
115 1 5.65 0.0 1776.0
115 8 4.35 0.0 1777.0
115 16 2.96 0.0 1771.0
116 1 2.6 0.0 1689.0
116 8 0.81 0.0 1683.0
116 16 1.05 0.0 1689.0

GPU. CrowdEstimator performance#

The table below shows the performance of CrowdEstimator on the GPU.

Measurement Batch Size Percentile 95 (ms) GPU Memory (Mb) RAM Memory (Mb)
CrowdEstimator (Single, minHeadSize=6) 1 55.64 1534.0 1779.0
CrowdEstimator (Single, minHeadSize=6) 4 58.58 3528.0 1810.0
CrowdEstimator (Single, minHeadSize=6) 8 58.85 3426.0 1839.0
CrowdEstimator (Single, minHeadSize=12) 1 18.75 1008.0 1769.0
CrowdEstimator (Single, minHeadSize=12) 4 17.7 1722.0 1790.0
CrowdEstimator (Single, minHeadSize=12) 8 17.96 1766.0 1815.0
CrowdEstimator (TwoNets, minHeadSize=6) 1 64.16 1712.0 1782.0
CrowdEstimator (TwoNets, minHeadSize=6) 4 69.99 4192.0 1830.0
CrowdEstimator (TwoNets, minHeadSize=6) 8 68.9 5006.0 1857.0
CrowdEstimator (TwoNets, minHeadSize=12) 1 22.73 1078.0 1784.0
CrowdEstimator (TwoNets, minHeadSize=12) 4 20.75 1946.0 1802.0
CrowdEstimator (TwoNets, minHeadSize=12) 8 21.14 2194.0 1828.0

Rockchip (Ubuntu 24.04 LTS)#

The number of threads auto means that will be taken the maximum number of available threads. For this mode use the -1 value for the numThreads parameter in the runtime.conf. This number of threads is equal to according number of available processor cores. We strongly recommend you to follow this recommendation; otherwise, performance can be significantly reduced. Description of according settings you can find in "Configuration Guide - Runtime settings".

The performance measurements are presented for device with configurations as below:

Architecture: aarch64 Byte Order: Little Endian CPU(s): 8 On-line CPU(s) list: 0-7 Thread(s) per core: 1 Core(s) per socket: 4 Socket(s): 1 Vendor ID: ARM Model: 0 Model name: Cortex-A55 Stepping: r2p0 CPU max MHz: 1800.0000 CPU min MHz: 408.0000 BogoMIPS: 48.00 Flags: fp asimd evtstrm aes pmull sha1 sha2 crc32 atomics fphp asimdhp cpuid asimdrdm lrcpc dcpop asimddp

The number of threads you can find in tables below.

*Note: In the case of these tests, power and weak refer to a Linux command (taskset -c j,k, where j and k are CPU cores) that explicitly sets the CPU affinity of a process. In simple terms, it tells the system to run the process only on the specified CPU cores. Power stands for taskset -c 4-7 and weak stands for taskset -c 0-3.

Rockchip (power) environment. Detector performance#

The table below shows the performance of Detector on the Rockchip (power) environment.

Type CPU threads Batch Size Percentile 95 (ms) RAM Memory (Mb)
Detector (minFaceSize=20) 1 1 4048.29 604.0
Detector (minFaceSize=20) 2 1 4218.24 601.0
Detector (minFaceSize=20) 2 8 4148.53 4495.0
Detector (minFaceSize=50) 1 1 548.7 132.0
Detector (minFaceSize=50) 2 1 559.4 136.0
Detector (minFaceSize=50) 2 8 552.05 809.0
Detector (minFaceSize=90) 1 1 157.16 71.0
Detector (minFaceSize=90) 2 1 170.72 73.0
Detector (minFaceSize=90) 2 8 179.77 326.0
Redetect 1 1 3.41 126.0
Redetect 2 1 3.47 127.0
Redetect 2 8 3.26 768.0
Landmarks5Detector 1 1 1.13 136.0
Landmarks5Detector 2 1 1.18 137.0
Landmarks5Detector 2 8 1.15 137.0
Landmarks68Detector 1 1 8.62 136.0
Landmarks68Detector 2 1 8.62 137.0
Landmarks68Detector 2 8 8.82 137.0

Rockchip (power) environment. Extractor performance#

The table below shows the performance of Extractor on the Rockchip (power) environment.

Model CPU threads Batch Size Percentile 95 (ms) RAM Memory (Mb)
62 1 1 2130.74 389.0
62 2 1 2110.69 387.0
62 2 8 2216.14 387.0

Rockchip (power) environment. HeadDetector performance#

The table below shows the performance of HeadDetector on the Rockchip (power) environment.

Type CPU threads Batch Size Percentile 95 (ms) RAM Memory (Mb)
HeadDetector (minHeadSize=20) 1 1 4153.01 599.0
HeadDetector (minHeadSize=20) 2 1 4261.43 596.0
HeadDetector (minHeadSize=50) 1 1 539.03 131.0
HeadDetector (minHeadSize=50) 2 1 556.37 132.0
HeadDetector (minHeadSize=50) 2 8 550.99 809.0
HeadDetector (minHeadSize=90) 1 1 154.06 71.0
HeadDetector (minHeadSize=90) 2 1 156.39 71.0
HeadDetector (minHeadSize=90) 2 8 179.22 324.0

Rockchip (power) environment. HumanDetector performance#

The table below shows the performance of HumanDetector on the Rockchip (power) environment.

Type CPU threads Batch Size Percentile 95 (ms) RAM Memory (Mb)
HumanDetector (resize to 320) 1 1 70.32 56.0
HumanDetector (resize to 320) 2 1 80.67 55.0
HumanDetector (resize to 320) 2 8 83.49 177.0
HumanDetector (resize to 640) 1 1 316.34 89.0
HumanDetector (resize to 640) 2 1 321.24 90.0
HumanDetector (resize to 640) 2 8 352.26 454.0
HumanRedetect 1 1 14.49 88.0
HumanRedetect 2 1 14.38 88.0
HumanRedetect 2 8 14.42 413.0
HumanFaceDetectorBoxesAndAssociations (minFaceSize=20) 1 1 4723.6 605.0
HumanFaceDetectorBoxesAndAssociations (minFaceSize=20) 4 1 2309.34 629.0
HumanFaceDetectorBoxesAndAssociations (minFaceSize=20) 4 8 2550.64 4594.0
HumanFaceDetectorBoxesAndAssociations (minFaceSize=50) 1 1 598.49 132.0
HumanFaceDetectorBoxesAndAssociations (minFaceSize=50) 4 1 347.57 154.0
HumanFaceDetectorBoxesAndAssociations (minFaceSize=50) 4 8 329.43 838.0
HumanFaceDetectorBoxesAndAssociations (minFaceSize=90) 1 1 178.0 71.0
HumanFaceDetectorBoxesAndAssociations (minFaceSize=90) 4 1 94.87 91.0
HumanFaceDetectorBoxesAndAssociations (minFaceSize=90) 4 8 102.66 347.0
HumanFaceDetectorBoxes (minFaceSize=20) 1 1 4906.34 582.0
HumanFaceDetectorBoxes (minFaceSize=20) 4 1 2324.12 618.0
HumanFaceDetectorBoxes (minFaceSize=20) 4 8 2470.06 4623.0
HumanFaceDetectorBoxes (minFaceSize=50) 1 1 595.66 128.0
HumanFaceDetectorBoxes (minFaceSize=50) 4 1 309.37 144.0
HumanFaceDetectorBoxes (minFaceSize=50) 4 8 325.7 843.0
HumanFaceDetectorBoxes (minFaceSize=90) 1 1 171.03 70.0
HumanFaceDetectorBoxes (minFaceSize=90) 4 1 92.93 90.0
HumanFaceDetectorBoxes (minFaceSize=90) 4 8 102.37 338.0
HumanWarper 1 1 0.64 51.0
HumanWarper 2 1 0.59 52.0
HumanWarper 2 8 1.02 93.0
HumanWarper 1 1 0.64 86.0
HumanWarper 2 1 0.61 87.0
HumanWarper 2 8 1.01 128.0

Rockchip (power) Estimations performance without batch interface#

The table below shows the performance of Estimations on the CPU for estimators that do not have a batch interface. All these measurements are performed with minFaceSize=50.

Type CPU threads Percentile 95 (ms) RAM Memory (Mb)
LivenessFPR 2 179.91 152.0
LivenessFPR 1 350.14 150.0
PPE 2 38.26 100.0
PPE 1 69.45 100.0
Overlap 2 15.91 139.0
Overlap 1 29.76 140.0

Rockchip (power) environment. Estimations performance with batch interface#

The table below shows the performance of Estimations on the Rockchip (power) environment for estimators that have a batch interface.

Type CPU threads Batch Size Percentile 95 (ms) RAM Memory (Mb)
HeadPose 1 1 0.92 139.0
HeadPose 2 1 0.91 138.0
HeadPose 2 8 0.99 179.0
Warper 1 1 5.82 130.0
Warper 2 1 5.85 130.0
Warper 2 8 5.84 131.0
Eyes 1 1 5.4 132.0
Eyes 2 1 5.67 133.0
Eyes 2 8 5.94 137.0
Eyes 1 1 5.4 132.0
Eyes 2 1 5.68 133.0
Eyes 2 8 6.39 133.0
Eyes 1 1 2.63 48.0
Eyes 2 1 2.9 48.0
Eyes 2 8 3.02 54.0
Eyes 1 1 2.65 48.0
Eyes 2 1 2.76 48.0
Eyes 2 8 2.91 54.0
InfraRed 1 1 13.86 51.0
InfraRed 2 1 7.78 51.0
InfraRed 2 8 11.29 70.0
AGS 1 1 0.95 138.0
AGS 2 1 0.95 138.0
AGS 2 8 0.96 179.0
BestShotQuality 1 1 1.99 139.0
BestShotQuality 2 1 2.04 141.0
BestShotQuality 2 8 1.92 182.0
MedicalMask 1 1 37.75 157.0
MedicalMask 2 1 38.42 158.0
MedicalMask 2 8 38.2 200.0
LivenessOneShotRGBEstimator 1 1 1518.52 271.0
LivenessOneShotRGBEstimator 2 1 1505.27 272.0
Orientation 1 1 61.14 37.0
Orientation 2 1 50.35 40.0
Orientation 2 8 68.16 85.0
FacialHair 1 1 115.42 150.0
FacialHair 2 1 127.69 149.0
FacialHair 2 8 132.92 149.0
CredibilityCheck 1 1 1088.63 224.0
CredibilityCheck 2 1 1178.26 223.0
CredibilityCheck 2 8 1252.27 223.0
BlackWhite 1 1 7.71 136.0
BlackWhite 2 1 4.33 137.0
BlackWhite 2 8 4.46 138.0
NaturalLight 1 1 15.15 140.0
NaturalLight 2 1 15.7 140.0
NaturalLight 2 8 14.56 140.0
PortraitStyle 1 1 6.77 138.0
PortraitStyle 2 1 7.17 139.0
PortraitStyle 2 8 7.62 180.0
FishEye 1 1 16.59 141.0
FishEye 2 1 18.1 143.0
FishEye 2 8 20.93 143.0
EyeBrow 1 1 116.83 150.0
EyeBrow 2 1 114.04 149.0
EyeBrow 2 8 132.6 149.0
HumanAttribute 1 1 94.86 59.0
HumanAttribute 2 1 97.65 59.0
HumanAttribute 2 8 96.34 75.0
RedEye 1 1 17.87 134.0
RedEye 2 1 30.42 135.0
RedEye 2 8 19.22 135.0
HeadWear 1 1 26.8 150.0
HeadWear 2 1 27.28 149.0
HeadWear 2 8 24.6 149.0
Background 1 1 6.61 138.0
Background 2 1 7.05 139.0
Background 2 8 7.54 180.0
Mouth 1 1 51.22 141.0
Mouth 2 1 52.67 141.0
Mouth 2 8 60.71 141.0
Attributes 1 1 590.98 182.0
Attributes 2 1 531.96 182.0
Attributes 2 8 552.64 274.0
Quality 1 1 6.28 133.0
Quality 2 1 6.33 132.0
Quality 2 8 7.44 132.0
Emotions 1 1 114.09 149.0
Emotions 2 1 116.42 149.0
Emotions 2 8 135.98 149.0
EyesGaze 1 1 16.11 137.0
EyesGaze 2 1 9.09 137.0
EyesGaze 2 8 9.97 139.0
Glasses 1 1 6.33 133.0
Glasses 2 1 6.85 133.0
Glasses 2 8 7.33 133.0
LivenessFlyingFaces 1 1 86.67 155.0
LivenessFlyingFaces 2 1 92.49 158.0
LivenessFlyingFaces 2 8 100.76 197.0
DynamicRange 1 1 0.52 135.0
DynamicRange 2 1 0.49 136.0
DynamicRange 2 8 0.64 178.0
Ethnicity 1 1 120.67 149.0
Ethnicity 2 1 114.94 149.0
Ethnicity 2 8 134.65 149.0
NIRLivenessEstimator 1 1 84.74 44.0
NIRLivenessEstimator 2 1 48.97 44.0
NIRLivenessEstimator 2 8 59.09 144.0
LivenessRGBMEstimator 1 1 235.84 142.0
LivenessRGBMEstimator 2 1 121.32 141.0
LivenessRGBMEstimator 2 8 136.67 407.0
YUV12toRGB 1 1 2.52 28.0
YUV12toRGB 2 1 2.53 28.0
YUV12toRGB 2 8 2.57 28.0
YUV21toRGB 1 1 2.51 29.0
YUV21toRGB 2 1 2.58 29.0
YUV21toRGB 2 8 2.6 29.0
FaceOcclusion 1 1 58.56 133.0
FaceOcclusion 2 1 50.53 133.0
FaceOcclusion 2 8 67.4 133.0

Rockchip (weak) environment. Detector performance#

The table below shows the performance of Detector on the Rockchip (weak) environment.

Type CPU threads Batch Size Percentile 95 (ms) RAM Memory (Mb)
Detector (minFaceSize=20) 1 1 13280.8 604.0
Detector (minFaceSize=20) 4 1 6632.62 625.0
Detector (minFaceSize=20) 4 8 6952.72 4536.0
Detector (minFaceSize=50) 1 1 1886.54 136.0
Detector (minFaceSize=50) 4 1 963.36 157.0
Detector (minFaceSize=50) 4 8 998.26 829.0
Detector (minFaceSize=90) 1 1 598.28 75.0
Detector (minFaceSize=90) 4 1 295.25 89.0
Detector (minFaceSize=90) 4 8 321.53 344.0
Redetect 1 1 12.1 130.0
Redetect 4 1 8.21 134.0
Redetect 4 8 7.18 787.0
Landmarks5Detector 1 1 4.37 140.0
Landmarks5Detector 4 1 2.66 141.0
Landmarks5Detector 4 8 2.27 141.0
Landmarks68Detector 1 1 36.15 140.0
Landmarks68Detector 4 1 22.36 141.0
Landmarks68Detector 4 8 19.07 141.0

Rockchip (weak) environment. Extractor performance#

The table below shows the performance of Extractor on the Rockchip (weak) environment.

Type CPU threads Batch Size Percentile 95 (ms) RAM Memory (Mb)
Extractor 1 1 8613.25 389.0
Extractor 4 1 4397.11 387.0

Rockchip (weak) environment. HeadDetector performance#

The table below shows the performance of HeadDetector on the Rockchip (weak) environment.

Type CPU threads Batch Size Percentile 95 (ms) RAM Memory (Mb)
HeadDetector (minHeadSize=20) 1 1 13286.9 599.0
HeadDetector (minHeadSize=20) 4 1 6614.01 620.0
HeadDetector (minHeadSize=50) 1 1 1863.81 132.0
HeadDetector (minHeadSize=50) 4 1 922.59 153.0
HeadDetector (minHeadSize=50) 4 8 992.9 830.0
HeadDetector (minHeadSize=90) 1 1 566.68 71.0
HeadDetector (minHeadSize=90) 4 1 295.05 85.0
HeadDetector (minHeadSize=90) 4 8 322.76 345.0

Rockchip (weak) environment. HumanDetector performance#

The table below shows the performance of HumanDetector on the Rockchip (weak) environment.

Type CPU threads Batch Size Percentile 95 (ms) RAM Memory (Mb)
HumanDetector (resize to 320) 1 1 305.31 56.0
HumanDetector (resize to 320) 4 1 150.85 66.0
HumanDetector (resize to 320) 4 8 160.52 189.0
HumanDetector (resize to 640) 1 1 1250.47 89.0
HumanDetector (resize to 640) 4 1 630.89 103.0
HumanDetector (resize to 640) 4 8 650.26 469.0
HumanRedetect 1 1 57.47 88.0
HumanRedetect 4 1 31.58 98.0
HumanRedetect 4 8 28.3 432.0
HumanFaceDetectorBoxesAndAssociations (minFaceSize=20) 1 1 14685.0 605.0
HumanFaceDetectorBoxesAndAssociations (minFaceSize=20) 4 1 7302.98 629.0
HumanFaceDetectorBoxesAndAssociations (minFaceSize=20) 4 8 7795.62 4594.0
HumanFaceDetectorBoxesAndAssociations (minFaceSize=50) 1 1 2078.23 133.0
HumanFaceDetectorBoxesAndAssociations (minFaceSize=50) 4 1 1045.73 148.0
HumanFaceDetectorBoxesAndAssociations (minFaceSize=50) 4 8 1087.36 839.0
HumanFaceDetectorBoxesAndAssociations (minFaceSize=90) 1 1 660.98 72.0
HumanFaceDetectorBoxesAndAssociations (minFaceSize=90) 4 1 348.87 93.0
HumanFaceDetectorBoxesAndAssociations (minFaceSize=90) 4 8 349.3 349.0
HumanFaceDetectorBoxes (minFaceSize=20) 1 1 14606.8 584.0
HumanFaceDetectorBoxes (minFaceSize=20) 4 1 7244.93 607.0
HumanFaceDetectorBoxes (minFaceSize=20) 4 8 7615.44 4422.0
HumanFaceDetectorBoxes (minFaceSize=50) 1 1 2012.34 130.0
HumanFaceDetectorBoxes (minFaceSize=50) 4 1 1030.6 145.0
HumanFaceDetectorBoxes (minFaceSize=50) 4 8 1088.53 807.0
HumanFaceDetectorBoxes (minFaceSize=90) 1 1 672.62 71.0
HumanFaceDetectorBoxes (minFaceSize=90) 4 1 334.86 85.0
HumanFaceDetectorBoxes (minFaceSize=90) 4 8 348.79 340.0
HumanWarper 1 1 2.56 48.0
HumanWarper 4 1 2.73 49.0
HumanWarper 4 8 1.8 90.0
HumanWarper 1 1 2.93 83.0
HumanWarper 4 1 2.77 84.0
HumanWarper 4 8 1.82 125.0

Rockchip (weak) Estimations performance without batch interface#

The table below shows the performance of Estimations on the CPU for estimators that do not have a batch interface. All these measurements are performed with minFaceSize=50.

Type CPU threads Percentile 95 (ms) RAM Memory (Mb)
LivenessFPR 4 353.95 153.0
LivenessFPR 1 1199.35 150.0
PPE 4 88.89 100.0
PPE 1 277.88 100.0
Overlap 4 32.46 139.0
Overlap 1 110.82 140.0

Rockchip (weak) environment. Estimations performance with batch interface#

The table below shows the performance of Estimations on the Rockchip (weak) environment for estimators that have a batch interface.

Type CPU threads Batch Size Percentile 95 (ms) RAM Memory (Mb)
HeadPose 1 1 3.5 139.0
HeadPose 4 1 2.06 138.0
HeadPose 4 8 1.76 180.0
Warper 1 1 20.44 130.0
Warper 4 1 20.54 130.0
Warper 4 8 7.96 134.0
Eyes 1 1 29.38 132.0
Eyes 4 1 9.26 134.0
Eyes 4 8 9.3 138.0
Eyes 1 1 24.3 132.0
Eyes 4 1 9.26 133.0
Eyes 4 8 9.51 138.0
Eyes 1 1 10.86 48.0
Eyes 4 1 5.7 48.0
Eyes 4 8 6.53 50.0
Eyes 1 1 10.34 48.0
Eyes 4 1 5.81 48.0
Eyes 4 8 6.05 50.0
InfraRed 1 1 58.77 51.0
InfraRed 4 1 27.7 50.0
InfraRed 4 8 18.89 71.0
AGS 1 1 3.79 138.0
AGS 4 1 2.11 138.0
AGS 4 8 1.83 180.0
BestShotQuality 1 1 9.18 139.0
BestShotQuality 4 1 3.85 140.0
BestShotQuality 4 8 2.71 181.0
MedicalMask 1 1 188.66 157.0
MedicalMask 4 1 94.59 158.0
MedicalMask 4 8 79.46 200.0
LivenessOneShotRGBEstimator 1 1 5594.06 271.0
LivenessOneShotRGBEstimator 4 1 2081.39 274.0
Orientation 1 1 191.35 37.0
Orientation 4 1 117.68 39.0
Orientation 4 8 115.67 86.0
FacialHair 1 1 472.92 150.0
FacialHair 4 1 229.6 150.0
FacialHair 4 8 246.54 149.0
CredibilityCheck 1 1 4416.06 224.0
CredibilityCheck 4 1 2282.76 224.0
BlackWhite 1 1 31.55 136.0
BlackWhite 4 1 9.45 137.0
BlackWhite 4 8 8.52 139.0
NaturalLight 1 1 73.6 140.0
NaturalLight 4 1 37.34 141.0
NaturalLight 4 8 30.47 141.0
PortraitStyle 1 1 28.69 138.0
PortraitStyle 4 1 16.51 139.0
PortraitStyle 4 8 13.78 180.0
FishEye 1 1 67.47 141.0
FishEye 4 1 36.53 142.0
FishEye 4 8 36.28 142.0
EyeBrow 1 1 478.45 150.0
EyeBrow 4 1 227.36 150.0
EyeBrow 4 8 241.39 150.0
HumanAttribute 1 1 381.31 59.0
HumanAttribute 4 1 193.87 59.0
HumanAttribute 4 8 183.91 75.0
RedEye 1 1 69.41 134.0
RedEye 4 1 34.43 135.0
RedEye 4 8 32.69 136.0
HeadWear 1 1 137.64 150.0
HeadWear 4 1 70.05 149.0
HeadWear 4 8 54.17 150.0
Background 1 1 28.18 138.0
Background 4 1 16.72 138.0
Background 4 8 13.63 180.0
Mouth 1 1 209.62 141.0
Mouth 4 1 101.53 141.0
Mouth 4 8 101.41 141.0
Attributes 1 1 2477.58 182.0
Attributes 4 1 1252.85 182.0
Attributes 4 8 1274.17 274.0
Quality 1 1 22.3 133.0
Quality 4 1 12.21 132.0
Quality 4 8 12.29 133.0
Emotions 1 1 518.51 149.0
Emotions 4 1 226.84 148.0
Emotions 4 8 245.28 149.0
EyesGaze 1 1 72.56 137.0
EyesGaze 4 1 19.67 138.0
EyesGaze 4 8 19.29 139.0
Glasses 1 1 26.92 133.0
Glasses 4 1 14.24 133.0
Glasses 4 8 13.09 134.0
LivenessFlyingFaces 1 1 318.71 155.0
LivenessFlyingFaces 4 1 147.77 176.0
LivenessFlyingFaces 4 8 138.81 213.0
DynamicRange 1 1 1.55 135.0
DynamicRange 4 1 1.62 136.0
DynamicRange 4 8 0.81 177.0
Ethnicity 1 1 515.58 149.0
Ethnicity 4 1 252.94 148.0
Ethnicity 4 8 243.93 150.0
NIRLivenessEstimator 1 1 347.37 44.0
NIRLivenessEstimator 4 1 186.14 45.0
NIRLivenessEstimator 4 8 200.63 144.0
LivenessRGBMEstimator 1 1 753.06 142.0
LivenessRGBMEstimator 4 1 233.67 141.0
LivenessRGBMEstimator 4 8 239.51 406.0
FaceOcclusion 1 1 172.69 133.0
FaceOcclusion 4 1 99.17 134.0
FaceOcclusion 4 8 110.91 133.0
## Runtime performance for embedded environment

Face detection performance depends on input image parameters, including resolution, bit depth, and the size of the detected face.

Input data characteristics:

  • Image resolution: 640x480px
  • Image format: 24 BPP RGB

The results for both minimum and optimal batch sizes are presented in the tables below, with all intermediate and non-optimal values omitted.

Face detection is performed using the FaceDetV3 neural network.

Descriptor size#

Table below shows size of serialized face descriptors to estimate memory requirements.

"Descriptor size"

Face descriptor version Data size (bytes) Metadata size (bytes) Total size
CNN 56 512 8 520
CNN 57 512 8 520
CNN 58 512 8 520
CNN 59 512 8 520
CNN 60 512 8 520
CNN 62 512 8 520
CNN 65 512 8 520

Table below shows size of serialized human descriptors to estimate memory requirements. Human descriptors are used only for reidentification tasks.

"Human descriptor size (used only for reidentification tasks)"

Human descriptor version Data size (bytes) Metadata size (bytes) Total size
CNN 102 (deprecated) 2048 8 2056
CNN 103 (deprecated) 2048 8 2056
CNN 104 (deprecated) 2048 8 2056
CNN 105 (deprecated) 512 8 520
CNN 106 (deprecated) 512 8 520
CNN 107 (deprecated) 512 8 520
CNN 108 512 8 520
CNN 109 (deprecated) 512 8 520
CNN 110 (deprecated) 512 8 520
CNN 112 512 8 520
CNN 113 512 8 520

Metadata includes signature and version information that may be omitted during serialization if the NoSignature flag is specified.

When estimating individual descriptor size in memory or serialization storage requirements with default options, consider using values from the "Total size" column.

When estimating memory requirements for descriptor batches, use values from the "Data size" column instead, since a descriptor batch does not duplicate metadata per descriptor and thus is more memory-efficient.

These numbers are for approximate computation only, since they do not include overhead like memory alignment for accelerated SIMD processing and the like.