VisionLabs

MACHINES CAN SEE

VisionLabs FaceEngine Handbook

written for LUNA SDK version 5.30.1

Contents
Introduction
Editions and Platforms

1 Core Concepts

10 SDKworkflow o e
111 Objectlifetime
112 Threading e e
11.3 Detailedconstraints
1.2 Commoninterfacesand Types o i i i e
1.21 Reference CountedlInterface
1.2.2 Automaticreferencecounting oL

1.2.21 Referencing - without acquiring ownership of object lifetime

1.2.2.2 Acquiring - own object lifetime

1.2.3 Serializable objectinterfaceo o L.

1.2.4 Auxiliarytypes o e e
1.2.4.1 Imagetype

1.3 BetaMode. o e

2 FaceEngine Structure Overview

3 Core Facility

31 Commonlinterfaces.
311 FaceEngineObject.
3.1.2 SettingsProvider oL
3.2 Helperinterfaces
3.21 Archivelnterface L
3.3 Sensortype e e e e e e e e e e e e
34 DataPaths
341 ModelData
3.4.2 ConfigurationData

4 Detection facility

41 OVEIVIEW . . o v e e e e e e e e e e e e e e e e
4.2 Detectionstructure e e
43 FaceDetection e
4.3.1 Imagecoordinatesystem e
4.3.2 Facedetection e
433 Redetectmethod.

VisionLabs B.V.

2/265

4.3.4 Orientation Estimation

4.3.8.1 Fivelandmarks

435 Detectorvariants
4.3.6 FaceDetV2 Configuration
4.3.7 FaceDetV3 Configuration
43.8 FaceAlignment.
4.3.8.2 Sixty-eight landmarks

4.4 FacelandmarksDetector

4.5 HumanDetection.
451 Imagecoordinatesystem
4,52 Humanbodydetection
453 Constraints L L L o
4.5.4 Camera position requirements
4,55 Humanbodyredetection
45.6 Humankeypoints
457 Mainresultsofeachdetection.
4.5.8 HumanFaceredetection
459 Performance
4510 Mainresults
4511 minFaceSize o e

4.6 HeadDetection
4.6.1 Image coordinatesystem
4.6.2 Mainresults
4.6.3 minHeadSize

5 Image Warping

6 Parameter Estimation Facility

6.1 Overview e e e e e
6.2 Usecases i
6.21 ISOestimation
6.3 Bestshotselection functionality
6.3.1 BestShotQuality Estimation
6.3.2 Image Quality Estimation
6.4 Attributes estimation functionality
6.4.1 FaceAttribute Estimation
6.4.2 Credibility Check Estimation
6.5 Facial HairEstimation
6.6 Natural Light Estimation
6.7 FishEyeEstimation.

VisionLabs B.V.

3/265

6.8 EyebrowsEstimation e 70

6.9 Portrait Style Estimation e 72
6.10 DynamicRange Estimation L 75
6.11 Headwear Estimation e 77
6.12 Background Estimation e 81
6.13 Grayscale, colororinfrared Estimation, 84
6.14 Face features extraction functionality 86
6.14.1 EyesEstimation e 86
6.14.2 RedEyesEstimation e 89
6.14.3 GazeEstimation e e 92

6.15 Head Pose Estimation e 94
6.16 Approximate Garbage Score Estimation (AGS) 96
6.16.1 GlassesEstimation 97
6.16.2 Overlap Estimation e 99

6.17 Emotion estimation functionality L 100
6.171 EmotionsEstimation. L 100

6.18 Mouth Estimation Functionality L 102
6.19 Face Occlusion Estimation Functionality 105
6.20 DeepFake estimation functionality 108
6.21 Livenesscheckfunctionality 11
6.21.1 LivenessFlyingFaces Estimation, m
6.21.2 LivenessRGBM Estimation 13
6.21.3 Depth Liveness Estimation (LivenessDepthEstimator) 115
6.21.4 Depth and RGB OneShotLivenessestimation 17
6.21.5 Depth liveness estimation (DepthLivenessEstimator) 120
6.21.6 LivenessOneShotRGB Estimation 123
6.21.6.1 Usageexample 126

6.21.7 NIRLivenessestimation 128

6.22 Personal Protection Equipment Estimation 130
6.23 Medical Mask Estimation Functionality 133
6.23.1 MedicalMaskEstimatorthresholds 134
6.23.2 MedicalMaskenumeration. 134
6.23.3 MedicalMaskEstimationstructure o o oo o oL 135
6.23.4 MedicalMaskExtended enumeration, 136
6.23.5 MedicalMaskEstimationExtended structure, 136
6.23.6 Filtration parameters e 137

6.24 Human Attribute Estimation L 139
6.25 Crowd Estimation e e e 151
6.26 FightsEstimation e 153

VisionLabs B.V. 4 /265

6.27 ImageModification Estimation 157

7 Descriptor Processing Facility 159
T1 0 OVeIVIEW . . . o e e e e e e e e 159
711 PersonldentificationTask e 159
7.1.2 PersonReidentificationTask 159
T2 Descriplor o o e e e e e e e e e e e e e 161
721 DescriptorVersions i e e e e e e 161
7.2.1.1 Facedescriptor e 161
7212 Humandescriptor. e e 162
7.2.2 DescriptorBatch e e 162
7.2.3 Descriptor Extraction e 163
7.2.4 DescriptorMatching 164
7.2.5 Descriptorindexing 165
7251 UsingHNSW e 165
7.25.2 Indexserialization. o Lo 166
7.2.5.3 Dynamic index evaluation scheme. This feature is experimental.
Backward compatibility is not guaranteed. 167
8 System Requirements 170
8.1 WindowsOSinstallations e 170
8.2 LinuxOSinstallations e e 170
9 Hardware requirements 17
9.1 Server/PCinstallations e 17
9.1.1 Generalconsiderations e e 1M
9.1.2 CPUrequirements i 0 i i i e e e e e e e e e e 173
9.1.3 GPUrequirements o i e e e e e e e e 174
9.1.4 The number of SDK threads whileusingGPU 174
9.1.5 NPUrequirements i i i e e e e e e e e e 174
9.1.6 RAMrequirements o 0 i e e e e e e e e e e 175
9.1.7 Storagerequirements 175
9.1.8 Approaches to software design targeting different hardware 175
9.1.8.1 CPU . e e e e 175
9.1.8.2 GPU/NPU e e 176
9.1.9 Requirements for GPU acceleration, 177
9.2 Embeddedinstallations 178
9.2.1 CPUrequirements o 0 i i i e e e e e e e e e 178
10 Migration guide 179
101 OVEIVIEW . . . o e e e e e e e e e e e e e e e e e e 179

VisionLabs B.V. 5/265

10.2 v.5.27.0 L . Lo e e e e 179
10.2.1 Multithreading usage of factory functions (for example: createAGSEstimator,

createHeadWearEstimator...) e 179

10.3 V.5.24.0 . . . L e e e e e e e e e e e e e e e e e e 179
10.3.1 IDetector L . e 179

10.4 v.5.23.0 e e e e e e e e e 179
10.4.1 llmageTransfer o L L 179
10.4.2 IDetector o . e e 179

10.5 v.5.22.0 . . . L e e e e e e e e e e e e e e e e e 180
10.5.1 IHeadPoseEstimator e 180
10.5.2 IHeadPoseEstimator and IAGSEstimator 180

10.6 v.5.20.0 . . . o e e e e e e e e e e e e e e e e 180
10.6.1 ILivenessFlowEstimator e 180

10.7 v.5.19.0 . . L e e e e e e e e e e e 180
10.7.1 ILivenessFlowEstimator e 180

10.8 V.5.18.0 . . L e e e e e e e e e e e e e e e e e 180
10.8.1 IChildEstimator. e e e e 180
10.8.2 IHeadAndShouldersLivenessEstimator 180

10.9 V.BI7.0 . . e e e e e e e e e e e e e e e e 181
10.9.1 IHeadAndShouldersLivenessEstimator 181
10.9.2 IChildEstimator. e e 181
10.9.3 Index o e e e e e 182
10.9.4 FishEyeEstimator. e e 184
1000 v.5.6.0 . . . L L e e e e e e e e e e e e e e e e e e e 184
10.710.1 VeCtor2 o o e e e e e e e 184
10.10.2 BlackWhiteEstimator e 185

1001 V.5.5.0 . . L e e e e e e e e e e e e e 185
10.11.0.1 Examplesofcode 185

10712 V.5.2.0 & o e e e e e e e e e e e e e e e e e e 186
1003 V. 5.1.0 L . L e e e e e e e e e e e e e e e e 186
10014 v.5.0.0 . . L L e e e e e e e e e e e e e e e e e 186
10.14.1 Objectscreation i i e e e e e 186
10.14.1.1 Examplesofcode 187

10.14.2 Interface of ILicense e 187
10.14.20 Examplesofcode 187

10.14.3 Interface of HumanLandmark 189
10.14.3.1 HumanDetectionType. o i e 189

10.14.3.2 HumanLandmarks17? i 190

10.14.3.3 IHumanLandmarksDetector 190

VisionLabs B.V. 6 /265

n

12

13

14

10.14.4 Interface of IDescriptorBatch 190

10.14.5 Interface of Detection e 190
10.14.6 Interface of IDetector e 191
10.14.7 IFaceDetectionBatch e 191
10.14.8 Interface of IHumanDetector 192
10.14.9 IHumanDetectionBatch o 193
10.14.10Interface of ILivenessFlyingFaces 194

1005 V30000 . . e 195
10.15.1 Detector FaceDetV3changes i i e 195
10.15.2 Detector FaceDetV1, FaceDetV2changes oL 195

Best practices 196
111 Thread pools o o e e e e 196
11.2 Estimator creationandinference e 196
11.3 Using CPU and GPU models for network inference 196
11.3.1 CPUrecommendations i i it e 196
11.3.2 GPUrecommendations e 197

114 FOrkKiNng proCess o v v i i e e e e e e e e e e e e 197
11.5 Liveness estimatorcombination L 198
11.5.1 Changingthethreshold 198
11.5.2 Aggregatingthescores. 198
11.5.3 Recommendedthresholds 198
11.5.4 Possible LivenessOneShotRGBEstimator model combinations 198
Device-specific constraints 200
121 Imageconstraints L e e e e e e e e e 200
Collecting information for Technical Support 201
13.1 ContactTechnical Support 201
13.2 Specificerror e e e e e 201
13.3 Non-specificerror e e e e e e e 202
13.4 UnexpectedResult e e 202
Useful tools 204
141 Performancetesting e 204
1411 Key conceptsin performancetesting 204

14.2 Metrics for performanceanalysis e 204
1421 CommonmetriCS v v v i i e e e e e e e e e e e 204
142101 Practicaluse e e e 205

14.3 Performancetestparameters e e e 205
14.3.1 Test-specificparameters e 205

VisionLabs B.V. 7/265

14.3.2 Batchandsensorparameters e 206
14.3.3 i0S-specificparameters e e e 206
14.3.4 Stoppingconditionparameters 206
14.3.5 Recommendations for parameterselection 207

14.4 Stoppingconditions L L e e e e e e 207
14.41 Normalstoppingconditions 207
14.4.2 Emergency stoppingconditions 208
14.4.21 Configuration of emergency stop conditions 208

14.4.3 Specialcases e e e e e e e 208

14.5 Exampleconsolereport e e 209
14.5.1 Structureofthefirsttable 209
14.5.2 Columncontents i i i e e e e e e 210
14.5.3 Additionalmetrics 210
14.5.4 Zeroandlastiterations 210
1455 Colorcoding 210
14.5.6 Reasonsforstopping. o e 210
14.5.7 Operationalvs. finalstatistics 210

14.6 Performancetestchallenges L 21
14.6.1 Measurementrange limitations 2n
14.6.2 High-frequencynoise e 2n
14.6.3 Low-freqUENCY NOISE o o i i i e e e e e e e 21
14.6.4 Testexecutionduration 21
14.6.5 Artificial constraints efficiency o o 212
14.6.6 Launchrecommendations. e 212

14.7 Potentialimprovements L e e 212
14.8 Practicalrecommendations 212
15 Appendix A. Specifications 213
15.1 Classification performance e 213
15.2 Runtime performance for CentOS Linux environment 213
15.2.1 CPUperformance i i i it e 214
15.2.1.1 CPU. Detector performance 214

15.2.1.2 CPU.HumanDetector performance 215

15.2.1.3 CPU.HumanFaceDetector performance 216

15.2.1.4 CPU.HeadDetector performance. 218

15.2.1.5 CPU. Estimations performance with batch interface 219

15.2.1.6 CPU. Estimations performance without batch interface 224

15.2.1.7 CPU. Extractor performance 225

15.2.1.8 CPU.Matcherperformance 226

15.2.1.9 CPU. CrowdEstimator performance 227

VisionLabs B.V.

8/265

15.2.2 GPUperformance i i i ittt 228
15.2.2.1 GPU. Detector performance 228
15.2.2.2 GPU.HumanbDetector performance 229
15.2.2.3 GPU. HeadDetector performance. 229
15.2.2.4 GPU. HumanFace detector performance 230
15.2.2.5 GPU. Estimations performance with batch interface 231
15.2.2.6 GPU. Estimations performance without batch interface 236
15.2.2.7 GPU. Extractor performance 237
15.2.2.8 GPU. CrowdEstimator performance 238
15.2.3 Rockchip (Ubuntu24.04LTS) i e e e e e 239
15.2.3.1 Rockchip (power) environment. Detector performance. 240
15.2.3.2 Rockchip (power) environment. Extractor performance 240
15.2.3.3 Rockchip (power) environment. HeadDetector performance 241
15.2.3.4 Rockchip (power) environment. HumanDetector performance 241
15.2.3.5 Rockchip (power) Estimations performance without batch interface . . 243
15.2.3.6 Rockchip (power) environment. Estimations performance with batch
interface 244
15.2.3.7 Rockchip (weak) environment. Detector performance 245
15.2.3.8 Rockchip (weak) environment. Extractor performance 246
15.2.3.9 Rockchip (weak) environment. HeadDetector performance 246
15.2.3.10 Rockchip (weak) environment. HumanDetector performance 246
15.2.3.11 Rockchip (weak) Estimations performance without batch interface . . . 248
15.2.3.12 Rockchip (weak) environment. Estimations performance with batch
interface 249
15.3 Runtime performance forembedded environment 253
15.4 DescriptorsSize i o i e e e e e e e e e e e 253
16 Appendix B. Glossary 255
16.1 DesCriptor . . . o . o e e e e e e e e e 255
16.2 Cooperative Photoshooting and Recognition 255
16.3 Matching e e e e e e 256
17 Appendix C. FAQ 257
18 Appendix D. Known issues 258
18.1 Overallknownissues o o o i 258
18.1.1 Warnings during the compilation of user code that utilizes the SDK libraries 258
18.1.2 Prematureend of JPEGfile 258
18.1.3 SDK stuck when run sdk algorithm in separate process after root FaceEngine
objectinitialized e 258

VisionLabs B.V.

9/265

18.1.4 Undefined behaviour with multithreaded usage of the FaceEngine and algorithms 259

18.1.5 Floating point exceptions when working with images that have GPU memory
residence L 259
18.1.6 Coordinate differences for batched detections 260
182 CentOS8knownissues. oo i e 260
18.2.1 Archiveunpacking 260
18.3 AstraLinuxknownissues e 261
18.3.1 Startup error o . e e e e e e e 261
VisionLabs B.V. 10/ 265

Introduction

This short guide describes core concepts of the product, shows main FaceEngine features and suggests
usage scenarios.

This document is not a full-featured API reference manual nor a step by step tutorial. For reference pages,
please see Doxygen APl documentation that is shipped with FaceEngine. For complete examples, please
head to our developer portal.

What this book does, however, is this:

+ It describes ideas behind resource management and gives a clue why one or another decision was
made. With this in mind, you are ready to write efficient code with FaceEngine;

+ It breaks down full face analysis and recognition pipeline in parts and shows how one part affects
allthe others. Thisinformation will help you to adapt FaceEngine to your needs, which is somewhat
more productive than blindly following tutorials;

« It details things that are important and omits things that are obvious, so you get information that
matters most.

This book is split up into several chapters. There are chapters dedicated to each FaceEngine facility; there
are chapters with conceptual overviews; there are chapters with generic information. We tried to write
the book starting from low-level concepts and moving on to face detection, description and recognition
tasks solving one problem at a time. Although sometimes we just had to give references to chapters
ahead, we tried to minimize such jumps.

The opening chapter of this book is called “Core concepts”. It will tell you about memory management
techniques, object creation and destruction strategies that are widely used across the entire FaceEngine.
The following chapters catch up telling how higher level FaceEngine components are created from those
building blocks.

VisionLabs B.V. /265

Editions and Platforms

FaceEngine supports multiple platforms. Supported software and hardware platforms differ depending
on editions.

This section includes information about features available for different platforms.

VisionLabs B.V. 12 /265

1 Core Concepts

1.1 SDK workflow
1.1.1 Object lifetime

Most of the SDK features are exposed via interfaces (C++ virtual classes) whose implementations
must be obtained by calling factory functions. Some of the factories are C-functions, such as
createFaceEngine(...). The latter one produces a root object IFaceEngine, which in turn
exposes many other factories of the IFaceEngine::createxyz(...) form. A typical workflow
consists of obtaining IFaceEngine, then calling its factories and using the produced child objects.

LUNA SDK |IFaceEngine IDetector IMedicalMaskEstimator

User
E createFaceEngine(...)

instantiate IFaceEngine implementation

o -
return IFaceEngine to client code
rrrrrr o
IFaceEngine::createDetector(...)
L4
instantiate |Detector implementation
return IDetector to client code j
IFaceEngine::createMedicalMaskEstimator(...)
7

instantiate IMedicalMaskEstimator implementation

>
return IMedicalMaskEstimator to client code ﬁ

use |Detector

use IMedicalMaskEstimator

release IMedicalMaskEstimator

release IDetector

release IFaceEngine

>

LUNA SDK |IFaceEngine IDetector IMedicalMaskEstimator

User

You do not destroy SDK objects directly, but instead deal with fsdk: : Ref<T>, reference-counted smart
pointers (see section “Automatic reference counting”) to SDK interfaces. You only need to release all
shared references, at which point fsdk: :Ref<T> destroys the underlying object.

In terms of lifetime, IFaceEngine should outlast all its child objects.

Holding fsdk::Ref<T> objects in global variables is error-prone. If the variables are in different
translation units, their construction order is undefined, which means the destruction order is out of
control, too. Viable approaches include gathering all fsdk: :Ref<T> objects in a single class or using
an explicit stack to store them, as well as storing all fsdk: :Ref<T> as local variables on the call stack
in simple projects. In the case when it is necessary to store fsdk: :Ref<T> objects as global or static

VisionLabs B.V. 13 /265

variables, the correct order of releases should be guaranteed explicitly before the program ends:

//warning: a correct, but not a good example due to these global variables

fsdk: :IFaceEnginePtr faceEngine = fsdk::createFaceEngine("./data");

fsdk: :IDetectorPtr detector = faceEngine->createDetector();

fsdk::IBestShotQualityEstimator bestShotQualityEstimator = faceEngine->
createBestShotQualityEstimator();

int main() {
// application code here

bestShotQualityEstimator.reset();
detector.reset();
faceEngine.reset();

return 0;

1.1.2 Threading

The part of the SDK that instantiates and destroys objects is not thread-safe. The SDK requires
using one thread (let’s call it init-thread) for calling all factory functions, as well as releasing
the references to the produced objects. The SDK internally uses thread-local objects attached to
init-thread, which makes init-thread special: as long as the SDK is alive, init-thread
must be alive too. Therefore, there is a requirement that init-thread must outlast IFaceEngine.

VisionLabs B.V. 14/ 265

init-thread LUNA SDK |FaceEngine IDetector IMedicalMaskEstimator

l createFaceEngine(...)

instantiate IFaceEngine implementation
(22

return IFaceEngine to client code

IFaceEngine::createDetector(...)

instantiate IDetector implementation

©
return IDetector to client code

IFaceEngine::createMedicalMaskEstimator(...)

instantiate IMedicalMaskEstimator implementation

(e >
return IMedicalMaskEstimator to client code l

release IMedicalMaskEstimator

release |Detector

releasg| IFaceEngine

do any remainining work

init-thread LUNA SDK |IFaceEngine IDetector IMedicalMaskEstimator

Once SDK objects (such as detectors and estimators, but not IFaceEngine) have been created, they are
thread-safe and can be used concurrently and on arbitrary threads. Before using an object concurrently
on many threads, consider using asynchronous APIs of the SDK instead. For example, IDetector along
with a synchronous detect (.. .) function also provides asynchronous detectAsync(...).

Itis required that an object cannot be destroyed while it has at least one incomplete call, synchronous or
asynchronous, on any thread.

1.1.3 Detailed constraints

Here is a more detailed list of lifetime and threading constraints:

« There should be at most one IFaceEngine object per process simultaneously. You can create
a new IFaceEngine object after destroying the previous one, just avoid holding multiple
IFaceEngine objects at the same time.

« There should be at most one ITrackEngine object per process simultaneously. You can create
a new ITrackEngine object after destroying the previous one, just avoid holding multiple
ITrackEngine objects at the same time.

Note: It’s not practical to create more than one FE instance from performance standpoint because
the same runtime used. You can use it in exceptional cases when settings differ for each instance. In
other cases, it’s not an error but bug prone behaviour.

VisionLabs B.V. 15/265

« Allfactory functions should be called on init-thread (the thread that calls createFaceEngine
()). This also implies that factory code is not thread-safe and all factory calls should be serialized
in time. Factory functions include:

- C-style functions of the form createxyz(...) such as createFaceEngine(...),
createTrackEngine(...)

- member functions such as IFaceEngine::createXYZ(...), ITrackEngine::
createXYzZ(...)

+ activatelicense(...) is not thread-safe. There should be at most one invocation of
activatelicense(...) per process simultaneously.

« init-thread should live no shorter than IFaceEngine.
+ IFaceEngine should live no shorter than ITrackEngine.

+ IFaceEngine should live no shorter than its child objects (algorithms/estimators/detectors). l.e.,
IFaceEngine should be the last destroyed SDK object.

« IFaceEngine should be destroyed on init-thread.
+ Algorithms/estimators/detectors should be destroyed on init-thread.

+ Algorithms/estimators/detectors can be destroyed when there are no pending or unfinished
invocations of member functions of those objects, synchronous or asynchronous, on any threads.

« Track Engine requirements: all Track Engine streams should be stopped, then destroyed, then
ITrackEngine itself should be stopped, then destroyed.

+ ITrackEngine and all its streams should be destroyed on init-thread.

Note: Violation of some described constraints may not cause problems right away but in special
complex scenario and as program work time passed.

The only part of the SDK that allows multithreading is using member functions of already instantiated
algorithms/estimators/detectors, such as IDetector:detect(...) and IAttributeEstimator::
estimate(...). The member functions can be called on arbitrary threads and in parallel. Before
resorting to this multithreaded scenario, please consider using asynchronous versions that accompany
many synchronous functions of the SDK.

1.2 Common Interfaces and Types
1.2.1 Reference Counted Interface

Everything in FaceEngine object system starts from here. The IRefCounted interface provides methods
for reference counter access, increment, and decrement. All reference counted objects imply a custom
memory management model. This way they support automated destruction when reference count drops

VisionLabs B.V. 16 / 265

to zero as well as more sophisticated strategies of partial destruction and weak referencing required for
FaceEngine internal needs. The bare minimum of such functions is exposed to a user allowing:

+ To notify the object that it is required by a client via retaining a reference to it.
+ To notify the object that it is no longer required by releasing a reference to it.
+ To get actual reference counter value.

Reference counted objects expect some special treatment as well. Be sure never to call delete on
any pointer to object derived from IRefCounted! Doing so leads to heap corruption. Simply
calling release notifies the system when the object should be destroyed and it does this properly for
you.

However, we do not recommend that you interact with the reference counting mechanism manually as
doing so may be error-prone. Instead, we recommend that you use smart pointers that are specially
designed to handle such objects and provided by FaceEngine. See section “Automatic reference
counting” for details.

1.2.2 Automatic reference counting

For your convenience, a special smart pointer class Ref is provided. It is capable of automatic reference
counter incrementing upon its creation and automatic decrementing upon its destruction. It also does
an assertion of the inner raw pointer being non-null, thus preventing errors.

Two ways of working with Ref are possible:

1.2.2.1 Referencing - without acquiring ownership of object lifetime

ISomeObjectx createSomeObject();

{

/* Here createSomeObject returns an object with initial reference count of 1

(otherwise, it would be dead). Then Ref adds another one for itself

making a total reference count of 2!

*/

Ref<ISomeObject> objref = make_ref(createSomeObject());

/* Here we use the object in any way we want expecting it to be properly
destroyed when control will leave this scope.

*/

}

/* Here we have left the scope and Ref was automatically destroyed like any
other object created on the stack. At the same time, it decreased
reference count of its 1internal object by 1 making it 1 again.

*/

VisionLabs B.V. 17 / 265

However, the object is not destroyed automatically! For this to happen, it should have precisely 0
references. Moreover, in this example, the raw pointer to the object is lost, so it is impossible to fix it in
any way; thus a memory leak is introduced.

1.2.2.2 Acquiring - own object lifetime

So keepingthatin mind we introduce a concept of ownership acquiring. By acquiring an object, you mean
thatits raw pointeris not going to be used and only a valid Ref to it is required. To acquire ownership, use
a special ::acquire() function. The fixed version of the above example would look like this:

ISomeObjectx createSomeObject();
{

/* Here createSomeObject returns an object with initial reference count of 1
(otherwise, it would be dead). Then we acquire it leaving a total
reference count of 1.
*/
Ref<ISomeObject> objref = acquire(createSomeObject());
/* Here we use the object in any way we want.

*/
}

/* Here we have left the scope and Ref was automatically destroyed like any
other object created on the stack. At the same time, it decreased
reference count of its 1dinternal object by 1 making it 0. The object -s
destroyed properly by the object system.

*/

Do not store or use raw pointers to the object when using the ::acquire() function, as ownership
acquiring invalidates them.

Acquiring way of working with Refis pretty like standard library shared_ptr own lifetime of the object
after it returned by std::make_shared().

You can statically cast object type during acquiring or referencing. To achieve this, use special versions
of the ::make_ref_as() and ::acquire_as() functions. It is your responsibility to ensure that such a cast is
possible.

Please refer to FaceEngine Reference Manual for more details on available convenience methods and
functions.

As a side note, be informed that typedefs for Ref’s to all reference counted types are declared. All of them
match the following naming convention: InterfaceNamePtr. So, for example, Ref</Detector>is equivalent
to IDetectorPtr.

VisionLabs B.V. 18 / 265

1.2.3 Serializable object interface

This interface represents an object. Object’s contents may be serialized to some data stream and then
read back. Think of this as loading and saving.

To interact with the aforementioned data stream, the serializable object needs a user-provided adapter.
Such adapteris called the archive. See a detailed explanation of itin section “Archive interface” in chapter
“Core facility”.

Serializable interfaces: IDescriptor, IDescriptorBatch.

1.2.4 Auxiliary types

1.2.4.1 Image type

Since FaceEngine is a computer vision library, it is natural for it to implement some image concept.
Therefore, an Image class exists. It is designed as a reference counted container for raw pixel color
data. Reference counting allows a single image to be shared by several objects. However, one should
understand, that each Image object is holding a reference to some data, so if the data is modified in any
way, this affects all other objects holding the same reference. To make a deep copy of an Image, one
should use the clone() method, since assignment operators just make a reference. It is also possible to
clip a part of an image into a new image by means of extract() method.

Pixel data may be characterized by color channel layout, i.e., a number of color channels and their order.
The engine defines a Format structure for that. The Format determines:

« Number of color channels (e.g., RGB or grayscale);
« Order of color channel (e.g., RGB vs. BGR).

FaceEngine assumes 8 bits (i.e., 1 byte) per color channel and implements 8 BPP grayscale, 24 BPP
RGB/BGR and padded 32 BPP formats. Format conversion functions are also provided for convenience;
see the convert() function family.

The Image class supports data range mapping. It is possible to map a subset of bytes in a rectangular
area for reading or writing. The mapped pixels are represented by the SubiImage structure. In contrast
to Image, Sublmage is just a data view and is not reference counted. You are not supposed to store
Subimages longer that itis necessary to complete data modification. See the documentation of the map()
function family for details.

The supports 10 roitines to read/write OOM, JPEG, PNG and TIFF formats via Freelmage library.

The absence of image 10 is dictated by the fact that FaceEngine focuses on being lightweight and with
the minimum possible number of external dependencies. Itis not designed solely with image processing
purpose in mind. l.e., one may treat video frames as Images and process them one by one. In this case,
an external (possibly proprietary) video codec is required.

VisionLabs B.V. 19/ 265

1.3 Beta Mode

Some features in LUNA SDK are available just in Beta mode. This is experimental features which may be
unstable. If you want use them, you have to activate betaMode param in config (faceengine.conf).

VisionLabs B.V. 20 /265

2 FaceEngine Structure Overview

FaceEngineis subdivided into several facilities. Each facility is dedicated to a single function. Below there
is a list of all facilities with short descriptions of functionality they provide. Detailed information may be
found in corresponding chapters of this handbook.

FaceEngine facility list:

« Core facility. This facility stores shared low-level FaceEngine types and factories. This facility
is responsible for normal functioning of all other facilities by providing settings accessors and
common interfaces. The core facility also contains the main FaceEngine root object that is used to
create instances of all higher level objects;

» Face detection facility. This facility is dedicated to object detection. It contains various object
detector implementations and factories;

« Parameter estimation facility. This facility is dedicated to various image parameter estimation,
such as blurriness, transformation and so forth. It contains various estimator implementations
and factories;

« Descriptor processing facility. This facility is dedicated to descriptor extraction and matching. The
descriptor is a set of features, describing an object, invariant to object transformation, size or other
parameters. Descriptor matching allows judging with certain probability whether two objects are
the same. This facility contains various descriptor extractors and containers as well as factories,
required to produce them.

So, each facility is a set of classes dedicated to some common for them problem domain. Facilities are
independent of each other, with several exceptions, like that all higher level facilities depend on the core
facility. Interfacility dependencies are thoroughly described in corresponding chapters of this handbook.
The actual set of facilities may vary depending on particular FaceEngine distributions as facilities may be
licensed and shipped separately.

This handbook describes the very complete FaceEngine distribution, assuming all facilities are available.
The facilities are listed in order of increasing complexity. Applying functions from these facilities in this
order allows creating a complete face detection, analysis, recognition and matching pipeline with a
significant degree of flexibility. The following chapters break down such pipeline in details.

VisionLabs B.V. 21/265

3 Core Facility

3.1 Common Interfaces
3.1.1 Face Engine Object

The Face Engine objectis a root object of the entire FaceEngine. Everything begins with it, so itis essential
to create an instance of it. To create a Face Engine instance call createFaceEngine function. Also, you may
specify default dataPath and configPath in createFaceEngine parameters.

If you plan to use GPU acceleration, you should keep in mind CUDA runtime initialization and
shutdown. Specifically, CUDA creates global runtime object with implicit lifetime; see
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#initialization.

To prevent FaceEngine runtime and lifetime mismatch, itis recommended to avoid creating a static global
instance of FaceEngine, as its destruction order is hard to keep track of and control.

3.1.2 Settings Provider

Settings provider is a special entity that loads settings from various locations. Since settings might be
shared among several objects, it is useful to cache them to minimize disk reads and provide a dictionary-
like interface for named value lookup.

This is what the provider does. The provider object stands somewhat aside FaceEngine facility structure
and is created by a separate factory function createSettingsProvider. This function accepts configuration
file path as a parameter (see section “Configuration data” for details). By default, the engine holds a
single provider instance for all facilities. Think of it as a reference counted config file. This provider is
passed by the Face Engine object to each factory it creates. The factory, in turn, can read its configuration
data from the object and pass it further to its child objects. In typical scenarios, you should not bother
with providers as the engine does everything for you. However, when relying on custom factory creation
parameters (see the descriptionin section “Face engine object”), you have to create and supply a provider
wherever it is required manually.

3.2 Helper Interfaces
3.2.1 Archive Interface

Archive interface is used to provide serialization functions with a data source. It contains methods
primarily for data reading and writing. Note, that /Archive is not derived from IRefCounted, thus does not
imply any special memory management strategies.

A few points to keep in mind when implementing your archive:

VisionLabs B.V. 22 /265

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#initialization

« FaceEngine objects that use /Archive for serialization purposes do call only write() (during saving) or
only read() (during loading) but never both during the same process unless otherwise is explicitly
stated;

+ Duringsavingorloading FaceEngine objects are free to write or read their data in chunks; e.g., there
may be several sequential calls to write() in the scope of a single serialization request. The same
is true for read(). Basically, read() and write() should behave pretty much like C fread() and fwrite()
standard library functions.

Any IArchive implementation should be aware of these notes.

Since these interface methods are pretty obvious and mostly self-explanatory, we advise you to check
out FaceEngine Reference Manual for the details.

3.3 Sensor type

SensorType determines which type of camera sensor is used to perform estimation. Currently two types
of SensorType are available: Visible, NIR. The user can indicate the required type of sensor when
creating an object by passing the appropriate parameter.

3.4 Data Paths
3.4.1 Model Data

Various FaceEngine modules may require data files to operate. Thefiles contain various algorithm models
and constants used at runtime. All the files are gathered together into a single data directory. The data
directory location is assumed to reside in:

« Jopt/visionlabs/data on Linux
« ./data on Windows

One may override the data directory location by means of setDataDirectory() method which is available
in IFaceEngine. Current data location may be retrieved via getDataDirectory() method.

3.4.2 Configuration Data

The configurationfileis called faceengine.conf and stored in /data directory by default. ConfigurationGuide.pdf
with parameter description and default values is located at /doc package folder.

At runtime, the configuration file data is managed by a special object that implements ISettingsProvider
interface (seesection “Settings provider”). The providerisinstantiated by means of createSettingsProvider()
function that accepts configuration file location as a parameter or uses aforementioned defaults if not
specified.

VisionLabs B.V. 23/265

One may supply a different configuration to any factory object by means of setSettingsProvider() method,
which is available in each factory object interface, including IFaceEngine. Currently, bound settings
provider may be retrieved via getSettingsProvider() method.

VisionLabs B.V. 24/ 265

4 Detection facility

4,1 Overview

Object detection facility is responsible for quick and coarse detection tasks, like finding a facein animage.

4.2 Detection structure

The detection structure represents an images-space bounding rectangle of the detected object as well as
the detection score.

Detection score is a measure of confidence in the particular object classification result and may be used
to pick the most “confident” face of many.

Detection score is the measure of classification confidence and not the source image quality. While the
score is related to quality (low-quality data generally results in a lower score), it is not a valid metric to
estimate the visual quality of an image.

Special estimators exist to fulfill this task (see section “Image Quality Estimation” in chapter “Parameter
estimation facility” for details).

4.3 Face Detection

Object detection is performed by the IDetector object. The function of interest is detect(). It requires an
image to detect on and an area of interest (to virtually crop the image and look for faces only in the given
location).

Also, face detector implements detectAsync() which allows you to asynchronously detect faces and their
parameters on multiple images.

Note: Method detectAsync() is experimental, and it’s interface may be changed in the future.

Note: Method detectAsync() is not marked as noexcept and may throw an exception.

4.3.1 Image coordinate system

The origin of the coordinate system for each processed image is located in the upper left corner.

VisionLabs B.V. 25/ 265

(0,0) X

Y (image)

Figure 1: Source image coordinate system

4.3.2 Face detection

When a face is detected, a rectangular area with the face is defined. The area is represented using
coordinates in the image coordinate system.

4.3.3 Redetect method

Face detector implements redetect() method which is intended for face detection optimization on video
frame sequences. Instead of doing full-blown detection on each frame, one may detect() new faces at a
lower frequency (say, each 5th frame) and just confirm them in between with redetect(). This dramatically
improves performance at the cost of detection recall. Note that redetect() updates face landmarks as well.

Also, face detector implements redetectAsync() which allows you to asynchronously redetect faces on
multiple images based on the detection results for the previous frames.

Note: Method redetectAsync() is experimental, and it’s interface may be changed in the future.
Note: Method redetectAsync() is not marked as noexcept and may throw an exception.

Detector works faster with larger value of minFaceS1ize.

4.3.4 Orientation Estimation

Name: OrientationEstimator

Algorithm description:

This estimator aims to detect an orientation of the input image. The next outputs are supported:

« The targetimage is normal oriented ;

VisionLabs B.V. 26 /265

« The target image is turned to the left by 90 deg;
+ The target image is flipped upside-down;
+ The target image is turned to the right by 90 deg.

Implementation description:
The estimator (see |OrientationEstimator in |OrientationEstimator.h):

« Implements the estimate() function that accepts source image in R8G8B8 format and returns the
estimation result;

+ Implements the estimate() function that accepts fsdk: : Span of the source images in R8G8B8
format and fsdk: : Span of the fsdk: :0OrientationType enums to return results of estimation.

The OrientationType enumeration contains all possible results of the Orientation estimation:

enum OrientationType : uint32_t {

OT_NORMAL = 0, //!'< Normal orientation of image
OT_LEFT = 1, //'< Image is turned left by 90 deg
OT_UPSIDE_DOWN = 2, //!< Image is flipped upsidedown
OT_RIGHT = 3 //!< Image 1is turned right by 90 deg

};
API structure name:
|IOrientationEstimator

Plan files:

« orientation_v2_cpu.plan
« orientation_v2_cpu-avx2.plan
« orientation_v2_gpu.plan

4.3.5 Detector variants

Supported detector variants:

« FaceDetV2
» FaceDetV3

There are two basic detector families. The first of them includes FaceDetV2. The second family includes
FaceDetV3. FaceDetV3 is the most precise detector. For this type of detector can be passed sensor type.

User code may specify necessary detector type while creating IDetector object using parameter.

FaceDetV2 performance depends on a number of faces in an image and image complexity.

FaceDetV3 performance depends only on the target image resolution.

VisionLabs B.V. 27 /265

FaceDetV3 works faster with batched redetect.

FaceDetV3 supports asynchronous methods for detection and redetection. FaceDetV2 will return a
not implemented error.

VisionLabs B.V. 28 /265

4.3.6 FaceDetV2 Configuration

FaceDetV2 detector’s performance depend on number of faces in image. FaceDetV3 doesn’t depend on
it.

4.3.7 FaceDetV3 Configuration

FaceDetV3 detects faces from minFaceSize tominFaceS+ize * 32. You can change the minimum size of
the faces that will be searched in the photo from the faceengine. conf configuration.

For example:

config->setValue("FaceDetV3::Settings", "minFaceSize", 20);

The logic of the detector is very understandable. The smaller the face size we need to find the more time
we need.

We recommend to use such meanings forminFaceSize: 20,40 and 90. The size 90 pix is recommended
for recognition. If you want to find faces with custom size value you will need to point with size with: 95%

*x value. For example we want to find faces with size of 50 pix, it means that in config we should set:
50 * 0.95 ~ 47 pix.

FaceDetV3 may provide accurate 5 landmarks only for faces with sizes greater than 40x40. For
smaller faces, it provides less accurate landmarks.

If you have few faces on target images and target face sizes after resize will less then 40x40, it’s
recommended to require 68 landmarks.

If you have many faces on target image (greater then 7) it will be faster increase minFaceS+ize to have
big enough faces for accurate landmarks estimation.

All last changes in Face Detection logic are described in chapter “Migration guide”.

4.3.8 Face Alignment

4.3.8.1 Fivelandmarks

Face alignment is the process of special key points (called “landmarks”) detection on a face. FaceEngine
does landmark detection at the same time as the face detection since some of the landmarks are by-
products of that detection.

At the very minimum, just 5 landmarks are required: two for eyes, one for a nose tip and two for mouth
corners. Using these coordinates, one may warp the source photo image (see Chapter “Image warping”)
for use with all other FaceEngine algorithms.

All detector may provide 5 landmarks for each detection without additional computations.

VisionLabs B.V. 29/265

Typical use cases for 5 landmarks:
+ Image warping for use with other algorithms:

- Quality and attribute estimators;
- Descriptor extraction.

4.3.8.2 Sixty-eight landmarks

More advanced 68-points face alignment is also implemented. Use this when you need precise
information about face and its parts. The detected points look like in the image below.

The 68 landmarks require additional computation time, so don’t use it if you don’t need precise

information about a face. If you use 68 landmarks , 5 landmarks will be reassigned to more precise
subset of 68 landmarks.

* *24
w1 *19 #20 g0y H23 *25*26
*17
*37 %38 %27 *43 %44
36 4 49 40 39 42,447 446+ 45
%29
15
*1 %30
*31430,3334°35 14
%2
*¥50 %51 %52
*
- *49 L o1 %62 63 T2 S
*48%60 *64x 54
%67 %65
%66
*59 *35 12
%4 #58 o7 *56
*11
*5
%6 10
* *9
/ *8

Figure 2: 68-point face alignment

The typical error for landmark estimation on a warped image (see Chapter “Image warping”) is in the

VisionLabs B.V. 30/265

table below.

Table 1: “Average point estimation error per landmark”

Error Error Error Error
Point (pixels) Point (pixels) Point (pixels) Point (pixels)
1 +3,88 18 +3,77 35 +1,62 52 +1,65
2 13,53 19 12,83 36 +1,90 53 12,01
3 +3,88 20 +2.70 37 +1,78 54 +2,00
4 14,30 21 +3,06 38 +1,69 55 +1,93
5 +4,67 22 13,92 39 +1,63 56 2,18
6 +4,87 23 +3,46 40 +1,52 57 +2,17
7 +4.67 24 +2,59 41 +1,54 58 +1,99

14,01 25 12,53 42 1,60 59 12,32
9 +3,46 26 12,95 43 +1,55 60 12,33
10 13,87 27 13,84 44 +1,60 61 12,06
11 +4,56 28 +1,88 45 +1,74 62 +1,97
12 14,94 29 1,75 46 1,72 63 11,56
13 +4.55 30 1,92 47 +1,68 64 11,86
14 14,45 31 +2,20 48 +1,65 65 1,94
15 +4,13 32 +1,97 49 +1,99 66 +2,00
16 13,68 33 1,70 50 +1,99 67 1,70
17 +4,09 34 +1,73 51 +1,95 68 +2,12

Simple 5-point landmarks roughly correspond to:

Average of positions 37, 40 for a left eye;
Average of positions 43, 46 for a right eye;
Number 31 for a nose tip;

« Numbers 49 and 55 for mouth corners.

The landmarks for both cases are output by the face detector via Landmarks5 and Landmarks68
structures. Note, that performance-wise 5-point alignment result comes free with a face detection,
whereas 68-point result does not. So you should generally request the lowest number of points for your
task.

VisionLabs B.V. 31/265

Typical use cases for 68 landmarks:

+ Segmentation;
+ Head pose estimation.

4.4 Face Landmarks Detector

Every kind of detector provides an interface to find face landmarks. If you have a face detection
without landmarks we provide additional interface to request them. The detection of landmarks is
performed by the IFaceLandmarksDetector object. The functions of interest are detectLandmarks5() and
detectLandmarks68. They need images and detections.

VisionLabs B.V. 32/265

4.5 Human Detection

This functionality enables you to detect human bodies in an image.

Human body detection is performed by the ITHumanDetector object. The function of interest is detect
(). ltrequires an image to detect on.

Also, THumanDetector implements detectAsync() which allows you to asynchronously detect
human body parameters on multiple images.

Note: Method detectAsync () is experimental, and its interface may be changed in the future.

Note: Method detectAsync () is not marked as noexcept and may throw an exception.

4.5.1 Image coordinate system

The origin of the coordinate system for each processed image is located in the upper left corner.

(0,0) X

Y (image)

Figure 3: Source image coordinate system

4.5.2 Human body detection

When a human body is detected, a rectangular area with the body is defined. The area is represented
using coordinates in the image coordinate system.

4.5.3 Constraints

Human body detection has the following constraints:

+ Human body detector works correctly only with adult humans in an image.

VisionLabs B.V. 33/265

+ The detector may detect a body of size from 60 px to 640 px (in an image with a long side of 640 px).
You can change the input image size in the config. For details, see HumanDetector settings. The
image will be resized to the specified size by the larger side while maintaining the aspect ratio.

4.5.4 Camera position requirements

In general, you should locate the camera for human detection according to the image below.

Y

165 cm

N

N\
N\

100 cm

NN

Figure 4: Camera position for human detection

VisionLabs B.V. 34 /265

../../ConfigurationGuide/020_0180_HumanDetector.md

Follow these recommendations to correctly detect human body and keypoints:
« A person’s body should face the camera.

+ Keep angle of view as close to horizontal as possible.

There should be about 60% of the person’s body in the frame (upper body).

There must not be any objects that overlap the person’s body in the frame.
+ The camera tilt angle is recommended from 0 (parallel to the ground) to 60 degrees.

The examples of wrong camera positions are shown in the image below.

pd

Figure 5: \Wrong camera positions

4.5.5 Human body redetection

Like any other detector in Face Engine SDK, human detector also implements redetection model. You
can make full detection only in a first frame, and then redetect the same human in the next “n” frames
thereby boosting performance of the whole image processing loop.

You can use the redetectOne () method, if only a single human detection is required. For more complex
use cases, use redetect() to redetect humans from multiple images.

Also, THumanDetector implements redetectAsync () which allows you to asynchronously redetect
human body parameters on multiple images.

Note: Method redetectAsync() is experimental, and its interface may be changed in the future.

Note: Method redetectAsync() is not marked as noexcept and may throw an exception.

VisionLabs B.V. 35/265

4.5.6 Human keypoints

The detector gives an opportunity to detect human body keypoints in an image.

The image below shows the keypoints detected for a human body.

Figure 6: 17-points of human body

Point Body Part Point Body Part

0 Nose 9 Left Wrist

VisionLabs B.V. 36/265

Point Body Part Point Body Part

1 Left Eye 10 Right Wrist
2 Right Eye 1 Left Hip

3 Left Ear 12 Right Hip

4 Right Ear 13 Left Knee

5 Left Shoulder 14 Right Knee
6 Right Shoulder 15 Left Ankle
7 Left Elbow 16 Right Ankle
8 Right Elbow

Cases that increase the probability of error:

+ Non-standard poses (head below the shoulders, vertical twine, lying head to the camera, and so
on).

« Camera position from above at a large angle.

« Sometimes estimator predicts invisible points with high score, especially for points of elbows,
wrists, ears.

4.5.7 Main results of each detection

The main result of each detection is an array. Each array element consists of a point (fsdk:: Point2f)

and a score. If the score value is less than the threshold, then the value of “x” and “y” coordinates will be
equalto 0.

For more information about thresholds and other configuration parameters, see the HumanDetector
settings section oof Configuration Guide. ## HumanFace Detection. Face to body association
{#humanface-detection}

This functionality enables you to detect the bodies and faces of people and perform an association
between them, determining whether the detected face and body belong to the same person.

This detector contains the implementation of both Human and Face(FaceDetV3) detectors. This means
that all the requirements, constraints and recommendations for quality improvement imposed for these
detectors will be relevant for the HumanFace detector.

Detector operation algorithm:

« human detection
« face detection
+ determination of an association for each detection

VisionLabs B.V. 37/265

../../ConfigurationGuide/020_0180_HumanDetector.md
../../ConfigurationGuide/020_0180_HumanDetector.md

Figure 7: HumanFace detection

4.5.8 HumanFace redetection

To perform redetection, you need to separately redetect body and face.

4.5.9 Performance

User can skip computation of associations by selecting according HumanFaceDetectionType for
detect () method, if he doesn’t need this functionality. In such case, we estimate performance gain
about 5% on cpu and about 20% on gpu devices. The more faces and bodies represented in image, the
more gain user will enjoy after association skip.

4.5.10 Main results

There are two output structures:

« HumanFaceBatch
« HumanFaceAssociations

The HumanFaceBatch contains three arrays - face detections, human detections and associations:

struct IHumanFaceBatch : public IRefCounted {
virtual Span<const Detection> getHumanDetections(size_t index = 0)
const noexcept = 0;
virtual Span<const Detection> getFaceDetections(size_t index = 0)
const noexcept = 0;

VisionLabs B.V. 38/265

virtual Span<const HumanFaceAssociation> getAssociations(size_t
index = 0) const noexcept = 0;

+s

The HumanFaceAssociation structure contains results of the association:

struct HumanFaceAssociation {
uint32_t humanId;
uint32_t faceld;
float score;

+s
There are two groups of fields:

1K The first group contains body and face detection indexes:

uint32_t humanld;
uint32_t faceld;

2[The second group contains association score:

float score;

The score is defined in [0,1] range.

Associations and detections whose scores are lower than the threshold will be rejected and not returned
in the results.

See ConfigurationGuide.pdf (“HumanFace settings” section) for more information about thresholds
and configuration parameters.

4.5.11 minFaceSize

This detector could detect faces with size 20 px and more (minFaceSize parameter) and humans with
size 100 px and more. In case if such small faces and humans are not required, user could change the
minFaceSize parameter in the config.

Before processing, the images will be resized by minFaceSize/20 times. For example, if the value is
minFaceSize=50, then the image will be additionally resized by minFaceSize=50/20=2.5 times.

Detector works faster with larger value of minFaceS+ize.

VisionLabs B.V. 39/265

4.6 Head Detection

This functionality enables you to detect the heads of people.

This detector implementation is similar to Face(FaceDetV3) detectors. This means that all the
requirements, constraints and recommendations for quality improvement imposed for this detector will
be relevant for the Head detector.

Object detection is performed by the /HeadDetector. The function of interest is detect(). It requires an
image to detect on and an area of interest (to virtually crop the image and look for heads only in the
given location).

4.6.1 Image coordinate system

The origin of the coordinate system for each processed image is located in the upper left corner.

(0,0) X

Y (image)

Figure 8: Source image coordinate system

4.6.2 Mainresults

Output structures:
+ DetectionBatch

The DetectionBatch contains an array of head detections:

struct IDetectionBatch : public IRefCounted {

virtual size_t getSize() const noexcept = 0;

VisionLabs B.V. 40/ 265

virtual Span<const Detection> getDetections(size_t index = 0) const
noexcept = 0;

+s

4.6.3 minHeadSize

This detector could detect heads with size 20 px and more (minHeadSize parameter). In case if such
small heads, user could change the minHeadS1ze parameter in the config.

Before processing, the images will be resized by minHeadSize/20 times. For example, if the value is
minHeadSize=50, then the image will be additionally resized by minHeadSize=50/20=2.5 times.

Detector works faster with larger value of minHeadS+ize.

VisionLabs B.V. 41/ 265

5 Image Warping

Warpingis the process of face image normalization. It requires landmarks and face detection (see chapter
“Detection facility”) to operate. The purpose of the process is to:

« compensate image plane rotation (roll angle);
+ center the image using eye positions;
+ properly crop the image.

This way all warped images look the same and one can tell that, e.g., left eye is always in a box, defined
by the certain coordinates. This way certain transform invariance is achieved for input data so various
algorithms can perform better.

The warper (see IWarper in IWarper.h):

+ Implementsthe warp() function that accepts span of source fsdk: : Image in R8B8G8 format, span
of fsdk: :Transformation and span of output fsdk: : Image structures;

« Implements the warpAsync() function that accepts span of source fsdk: : Image in R8B8G8 format
and span of fsdk: : Transformation.

Note: Method warpAsync() is experimental, and it’s interface may be changed in the future. Note: Method
warpAsync() is not marked as noexcept and may throw an exception.

Figure 9: Face warping

Be aware that image warping is not thread-safe, so you have to create a warper object per worker thread.

VisionLabs B.V. 42 /265

6 Parameter Estimation Facility

6.1 Overview

The estimation facility is the only multi-purpose facility in FaceEngine. It is designed as a collection of
tools that help to estimate variousimages or depicted object properties. These properties may be used to
increase the precision of algorithms implemented by other FaceEngine facilities or to accomplish custom
user tasks.

6.2 Use cases
6.2.1 1SO estimation

LUNA SDK provides algorithms forimage check according to the requirements of the ISO/IEC 19794-5:2011
standard and compatible standards.

The requirements can be found on the official website: https://www.iso.org/obp/ui/#iso:std:iso-iec:
19794:-5:en.

The following algorithms are provided:

+ Head rotation angles (pitch, yaw, and roll angles). According to section “7.2.2 Pose” in the standard,
the angles should be +/- 5 degrees from frontal in pitch and yaw, less than +/- 8 degrees from frontal
in roll. See additional information about the algorithm in section “Head Pose”.

« Gaze. See section “7.2.3 Expression” point “e” of the standard. See additional information about
the algorithm in section “Gaze Estimation”.

« Mouth state (opened, closed, occluded) and additional properties for smile (regular smile, smile
with teeths exposed) See section “7.2.3 Expression” points “a”, “b”, and “c” of the standard. See
additional information about the algorithm in section “Mouth Estimation”.

+ Quality of the image:

- Contrast and saturation (insufficient or too large exposure). See sections “7.2.7 Subject and
scene lighting” and “7.3.2 Contrast and saturation” of the standard.

- Blurring. See section “7.3.3 Focus and depth of field” of the standard.

- Specularity. See section “7.2.8 Hot spots and specular reflections” and “7.2.12 Lighting
artefacts” of the standard.

- Uniformity of illumination. See sections “7.2.7 Subject and scene lighting” and “7.2.12 Lighting
artefacts” of the standard.

See additional information about the algorithm in section “Image Quality Estimation”.

+ Glasses state (no glasses, glasses, sunglasses). See section “7.2.9 Eye glasses” of the standard. See
additional information about the algorithm in section “Glasses Estimation”.

VisionLabs B.V. 43 /265

https://www.iso.org/obp/ui/#iso:std:iso-iec:19794:-5:en
https://www.iso.org/obp/ui/#iso:std:iso-iec:19794:-5:en

Eyes state (for each eye: opened, closed, occluded). See sections “7.2.3 Expression” point “a”,
“7.2.11 Visibility of pupils and irises” and “7.2.13 Eye patches” of the standard. See additional
information about the algorithm in section “Eyes Estimation”.

+ Natural light estimation. See section “7.3.4 Unnatural colour” of the standard. See additional
information about the algorithm in section “Natural Light Estimation”.

+ Eybrows state: neutral, raised, squinting, frowning. See section “7.2.3 Expression” points “d”, “f”,

and “g” of the standard. See additional information about the algorithm in section “Eyebrows
estimation”.

Position of a person’s shoulders in the original image: the shoulders are parallel to the camera or
not. See section “7.2.5 Shoulders” of the standard. See additional information about the algorithm
in section “Portrait Style Estimation”.

Headwear. Checks if there is a headwear on a person or not. Several types of headwear can be
estimated. See section “B.2.7 Head coverings” of the standard. See additional information about
the algorithm in section “Headwear Estimation”.

+ Red eyes estimation. Checks if there is a red eyes effect. See section “7.3.4 Unnatural colour” of
the standard. See additional information about the algorithm in section “Red Eyes Estimation”.

Radial distortion estimation. See section “7.3.6 Radial distortion of the camera lens” of the

standard. See additional information about the algorithm in section “Fish Eye Estimation”.

)

Image type estimation: color, grayscale, infrared. See section “7.4.4 Use of near infra-red cameras’
of the standard. See additional information about the algorithm in section “Grayscale, color or
infrared Estimation”.

Background estimation: background uniformity and if a background is too light or too dark. See
section “B.2.9 Backgrounds” of the standard. See additional information about the algorithm in
section “Background Estimation”.

6.3 Best shot selection functionality
6.3.1 BestShotQuality Estimation
Name: BestShotQualityEstimator
Algorithm description:

The BestShotQuality estimator is designed to evaluate image quality to choose the best image before
descriptor extraction. The BestShotQuality estimator consists of two components - AGS (garbage score)
and Head Pose.

AGS aims to determine the source image score for further descriptor extraction and matching.

VisionLabs B.V. 44 /265

Estimation output is a float score which is normalized in range [0..1]. The closer score to 1, the better
matching result is received for the image.

When you have several images of a person, it is better to save the image with the highest AGS score.

Recommended threshold for AGS score is equal to 0.2. But it can be changed depending on the
purpose of use. Consult VisionLabs about the recommended threshold value for this parameter.

Head Pose determines person head rotation angles in 3D space, namely pitch, yaw and roll.

Figure 10: Head pose

Since 3D head translation is hard to determine reliably without camera-specific calibration, only 3D
rotation component is estimated.

Head pose estimation characteristics:

« Units (degrees);
+ Notation (Euler angles);
« Precision (see table below).

Implementation description:
The estimator (see IBestShotQualityEstimator in IEstimator.h):

« Implements the estimate() function that needs fsdk::Image in R8G8B8 format, fsdk::
Detection structure of corresponding source image (see section “Detection structure” in chapter
“Face detection facility”), fsdk::IBestShotQualityEstimator::EstimationRequest

structureand fsdk: : IBestShotQualityEstimator: :EstimationResulttostoreestimation
result;

« Implements the estimate() function that needs the span of fsdk: : Image in R8G8B8 format, the
span of fsdk: :Detection structures of corresponding source images (see section “Detection

VisionLabs B.V. 45 /265

structure” in chapter “Face detection facility”), fsdk::IBestShotQualityEstimator::
EstimationRequest structure and span of fsdk::IBestShotQualityEstimator::
EstimationResult to store estimation results.

+ Implements the estimateAsync() function that needs fsdk: :Image in R8G8B8 format, fsdk::
Detection structure of corresponding source image (see section “Detection structure” in chapter
“Face detection facility”), fsdk::IBestShotQualityEstimator::EstimationRequest
structure;

Note: Method estimateAsync() is experimental, and it’s interface may be changed in the future. Note:
Method estimateAsync() is not marked as noexcept and may throw an exception.

Before using this estimator, user is free to decide whether to estimate or not some listed attributes. For
this purpose, estimate() method takes one of the estimation requests:

+ fsdk::IBestShotQualityEstimator::EstimationRequest: :estimateAGS to make only
AGS estimation;

o fsdk::IBestShotQualityEstimator::EstimationRequest::estimateHeadPose to
make only Head Pose estimation;

+ fsdk::IBestShotQualityEstimator::EstimationRequest: :estimateAll to make both
AGS and Head Pose estimations;

The EstimationResult structure contains results of the estimation:

struct EstimationResult {
Optional<HeadPoseEstimation> headPose;

Optional<float> ags;
+s

Head Pose accuracy:

Prediction precision decreases as a rotation angle increases. We present typical average errors for
different angle ranges in the table below.

Table 3: “Head pose prediction precision”

Range -45°,..+45° <-45° or > +45°
Average prediction error (per axis) Yaw +2.7° 14.6°
Average prediction error (per axis) Pitch +3.0° +4.8°
Average prediction error (per axis) Roll +3.0° +4.6°

VisionLabs B.V. 46 / 265

Zero position corresponds to a face placed orthogonally to camera direction, with the axis of symmetry
parallel to the vertical camera axis.

API structure name:
IBestShotQualityEstimator

Plan files:

For more information see Approximate Garbage Score Estimation (AGS) and Head Pose
Estimation

VisionLabs B.V. 47 /265

6.3.2 Image Quality Estimation

Name: QualityEstimator
Algorithm description:

The estimator is trained to work with warped images (see chapter “Image warping” for details).

This estimator is designed to determine the image quality. You can estimate the image according to the
following criteria:

+ Theimage is blurred;

« The image is underexposed (i.e., too dark);

+ The image is overexposed (i.e., too light);

« The face in the image is illuminated unevenly (there is a great difference between light and dark
regions);

+ Image contains flares on face (too specular).

Examples are presented in the images below. Good quality images are shown on the right.

Figure 11: Blurred image (left), not blurred image (right)

VisionLabs B.V. 48 /265

Figure 12: Dark image (left), good quality image (right)

., N
b

Figure 13: Light image (left), good quality image (right)

VisionLabs B.V. 49 /265

Figure 15: Image with specularity - image contains flares on face (left), good quality image (right)

Implementation description:
The general rule of thumb for quality estimation:

1. Detect a face, see if detection confidence is high enough. If not, reject the detection.
2. Produce a warped face image (see chapter “Descriptor processing facility”) using a face detection
and its landmarks.

VisionLabs B.V. 50/ 265

3. Estimate visual quality using the estimator, finally reject low-quality images.

While the scheme above might seem a bit complicated, it is the most efficient performance-wise, since
possible rejections on each step reduce workload for the next step.

At the moment estimator exposes two interface functions to predict image quality:

« virtual Result estimate(const Image& warp, Quality& quality);
« virtual Result estimate(const Image& warp, SubjectiveQuality& quality);

Each one of this functions use its own CNN internally and return slightly different quality criteria.

The first CNN is trained specifically on pre-warped human face images and will produce lower score
factors if one of the following conditions are satisfied:

+ Image is blurred;

+ Image is under-exposured (i.e., too dark);

+ Image is over-exposured (i.e., too light);

+ Image color variation is low (i.e., image is monochrome or close to monochrome).

Each one of this score factors is defined in [0..1] range, where higher value corresponds to better image
quality and vice versa.

The second interface function output will produce lower factor if:

« Theimage is blurred;

« The image is underexposed (i.e., too dark);

« The image is overexposed (i.e., too light);

« The face in the image is illuminated unevenly (there is a great difference between light and dark
regions);

+ Image contains flares on face (too specular).

The estimator determines the quality of the image based on each of the aforementioned parameters. For
each parameter, the estimator function returns two values: the quality factor and the resulting verdict.

As with the first estimator function the second one will also return the quality factors in the range [0..1],
where 0 corresponds to low image quality and 1 to high image quality. E. g., the estimator returns low
quality factor for the Blur parameter, if the image is too blurry.

The resulting verdict is a quality output based on the estimated parameter. E. g., if theimage is too blurry,
the estimator returns “isBlurred = true”.

The threshold (see below) can be specified for each of the estimated parameters. The resulting verdict
and the quality factor are linked through this threshold. If the received quality factor is lower than the
threshold, the image quality is low and the estimator returns “true”. E. g., if the image blur quality factor
is higher than the threshold, the resulting verdict is “false”.

If the estimated value for any of the parameters is lower than the corresponding threshold, the image is
considered of bad quality. If resulting verdicts for all the parameters are set to “False” the quality of the

VisionLabs B.V. 51/265

image is considered good.

The quality factor is a value in the range [0..1] where 0 corresponds to low quality and 1to high quality.

Illumination uniformity corresponds to the face illumination in the image. The lower the difference

between light and dark zones of the face, the higher the estimated value. When the illumination is

evenly distributed throughout the face, the value is close to “1”.

Specularity is a face possibility to reflect light. The higher the estimated value, the lower the

specularity and the better the image quality. If the estimated value is low, there are bright glares

on the face.

The Quality structure contains results of the estimation made by first CNN. Each estimation is given in

normalized [0, 1] range:

struct Quality {
float light; // <

overlighted.
float dark; // <
float gray; // 1<
float blur; / /<

image

image
image
image

overlighting degree. 1 - ok, 0 -

darkness degree. 1 - ok, 0 - too dark.
grayness degree 1 - ok, 0 - too gray.
blur degree. 1 - ok, 0 - too blured.

inline float getQuality() const noexcept; //'< complex estimation
of quality. 0 - low quality, 1 - high quality.

}s

The SubjectiveQuality structure contains
estimation is given in normalized [0, 1] range:

struct SubjectiveQuality {

float blur;

float light;
bright;

float darkness;

b

/1<
AN

/]1<

results of the estimation made by second CNN. Each

image blur degree. 1 - ok, 0 - too blured.
image brightness degree. 1 - ok, 0 - too

image darkness degree. 1 - ok, 0 - too dark

float illumination; //!< dimage illumination uniformity degree. 1 -

ok, @ - is too illuminated;

float specularity;
not specular;

bool isBlurred;

bool -disHighlighted;

bool -1isDark;

bool isIlluminated;

bool -isNotSpecular;

VisionLabs B.V.

//!< image specularity degree. 1 - ok, 0 - is

[/ 1<
[/ 1<
[/ 1<
//1'<
// 1<

image
image
image
image
image

is
is
is
is
is

blurred flag;
overlighted flag;

too dark flag;

too illuminated flag;
not specular flag;

52 /265

inline bool isGood() const noexcept;
};
Recommended thresholds:

Table below contains thresholds from faceengine configuration file (faceengine.conf) inQualityEstimator
: :Settings section. By default, these threshold values are set to optimal.

Table 4: “Image quality estimator recommended thresholds”

Threshold Recommended value
blurThreshold 0.58
lightThreshold 0.58

darknessThreshold 0.52
illuminationThreshold 0.3

specularityThreshold 0.3

The most important parameters for face recognition are “blurThreshold”, “darknessThreshold” and
“lightThreshold”, so you should select them carefully.

You can select images of better visual quality by setting higher values of the “illuminationThreshold” and
“specularityThreshold”. Face recognition is not greatly affected by uneven illumination or glares.

Configurations:

See the “Quality estimator settings” section in the “ConfigurationGuide.pdf” document.
API structure name:

IQualityEstimator

Plan files:

« model_subjective_quality_<version>_cpu.plan
« model_subjective_quality_<version>_cpu-avx2.plan
« model_subjective_quality_<version>_gpu.plan

Note: usePlanV1l toggles the Quality estimation, usePlanV2 toggles the SubjectiveQuality
estimation. These parameters can enable or disable the corresponding functionality via the
faceengine.conf configuration file.

VisionLabs B.V. 53 /265

<section name="QualityEstimator::Settings'">

<param name="usePlanV1l" type="Value::Intl" x="1" />
<param name="usePlanV2" type="Value::Intl" x="1" />
</section>

Note that you cannot disable both the parameters at the same time. In case you do this, you will receive
the fsdk: :FSDKError: :InvalidConfigerror code and the following logs:

[27.06.2024 12:38:59] [Error] QualityEstimator::Settings Failed to create
QualityEstimator! The both parameters: "usePlanV1l" and "usePlanV2" 1in
section "QualityEstimator::Settings" are disabled at the same time.

VisionLabs B.V. 54 /265

6.4 Attributes estimation functionality
6.4.1 Face Attribute Estimation

Name: AttributeEstimator
Algorithm description:

The estimator is trained to work with warped images (see chapter “Image warping” for details).

The Attribute estimator determines face attributes. Currently, the following attributes are available:

+ Age: determines person’s age;
+ Gender: determines person’s gender;

The Attribute estimator returns Ethnicity estimation structure. Each estimation is given in
normalized [0, 1] range.

The Ethnicity estimation structure looks like the struct below:

struct EthnicityEstimation {
float africanAmerdican;
float indian;
float asian;
float caucasian;

enum Ethnicities {
AfricanAmerican = 0,
Indian,

Asian,

Caucasian,

Count

s

[**
*x @brief Returns ethnicity with greatest score.
* @see EthnicityEstimation::Ethnicities for more info.
*x %/

inline Ethnicities getPredominantEthnicity() const;

[*x*
*x @brief Returns score of required ethnicity.
*x @param [in] ethnicity ethnicity.

*

@see EthnicityEstimation::Ethnicities for more 1info.

*/

inline float getEthnicityScore(Ethnicities ethnicity) const;
s

>*

VisionLabs B.V. 55/265

Implementation description:
Implementation description:

Before using attribute estimator, user is free to decide whether to estimate or not some specific attributes
listed above through /AttributeEstimator::EstimationRequest structure, which later get passed in main
estimate() method. Estimator overrides IAttributeEstimator::AttributeEstimationResult output structure,
which consists of optional fields describing results of user requested attributes.

Recommended thresholds:

Table below contains thresholds from faceengine configuration file (faceengine.conf) in AttributeEstimator
: :Settings section. By default, these threshold values are set to optimal.

Table 5: “Attribute estimator recommended thresholds”

Threshold Recommended value

genderThreshold 0.5
adultThreshold 0.2

Accuracy:
Age:

+ Forcooperative (see “Appendix B. Glossary”) conditions: average error depends on person age, see
table below for additional details. Estimation accuracy is 2.3.

Gender:

+ Estimation accuracy in cooperative mode is 99.81% with the threshold 0.5;
« Estimation accuracy in non-cooperative mode is 92.5%.

Table 6: “Average age estimation error per age group for cooperative conditions”

Age (years) Average error (years)

0-3 3.3

4-7 +2.97
8-12 +3.06
13-17 +4.05
17-20 +3.89
20-25 +1.89

VisionLabs B.V. 56 /265

Age (years) Average error (years)

25-30 +1.88
30-35 +2.42
35-40 +2.65
40-45 +2.78
45-50 +2.88
50-55 +2.85
55-60 +2.86
60-65 +3.24
65-70 +3.85
70-75 +4.38
75-80 +6.79

In earlier releases of Luna SDK Attribute estimator worked poorly in non-cooperative mode (only
56% gender estimation accuracy), and did not estimate child’s age. Having solved these problems
average estimation error per age group got a bit higher due to extended network functionality.

Configurations:

See the “AttributeEstimator settings” section in the “ConfigurationGuide.pdf” document.
API structure name:

IAttributeEstimator

Plan files, precise network type:

« attributes_estimation_precise_<version>_cpu.plan
« attributes_estimation_precise_<version>_cpu-avx2.plan
« attributes_estimation_precise_<version>_gpu.plan

Plan files, fast network type:

« attributes_estimation_fast_<version>_cpu.plan
« attributes_estimation_fast_<version>_cpu-avx2.plan
« attributes_estimation_fast_<version>_gpu.plan

VisionLabs B.V. 57 /265

6.4.2 Credibility Check Estimation

Name: CredibilityCheckEstimator

Algorithm description:

This estimator estimates reliability of a person.

Implementation description:

The estimator (see ICredibilityCheckEstimator in ICredibilityCheckEstimator.h):

« Implements the estimate() function that accepts warped image in R8B8G8 format and fsdk: :
CredibilityCheckEstimation structure.

« Implements the estimate() function that accepts span of warped images in R8B8G8 format and
span of fsdk: :CredibilityCheckEstimation structures.

The CredibilityCheckEstimation structure contains results of the estimation:

struct CredibilityCheckEstimation {
float value; //!< estimation in [0,1] range

//!< The closer the score to
l)

//'< the more likely that
person 1is reliable.

CredibilityStatus credibilityStatus; //!< estimation result
//1< (@see CredibilityStatus

enum) .
+s
Enumeration of possible credibility statuses:
enum class CredibilityStatus : uint8_t {
Reliable = 1, //'< person 1is reliable
NonReliable = 2 //'< person is not reliable

I8
Recommended thresholds:

Table below contains thresholds from faceengine configuration file (faceengine.conf) inCredibilityEstimator
: :Settings section. By default, this threshold value is set to optimal.

VisionLabs B.V. 58 /265

Table 7: “Credibility check estimator recommended threshold”

Threshold Recommended value

reliableThreshold 0.5

Filtration parameters:

The estimator is trained to work with face images that meet the following requirements:

Table 8: “Requirements for fsdk: :HeadPoseEstimation”

Attribute Acceptable angle range(degrees)
pitch [-20...20]
yaw [-20...20]
roll [-20...20]

Table 9: “Requirements for fsdk: : SubjectiveQuality”

Attribute Minimum value

blur 0.61
light 0.57

Table 10: “Requirements for fsdk: :AttributeEstimationResult”

Attribute Minimum value

age 18

VisionLabs B.V. 59 /265

Table 11: “Requirements for fsdk: :OverlapEstimation”

Attribute State

overlapped false

Table 12: “Requirements for fsdk: :Detection”

Attribute Minimum value

detection size 100

Detection size is detection width.

const fsdk::Detection detection = ... // somehow get fsdk::Detection object
const int detectionSize = detection.getRect().width;

Configurations:

See the “Credibility Estimator settings” section in the “ConfigurationGuide.pdf” document.
API structure name:

ICredibilityCheckEstimator

Plan files:

« credibility_check_cpu.plan
« credibility_check_cpu-avx2.plan
« credibility_check_gpu.plan

VisionLabs B.V. 60 /265

6.5 Facial Hair Estimation

Name: FacialHairEstimator
Algorithm description:

This estimator aims to detect a facial hair type on the face in the source image. It can return the next
results:

+ Thereis no hair on the face (see FacialHair: :NoHa1r field in the FacialHair enum);

» There is stubble on the face (see FacialHair: : Stubble field in the FacialHair enum);

« There is mustache on the face (see FacialHair: :Mustache field in the FacialHair enum);
« There is beard on the face (see FacialHa1ir: :Beard field in the FacialHair enum).

Implementation description:
The estimator (see IFacialHairEstimator in IFacialHairEstimator.h):

« Implements the estimate() function that accepts source warped image in R8G8B8 format and
FacialHairEstimation structure to return results of estimation;

« Implements the estimate() function that accepts fsdk: :Span of the source warped images
in R8G8BS8 format and fsdk: :Span of the FacialHairEstimation structures to return results of

estimation.

The FacialHair enumeration contains all possible results of the FacialHair estimation:

enum class FacialHair {
NoHair = 0,
Stubble,
Mustache,
Beard

+s

The FacialHairEstimation structure contains results of the estimation:

struct FacialHairEstimation {
FacialHair result;

float noHairScore;
float stubbleScore;
float mustacheScore;
float beardScore;

}s

There are two groups of the fields:

VisionLabs B.V. 61/265

1® The first group contains only the result enum:

FacialHair result; //'< estimation result (@see FacialHair
enum)

Result enum field FacialHairEstimation contain the target results of the estimation.

2[The second group contains scores:

float noHairScore; //'< no hair on the face score
float stubbleScore; // < stubble on the face score
float mustacheScore; //!< mustache on the face score
float beardScore; //!< beard on the face score

The scores group contains the estimation scores for each possible result of the estimation.
All scores are defined in [0,1] range. Sum of scores always equals 1.
Filtration parameters:

The estimator is trained to work with face images that meet the following requirements:

Table 13: “Requirements for fsdk: :HeadPoseEstimation”

Attribute Acceptable angle range(degrees)
pitch [-40...40]
yaw [-40...40]
roll [-40...40]

Table 14: “Requirements for fsdk: :MedicalMaskEstimation”

Attribute State

result fsdk::MedicalMask::NoMask

VisionLabs B.V. 62 /265

Table 15: “Requirements for fsdk: :Detection”

Attribute Minimum value

detection size 40

Detection size is detection width.

const fsdk::Detection detection = ... // somehow get fsdk::Detection object
const int detectionSize = detection.getRect().width;

API structure name:
IFacialHairEstimator
Plan files:

« face_hair_v2_cpu.plan
« face_hair_v2_cpu-avx2.plan
« face_hair_v2_gpu.plan

VisionLabs B.V. 63 /265

6.6 Natural Light Estimation

Name: NaturalLightEstimator
Algorithm description:
This estimator aims to detect a natural light on the source face image. It can return the next results:

+ Light is not natural on the face image (see LightStatus: :NonNatural field in the LightStatus
enum);
« Lightis natural on the face image (see LightStatus: :Natural field in the LightStatus enum).

Implementation description:
The estimator (see INaturalLightEstimator in INaturalLightEstimator.h):

« Implements the estimate() function that accepts source warped image in R8G8B8 format and
NaturalLightEstimation structure to return results of estimation;

« Implements the estimate() function that accepts fsdk: : Span of the source warped images in
R8G8B8 format and fsdk: :Span of the NaturalLightEstimation structures to return results of

estimation.

The LightStatus enumeration contains all possible results of the NaturalLight estimation:

enum class LightStatus : uint8_t {
NonNatural = 0,
Natural = 1

15

The NaturalLightEstimation structure contains results of the estimation:

struct NaturalLightEstimation {
LightStatus status;

float score;
}s
There are two groups of the fields:

1® The first group contains only the result enum:

LightStatus status;

Result enum field NaturalLightEstimation contain the target results of the estimation.

VisionLabs B.V. 64 /265

2[The second group contains scores:

float score;

The scores group contains the estimation scores for each possible result of the estimation.
All scores are defined in [0,1] range. Sum of scores always equals 1.
Recommended thresholds:

Table below contains thresholds from faceengine configuration file (faceengine.conf) inNaturalLightEstimator
: :Settings section. By default, this threshold value is set to optimal.

Table 16: “Natural light estimator recommended threshold”
Threshold Recommended value

naturalLightThreshold 0.5

Filtration parameters:

The estimator is trained to work with face images that meet the following requirements:

Table 17: “Requirements for fsdk: :MedicalMaskEstimation”

Attribute State

result fsdk::MedicalMask::NoMask

Table 18: “Requirements for fsdk: : SubjectiveQuality”
Attribute Minimum value

blur 0.5

Also fsdk: :GlassesEstimation must not be equalto fsdk: :GlassesEstimation: :SunGlasses.
Configurations:

See the “Natural Light Estimator settings” section in the “ConfigurationGuide.pdf” document.

VisionLabs B.V. 65 /265

API structure name:
INaturalLightEstimator
Plan files:

« natural_light_cpu.plan
« natural_light_cpu-avx2.plan
+ natural_light_gpu.plan

VisionLabs B.V.

66 /265

6.7 Fish Eye Estimation

Name: FishEyeEstimator
Algorithm description:

This estimator aims to detect a fish eye effect on the source face image. It can return the next fish eye
effect status results:

+ Thereisnofish eye effect on the faceimage (see FishEye: :NoFishEyeEffectfieldintheFishEye
enum);

« There is fish eye effect on the face image (see FishEye: :FishEyeEffect field in the FishEye
enum).

Implementation description:
The estimator (see IFishEyeEstimator in IFishEyeEstimator.h):

« Implements the estimate() function that accepts source image in R8G8B8 format, face detection
and FishEyeEstimation structure to return results of estimation;

« Implements the estimate() function that accepts fsdk: : Span of the source images in R8G8B8
format, fsdk: : Span of the face detections and fsdk: : Span of the FishEyeEstimation structures
to return results of estimation.

The FishEye enumeration contains all possible results of the FishEye estimation:

enum class FishEye {
NoFishEyeEffect = 0,
FishEyeEffect = 1

}s

The FishEyeEstimation structure contains results of the estimation:

struct FishEyeEstimation {
FishEye result;
float score;

+s
There are two groups of the fields:
1R The first group contains only the result enum:

FishEye result;

Result enum field FishEyeEstimation contain the target results of the estimation.

VisionLabs B.V. 67 /265

2[The second group contains scores:

float score;

The scores group contains the estimation score.
Recommended thresholds:

Table below contains threshold from faceengine configuration file (faceengine.conf) in FishEyeEstimator
: :Settings section. By default, this threshold value is set to optimal.

Table 19: “Fish Eye estimator recommended threshold”

Threshold Recommended value

fisheEyeThreshold 0.5

Recommended scenarios of algorithm usage:
Data domain: Cooperative mode only. It is means:

« High image quality;
+ Frontal face looking directly at the camera.

Filtration parameters:

The estimator is trained to work with face images that meet the following requirements:

Table 20: “Requirements for fsdk: :HeadPoseEstimation”

Attribute Acceptable angle range(degrees)
pitch [-8...8]
yaw [-8...8]
roll [-8...8]

Table 21: “Requirements for fsdk: :Detection”

Attribute Minimum value

detection size 80

VisionLabs B.V. 68 /265

Detection size is detection width.

const fsdk::Detection detection = ... // somehow get fsdk::Detection object
const int detectionSize = detection.getRect().width;

Configurations:

See the “Fish Eye Estimator settings” section in the “ConfigurationGuide.pdf” document.
API structure name:

IFishEyeEstimator

Plan files:

« fisheye_v2_cpu.plan
« fisheye_v2_cpu-avx2.plan
« fisheye_v2_gpu.plan

VisionLabs B.V. 69 /265

6.8 Eyebrows Estimation

Name: EyeBrowEstimator
Algorithm description:

This estimator is trained to estimate eyebrow expressions. The EyeBrowEstimator returning four scores
for each possible eyebrow expression. Which are - neutral, raised, squinting, frowning. Possible
scores are in the range [0, 1].

If score closer to 1, it means that detected expression onimage is more likely to real expression and closer
to 0 otherwise.

Along with the output score value estimator also returns an enum value (EyeBrowState). The index of the
maximum score determines the EyeBrow state.

Implementation description:
The estimator (see IEyeBrowEstimator in IEyeBrowEstimator.h):

+ Implements the estimate() function accepts warped source image. Warped image is received from
thewarper (see IWarper: :warp()); Outputestimationisastructure fsdk: : EyeBrowEstimation

« Implements the estimate() function that needs the span of warped source images and span
of structure fsdk::EyeBrowEstimation. Output estimation is a span of structure fsdk::

EyeBrowEstimation.

The EyeBrowEstimation structure contains results of the estimation:

struct EyeBrowEstimation {

enum class EyeBrowState {
Neutral = 0,
Raised,
Squinting,
Frowning

+s

float neutralScore;

float raisedScore;

float squintingScore;
float frowningScore;
EyeBrowState eyeBrowState;

VisionLabs B.V. 70/ 265

+s

Filtration parameters:
Table 22: “Requirements for fsdk: : EyeBrowEstimation”

Attribute Acceptable values

headPose.pitch [-20...20]
headPose.yaw [-20...20]
headPose.roll [-20...20]

Table 23: “Requirements for fsdk: :Detection”

Attribute Minimum value

detectionsize 80
Detection size is detection width.

const fsdk::Detection detection = ... // somehow get fsdk::Detection object
const int detectionSize = detection.getRect().width;

API structure name:
IEyeBrowEstimator
Plan files:

« eyebrow_estimation_v2_cpu.plan
« eyebrow_estimation_v2_cpu-avx2.plan
+ eyebrow_estimation_v2_gpu.plan

VisionLabs B.V. 71/265

6.9 Portrait Style Estimation

Name: PortraitStyleEstimator
Algorithm description:

This estimator is designed to estimate the position of a person’s shoulders in the original image. It can
return the following results:

« The shoulders are not parallel to the camera (see the PortraitStyleStatus: :NonPortrait
field in the PortraitStyleStatus enum);

« Shoulders are parallel to the camera (see the PortraitStyleStatus: :Portrait field in the
PortraitStyleStatus enum);

« Shoulders are hidden (see the PortraitStyleStatus::HiddenShoulders field in the
PortraitStyleStatus enum);

Implementation description:
The Estimator (see IPortraitStyleEstimator in IPortraitStyleEstimator.h):

« Implements estimate() function that accepts R8G8B8 source image, detection and PortraitStyleEstimation
structure to return estimation results;

« Implements an estimate() function that accepts fsdk: : Span of RSG8B8 source images, fsdk: :
Span of detections, and fsdk: : Span of PortraitStyleEstimation structures to return estimation
results.

The PortraitStyleStatus enumeration contains all possible results of the PortraitStyle estimation:

enum class PortraitStyleStatus : uint8_t {
NonPortrait = 0,
Portrait = 1,
HiddenShoulders = 2

15

The PortraitStyleEstimation structure contains results of the estimation:

struct PortraitStyleEstimation {
PortraitStyleStatus status;

float nonPortraitScore;
float portraitScore;

float hiddenShouldersScore;

VisionLabs B.V. 72 /265

+s
There are two groups of the fields:

1K The first group contains the enum:

PortraitStyleStatus status; //!< estimation result (@see
PortraitStyleStatus enum).

Result enum field PortraitStyleStatus contain the target results of the estimation.

2K The second group contains score:

float nonPortraitScore; //'< numerical value in range
[0, 1]

float portraitScore; //!'< numerical value in range
[0, 1]

float hiddenShouldersScore; //'< numerical value in range
[0, 1]

The scores are defined in [0,1] range.
Recommended thresholds:

Table below contains threshold from faceengine configuration file (faceengine.conf) in PortraitStyleEstimator
: :Settings section. By default, this threshold value is set to optimal.

Table 24: “Portrait Style estimator recommended threshold”

Threshold Recommended value

notPortraitStyleThreshold 0.2
portraitStyleThreshold 0.35
hiddenShouldersThreshold 0.2

Filtration parameters:

The estimator is trained to work with face images that meet the following requirements:

Type of preferable detector is FaceDetV3.

VisionLabs B.V. 73/ 265

Table 25: “Requirements for Detector”

Attribute Min face size

result 40

Table 26: “Requirements for fsdk: :HeadPoseEstimation”

Attribute Maximum value

yaw 20.0
pitch 20.0
roll 20.0

Configurations:

See the “Portrait Style Estimator settings” section in the “ConfigurationGuide.pdf” document.
API structure name:

IPortraitStyleEstimator

Plan files:

« portrait_style_v3_cpu.plan
« portrait_style_v3_cpu-avx2.plan
+ portrait_style_v3_gpu.plan

VisionLabs B.V. 74 | 265

6.10 DynamicRange Estimation

Name: DynamicRangeEstimator

Algorithm description:

This estimator is designed to estimate dynamic range of an original image with person’s face.
Implementation description:

The Estimator (see IDynamicRangeEstimator in IDynamicRangeEstimator.h):

« Implements estimate() function that accepts R8G8B8 source image, detection and DynamicRangeEstimation
structure to return estimation results;

« Implements an estimate() function that accepts fsdk: : Span of RSG8B8 source images, fsdk: :
Span of detections, and fsdk: : Span of DynamicRangeEstimation structures to return estimation
results.

The DynamicRangeEstimation structure contains results of the estimation:

struct DynamicRangeEstimation {
float dynamicRangeScore; //!'< numerical value in range
[0, 1]
}s

Result estimation DynamicRangeEstimation contains the target score.

float dynamicRangeScore; //!'< numerical value in range
[0, 1]

The score is defined in [0,1] range.
Recommended thresholds:

Table below contains recommended user’s threshold.

Table 27: “Dynamic Range estimator recommended threshold”

Threshold Recommended value

threshold 0.5

API structure name:

IDynamicRangeEstimator

VisionLabs B.V. 75 /265

Plan files:

DynamicRangeEstimator does not use any additional models (plans, files and etc.), this is an ISO-based
algorithm that is currently only implemented on CPU devices.

VisionLabs B.V. 76 /265

6.11 Headwear Estimation

Name: HeadWearEstimator

Algorithm description:

This estimator aims to detect a headwear status and headwear type on the face in the source image. It

can return the next headwear status results:

There is headwear (see HeadWearState: : Yes field in the HeadWearState enum);
There is no headwear (see HeadWearState: : No field in the HeadWearState enum);

And this headwear type results:

There is no headwear on the head (see HeadWearType: : NoHeadWear field in the HeadWearType
enum);

There is baseball cap on the head (see HeadWearType: :BaseballCap field in the HeadWearType
enum);

There is beanie on the head (see HeadWearType: :Beanie field in the HeadWearType enum);
There is peaked cap on the head (see HeadWearType: : PeakedCap field in the HeadWearType
enum);

There is shawl on the head (see HeadWearType: : Shawl field in the HeadWearType enum);
There is hat with ear flaps on the head (see HeadWearType: :HatWithEarFlaps field in the
HeadWearType enum);

There is helmet on the head (see HeadWearType: :Helmet field in the HeadWearType enum);
There is hood on the head (see HeadWearType: :Hood field in the HeadWearType enum);

There is hat on the head (see HeadWearType: :Hat field in the HeadWearType enum);

There is something other on the head (see HeadWearType: :Other field in the HeadWearType
enum);

Implementation description:

The estimator (see IHeadWearEstimator in IHeadWearEstimator.h):

Implements the estimate() function that accepts warped image in R8G8B8 format and
HeadWearEstimation structure to return results of estimation;

Implements the estimate() function that accepts fsdk: :Span of the source warped images
in R8G8B8 format and fsdk: :Span of the HeadWearEstimation structures to return results of
estimation.

The HeadWearState enumeration contains all possible results of the Headwear state estimation:

enum class HeadWearState {
Yes = 0,
No,
Count

VisionLabs B.V. 77 /265

+s

The HeadWearType enumeration contains all possible results of the Headwear type estimation:

enum class HeadWearType : uint8_t {

NoHeadWear = 0, //< there is no headwear on the head
BaseballCap, //< there 1is baseball cap on the head
Beanie, //< there 1is beanie on the head
PeakedCap, //< there is peaked cap on the head
Shawl, //< there is shawl on the head
HatWithEarFlaps, //< there 1dis hat with ear flaps on the head
Helmet, //< there is helmet on the head

Hood, //< there is hood on the head

Hat, //< there is hat on the head

Other, //< something other 1is on the head
Count

s

The HeadWearStateEstimation structure contains results of the Headwear state estimation:

struct HeadWearStateEstimation {

HeadWearState result; //!< estimation result (@see HeadWearState

enum)

float scores[static_cast<int>(HeadWearState::Count)]; //!<

estimation scores

[**

X%

@brief Returns score of required headwear state.

* @param [in] state headwear state.
* @see HeadWearState for more 1info.

* %/

inline float getScore(HeadWearState state) const;

}s
There are two groups of the fields:

1® The first group contains only the result enum:

HeadWearState result; //!< estimation result (@see HeadWearState

enum)

2N The second group contains scores:

VisionLabs B.V.

78 /265

float scores[static_cast<int>(HeadWearState::Count)]; //!<
estimation scores

The HeadWearTypeEstimation structure contains results of the Headwear type estimation:

struct HeadWearTypeEstimation {

HeadWearType result; //!< estimation result (@see HeadWearType enum)
float scores[static_cast<int>(HeadWearType::Count)]; //!< estimation
scores

[*x*

* @brief Returns score of required headwear type.
* @param [in] type headwear type.

* @see HeadWearType for more info.
* %/

inline float getScore(HeadWearType type) const;
}s
There are two groups of the fields:

1K The first group contains only the result enum:

HeadWearType result; //!< estimation result (@see HeadWearType enum)

2[The second group contains scores:

float scores[static_cast<int>(HeadWearType::Count)]; //!< estimation
scores

The HeadWearEstimation structure contains results of both Headwear state and type estimations:

struct HeadWearEstimation {
HeadWearStateEstimation state; //!< headwear state estimation

//!< (@see HeadWearStateEstimation)
HeadWearTypeEstimation type; //'< headwear type estimation

//'< (@see HeadWearTypeEstimation)
+s

The scores group contains the estimation scores for each possible result of the estimation. All scores are
defined in [0,1] range. Sum of scores always equals 1.

Filtration parameters:

VisionLabs B.V. 79/ 265

Table 28: “Requirements for fsdk: :Detection”

Attribute Minimum value

detection size 80

Note. Detection size is detection width.

const fsdk::Detection detection = ... // somehow get fsdk::Detection object
const int detectionSize = detection.getRect().width;

API structure name:

IHeadWearEstimator

Plan files:

+ head_wear_v2_cpu.plan
« head_wear_v2_cpu-avx2.plan
+ head_wear_v2_gpu.plan

VisionLabs B.V. 80/ 265

6.12 Background Estimation

Name: BackgroundEstimator
Algorithm description:

This estimator is designed to estimate the background in the original image. It can return the following
results:

« Thebackgroundisnon-solid (seethe BackgroundStatus: :NonSolidfieldinthe BackgroundStatus
enum);

+ The background is solid (see the BackgroundStatus: :Solid field in the BackgroundStatus
enum);

Implementation description:
The estimator (see IBackgroundEstimator in IBackgroundEstimator.h):

« Implements an estimate() function that accepts R8G8B8 source image, detection and
BackgroundEstimation structure to return estimation results;

« Implements an estimate() function that accepts fsdk: : Span of RSG8B8 source images, fsdk: :
Span of detections, and fsdk: : Span of BackgroundEstimation structures to return estimation
results.

The BackgroundStatus enumeration contains all possible results of the Background estimation:

enum class BackgroundStatus : uint8_t {
NonSolid = 0, //!< NonSolid
Solid =1 //'< Solid

};

The BackgroundEstimation structure contains results of the estimation:

struct BackgroundEstimation {
BackgroundStatus status; //!< estimation result (@see
BackgroundStatus enum).
float backgroundScore; //'< numerical value in range [0, 1],
where 1 - is uniform background, @ - is non uniform.
float backgroundColorScore; //!< numerical value 1in range [0, 1],
where 1 - 1is light background, © - is too dark.

+s
There are two groups of the fields:

1® The first group contains the enum:

VisionLabs B.V. 81/265

BackgroundStatus status; //!< estimation result (@see
BackgroundStatus enum).

Result enum field BackgroundStatus contain the target results of the estimation.

2K The second group contains scores:

float backgroundScore; //!'< numerical value in range [0, 1],
where 1 - 1is solid background, @ - is non solid.

float backgroundColorScore; //!< numerical value in range [0, 1],
where 1 - 1is light background, © - is too dark.

The scores are defined in the [0,1] range. If two scores are above the threshold, then the background is
solid, otherwise the background is not solid.

Recommended thresholds:

The table below contains thresholds specified in BackgroundEstimator: :Settings section of the
FaceEngine configuration file (faceengine.conf). By default, these threshold values are set to optimal.

Table 29: “Background estimator recommended thresholds”

Threshold Recommended value

backgroundThreshold 0.5
backgroundColorThreshold 0.3

Filtration parameters:

The estimator is trained to work with face images that meet the following requirements: The face in a
frame should be large in relation to frame sizes. The face should occupy about half of the frame area.

max (frameWidth, frameHeight) / max(faceWidth, faceHeight) <= 2.0

The type of preferable detector is FaceDetV3.

Table 30: “Requirements for Detector”

Attribute Min face size

result 40

VisionLabs B.V. 82 /265

Configurations:

Table 31: “Requirements for fsdk

Attribute Maximum value

yaw 20.0
pitch 20.0
roll 20.0

: :HeadPoseEstimation”

See the “Background Estimator settings” section in the “ConfigurationGuide.pdf” document.

API structure name:
IBackgroundEstimator
Plan files:

+ background_v2_cpu.plan
« background_v2_cpu-avx2.plan
+ background_v2_gpu.plan

VisionLabs B.V.

83/265

6.13 Grayscale, color or infrared Estimation

Name: BlackWhiteEstimator

Algorithm description:

BlackWhite estimator has two interfaces.

The “By full frame” interface detects if an input image is grayscale or color. It is indifferent to image

content and dimensions; you can pass both face crops (including warped images) and full frames.

The “By warped frame” interface can be used only with warped images (see chapter “Image warping” for

details). Checks if an image is color, grayscale or infrared.

Implementation description:

The “By full frame” interface of estimator (see ImageColorEstimation in IBlackWhiteEstimator.h):

« Implements estimate() function that accepts source image and outputs a boolean, indicating if the

image is grayscale (true) or not (false).

The “By warped frame” interface of estimator (see IBlackWhiteEstimator in IBlackWhiteEstimator.h):

« Implements the estimate() function that accepts warped source image.

« Outputs ImageColorEstimation structures.

struct ImageColorEstimation {

}s

float colorScore; //!< 0(grayscale)..l(color);
float infraredScore; //'< 0(infrared)..l(not infrared);
[**

* @brief Enumeration of possible image color types.
* %/

enum class ImageColorType : uint8_t {

Color = 0, //!< image is color.
Grayscale, //'< Image is grayscale.
Infrared, //'< Image 1is infrared.

s

ImageColorType colorType;

ImageColorEstimation: :ImageColorType presentscolorimage type as enum with possible values:

Color, Grayscale, Infrared.

VisionLabs B.V.

84 /265

- For color image score "colorScore” will be close to 1.0 and the second one
“infraredScore’ - to 0.0;

- for infrared image score ‘colorScore’ will be close to 0.0 and the second
one “infraredScore’ - to 1.0;

- for grayscale images both of scores will be near 0.0.

Both interfaces use different principles of color type estimation.

BlackWhite estimator is trained to work with real warped photo of faces. We do not guarantee

correctness when the people in the photo are fake (not real, such as the photo in the photo).
Recommended thresholds:

Table below contains threshold from faceengine configuration file (faceengine.conf) inBlackWhiteEstimator
: :Settings section. By default, these threshold values are set to optimal.

Table 32: “Black and white estimator recommended thresholds”

Threshold Recommended value

colorThreshold 0.5

irThreshold 0.5

Configurations:

See the “BlackWhite Estimator settings” section in the “ConfigurationGuide.pdf” document.
API structure name:

IBlackWhiteEstimator

Plan files:

« black_white_and_ir_v1_cpu.plan
+ black_white_and_ir_v1_cpu-avx2.plan
+ black_white_and_ir_vi_gpu.plan

VisionLabs B.V. 85/265

6.14 Face features extraction functionality
6.14.1 Eyes Estimation

Name: EyeEstimator
Algorithm description:

The estimator is trained to work with warped images (see chapter “Image warping” for details).

For this type of estimator can be defined sensor type.
This estimator aims to determine:

+ Eye state: Open, Closed, Occluded;
+ Precise eyeiris location as an array of landmarks;
+ Precise eyelid location as an array of landmarks.

You can only pass warped image with detected face to the estimator interface. Betterimage quality leads
to better results.

Eye state classifier supports three categories: “Open”, “Closed”, “Occluded”. Poor quality images or ones
that depict obscured eyes (think eyewear, hair, gestures) fall into the “Occluded” category. It is always a
good idea to check eye state before using the segmentation result.

The precise location allows iris and eyelid segmentation. The estimator is capable of outputting iris and
eyelid shapes as an array of points together forming an ellipsis. You should only use segmentation results
if the state of that eye is “Open”.

Implementation description:
The estimator:

« Implements the estimate() function that accepts warped source image and warped landmarks,
either of type Landmarks5 or Landmarks68. The warped image and landmarks are received from
the warper (see IWarper: :warp());

« Classifies eyes state and detects its iris and eyelid landmarks;
« Outputs EyesEstimation structures.

Orientation terms “left” and “right” refer to the way you see the image as it is shown on the screen.
It means that left eye is not necessarily left from the person’s point of view, but is on the left side
of the screen. Consequently, right eye is the one on the right side of the screen. More formally, the
label “left” refers to subject’s left eye (and similarly for the right eye), such that xright < xleft.

EyesEstimation: :EyeAttributes presents eye state as enum EyeState with possible values: Open,
Closed, Occluded.

Iris landmarks are presented with a template structure Landmarks that is specialized for 32 points.

VisionLabs B.V. 86 /265

Eyelid landmarks are presented with a template structure Landmarks that is specialized for 6 points.

The EyesEstimation structure contains results of the estimation:

struct EyesEstimation {

[**

* @brief Eyes attribute structure.
* %/

struct EyeAttributes {

15

[*x
* @brief Enumeration of possible eye states.
* %/

enum class State : uint8_t {

Closed, //!'< Eye is closed.
Open, //!< Eye 1is open.
Occluded //!< Eye is blocked by something not transparent

, or landmark passed to estimator doesn't point to an eye

s

static constexpr uint64_t irisLandmarksCount = 32; //!< Iris
landmarks amount.

static constexpr uint64_t eyelidLandmarksCount = 6; //!< Eyelid
landmarks amount.

/// @brief alias for @see Landmarks template structure with
irisLandmarksCount as param.
using IrisLandmarks = Landmarks<irisLandmarksCount>;

/// @brief alias for @see Landmarks template structure with
eyelidLandmarksCount as param
using EyelidLandmarks = Landmarks<eyelidLandmarksCount>;

State state; //!< State of an eye.

IrisLandmarks diris; //!< Iris landmarks.
EyelidLandmarks eyelid; //!< Eyelid landmarks

EyeAttributes leftEye; //!< Left eye attributes
EyeAttributes rightEye; //!< Right eye attributes

+s

API structure name:

VisionLabs B.V.

87 /265

IEyeEstimator
Plan files:

« eyes_estimation_flwr8_cpu.plan

+ eyes_estimation_ir_cpu.plan

+ eyes_estimation_flwr8_cpu-avx2.plan
 eyes_estimation_ir_cpu-avx2.plan

+ eyes_estimation_ir_gpu.plan

+ eyes_estimation_flwr8_gpu.plan

+ eye_status_estimation_cpu.plan

« eye_status_estimation_cpu-avx2.plan
+ eye_status_estimation_gpu.plan

VisionLabs B.V. 88 /265

6.14.2 Red Eyes Estimation

Name: RedEyeEstimator
Algorithm description:

The estimator is trained to work with warped images (see chapter “Image warping” for details) and

warped landmarks.

Red Eye estimator evaluates whether a person’s eyes are red in a photo or not.

You can pass only warped images with detected faces to the estimator interface. Better image quality
leads to better results.

Implementation description:
The estimator (see IRedEyeEstimator in |IEstimator.h):

« Implements the estimate() function that accepts warped source image in R8G8B8 format and
warped Landmarks5. The warped image and landmarks are received from the warper (see

IWarper::warp());.

« Implements the estimate() function that accepts fsdk: : Span of the source warped images in
R8G8BS8 format and fsdk: : Span of warped Landmarks.

+ Outputs RedEyeEstimation structure.

RedEyeEstimation structure consists of attributes for each eye. Eye attributes consists of a score of and
status. Scores is normalized float value in a range of [0..1] where 1is red eye and 0 is not.

The RedEyeEstimation structure contains results of the estimation:

struct RedEyeEstimation {
/xx

* @brief Eyes attribute structure.

* %/
struct RedEyeAttributes {
RedEyeStatus status; //!< Status of an eye.
float score; //!< Score, numerical value in range
[0,1].
+s

RedEyeAttributes leftEye; //!< Left eye attributes
RedEyeAttributes rightEye; //!< Right eye attributes

+s
There are two groups of the fields in RedEyeAttributes:

1X The first field is a status:

VisionLabs B.V. 89 /265

RedEyeStatus status; //'< Status of an eye.

2H The second field is a score, which defined in [0,1] range:

float score; //!< Score, numerical value in range [0, 1].

Enumeration of possible red eye statuses.

enum class RedEyeStatus : uint8_t {
NonRed, //!'< Eye s not red.
Red, //'< Eye is red.
15
Recommended thresholds:

Table below contains threshold from faceengine configuration file (faceengine.conf) in RedEyeEstimator
: :Settings section. By default, this threshold value is set to optimal.

Table 33: “Red eye estimator recommended threshold”
Threshold Recommended value

redEyeThreshold 0.5

Filtration parameters:

The estimator is trained to work with face images that meet the following requirements:

Table 34: “Requirements for fsdk: :NaturalLight”

Attribute Minimum value

score 0.5

Table 35: “Requirements for fsdk: : SubjectiveQuality”

Attribute Minimum value

blur 0.61

VisionLabs B.V. 90/ 265

Attribute Minimum value

light 0.57
darkness 0.5
illumination 0.1

specularity 0.1

Also fsdk: :GlassesEstimation must not be equal to fsdk: :GlassesEstimation: :SunGlasses.
Configurations:

See the “RedEyeEstimator settings” section in the “ConfigurationGuide.pdf” document.

API structure name:

IRedEyeEstimator

Plan files:

 red_eye_v1_cpu.plan
« red_eye_v1_cpu-avx2.plan
+ red_eye_vl1_gpu.plan

VisionLabs B.V. 91/265

6.14.3 Gaze Estimation

Name: GazeEstimator
Algorithm description:

This estimator is designed to determine gaze direction relatively to head pose estimation. Since 3D head
translation is hard to determine reliably without camera-specific calibration, only 3D rotation component
is estimated.

For this type of estimator can be defined sensor type.
Estimation characteristics:

+ Units (degrees);
+ Notation (Euler angles);
« Accuracy (see table below).

Roll angle is not estimated, prediction accuracy decreases as a rotation angle increases. We present
typical average errors for different angle ranges in the table below.

Implementation description:

The GazeEstimation structure contains results of the estimation. Each angle is measured in degrees
and in [-180, 180] range:

struct GazeEstimation {
float yaw; //'< Eye yaw angle.
float pitch; //!< Eye pitch angle.
+s
Metrics:

Table below contains gaze prediction accuracy values.

Table 36: “Gaze prediction accuracy”

Range -25°,..+25° -25°...-45°0r 25°... +45°
Average prediction error (per axis) Yaw £2.7° +4.6°
Average prediction error (per axis) Pitch $3.0° +4.8°

Zero position corresponds to a gaze direction orthogonally to face plane, with the axis of symmetry
parallel to the vertical camera axis.

API structure name:

VisionLabs B.V. 92 /265

IGazeEstimator
Plan files:

+ gaze_v2_cpu.plan

« gaze_v2_cpu-avx2.plan
« gaze_v2_gpu.plan

« gaze_ir_v2_cpu.plan

gaze_ir_v2_cpu-avx2.plan
+ gaze_ir_v2_gpu.plan

VisionLabs B.V. 93/265

6.15 Head Pose Estimation

This estimator is designed to determine a camera-space head pose. Since the 3D head translation is hard
to reliably determine without a camera-specific calibration, only the 3D rotation component is estimated.

There are two head pose estimation methods available:

« Estimate by 68 face-aligned landmarks. You can get it from the Detector facility, see Chapter “Face
detection facility” for details.
+ Estimate by the original input image in the RGB format.

An estimation by the image is more precise. If you have already extracted 68 landmarks for another
facilities, you can save time and use the fast estimator from 68 landmarks.

By default, all methods are available to use in the faceengine.conf configuration file in section
“HeadPoseEstimator”. You can disable these methods to decrease RAM usage and initialization time.

Estimation characteristics:

+ Units (degrees)
+ Notation (Euler angles)
« Precision (see table 37)

Note: Prediction precision decreases as a rotation angle increases. We present typical average
errors for different angle ranges in the table 37.

Table 37: “Head pose prediction precision”

Range -45°,..+45° <-45° or > +45°
Average prediction error (per axis) Yaw +2.7° +4.6°
Average prediction error (per axis) Pitch +3.0° +4.8°
Average prediction error (per axis) Roll +3.0° +4.6°

Zero position corresponds to a face placed orthogonally to the camera direction, with the axis of
symmetry parallel to the vertical camera axis. See figure 16 for a reference.

VisionLabs B.V. 94 /265

rall T3+

pitch

ol RRH

waw

Figure 16: Head pose illustration

Note: In order to work, this estimator requires precise 68-point face alignment results, so familiarize
with section “Face alignment” in the “Face detection facility” chapter, as well.

VisionLabs B.V. 95/ 265

6.16 Approximate Garbage Score Estimation (AGS)

This estimator aims to determine the source image score for further descriptor extraction and matching.
The higher the score, the better matching result is received for the image.

When you have several images of a person, it is better to save the image with the highest AGS score.

Contact VisionLabs for the recommended threshold value for this parameter.

The estimator (see IAGSEstimator in IEstimator.h):

« Implementsthe estimate () function that acceptsthe sourceimageinthe R8G8B8 formatand the
fsdk: :Detection structure of corresponding source image. For details, see section “Detection
structure” in chapter “Face detection facility”.

+ Estimates garbage score of the input image.

« Outputs a garbage score value.

VisionLabs B.V. 96 /265

6.16.1 Glasses Estimation

Name: GlassesEstimator
Algorithm description:

Glasses estimator is designed to determine whether a person is currently wearing any glasses or not.
There are 3 types of states the estimator is currently able to estimate:

+ NoGlasses - Determines whether a person is wearing any glasses at all.
+ EyeGlasses - Determines whether a person is wearing eyeglasses.
+ SunGlasses - Determines whether a person is wearing sunglasses.

Note: The source input image must be warped for the estimator to work properly (see chapter “Image
warping” for details). Estimation quality depends on threshold values located in the faceengine.conf
configuration file.

Implementation description:

Enumeration of possible glasses estimation statuses:

enum class GlassesEstimation: uint8_t{

NoGlasses, //!< Person 1is not wearing glasses
EyeGlasses, //!'< Person 1is wearing eyeglasses
SunGlasses, //!'< Person is wearing sunglasses

EstimationError //!< failed to estimate

I8
Recommended thresholds:

The table below contains thresholds specified in GlassesEstimator::Settings section of the
FaceEngine configuration file (faceengine.conf). By default, these threshold values are set to optimal.

Table 38: “Glasses estimator recommended thresholds”

Threshold Recommended value

noGlassesThreshold 1
eyeGlassesThreshold 1

sunGlassesThreshold 1

Configurations:
See the “GlassesEstimator settings” section in the “ConfigurationGuide.pdf” document.

Metrics:

VisionLabs B.V. 97/ 265

The table below contains true positive rates corresponding to the selected false positive rates.

State TPR
NoGlasses 0.997
EyeGlasses 0.9768
SunGlasses 0.9712

API structure name:
IGlassesEstimator
Plan files:

+ glasses_estimation_v2_cpu.plan
+ glasses_estimation_v2_cpu-avx2.plan
« glasses_estimation_v2_gpu.plan

VisionLabs B.V.

Table 39: “Glasses estimator TPR/FPR rates”

FPR

0.00234
0.000783
0.000383

98 /265

6.16.2 Overlap Estimation

Name: OverlapEstimator
Algorithm description:

This estimator tells whether the face is overlapped by any object. It returns a structure with value of
overlapping and Boolean answer. It returns a structure with 2 fields. One is the value of overlapping
in the range [0..1] where 0 is not overlapped and 1.0 is overlapped, the second is a Boolean answer. A
Boolean answer depends on the threshold listed below. If the value is greater than the threshold, the

answer returns true, else false.
Implementation description:
The estimator (see I0verlapEstimator in IOverlapEstimator.h):

« Implements the estimate() function that accepts source image in R8G8B8 format and fsdk: :
Detection structure of corresponding source image (see section “Detection structure”);

«+ Estimates whether the face is overlapped by any object on input image;
+ Outputs structure with value of overlapping and Boolean answer.

The OverlapEstimation structure contains results of the estimation:

struct OverlapEstimation {
float overlapValue;

bool overlapped;
}s

Recommended thresholds:

Table below contains threshold from faceengine configuration file (faceengine.conf) inOverlapEstimator
: :Settings section. By default, this threshold value is set to optimal.

Table 40: “Overlap estimator recommended threshold”
Threshold Recommended value

overlapThreshold 0.01

Configurations:
See the “OverlapEstimator settings” section in the “ConfigurationGuide.pdf” document.

API structure name:

VisionLabs B.V. 99 /265

IOverlapEstimator
Plan files:

« overlap_estimation_v1_cpu.plan
+ overlap_estimation_v1_cpu-avx2.plan
« overlap_estimation_v1_gpu.plan

6.17 Emotion estimation functionality
6.17.1 Emotions Estimation

Name: EmotionsEstimator
Algorithm description:

The estimator is trained to work with warped images (see chapter “Image warping” for details).

This estimator aims to determine whether a face depicted on an image expresses the following emotions:

« Anger

+ Disgust
 Fear

« Happiness
« Surprise

+ Sadness

Neutrality

You can pass only warped images with detected faces to the estimator interface. Better image quality
leads to better results.

Implementation description:
The estimator (see IEmotionsEstimator in IEmotionsEstimator.h):

« Implements the estimate() function that accepts warped source image. Warped image is received
from the warper (see IWarper: :warp());

+ Estimates emotions expressed by the person on a given image;
« Outputs EmotionsEstimation structure with aforementioned data.

EmotionsEstimation presents emotions as normalized float values in the range of [0..1] where 0 is lack of
a specific emotion and 1is the maximum intensity of an emotion.

The EmotionsEstimation structure contains results of the estimation:

VisionLabs B.V. 100/ 265

struct EmotionsEstimation {

float anger;
float disgust;
float fear;

/1<
/]t<
/]t<

float happiness;//!<

float sadness;

// <

float surprise; //!<

float neutral;

enum Emotions {

Anger = 0,
Disgust,
Fear,
Happiness,
Sadness,
Surprise,
Neutral,
Count

s

/ **

/]1<

0(not angry)..1l(angry);

O(not disgusted)..1l(disgusted);
0(no fear)..1l(fear);

0(not happy)..1(happy);

O(not sad)..1l(sad);

O(not surprised)..l(surprised);
0 (not neutral)..l(neutral).

* @brief Returns emotion with greatest score

* %/

inline Emotions getPredominantEmotion() const;

*

/

b S D .

*/

inline float getEmotionScore(Emotions emotion) const;

15
API structure name:

IEmotionsEstimator

Plan files:

@brief Returns score of required emotion
@param [in] emotion emotion
@see Emotions for details.

« emotion_recognition_v2_cpu.plan

« emotion_recognition_v2_cpu-avx2.plan

+ emotion_recognition_v2_gpu.plan

VisionLabs B.V.

101/265

6.18 Mouth Estimation Functionality

Name: MouthEstimator

Algorithm description:

This estimator is designed to predict person’s mouth state.
Implementation description:

Mouth Estimation

It returns the following bool flags:

bool 1isOpened; //!< Mouth 1is opened flag
bool isSmiling; //!< Person 1is smiling flag
bool -isOccluded; //!< Mouth is occluded flag

Each of these flags indicate specific mouth state that was predicted.

The combined mouth state is assumed if multiple flags are set to true. For example there are many cases
where person is smiling and its mouth is wide open.

Mouth estimator provides score probabilities for mouth states in case user need more detailed

information:
float opened; //'< mouth opened score
float smile; //!< person is smiling score

float occluded; //!< mouth is occluded score

Mouth Estimation Extended

This estimation is extended version of regular Mouth Estimation (see above). In addition, It returns the
following fields:

SmileTypeScores smileTypeScores; //!< Smile types scores
SmileType smileType; //!< Contains smile type if person "isSmiling"

If flag isSmiling is true, you can get more detailed information of smile using smileType variable.
smileType can hold following states:

enum class SmileType {
None, //!< No smile
SmilelLips, //!< regular smile, without teeths exposed
SmileOpen //!< smile with teeths exposed

15

VisionLabs B.V. 102 / 265

If isSmiling is false, the smileType assigned to None. Otherwise, the field will be assigned with
SmileLips (person is smiling with closed mouth) or SmileOpen (person is smiling with open mouth,
with teeth’s exposed).

Extended mouth estimation provides score probabilities for smile type in case user need more detailed
information:

struct SmileTypeScores {
float smilelLips; //!< person is smiling with lips score
float smileOpen; //!< person is smiling with open mouth score

15

smileType variable is set based on according scores hold by smileTypeScores variable - set based on
maximum score from smilelLips and smileOpen or to None if person not smiling at all.

if (estimation.isSmiling)
estimation.smileType = estimation.smileTypeScores.smilelLips >
estimation.smileTypeScores.smileOpen ?
fsdk::SmileType::SmilelLips : fsdk::SmileType::SmileOpen;
else
estimation.smileType = fsdk::SmileType: :None;

When you use Mouth Estimation Extended, the underlying computation are exactly the same as
if you use regular Mouth Estimation. The regular Mouth Estimation was retained for backward
compatibility.

These estimators are trained to work with warped images (see Chapter “Image warping” for details).

Recommended thresholds:

The table below contains thresholds specified in the MouthEstimator: :Settings section of the
FaceEngine configuration file (faceengine.conf). By default, these threshold values are set to optimal.

Table 41: “Mouth estimator recommended thresholds”

Threshold Recommended value

occlusionThreshold 0.5
smileThreshold 0.5
openThreshold 0.5

VisionLabs B.V. 103 /265

Filtration parameters:
The estimator is trained to work with face images that meet the following requirements:

+ Requirements for Detector:

Attribute Minimum value

detection size 80

Detection size is detection width.

const fsdk::Detection detection = ... // somehow get fsdk::Detection object
const int detectionSize = detection.getRect().width;

» Requirements for fsdk: :MouthEstimator:

Attribute Acceptable values

headPose.pitch [-20...20]
headPose.yaw [-25...25]
headPose.roll [-10...10]

Configurations:

See the “Mouth Estimator settings” section in the “ConfigurationGuide.pdf” document.
API structure name:

IMouthEstimator

Plan files:

« mouth_estimation_v4_arm.plan
« mouth_estimation_v4_cpu.plan
« mouth_estimation_v4_cpu-avx2.plan
« mouth_estimation_v4_gpu.plan

VisionLabs B.V. 104/ 265

6.19 Face Occlusion Estimation Functionality

Name: FaceOcclusionEstimator
Algorithm description:

This estimator is designed to predict occlusions in different parts of the face, such as the forehead, eyes,
nose, mouth, and lower face. It also provides an overall occlusion score.

Implementation description:
Face Occlusion Estimation

The estimator returns the following occlusion states:

[*x %
* @brief FaceOcclusionType enum.
* This enum contains all possible facial occlusion types.
* %/
enum class FaceOcclusionType : uint8_t {
Forehead = 0, //!< Forehead

LeftEye, //'< Left eye
RightEye, //!'< Right eye
Nose, //'< Nose
Mouth, // 1< Mouth
LowerFace, //'< Lower part of the face (chin, mouth, etc.)
Count //!'< Total number of occlusion types
s
[*x*

* @brief FaceOcclusionState enum.
* This enum contains all possible facial occlusion states.
* %/
enum class FaceOcclusionState : uint8_t {
NotOccluded = 0, //!< Face 1is not occluded
Occluded, //!< Face is occluded
Count //'< Total number of states

15

FaceOcclusionState states[static_cast<uint8_t>(FaceOcclusionType::Count)];
//!< Occlusion states for each face region

float typeScores[static_cast<uint8_t>(FaceOcclusionType::Count)]; //!<
Probability scores for occlusion types

FaceOcclusionState overallOcclusionState; //!< Overall occlusion state

float overallOcclusionScore; //'< Overall occlusion score

float hairOcclusionScore; //!'< Hair occlusion score

VisionLabs B.V. 105 /265

To get the occlusion score for a specific facial zone, you can use the following method:

float getScore(FaceOcclusionType type) const {
return typeScores[static_cast<uint8_t>(type)];

To get the occlusion state for a specific facial zone, use the following:

FaceOcclusionState getState(FaceOcclusionType type) const {
return states[static_cast<uint8_t>(type)];

This estimator is trained to work with warped images and Landmarks5 (see Chapter “Image

warping” for details).

Recommended thresholds:

The table below contains thresholds specified in the FaceOcclusion::Settings section of the FaceEngine
configuration file (faceengine.conf). These values are optimal by default.

Threshold Recommended value

normalHairCoeff 0.15

overallOcclusionThreshold 0.14

foreheadThreshold 0.2
eyeThreshold 0.4
noseThreshold 0.4
mouthThreshold 0.15
lowerFaceThreshold 0.2

Configurations
See the “Face Occlusion Estimator settings” section in the “ConfigurationGuide.pdf” document.

Filtration parameters:

VisionLabs B.V. 106 / 265

Name Threshold

Face Size >80px
Yaw, Pitch, Roll +20
Blur (Subjective Quality) >0.61

API structure name:
IFaceOcclusionEstimator
Plan files:

« face_occlusion_vi_arm.plan
« face_occlusion_v1_cpu.plan
« face_occlusion_v1_cpu-avx2.plan
« face_occlusion_v1_gpu.plan

VisionLabs B.V. 107 / 265

6.20 DeepFake estimation functionality

Name: DeepFakeEstimator

Algorithm description:

This estimator is designed to predict whether the face detected in the input image is synthetic or not.

Important notes:

The current implementation is experimental and does not support backward compatibility. The APl can

be modified in upcoming versions.

Tests were carried out with images generated by technologies from the list below:

« Deepfacelive

» FaceSwap

» Face2Face

+ NeuralTextures

+ FSGAN

« StyleGAN (v1,v2)

+ Roop (InsightFaceSwap)
» Deepfacelab

« SimSwap (also Dot)
« FaceFusion

« MidJourney (v5, v6)
« StableDiffusion

» Faceswapper

« PicsiAl

« SwapFace

« HeyGen

« PhotoAvatar

« Vidnoz

+ BlendFace

« LivePortrait

« FakeAVCeleb

« AVLips

Implementation description:

DeepFakeEstimator returns the following structure:

struct DeepFakeEstimation {
enum class State {

Real = 0, //!'< The person 1in image 1is real

VisionLabs B.V.

108 /265

Fake
15

float score;
State state;
b

The estimation score normalized between 0.0 and 1.0, where 1.0 equals to 100% confidence that media
is not synthetic (real), and 0.0 equals to 0% that the media is synthetic (fake).
Requirements for a detected face in the source image:

+ Minimum face height is 150 pixels.
+ Yaw angles should not exceed 30 degrees.
+ Pitch angles should not exceed 20 degrees.

Recommended thresholds:

The table below contains thresholds specified in DeepFakeEstimator::Settings section of the
FaceEngine configuration file (faceengine.conf). By default, these threshold values are set to optimal.

Table 46: “DeepFakeEstimator recommended settings”

Parameter Description Type Default value
version The version of DeepFakeEstimator,8or7 Value::Intl 8
realThreshold Threshold in [0..1] range. Value:: 0.5

Floatl
defaultEstimatorType Selects estimation mode, 10or 2 Value::Intl 2

Possible values for defaultEstimatorType:
Currently, the available values for selecting an estimation scenario are 1 and 2:

+ Scenario M1 utilizes the first .plan file. This option exists primarily for backward compatibility.
« Scenario M2 utilizes the second .plan file.

No other configurations for .plan file usage are provided.

Configurations:

See the “DeepFake Estimator settings” section in the “ConfigurationGuide.pdf” document.
API structure name:

IDeepFakeEstimator

VisionLabs B.V. 109 /265

APl namespace:
fsdk: :experimental: :IDeepFakeEstimator
Plan files, version 7:

+ deepfake_estimation_v7_model_1_cpu.plan

+ deepfake_estimation_v7_model_1_cpu-avx2.plan

+ deepfake_estimation_v7_model_1_gpu.plan

deepfake_estimation_v7_model_2_cpu.plan

deepfake_estimation_v7_model_2_cpu-avx2.plan
+ deepfake_estimation_v7_model_2_gpu.plan

Plan files, version 8:
 deepfake_estimation_v8_model_1_cpu.plan

+ deepfake_estimation_v8_model_1_cpu-avx2.plan

deepfake_estimation_v8_model_1_gpu.plan
+ deepfake_estimation_v8_model_2_cpu.plan

+ deepfake_estimation_v8_model_2_cpu-avx2.plan

deepfake_estimation_v8_model_2_gpu.plan

VisionLabs B.V. 110/ 265

6.21 Liveness check functionality
6.21.1 LivenessFlyingFaces Estimation

Name: LivenessFlyingFacesEstimator

Algorithm description:

This estimator tells whether the person’s face is real or fake (photo, printed image).
Implementation description:

The estimator (see ILivenessFlyingFacesEstimator in ILivenessFlyingFacesEstimator.h):

« Implements the estimate() function that needs fsdk: : Image with valid image in R8G8B8 format
and fsdk: :Detection of corresponding source image (see section “Detection structure” in
chapter “Face detection facility”).

« Implementsthe estimate() function that needs the span of fsdk: : Image with valid sourceimages
in R8G8BS8 formats and span of fsdk: :Detection of corresponding source images (see section
“Detection structure” in chapter “Face detection facility”).

Those methods estimate whether different persons are real or not. Corresponding estimation output
with float scores which are normalized in range [0..1], where 1 - is real person, 0 - is fake.

The estimator is trained to work in combination with fsdk: : ILivenessRGBMEstimator.

The LivenessFlyingFacesEstimation structure contains results of the estimation:

struct LivenessFlyingFacesEstimation {
float score; //'< Numerical value in range [0, 1].
bool isReal; //!'< Is real face (true) or not (false).

I
Recommended thresholds:

Table below contains thresholds from faceengine configuration file (faceengine.conf) in LivenessFlyingFacesEstimator
section. By default, these threshold values are set to optimal.

Table 47: “Mouth estimator recommended thresholds”

Threshold Recommended value

realThreshold 0.5

aggregationCoeff 0.7

Filtration parameters:

VisionLabs B.V. 111/ 265

The estimator is trained to work with face images that meet the following requirements:

Table 48: “Requirements for fsdk: :BestShotQualityEstimator::EstimationResult”

Attribute Acceptable values

headPose.pitch [-30...30]
headPose.yaw [-30...30]
headPose.roll [-40...40]
ags [0.5...1.0]

Table 49: “Requirements for fsdk: :Detection”

Attribute Minimum value

detectionsize 80

Detection size is detection width.

const fsdk::Detection detection = ... // somehow get fsdk::Detection object
const int detectionSize = detection.getRect().width;

Configurations:

See the “LivenessFlyingFaces Estimator settings” section in the “ConfigurationGuide.pdf” document.
API structure name:

ILivenessFlyingFacesEstimator

Plan files:

« flying_faces_liveness_v4_cpu.plan
« flying_faces_liveness_v4_cpu-avx2.plan
« flying_faces_liveness_v4_gpu.plan

VisionLabs B.V. 112 /265

6.21.2 LivenessRGBM Estimation

Name: LivenessRGBMEstimator

Algorithm description:

This estimator tells whether the person’s face is real or fake (photo, printed image).
Implementation description:

The estimator (see ILivenessRGBMEstimator in ILivenessRGBMEstimator.h):

+ Implements the estimate() function that needs fsdk: : Face with valid image in R8G8B8 format,
detection structure of corresponding source image (see section “Detection structure” in chapter
“Face detection facility”) and fsdk::Image with accumulated background. This method
estimates whether a real person or not. Output estimation structure contains the float score and
boolean result. The float score normalized in range [0..1], where 1 - is real person, O - is fake. The
boolean result has value true for real person and false otherwise.

« Implements the update() function that needs the fsdk: : Image with currentframe, number of that
image and previously accumulated background. The accumulated background will be overwritten
by this call.

The LivenessRGBMEstimation structure contains results of the estimation:

struct LivenessRGBMEstimation {
float score = 0.0f;
bool isReal = false;

¥
Recommended thresholds:

Table below contains thresholds from faceengine configuration file (faceengine.conf) in LivenessRGBMEstimator
: :Settings section. By default, these threshold values are set to optimal.

Table 50: “LivenessRGBM estimator recommended thresholds”

Threshold Recommended value

backgroundCount 100

threshold 0.8
coeffl 0.222
coeff2 0.222

VisionLabs B.V. 113 /265

Configurations:

See the “LivenessRGBM Estimator settings” section in the “ConfigurationGuide.pdf” document.
API structure name:

ILivenessRGBMEstimator

Plan files:

+ rgbm_liveness_cpu.plan
« rgbm_liveness_cpu-avx2.plan
« rgbm_liveness_gpu.plan

VisionLabs B.V. 114 /265

6.21.3 Depth Liveness Estimation (LivenessDepthEstimator)

Name: LivenessDepthEstimator

Algorithm description:

This estimator tells whether the person’s face is real or fake (photo, printed image).
Implementation description:

The estimator (see ILivenessDepthEstimator in ILivenessDepthEstimator.h):

« Implements the estimate() function that accepts source warped image (see chapter “Image
warping” for details) in R16 format and fsdk::DepthEstimation structure. This method
estimates whether or not depth map corresponds to the real person. Corresponding estimation
output with float score which is normalized in range [0..1], where 1 - is real person, O - is fake.

The DepthEstimation structure contains results of the estimation:

struct DepthEstimation {
float score; //!< confidence score in [0,1] range. The closer the
score to 1, the more likely that person is alive.
bool isReal; //!< boolean flag that indicates whether a person is
real.

I8
Recommended thresholds:

Table below contains thresholds from faceengine configuration file (faceengine.conf) inDepthEstimator
: :Settings section. By default, these threshold values are set to optimal.

Table 51: “Depth estimator recommended thresholds”

Threshold Recommended value

maxDepthThreshold 3000
minDepthThreshold 100

zeroDepthThreshold 0.66
confidenceThreshold 0.89

Filtration parameters:

The estimator is trained to work with face images that meet the following requirements:

VisionLabs B.V. 115 /265

Table 52: “Requirements for fsdk: :HeadPoseEstimation”

Attribute Acceptable angle range(degrees)
pitch [-15...15]
yaw [-15...15]
roll [-10...10]

Table 53: “Requirements for fsdk: :Quality”

Attribute Minimum value

blur 0.94
light 0.90
dark 0.93

Table 54: “Requirements for fsdk: :EyesEstimation”

Attribute State

leftEye Open
rightEye Open

Also, the minimum distance between the face bounding box and the frame borders should be greater
than 20 pixels.

Configurations:

See the “Depth Estimator settings” section in the “ConfigurationGuide.pdf” document.
API structure name:

ILivenessDepthEstimator

Plan files:

« depth_estimation_v2_1_cpu.plan
« depth_estimation_v2_1_cpu-avx2.plan
+ depth_estimation_v2_1_gpu.plan

VisionLabs B.V. 116 /265

6.21.4 Depth and RGB OneShotLiveness estimation

Name: LivenessDepthRGBEstimator
Algorithm description:

This estimator shows whether the person’s face is real or fake (photo, printed image). You can use this
estimator in payment terminals (POS) and self-service cash registers (KCO) with two cameras - Depth and
RGB.

The estimation is performed on the device with an Orbbec camera. The camera can be either built in a
POS or KCO device or connected to it. This allows to perform the estimation at a higher speed and makes
it more secure as data is not sent to the backend. Using the algorithm with Orbbec cameras lets you work
with deep data. It increases system reliability and accuracy, as 3D data lets you assess facial shapes and
detect fake masks more accurately.

The estimator is trained to work with warped images. For details, see chapter “Image warping”.
Supported devices
The estimator works only on the following devices:

« VLS LUNA CAMERA 3D
+ VLS LUNA CAMERA 3D Embedded

Different models of Orbbec cameras have different spacing between sensors. If you need to use another
Orbbec Depth+RGB camera, you can change the calibration coefficients to match the device. Please,
contact VisionLabs for details.

Image requirements
This estimator works based on two images:

+ RGB image from the RGB camera
+ Depth image (or depth map) from the depth camera

Input images must meet the following requirements:

Parameter Requirements
Resolution 640 x 480 pixels
Compression No

Image cropping No

Image rotation No

Effects overlay No

Number of faces in the frame 1

VisionLabs B.V. 17 /265

Parameter Requirements

Face detection bounding box size 200 pixels

Frame edges offset 10 pixels

Head pose -20 to +20 degrees for head pitch, yaw, and roll.
Image quality The face in the frame should not be

overexposed, underexposed, or blurred. For
details, see section “Image Quality Estimation”.

Implementation description:
The estimator implements the following:

« The estimate () function that needs the depth frame as the first fsdk: : Image object, the RGB
frame as the second fsdk: : Image object, fsdk: :Detection and fsdk: : Landmarks5 objects
(see section “Detection structure” in chapter “Face detection facility”). The estimation output is
the fsdk: :DepthRGBEstimation srtucture.

« The estimate() function that needs the first span of depth frames as the fsdk: : Image objects,
the second span of RGB frames as the fsdk: : Image objects, a span of fsdk: :Detection, and
a span of fsdk::Landmarks5 (see section “Detection structure” in chapter “Face detection
facility”).

The estimation output is a span of the fsdk: :DepthRGBEstimation structure. The second
output value is the fsdk: : DepthRGBEstimationstructure.

DepthRGBEstimation

The DepthRGBEstimation structure contains results of the estimation:

struct DepthRGBEstimation {

float score;

bool 1isReal;
13
The estimation score is normalized in range [0..1], where 1 - is real person, 0 - is a fake.

ThevalueofisRealdependsonscoreandconfidenceThreshold. Thevalueofthe confidenceThreshold
canbechanged in configuration file faceengine.conf (see ConfigurationGuide LivenessDepthRGBEstimator

).

API structure name:

VisionLabs B.V. 118 /265

ILivenessDepthRGBEstimator
See ILivenessDepthRGBEstimator in ILivenessDepthRGBEstimator.h.
Plan files:

« depth_rgb_v2_model_1_cpu.plan

depth_rgb_v2_model_1_gpu.plan

depth_rgb_v2_model_2_cpu.plan

depth_rgb_v2_model_2_gpu.plan

depth_rgb_v2_model_1_cpu-avx2.plan

depth_rgb_v2_model_2_cpu-avx2.plan

VisionLabs B.V. 119/265

6.21.5 Depth liveness estimation (DepthLivenessEstimator)

Name: DepthLivenessEstimator
Algorithm description:
Given a face depth warp, the estimator tells whether the face is real or fake (photo, printed image).

The estimator aims to unify different use cases of depth liveness estimation, while increasing the
estimation accuracy compared to existing depth estimators.

The estimator can be used in payment terminals (POS) and self-service cash registers (KCO) with two
cameras - Depth and RGB.

The estimator is trained to work with warped depth images of faces. For details, see chapter “Image
warping”.

The estimator can be used together with LivenessDepthRGBEstimator or as standalone. When
DepthLivenessEstimator is used in conjunction with LivenessDepthRGBEstimator, the latter takes care
of necessary preprocessing of RGB and depth frames, producing depth warps of faces required by
DepthLivenessEstimator. When DepthLivenessEstimator is used as standalone, it is your responsibility
to prepare a warped depth image of a face for estimation, including handling such issues as:

1. detecting faces on RGB frames, quality checking of RGB frames and detections
2. [possibly required] mapping between a) RGB frames used for face detection and b) depth frames
3. obtaining depth warps of faces from depth frames

Supported devices

Onits own, the estimator requires just a properly prepared depth warp of a face, and doesn’t constrain the
list of possible devices. However, if LivenessDepthRGBEstimator is involved, it has its own constraints.

Image requirements

The estimator works based on depth warps of faces. The warps must be 250x250 pixels, in the fsdk: :
Format: :R16 format. If you prepare depth warps yourself, there are some basic quality requirements
for RGB frames:

Parameter Requirements
Resolution 640 x 480 pixels
Compression No

Image cropping No

Image rotation No

Effects overlay No

Number of faces in the frame 1

VisionLabs B.V. 120/ 265

Parameter Requirements

Face detection bounding box size 200 pixels

Frame edges offset 10 pixels

Head pose -15 to +15 degrees for head pitch, yaw, and roll.
Image quality The face in the frame should not be

overexposed, underexposed, or blurred. For
details, see section “Image Quality Estimation”.

Implementation description:
The estimator (see IDepthLivenessEstimator.h)implements the following:

+ The estimate() function that needs the depth warp as the first fsdk: :Image object. The
estimation output is the returned fsdk: :DepthLivenessEstimation structure.

« The estimate() function that needs a span of depth warps (fsdk: : Image objects) as the first
parameter, and a span of fsdk: :DepthLivenessEstimation as the second parameter. The
estimation output is saved in the second parameter.

DepthLivenessEstimation

The DepthLivenessEstimation structure contains results of the estimation:

struct DepthLivenessEstimation {

float score;

bool 1isReal;
13
The estimation score is normalized in the range [0..1], where 1 - is real person, 0 - is a fake.

ThevalueofisRealdependsonscoreandconfidenceThreshold. Thevalueofthe confidenceThreshold
can be changed in configuration file faceengine.conf (see ConfigurationGuide DepthLivenessEstimator

).

API structure name:

IDepthLivenessEstimator

See IDepthLivenessEstimatorin IDepthLivenessEstimator.h.

Examples:

VisionLabs B.V. 121/ 265

« C++example: example_depth_Lliveness
« Python example: example_depth_liveness.py

Plan files:

+ depth_liveness_v2_arm.plan
+ depth_liveness_v2_cpu.plan
+ depth_liveness_v2_cpu-avx2.plan
+ depth_liveness_v2_gpu.plan

VisionLabs B.V. 122 /265

6.21.6 LivenessOneShotRGB Estimation

Name: LivenessOneShotRGBEstimator

Algorithm description:

This estimator shows whether the person’s face is real or fake by the following types of attacks:

« Printed Photo Attack. One or several photos of another person are used.
« Video Replay Attack. A video of another person is used.

+ Printed Mask Attack. An imposter cuts out a face from a photo and covers his face with it.

+ 3D Mask Attack. An imposer puts on a 3D mask depicting the face of another person.

The requirements for the processed image and the face in the image are listed below.

Parameters Requirements

Minimum resolution for 720x960 pixels
mobile devices

Maximum resolution for 1080x1920 pixels
mobile devices

Minimum resolution for 1280x720 pixels
webcams

Maximum resolution for 1920x1080 pixels
webcams

Compression No

Image warping No

Image cropping No

Effects overlay No

Mask No

Number of faces in the 1

frame

Face detection bounding More than 200 pixels

box width

Frame edges offset More than 10 pixels

Head pose -20 to +20 degrees for head pitch, yaw, and roll

Image quality The face in the frame should not be overexposed, underexposed, or

blurred.

VisionLabs B.V.

123 /265

See image quality thresholds in the “Image Quality Estimation” section.
Implementation description:
The estimator (see ILivenessOneShotRGBEstimator in ILivenessOneShotRGBEstimator.h):

« Implements the estimate() function that needs fsdk::Image, fsdk::Detection and fsdk
: :Landmarks5 objects (see section “Detection structure” in chapter “Face detection facility”).
Output estimation is a structure fsdk: : LivenessOneShotRGBEstimation.

« Implements the estimate() function that needs the span of fsdk::Image, span of fsdk::

Detection and span of fsdk: : Landmarks5 (see section “Detection structure” in chapter “Face
detection facility”).
The first output estimation is a span of structure fsdk: :LivenessOneShotRGBEstimation.
The second output value (structure fsdk: : LivenessOneShotRGBEstimation) is the result of
aggregation based on span of estimations announced above. Pay attention the second output
value (aggregation) is optional, i.e. default argument, whichis nullptr.

The LivenessOneShotRGBEstimation structure contains results of the estimation:

struct LivenessOneShotRGBEstimation {
enum class State {
Alive = 0,
Fake,
Unknown

}s

float score;
State state;
float qualityScore;

b
Estimation score is normalized in range [0..1], where 1-is real person, 0 - is fake.
Liveness quality score is an image quality estimation for the liveness recognition.
This parameter is used for filtering if it is possible to make bestshot when checking for liveness.
The reference score is 0,5.

The value of State depends on score and qualityThreshold. The value qualityThreshold
can be given as an argument of method estimate (see ILivenessOneShotRGBEstimator), and in
configuration file faceengine.conf (see ConfigurationGuide LivenessOneShotRGBEstimator).

Recommended thresholds:

Table below contains thresholds from faceengine configuration file (faceengine.conf) inthe LivenessOneShotRGBEs
: :Settings section. By default, these threshold values are set to optimal.

VisionLabs B.V. 124 / 265

Table 58: “LivenessOneShotRGB estimator recommended thresholds”

Threshold Recommended value
realThreshold 0.5
qualityThreshold 0.5

calibrationCoeff_v10 0.921
calibrationCoeff_ vi1 0.8868

Configurations:

See the “LivenessOneShotRGBEstimator settings” section in the “ConfigurationGuide.pdf” document.
API structure name:

ILivenessOneShotRGBEstimator

Plan files, version 10:

+ oneshot_rgb_liveness_v10_model_1_cpu.plan
+ oneshot_rgb_liveness_v10_model_2_cpu.plan
+ oneshot_rgb_liveness_v10_model_3_cpu.plan
« oneshot_rgb_liveness_v10_model_7_cpu.plan
+ oneshot_rgb_liveness_v10_model_1_cpu-avx2.plan
+ oneshot_rgb_liveness_v10_model_2_cpu-avx2.plan
+ oneshot_rgb_liveness_v10_model_3_cpu-avx2.plan
« oneshot_rgb_liveness_v10_model_7_cpu-avx2.plan
« oneshot_rgb_liveness_v10_model_1_gpu.plan
+ oneshot_rgb_liveness_v10_model_2_gpu.plan
+ oneshot_rgb_liveness_v10_model_3_gpu.plan
« oneshot_rgh_liveness_v10_model_7_gpu.plan

Extended plan files, version 10:

+ oneshot_rgb_liveness_v10_model_8_cpu.plan
+ oneshot_rgb_liveness_v10_model_9_cpu.plan
« oneshot_rgh_liveness_v10_model_8_cpu-avx2.plan
« oneshot_rgb_liveness_v10_model_9_cpu-avx2.plan
+ oneshot_rgb_liveness_v10_model_8_gpu.plan
+ oneshot_rgb_liveness_v10_model_9_gpu.plan

Plan files, version 11

« oneshot_rgb_liveness_v11_model_1_cpu.plan

VisionLabs B.V. 125/ 265

« oneshot_rgh_liveness_v11_model_2_cpu.plan
« oneshot_rgb_liveness_v11_model_3_cpu.plan
+ oneshot_rgb_liveness_v11_model_7_cpu.plan
+ oneshot_rgb_liveness_v11_model_1_cpu-avx2.plan
« oneshot_rgb_liveness_v11_model_2_cpu-avx2.plan
+ oneshot_rgb_liveness_v11_model_3_cpu-avx2.plan
+ oneshot_rgb_liveness_v11_model_7_cpu-avx2.plan
+ oneshot_rgb_liveness_v11_model_1_gpu.plan
« oneshot_rgh_liveness_v11_model_2_gpu.plan
+ oneshot_rgb_liveness_vi1_model_3_gpu.plan
+ oneshot_rgb_liveness_v11_model_7_gpu.plan

Extended plan files, version 11:

+ oneshot_rgb_liveness_v11_model_8_cpu.plan
+ oneshot_rgb_liveness_v11_model_9_cpu.plan
« oneshot_rgh_liveness_v11_model_8_cpu-avx2.plan
« oneshot_rgb_liveness_v11_model_9_cpu-avx2.plan
+ oneshot_rgb_liveness_v11_model_8_gpu.plan
+ oneshot_rgb_liveness_v11_model_9_gpu.plan

6.21.6.1 Usage example
The face in the image and the image itself should meet the estimator requirements.

You can find additional information in example (examples/example_estimation/main.cpp) orin
the code below.

constexpr int minDetSize = 200;

constexpr int borderDistance = 10;

if (std::min(detectionRect.width, detectionRect.height) < minDetSize) {
std::cerr << "Bounding Box width and/or height is less than “minDetSize’
- " << minDetSize << std::endl;
return false;

}

if ((detectionRect.x + detectionRect.width) > (image.getWidth() -
borderDistance) || detectionRect.x < borderDistance) {
std::cerr << "Bounding Box width is out of border distance - " <<

borderDistance << std::endl;

VisionLabs B.V. 126 / 265

return false;

}

if ((detectionRect.y + detectionRect.height) > (image.getHeight() -
borderDistance) || detectionRect.y < borderDistance) {
std::cerr << "Bounding Box height is out of border distance - " <<

borderDistance << std::endl;
return false;

// Yaw, pitch and roll.
constexpr int principalAxes = 20;

if (std::abs(headPose.pitch) > principalAxes ||
std::abs(headPose.yaw) > principalAxes ||
std: :abs(headPose.roll) > principalAxes) {

std::cerr << "Can't estimate LivenessOneShotRGBEstimation. " <<
"Yaw, pith or roll absolute value is larger than expected value: "
<< principalAxes << "." <<
"\nPitch angle estimation: " << headPose.pitch <<
"\nYaw angle estimation: " << headPose.yaw <<
"\nRoll angle estimation: " << headPose.roll << std::endl;

return false;

WerecommendusingDetector type 3 (fsdk::0bjectDetectorClassType::FACE_DET_V3
).

VisionLabs B.V. 127 / 265

6.21.7 NIR Liveness estimation

Name: NIRLivenessEstimator
Algorithm description:

The estimator determines whether a person’s face is real or a fake representation, such as a photo or
printed image. This estimator relies on images captured by an infrared camera and provides a boolean
output indicating whether the face is real (true) or fake (false).

Implementation description:

The estimator (see INIRLivenessEstimator in INIRLivenessEstimator.h) implements the
estimate () function, which accepts a source warped image (see the chapter “Image Warping” for
details) in R16 format, along with the fsdk::NIRLivenessEstimation structure. This method
evaluates whether the face in the input image corresponds to a real person. The output of the estimation
is a floating-point score normalized in the range [0..1], where a score of 1 indicates a real person and a
score of 0 indicates a fake representation.

The NIRLivenessEstimation structure contains results of the estimation:

struct NIRLivenessEstimation {
enum class State {

Real = 0,
Fake = 1,
Unknown

+s

float score;
State state;

18
Recommended thresholds:

Table below contains a threshold from FaceEngine configuration file (faceengine.conf) inNIRLivenessEstimator
: :Settings section. By default, the threshold value is set to optimal.

Table 59: “NIRLivenessEstimator estimator recommended threshold”

Threshold Description Recommended value

realThreshold Threshold in [0..1] range. 0.5

Configurations:

VisionLabs B.V. 128 / 265

See the “NIRLivenessEstimator settings” section in the “ConfigurationGuide.pdf” document.
API structure name:

INIRLivenessEstimator

.plan files:

« nir_liveness_v2_model_1_cpu.plan
+ nir_liveness_v2_model_1_gpu.plan
« nir_liveness_v3_model_2_cpu.plan
« nir_liveness_v3_model_2_gpu.plan

VisionLabs B.V. 129 /265

6.22 Personal Protection Equipment Estimation

Name: PPEEstimator

Algorithm description:

The Personal Protection Equipment (PPE) estimator predicts whether a person is wearing one or multiple

types of protection equipment, such as:

« Helmet
« Hood

o Vest

+ Gloves

« Safety harness

For each attribute, the estimator returns 3 prediction scores which indicate the possibility of person

wearing that attribute, not wearing it, and an “unknown” score which will be the highest of them all,

if the estimator wasn’t able to tell whether a person in the image is wearing a particular attribute.

To correctly determine a personal protective equipment, the following requirements must be met:

« Scene requirements:

Moving objects must be visually separated from each other in the image.

A background must be mostly static and must not change rapidly.

Maximum image shifts due to camera shakes is 1% of the frame size.

Overlapping of moving objects by static objects, such as columns, industrial items, and so on,
must be minimal.

The analyzed scene must not have reflective surfaces. If any, they need to be disguised.
Large obstacles should be avoided in the camera’s field of view. Pillars, tower cranes, stacked
materials, and so on will cause tracks to break and also overlap people. Ifitisimpossible, we
recommend that you do not place an obstacle in the center of the frame.

Strong camera lights are allowed in a frame. We do not recommend that you point the camera
at spotlights and active welding zones, especially in the foreground, because it reduces the
visibility of people and the visibility of PPE on them.

The camera lens should be kept clean and free of dust. We do not recommend that you place
cameras above a material unloading area or near ventilation shafts, because dust on the lens
reduces the visibility of people and the visibility of PPE on them.

Shooting angle must be without tilting the camera too much. From a top-down perspective,
PPE (vest and gloves) can be less visible.

+ Image requirements:

A person and PPE must be clearly visible to the human eye.

Overlapping of a person or PPE with an obstacle or another person and cropping by frame
boundaries should not exceed 25%.

The linear dimensions of PPE should not exceed 65% of the corresponding frame size.

VisionLabs B.V. 130 /265

The image must not be noisy or distorted by compression algorithm artifacts. The image must
be a color one.

The duration of visibility of a PPE must be at least 10-13 frames.

The height of the image of a person in pixels must be not less than 100. The minimum pixel
density per meter (height of the object in pixels to the height of the object in meters) is 60ppm.
The minimum height and color of an equipment on body parts must be as follows:

Equipment Minimum hight, in pixels Color

Vest 50 Light green (green), yellow,
orange

Helmet 20 White, yellow, orange, red

Hood 20 N/A

Gloves 20 White, gray, black

Safety harness 50 N/A

« Video stream requirements:

Parameter Requirement
Minimum resolution 640x360 pixels
Maximum resolution 1920x1080 pixels
Minimum frame frequency 13 frames per second

« Lighting requirements:

Parameter Requirement

Scene lighting 200 lux or more

Sudden changes in lighting None

Implementation description:

The Personal Protection Equipment Estimation structure for each attribute looks as follows:

struct OnePPEEstimation {
float positive = 0.0f;
float negative = 0.0f;

VisionLabs B.V. 131/ 265

float unknown = 0.0f;

enum class PPEState : uint8_t {
Positive, //!< person is wearing specific personal equipment;
Negative, //!< person isn't wearing specific personal equipment;
Unknown, //!< 1dt's hard to tell wether person wears specific
personal equipment.
Count // < state count

+s

[*xx
* @brief returns predominant personal equipment state
* %/
inline PPEState getPredominantState();
}s

All three prediction scores sum up to 1.

The estimator takes an image and a human bounding box of a person for which attributes shall be
predicted as an input. For more information about human detector, see “Human Detection” section.

API structure name:
IPPEEstimator
Plan files:

« ppe_estimation_v3_cpu.plan
+ ppe_estimation_v3_cpu-avx2.plan
+ ppe_estimation_v3_gpu.plan

VisionLabs B.V. 132/ 265

6.23 Medical Mask Estimation Functionality

Name: MedicalMaskEstimator

This estimator aims to detect a medical mask on the face in the source image. For the interface with
MedicalMaskEstimation it can return the next results:

« A medical mask is on the face (see MedicalMask::Mask field in the MedicalMask enum);

« There is no medical mask on the face (see MedicalMask::NoMask field in the MedicalMask enum);

+ The face is occluded with something (see MedicalMask::OccludedFace field in the MedicalMask
enum);

For the interface with MedicalMaskEstimationExtended it can return the next results:

+ A medical mask is on the face (see MedicalMaskExtended::Mask field in the MedicalMaskExtended

enum);

There is no medical mask on the face (see MedicalMaskExtended::NoMask field in the
MedicalMaskExtended enum);
+ A medical mask is not on the right place (see MedicalMaskExtended::MaskNotInPlace field in the
MedicalMaskExtended enum);

The face is occluded with something (see MedicalMaskExtended::OccludedFace field in the
MedicalMaskExtended enum);

The estimator (see IMedicalMaskEstimator in |IEstimator.h):

« Implements the estimate() function that accepts source warped image in R8G8B8 format and
medical mask estimation structure to return results of estimation;

+ Implements the estimate() function that accepts source image in R8G8B8 format, face detection to
estimate and medical mask estimation structure to return results of estimation;

« Implementsthe estimate() function that accepts fsdk::Span of the source warped images in R8G8B8
format and fsdk::Span of the medical mask estimation structures to return results of estimation;

+ Implements the estimate() function that accepts fsdk::Span of the source images in R8G8B8 format,
fsdk::Span of face detections and fsdk::Span of the medical mask estimation structures to return
results of the estimation.

Every method can be used with MedicalMaskEstimation and MedicalMaskEstimationExtended.
The estimator was implemented for two use-cases:

1. When the user already has warped images. For example, when the medical mask estimation is
performed right before (or after) the face recognition.
2. When the user has face detections only.

Note: Calling the estimate() method with warped image and the estimate() method with image and
detection for the same image and the same face could lead to different results.

VisionLabs B.V. 133 /265

6.23.1 MedicalMaskEstimator thresholds

The estimator returns several scores, one for each possible result. The final result is based on that scores
and thresholds. If some score is above the corresponding threshold, that result is estimated as final. If
none of the scores exceed the matching threshold, the maximum value will be taken. If some of the
scores exceed their thresholds, the results will take precedence in the following order for the case with
MedicalMaskEstimation:

Mask, NoMask, OccludedFace

and for the case with MedicalMaskEstimationExtended:

Mask, NoMask, MaskNotInPlace, OccludedFace

The default values for all thresholds are taken from the configuration file. See Configuration guide for
details.

6.23.2 MedicalMask enumeration

The MedicalMask enumeration contains all possible results of the MedicalMask estimation:

enum class MedicalMask {

Mask = 0, //'< medical mask is on the face
NoMask, //'< no medical mask on the face
OccludedFace //!< face is occluded by something

}s

enum class DetailedMaskType {
CorrectMask = 0, //!< correct mask on the face (mouth

and nose are covered correctly)

MouthCoveredWithMask, //!< mask covers only a mouth
ClearFace, //'< clear face - no mask on the face
ClearFaceWithMaskUndercChin, //'< clear face with a mask around of

a chin, mask does not cover anything in the face region (from
mouth to eyes)

PartlyCoveredFace, // < face is covered with not a
medical mask or a full mask
FullMask, //!< face is covered with a full mask
(such as balaclava, sky mask, etc.)
Count

}s

VisionLabs B.V. 134 /265

+ Maskis according to CorrectMask or MouthCoveredWithMask;
+ NoMaskis according to ClearFace or ClearFaceWithMaskUnderChin;
+ OccludedFaceisaccording to PartlyCoveredFace or FullMask

Note - NoMask means absence of medical mask or any occlusion in the face region (from mouth to eyes).
Note - DetailedMaskType is not supported for NPU-based platforms.

6.23.3 MedicalMaskEstimation structure

The MedicalMaskEstimation structure contains results of the estimation:

struct MedicalMaskEstimation {
MedicalMask result; // < estimation result (@see
MedicalMask enum)
DetailedMaskType maskType; //!< detailed type (@see
DetailedMaskType enum)

// scores
float maskScore; //'< medical mask is on the face score
float noMaskScore; //'< no medical mask on the face score

float occludedFaceScore; //!< face 1is occluded by something score

float scores[static_cast<int>(DetailedMaskType::Count)]{}; // 1<
detailed estimation scores

inline float getScore(DetailedMaskType type) const;
+s

There are two groups of the fields:

1® The first group contains the result:

MedicalMask result;

Result enum field MedicalMaskEstimation contains the target results of the estimation. Also you can see
the more detailed type in MedicalMaskEstimation.

DetailedMaskType maskType; //'< detailed type

2[The second group contains scores:

float maskScore; //'< medical mask is on the face score

VisionLabs B.V. 135/ 265

float noMaskScore; //!'< no medical mask on the face score
float occludedFaceScore; //!< face 1is occluded by something score

The score group contains the estimation scores for each possible result of the estimation. All scores are
defined in [0,1] range. They can be useful for users who want to change the default thresholds for this
estimator. If the default thresholds are used, the group with scores could be justignored in the user code.
More detailed scores for every type of a detailed type of face covering are

float scores[static_cast<int>(DetailedMaskType::Count)]{}; // < detailed
estimation scores

« maskScore is the sum of scores for CorrectMask, MouthCoveredWithMask;
+ NoMask is the sum of scores for ClearFace and ClearFaceWithMaskUnderChin;
« occludedFaceScore is the sum of scores for PartlyCoveredFace and FullMask fields.

Note - DetailedMaskType, scores, getScore are not supported for NPU-based platforms. It means a
user cannot use this fields and methods in code.

6.23.4 MedicalMaskExtended enumeration

The MedicalMask enumeration contains all possible results of the MedicalMask estimation:

enum class MedicalMaskExtended {

Mask = 0, //!< medical mask is on the face
NoMask, //'< no medical mask on the face
MaskNotInPlace, //'< mask is not on the right place
OccludedFace //!< face is occluded by something

+s

6.23.5 MedicalMaskEstimationExtended structure

The MedicalMaskEstimationExtended structure contains results of the estimation:

struct MedicalMaskEstimationExtended {
MedicalMaskExtended result; // < estimation result (@see
MedicalMaskExtended enum)

// scores

float maskScore; //'< medical mask is on the face score
float noMaskScore; //!'< no medical mask on the face score
float maskNotInPlace; //'< mask is not on the right place

float occludedFaceScore; //!< face 1is occluded by something score

VisionLabs B.V. 136 /265

+s
There are two groups of the fields:

1K The first group contains only the result enum:

MedicalMaskExtended result;

Result enum field MedicalMaskEstimationExtended contains the target results of the estimation.

2H The second group contains scores:

float maskScore; //'< medical mask is on the face score
float noMaskScore; //!'< no medical mask on the face score
float maskNotInPlace; //!'< mask is not on the right place

float occludedFaceScore; //!< face 1is occluded by something score

The score group contains the estimation scores for each possible result of the estimation. All scores are
defined in [0,1] range.

6.23.6 Filtration parameters

The estimator is trained to work with face images that meet the following requirements:

Table 63: “Requirements for fsdk: :MedicalMaskEstimator: :EstimationResult”

Attribute Acceptable values

headPose.pitch [-40...40]
headPose.yaw [-40...40]
headPose.roll [-40...40]
ags [0.5...1.0]

Configurations:

See the “Medical mask estimator settings” section in the “ConfigurationGuide.pdf” document.
API structure name:

IMedicalMaskEstimator

Plan files:

« mask_clf_v3_cpu.plan

VisionLabs B.V. 137 /265

« mask_clf_v3_cpu-avx2.plan
« mask_clf_v3_gpu.plan

VisionLabs B.V. 138 /265

6.24 Human Attribute Estimation

Name: HumanAttributeEstimator
Algorithm description:
This estimator aims to detect next human attributes on the warped human image:

« Age;

« Gender;

« Sleeve size;

+ The presence of a headwear;

» The color of a headwear;

« The presence of a backpack;

« Estimation of the lower body clothing type;
+ The color of a lower body clothing;

+ Outwear color.

« The color of the shoes;

Age estimation contains a single number - the number of years.
Gender estimation contains one of the next results (see HumanAttributeResult: :Gender enum):

+ Person’s gender is female;
+ Person’s gender is male;
+ Person’s gender is unknown.

Sleeve size estimation contains one of the next results (see HumanAttributeResult: :SleeveSize
enum):

+ Person’s sleeves are short;
+ Person’s sleeves are long;
» Person’s sleeves size is unknown.

Hat estimation contains one of the next results (see HumanAttributeResult: :Hat enum):

« There is no headwear;
+ Thereis a headwear;
« Headwear state is unknown.

Backpack estimation contains one of the next results (see HumanAttributeResult: :Backpack
enum):

« Thereis no backpack;
» There is a backpack;
« Backpack state is unknown.

LowerBodyClothing estimation contains one of the next results (see HumanAttributeResult::
LowerBodyClothing enum):

VisionLabs B.V. 139 /265

There are pants;

There are shorts;

There is skirt;
+ Lower body clothing state is unknown.

Outwear color estimation contains the next results (see HumanAttributeResult: :Color enum):

« Person’s outwear color is black;

« Person’s outwear color is blue;

+ Person’s outwear color is green;

+ Person’s outwear color is grey;

+ Person’s outwear color is orange;
« Person’s outwear color is purple;
« Person’s outwear color is red;

+ Person’s outwear color is white;

+ Person’s outwear color is yellow;
+ Person’s outwear color is pink;

« Person’s outwear color is brown;
+ Person’s outwear color is beige;

« Person’s outwear color is khaki;

+ Person’s outwear color is multicolored.

Apparent color estimation contains the next results (see HumanAttributeResult: :ApparentColor
enum):

« Apparent color is black;

« Apparent color is white;

« Apparent color is some other color from full palette;
+ Apparent color is unknown.

Outwear color vs Apparent color:

For now, we have two color palettes Outwear color and Apparent color. Outwear color palette represents
full palette supported by human attributes estimator. Apparent color palette is simplified version of
Outwear color. Color of some attributes can be classified only of small pool of colors - Black and White
for now. So, in sake of simplification for the user we introduce Apparent color palette. Apparent color
palette can be extended with colors in the future.

Implementation description:

The Gender enumeration contains all possible results of the Gender estimation:

enum class Gender {
Female,
Male,

VisionLabs B.V. 140 / 265

Unknown //'< person's gender is unknown

}s

The SleeveSize enumeration contains all possible results of the SleeveSize estimation:

enum class SleeveSize {
Short, // < sleeves are short
Long, //'< sleeves are long
Unknown //!< sleeves state is unknown

}s

The Hat enumeration contains all possible results of the Hat estimation:

enum class Hat {
No, //< there 1is no headwear
Yes, //< there is a headwear
Unknown //< headwear state is unknown

+s

The Backpack enumeration contains all possible results of the Backpack estimation:

enum class Backpack {
No, //< there is no backpack
Yes, //< there is a backpack
Unknown //< backpack state is unknown

15

The LowerBodyClothing enumeration contains all possible results of the LowerBodyClothing
estimation:

enum class LowerBodyClothing {

Pants, //< there is pants
Shorts, //< there is shorts
Skirt, //< there 1is skirt

Unknown //< lower body clothing state 1is unknown

+s

The Color enumeration contains all possible results of the OutwearColor estimation:

enum class Color {
Black,
Blue,

VisionLabs B.V. 141/ 265

Green,
Grey,
Orange,
Purple,
Red,
White,
Yellow,
Pink,
Brown,
Beige,
Khaki,
Multicolored,
Count

+s

The ApparentColor enumeration contains all possible results of the ApparentColor estimation:

enum class ApparentColor {
Black,
White,
Other,
Unknown,
Count

}s
Human Attribute estimation request:

HumanAttributeRequest lists all possible estimation attributes that HumanAttributeEstimator is
currently able to estimate.

enum class HumanAttributeRequest {

EstimateAge =1 << 0,
EstimateGender =1 << 1,
EstimateSleeveSize =1 << 2,
EstimateBackpack = 1 << 3,
EstimateOutwearColor =1 << 4,
EstimateHeadwear =1 << 5,
EstimateLowerBodyClothing = 1 << 7,
EstimateShoeColor = 1 << 8,
EstimateAll = Oxffff

15

The GenderEstimation structure contains results of the gender estimation:

VisionLabs B.V. 142 / 265

struct GenderEstimation {

Gender result; //!< estimation result (@see Gender enum).
float female; //!< female gender probability score
float male; //'< male gender probability score

float unknown; //!< unknown gender probability score

s

1K The first group contains only the result enum:

Gender result; //'< estimation result (@see Gender enum).

Result enum field GenderEstimation contain the target results of the estimation.

2K The second group contains scores:

float female; //!< female gender probability score
float male; //!< male gender probability score
float unknown; //'< unknown gender probability score

The scores group contains the estimation score.

The SleeveSizeEstimation structure contains results of the sleeves size estimation:

struct SleeveSizeEstimation {
SleeveSize result; //!< estimation result (@see SleeveSize enum).
float shortSize; //!'< short sleeves size probability score
float longSize; //!< long sleeves size probability score
float unknown; //!'< unknown sleeves size probability score

+s

1® The first group contains only the result enum:

SleeveSize result; //!< estimation result (@see SleeveSize enum).

Result enum field SleeveSizeEstimation contain the target results of the estimation.

2K The second group contains scores:

float shortSize; //'< short sleeves size probability score
float longSize; //!< long sleeves size probability score
float unknown; //'< unknown sleeves size probability score

VisionLabs B.V. 143 / 265

The scores group contains the estimation score.

The HatEstimation structure contains results of the hat estimation:

struct HatEstimation {

Hat result; //!'< estimation result (@see Hat enum).
float noHat; //'< no hat probability score
float hat; //!'< hat probability score

float unknown; //!< unknown hat state probability score

ApparentColorEstimation hatColor; //!< hat color estimation

}s

1K The first group contains only the result enum:

Hat result; //!'< estimation result (@see Hat enum).

Result enum field HatEstimation contain the target results of the estimation.

2K The second group contains scores:

float noHat; //'< no hat probability score
float hat; //'< hat probability score
float unknown; //!< unknown hat state probability score

The scores group contains the estimation score.

3K The third group contains color estimation:

ApparentColorEstimation hatColor; //!< hat color estimation.

The BackpackEstimation structure contains results of the backpack estimation:

struct BackpackEstimation {
Backpack result; //!< estimation result (@see Backpack enum).
float noBackpack; //!< no backpack probability score
float backpack; //'< backpack probability score
float unknown; //'< unknown backpack state probability score

s

1® The first group contains only the result enum:

Backpack result; //!< estimation result (@see Backpack enum).

VisionLabs B.V. 144 [/ 265

Result enum field BackpackEstimation contain the target results of the estimation.

2K The second group contains scores:

float noBackpack; //!< no backpack probability score
float backpack; //'< backpack probability score
float unknown; //!'< unknown backpack state probability score

The scores group contains the estimation score.

The LowerBodyClothingEstimation structure contains results of the lower body clothing estimation:

struct LowerBodyClothingEstimation {
LowerBodyClothing result; //!< estimation result.

float pants; //!< pants probability score
float shorts; //!< shorts probability score
float skirt; //!'< skirt probability score
float unknown; //!< unknown state probability score

OutwearColorEstimation lowerBodyClothingColor; //!< lower body
clothing color estimation.

}s

1K The first group contains only the result enum:

LowerBodyClothing result; //!< estimation result.

Result enum field LowerBodyClothingEstimation contain the target results of the estimation.

2K The second group contains scores:

float pants; //!'< pants probability score
float shorts; //'< shorts probability score
float skirt; //'< skirt probability score
float unknown; //!< unknown state probability score

The scores group contains the estimation score.

3K The third group contains color estimation:

OutwearColorEstimation lowerBodyClothingColor; //!< lower body
clothing color estimation.

The OutwearColorEstimation structure contains results of outwear color estimation:

VisionLabs B.V. 145 / 265

struct OutwearColorEstimation {
bool 1isBlack;
bool isBlue;
bool -isGreen;
bool isGrey;
bool isOrange;
bool 1isPurple;
bool -1isRed;
bool -+isWhite;
bool 1isYellow;
bool isPink;
bool -isBrown;
bool -isBeige;
bool 1isKhaki;
bool isMulticolored;
multicolored

[/ 1<
// 1<
// 1<
//1<
// 1<
//1<
// 1<
[/ 1<
// 1<
[/ 1<
// 1<
// 1<
// 1<
[/ 1<

float scores[static_cast<int>(Color::Count)]; //!<

[**

* @brief Returns score of required outwear color.

* @param [in] color outwear color.

* @see Color for more info.

* %/

inline float getScore(Color color) const;

}s

1K The first group contains plain answer:

bool -+isBlack;
bool isBlue;
bool 1isGreen;
bool 1isGrey;
bool 1isOrange;
bool 1isPurple;
bool -isRed;
bool -isWhite;
bool 1isYellow;
bool isPink;
bool isBrown;
bool -isBeige;
bool 1isKhaki;
bool 1disMulticolored;
multicolored

VisionLabs B.V.

[/ 1<
// 1<
[/ 1<
// 1<
[/ 1<
// 1<
[/ 1<
// 1<
// 1<
// 1<
[/ 1<
[/ 1<
// 1<
// 1<

outwear
outwear
outwear
outwear
outwear
outwear
outwear
outwear
outwear
outwear
outwear
outwear
outwear
outwear

is
is
is
is
is
is
is
is
is
is
is
is
is
is

estimation

outwear
outwear
outwear
outwear
outwear
outwear
outwear
outwear
outwear
outwear
outwear
outwear
outwear
outwear

is
is
is
is
is
is
is
is
is
is
is
is
is
is

black
blue
green
grey
orange
purple
red
white
yellow
pink
brown
beige
khaki

SCOIRES

black
blue
green
grey
orange
purple
red
white
yellow
pink
brown
beige
khaki

146 / 265

2[The second group contains scores:

float scores[static_cast<int>(Color::Count)]; //!< estimation scores

Note Not all color flags and according float scores in OutwearColorEstimation have valid values. Some
colors were added to interface to support future colors expansion and will store valid values as algorithm
will evolve release by release. Currently, Pink, Beige, Khaki and Multicolored are zeroed internally.

The ApparentColorEstimation structure contains results of apparent color estimation:

struct ApparentColorEstimation {

bool isBlack; // 1<
attribute 1is black

bool -isWhite; // <
attribute is white

bool 1isOther; //1<

attribute is some other

bool isUnknown; // 1<
attribute is unknown

float scores[static_cast<int>(ApparentColor::Count)]; // <
estimation scores

/ *x*
* @brief Returns score of required color.
* @param [in] color color.

%

@see ApparentColor for more info.
*/

inline float getScore(ApparentColor color) const;

>*

+s

1® The first group contains plain answer:

bool 1isBlack; / /<
attribute 1is black

bool isWhite; / /1<
attribute is white

bool 1isOther; // <
attribute is some other

bool isUnknown; / /<

attribute is unknown

2K The second group contains scores:

VisionLabs B.V. 147 / 265

float scores[static_cast<int>(ApparentColor::Count)]; //1<
estimation scores

The HumanAttributeResult structure contains optional results of all estimations depending on
HumanAttributeRequest.

[*x*
* @brief Age estimation by human body.
* @note This estimation may be very different from estimation by
face.
* %/
Optional<float> age;
/ xx
* @brief Gender estimation by human body.
* @note This estimation may be very different from estimation by
face.
* %/

Optional<GenderEstimation> gender;

Optional<SleeveSizeEstimation> sleeve; //1<
sleeve estimation.

Optional<HatEstimation> headwear; //1t<
headwear estimation.

Optional<BackpackEstimation> backpack; [/}'<
backpack estimation.

Optional<OutwearColorEstimation> outwearColor; // 1<
outwear color estimation.

Optional<LowerBodyClothingEstimation> lowerBodyClothing; //!<
lower body clothing estimation.

Optional<ApparentColorEstimation> shoeColor; // 1<

shoe color color estimation.

HumanAttribute Aggregation:

The HumanAttribute provides a method to aggregate output results of a batch estimate call. All valid
features are counted and the result is a mean of them. Invalid fields will be skipped and do not influence
on aggregation result.

[**
* @brief Aggregate human body attributes.
* @details All dinvalid fields will be skipped and do not influence
on aggregation result
* @param [in] estimations span of estimation results.
* @param [in] request estimation request.

VisionLabs B.V. 148 / 265

X%

@param [out] result aggregated result.

@return Result with error code.

@see Span, HumanAttributeResult, IHumanAttributeEstimator::
EstimationRequest, Result and FSDKError for details.

*

*

%

@note all spans should be based on user owned continuous
collections.

* @note all spans should be equal size.
* %/
virtual Result<FSDKError> aggregate(
Span<const HumanAttributeResult> estimations,
HumanAttributeRequest request,
HumanAttributeResult& result) const noexcept = 0;

Attribute dependencies:

Some attribute results are influenced by the outcomes of other attributes. Specifically, the color flag and
score of an attribute depend on its predicted type. For example, it is not meaningful to assign color values
to an attribute classified as Unknown. These rules also apply to aggregation results.

Dependency rules:

+ Inthe HatEstimation struct:
- The hatColor field depends on the result field.
- If the result field has value No or Unknown, hatColor will be set to isUnknown = true,
and all scores will be reset to zero.
+ Inthe LowerBodyClothingEstimation struct:
- The lowerBodyClothingColor field depends on the result field.
- Ifthe result field has value Unknown, all flags in TowerBodyClothingColor will be set to
false, and all scores will be reset to zero.
+ Inthe HumanAttributeResult struct:
- The shoeColor field depends on the result field of LowerBodyClothingEstimation
- Ifthe result field of LowerBodyClothingEstimation is Unknown, then shoeColor will
be set to isUnknown = true, and all scores will be reset to zero.

Recommended thresholds:

Human Attribute estimator sets outwear color bool values and age by comparing an output score
with a corresponding threshold value listed in faceengine.conf file in HumanAttributeEstimator::
Settings section. By default, these threshold values are set to optimal.

Table 64: “Human Attribute Estimator recommended thresholds”

Thresholds Recommended values

blackUpperThreshold 0.740

VisionLabs B.V. 149 / 265

Thresholds Recommended values

blueUpperThreshold 0.655
brownUpperThreshold 0.985
greenUpperThreshold 0.700
greyUpperThreshold 0.710
orangeUpperThreshold 0.420
purpleUpperThreshold 0.650
redUpperThreshold 0.600
whiteUpperThreshold 0.820
yellowUpperThreshold 0.670
blackLowerThreshold 0.700
blueLowerThreshold 0.840
brownLowerThreshold 0.850
greenLowerThreshold 0.700
greyLowerThreshold 0.690
orangelLowerThreshold 0.760
purpleLowerThreshold 0.890
redLowerThreshold 0.600
whiteLowerThreshold 0.540
yellowLowerThreshold 0.930
adultThreshold 0.940

Configurations:

See the “Human Attribute Estimator settings” section in the “ConfigurationGuide.pdf” document.
API structure name:

IHumanAttributeEstimator

Plan files:

« human_attributes_v2_cpu.plan
« human_attributes_v2_cpu-avx2.plan
« human_attributes_v2_gpu.plan

VisionLabs B.V. 150 / 265

6.25 Crowd Estimation

Name: CrowdEstimator
Algorithm description:

This estimator aims to count a humans (heads) in the input image. It returns a count and center
coordinates of heads (optional).

There are several possible CrowdEstimator work modes:

+ Single network - Crowd estimation network is used. It works good with small heads in the image,
but can lose big heads (which are closer to the camera).

« Two networks mode - two networks are be used: Crowd estimation with HumanDetector or Crowd
estimation with HeadDetector. This mode causes more accurate results, but the execution of the
algorithms takes more time. Two variants of detector are possible. They are “HumanDetector” and
“HeadDetector”. User can change the detectorType parameter in the config.

Implementation description:
The estimator (see ICrowdEstimator in ICrowdEstimator.h):

« Implements the estimate() function that accepts source image in R8G8B8 format, the region
of interest (ROI), fsdk: :ICrowdEstimator::EstimationRequest structure and returns the

estimation result;

« Implements the estimate() function that accepts fsdk: : Span of the source images in R8G8B8
format, fsdk: :Span of ROIs, fsdk: : ICrowdEstimator: :EstimationRequest structure and
fsdk: :Spanofthe fsdk: :CrowdEstimation structures to return results of estimation.

Useris free to choose an estimation type. For this purpose, estimate() method takes one of the estimation

requests:

o fsdk::ICrowdEstimator::EstimationRequest::estimateHeadCount to return people
(heads) count only;
o fsdk::ICrowdEstimator::EstimationRequest::estimateHeadCountAndCoords to

return people (heads) count as well as head center coordinates;

The CrowdEstimation structure contains all possible results of the Crowd estimation:

struct CrowdEstimation {
size_t count;
IPointBatchPtr points;

+s

minHeadSize

VisionLabs B.V. 151/ 265

This estimator can estimate heads with size 3 px and more. In case when such small heads are not
required (or not possible in the use-case), user can change the minHeadS1 ze parameter in the config.

Before processing, the images will be resized by minHeadSize/3 times. For example, if the value is
minHeadSize=12, then the image will be additionally resized by minHeadSize=12/3=4 times.

Estimator works faster with larger value of minHeadS1 ze.
CrowdEstimatorType

The CrowdEstimation CrowdEstimatorType contains all possible working modes of the Crowd
estimator:

enum CrowdEstimatorType {
CET_DEFAULT = 0,

CET_SINGLE_NET = 1,
CET_TWO_NETS = 2,

CET_COUNT
s

Here are:

CET_DEFAULT - the default mode which is recommended to use. The result working mode will be

determines by the value in the configuration file faceengine.conf.
CET_SINGLE_NET - single network working mode. Only Crowd estimation will be used.
o CET_TWO_NETS -two networks mode: Crowd estimation and HumanDetector or Crowd estimation

and HeadDetector.
+ CET_COUNT - just a stub to check an input correctness, do not use it.

API structure name:
ICrowdEstimator
Plan files:

« crowd_v2_cpu.plan
« crowd_v2_cpu-avx2.plan
+ crowd_v2_gpu.plan

VisionLabs B.V. 152 / 265

6.26 Fights Estimation

Name: FightsEstimator
Algorithm description:

This estimator detects fights on a video by processing several images sequences (batches) one by one
from the target video.

This estimator works based on the several image sequences (batches). Each batch should contain the
IFightsEstimator::getBatchSize() frames.

Every IFightsEstimator::estimate estimation call returns a context structure as a result. This
context structure should be passed to the next estimation call for the current video. If several videos
should be processed in parallel, you should keep different context structures - one for each video.
For the first estimation call, the context structure should be empty (nullptr). After estimating
the IFightsEstimator::getMinBatchCount() batches, the context structure will contain
IFightsEstimatorContext: :State::Ready. You can then take an estimation result by calling
the IFightsEstimatorContext: :getResult() method. If more frames should be processed, the
succeeding IFightsEstimator: :estimate calls are required with passing the context structure.

Input requirements:

+ Frames should be in the fsdk: : Format: :R8B8G8 format.

« Video should be about 30 FPS.
If the video contains more FPS (for example, 60 FPS), we recommend that you do not pass every
frame to the estimator (for example, every second frame for the 60 FPS video).

Content requirements:

« Human bounding box heights in the video should be >=30% frames hight.
For example, for the video with 640 x 480 resolution the minimum humans bounding box height
should be (640 * 0.3) =192 px.
For details, see the Human Detection section in the Face detection facility chapter.

Camera requirements:

+ A camera should be static.

« An RGB camera. The estimator performance on IR cameras is worse.

+ The perspective should be from top to bottom, as on CCTV cameras. The recommended range is
30 to 60 degrees. The images below show examples of suitable angles.

VisionLabs B.V. 153 /265

VisionLabs B.V. 154 / 265

Implementation description:

The estimator (see IFightsEstimator in IFightsEstimator.h):

« Implements the estimate() function that needs the fsdk::Span (batch) of fsdk::Image
objects and the fsdk: :IFightsEstimatorContextPtr context object. The result is an error
code with updated fsdk: : IFightsEstimatorContextPtr context object.

The context structure (see IFightsEstimatorContext in IFightsEstimator.h):

« Implements the getState() function that takes no arguments. The result is the current
estimation state.
Value IFightsEstimatorContext: :State: :Ready means that the estimation is completed

VisionLabs B.V. 155/ 265

and the result could be taken from the structure. Value IFightsEstimatorContext: :State::
NoReady means that the estimation requires more frames to proceed.

+ Implements the getResult() function that takes no arguments. The result is the current
estimation result (FightsEstimation structure).

The FightsEstimation structure contains results of the estimation:

struct FightsEstimation {
enum class State {
NoFight, //!< There 1is no fight on the input frames
Fight //!< Fight detected on the input frames
s
State state; //!< Estimation status
float score; //!< Estimation score normalized to [0..1] range

}s
Estimation score is normalized in range [0..1], where 1-is a real person, 0 - is a fake.

Thevalue of state dependson threshold. You can change the thresholdvaluein the faceengine.conf
configuration file. For details, see the FightsEstimator settings section in Configuration Guide.

API structure name:
IFightsEstimator
Plan files:

« fights_v2_cpu.plan
« fights_v2_cpu-avx2.plan
« fights_v2_gpu.plan

VisionLabs B.V. 156 / 265

../../ConfigurationGuide/020_0660_FightsEstimator.md

6.27 ImageModification Estimation

Name: ImageModificationEstimator
Algorithm description:
This estimator checks images for several specific types of modifications:

1. Alogo on top of the image

2. Black border([s] at the edge[s] of the image. Beware, letter boxing and pillar boxing fall into this
category as well.

3. Superimposed shapes. The estimator determines whether there are filled shapes on top of the
image

4. Multiple overlapping images. The estimator determines if there are two or more different images
that partially overlap. Each of the original images might be free from modifications on its own, but
they overlap within the final, composed image under estimation.

To recap, the estimator checks images for the traces of most unnatural, artificial ways of image
compositing and editing.

The estimator does not analyze images for all possible types of modifications.

For example, the estimator is not intended to find synthetic images generated by DeepFake technologies
(we offer DeepFakeEstimator for that).

Similarly, the estimator is not intended to detect presentation attacks (we offer several types of liveness
estimators for that).

The estimator returns results as ImageModificationEstimation oraspan of that type.

ImageModificationEstimation contains a confidence score in the range [0.0,1.0] that the image is
not modified.

0 means that the estimator has found the traces of modification, hence the image is modified. 1 means
that the estimator has not found the traces of modification of any of the types listed above, hence the
image is probably not modified in the ways listed above.

Note: The face in the image and the image itself should meet the estimator requirements: - only 1face in
the image - face size > 50px

Note: This algorithm may produce incorrect results on images with a blurred background.
Implementation description:
The estimator (see IImageModificationEstimator in IiImageModificationEstimator.h):

« Implements the estimate() function that accepts source image in R8G8B8 format and returns the
estimation result;

VisionLabs B.V. 157 / 265

« Implements the estimate() function that accepts fsdk: : Span of the source images in R8G8B8
format and fsdk: :Span of the fsdk: :ImageModificationEstimation structures to return
the results of estimation.

« Implements the validate() function that accepts fsdk: : Span of the source images and fsdk: :
Span of the fsdk: :Result<fsdk: : FSDKError> structures to return the results of validation for
each image.

The ImageModificationEstimation structure contains the estimation results:

[x*

*x @brief Image modification estimator output structure
* %/
struct ImageModificationEstimation {
enum class Status {
Modified = ®, //!< Modification traces are found, the image -s
mod-ified
Unmodified //!< Modification traces are not found, the image is
probably unmodified
+s

float score; //!< confidence score in the [0,1] range that the -image
does not contain modification traces.
//'< "O" means that modification traces are
certainly present.

Status status; //!< whether the image is modified

33

The convenience variable ImageModificationEstimation::status is computed by comparing
score with ImageModificationEstimator::Settings::threshold from faceengine.conf.
For details, see the “ImageModificationEstimation settings” section in Configuration Guide.

API structure name:
IImageModificationEstimator
Plan files:

+ image_modification_v1_cpu.plan
« image_modification_v1_cpu-avx2.plan
+ image_modification_vi_gpu.plan

Examples See

« example_image_modificationin C++and

+ example_image_modification.pyin Python

VisionLabs B.V. 158 / 265

7 Descriptor Processing Facility

7.1 Overview

The section describes descriptors and all the processes and objects corresponding to them.

Descriptor itself is a set of object parameters that are specially encoded. Descriptors are typically more
or less invariant to various affine object transformations and slight color variations. This property allows
efficient use of such sets to identify, lookup, and compare real-world objects images.

To receive a descriptor you should perform a special operation called descriptor extraction.

The general case of descriptors usage is when you compare two descriptors and find their similarity score.
Thus you can identify persons by comparing their descriptors with your descriptors database.

All descriptor comparison operations are called matching. The result of the two descriptors matching
is a distance between components of the corresponding sets that are mentioned above. Thus, from a
magnitude of this distance, we can tell if two objects are presumably the same.

There are two different tasks solved using descriptors: person identification and person reidentification.

7.1.1 Person Identification Task

Facial recognition is the task of making an identification of a face in a photo or video image against a pre-
existing database of faces. It begins with detection - distinguishing human faces from other objects in
the image - and then works on the identification of those detected faces. To solve this problem, we use a
face descriptor, which extracted from an image face of a person. A person’s face is invariable throughout
his life.

In a case of the face descriptor, the extraction is performed from object image areas around some
previously discovered facial landmarks, so the quality of the descriptor highly depends on them and the
image it was obtained from.

The process of face recognition consists of 4 main stages:

« face detection in an image;

« warping of face detection - compensation of affine angles and centering of a face;
« descriptor extraction;

« comparing of extracted descriptors (matching).

Additionally you can extract face features (gender, age, emotions, etc) or image attributes (light,
dark, blur, specularity, illumination, etc.).

7.1.2 Person Reidentification Task

Note! This functionality is experimental.

VisionLabs B.V. 159 / 265

The person reidentification enables you to detect a person who appears on different cameras. For
example, it is used when you need to track a human, who appears on different supermarket cameras.

Reidentification can be used for:

building of human traffic warm maps;

analysing of visitors movement across cameras network;

tracking of visitors across cameras network;

search for a person across the cameras network in case when face was not captured (e.g. across
CCTV cameras in the city);

etc.

For reidentification purposes, we use so-called human descriptors. The extraction of the human

descriptor is performed using the detected area with a person’s body on an image or video frame. The
descriptor is a unique data set formed based on a person’s appearance. Descriptors extracted for the

same person in different clothes will be significantly different.

The face descriptor and the human descriptor are almost the same from the technical point of view,

but they solve fundamentally different tasks.

The process of reidentifications consists of the following stages:

human detection in an image;

warping of human detection - centering and cropping of the human body;
descriptor extraction;

comparing of extracted descriptors (matching).

The human descriptor does not support the descriptor score at all. The returned value of the

descriptor score is always equal to 1.0.

The human descriptor is based on to the following criteria:

Note.

clothes (type and color);

shoes;

accessories;

hairstyle;

body type;

anthropometric parameters of the body.

The human reidentification algorithm is trained to work with input data that meets the following

requirements:

input images should be in R8G8B8 format (will work worse in night mode);

the smaller side of input crop should be greater than 60 px;

inside of same crop, one person should occupy more than 80% (sometimes several persons fit into
the same frame).

VisionLabs B.V. 160 /265

7.2 Descriptor

Descriptor object stores a compact set of packed properties as well as some helper parameters that were
used to extract these properties from the source image. Together these parameters determine descriptor
compatibility. Not all descriptors are compatible with each other. It is impossible to batch and match
incompatible descriptors, so you should pay attention to what settings do you use when extracting them.
Refer to section “Descriptor extraction” for more information on descriptor extraction.

7.2.1 Descriptor Versions

Face descriptor algorithm evolves with time, so newer FaceEngine versions contain improved models of
the algorithm.

Descriptors of different versions are incompatible! This means that you cannot match descriptors
with different versions. This does not apply to base and mobilenet versions of the same model:
they are compatible.

See chapter “Appendix A. Specifications” for details about performance and precision of different
descriptor versions.

Descriptor version 65 is the most precise one. And it works well with the personal protective equipment
on face like medical mask.

Descriptor version may be specified in the configuration file (see section “Configuration data” in chapter
“Core facility”).

7.2.1.1 Face descriptor
7.2.1.1.1 Available versions Currently, the following versions are available: 58, 59, 60, 62, and 65.
These descriptors have two implementation types:

+ Backend: High-precision implementation
« Mobilenet: Faster implementation with smaller model files

7.2.1.1.2 Version compatibility

« Versions 58, 62, and 65 support only the backend implementation.
+ Backend versions offer higher precision.
+ Mobilenet versions provide faster processing and smaller model files.

For detailed performance and precision comparisons, see Appendix A.1 and A.2.

7.2.1.1.3 GPU compatibility for CNN65 CNNG65 requires a GPU with NVIDIA Turing architecture
or newer for correct operation. Older GPU architectures are not supported and may experience
performance issues or complete failure.

VisionLabs B.V. 161/ 265

7.2.1.2 Human descriptor
Versions of human descriptors are available: 102, 103, 104, 105, 106, 107, 108, 109, 110, 112, 113, 115, 116

Versions 102, 103, 104, 105, 106, 107, 109, 110 are deprecated.

To create a human descriptor, human batch, human descriptor extractor, human descriptor matcher you
must pass the human descriptor version

« DV_MIN_HUMAN_DESCRIPTOR_VERSION =102 or

« HDV_TRACKER_HUMAN_DESCRIPTOR_VERSION = 102, //!< Deprecated. human descriptor for
tracking of people on one camera, light and fast version

« HDV_PRECISE_HUMAN_DESCRIPTOR_VERSION =103, //!< Deprecated. precise human descriptor,
heavy and slow

+ HDV_REGULAR_HUMAN_DESCRIPTOR_VERSION =104, //!< Deprecated. regular human descriptor,
use it by default for multi-cameras tracking

« HDV_TRACKER_V2 =105, //!< human descriptor for tracking of people, light and fast version.

« HDV_PRECISE_V2 =106, //!< precise human descriptor, heavy and slow.

+ HDV_REGULAR_V2 =107, //!< regular human descriptor.

« HDV_TRACKER_V3 =108, //!< human descriptor for tracking of people, light and fast version.

« HDV_PRECISE_V3 =109, //!< precise human descriptor, heavy and slow.

« HDV_REGULAR_V3 =110, //!< regular human descriptor.

« HDV_PRECISE_V4 =112, //!< precise human descriptor, heavy and slow.

+ HDV_REGULAR_V4 =113 //!< regular human descriptor.

« HDV_PRECISE_V5 =115, //!< precise human descriptor, heavy and slow.

« HDV_REGULAR_V5 =116 //!< regular human descriptor.

7.2.2 Descriptor Batch

When matching significant amounts of descriptors, it is desired that they reside continuously in memory
for performance reasons (think cache-friendly data locality and coherence). This is where descriptor
batches come into play. While descriptors are optimized for faster creation and destruction, batches are
optimized for long life and better descriptor data representation for the hardware.

A batch is created by the factory like any other object. Aside from type, a size of the batch should be
specified. Size is a memory reservation this batch makes for its data. It is impossible to add more data
than specified by this reservation.

Next, the batch must be populated with data. You have the following options:

+ add an existing descriptor to the batch;
« load batch contents from an archive.

The following notes should be kept in mind:

VisionLabs B.V. 162 /265

« When adding an existing descriptor, its data is copied into the batch. This means that the descriptor
object may be safely released.

« When adding the first descriptor to an empty batch, initial memory allocation occurs. Before that
moment the batch does not allocate. At the same moment, internal descriptor helper parameters
are copied into the batch (if there are any). This effectively determines compatibility possibilities
of the batch. When the batch is initialized, it does not accept incompatible descriptors.

After initialization, a batch may be matched pretty much the same way as a simple descriptor.

Like any other data storage object, a descriptor batch implements the ::clear() method. An effect of this
method is the batch translation to a non-initialized state except memory deallocation. In other words,
batch capacity stays the same, and no memory is reallocated. However, an actual number of descriptors
in the batch and their parameters are reset. This allows re-populating the batch.

Memory deallocation takes place when a batch is released.

Care should be taken when serializing and deserializing batches. When a batch is created, it is assigned
with a fixed-size memory buffer. The size of the bufferis embedded into the batch BLOB when it is saved.
So, when allocating a batch object for reading the BLOB into, make sure its size is at least the same as
it was for the batch saved to the BLOB (even if it was not full at the moment). Otherwise, loading fails.
Naturally, it is okay to deserialize a smaller batch into a larger another batch this way.

7.2.3 Descriptor Extraction

Descriptor extractor is the entity responsible for descriptor extraction. Like any other object, it is created
by the factory. To extract a descriptor, aside from the source image, you need:

+ aface detection area inside the image (see chapter “Detection facility”)
« apre-allocated descriptor (see section “Descriptor”)
+ apre-computed landmarks (see chapter “Image warping”)

A descriptor extractor object is responsible for this activity. It is represented by the straightforward
IDescriptorExtractor interface with only one method extract(). Note, that the descriptor object must be
created prior to calling extract() by calling an appropriate factory method.

Landmarks are used as a set of coordinates of object points of interest, that in turn determine source
image areas, the descriptor is extracted from. This allows extracting only data that matters most for
a particular type of object. For example, for a human face we would want to know at least definitive
properties of eyes, nose, and mouth to be able to compare it to another face. Thus, we should firstinvoke
a feature extractor to locate where eyes, nose, and mouth are and put these coordinates into landmarks.
Then the descriptor extractor takes those coordinates and builds a descriptor around them.

Descriptor extraction is one of the most computation-heavy operations. For this reason, threading might
be considered. Be aware that descriptor extraction is not thread-safe, so you have to create an extractor
object per a worker thread.

VisionLabs B.V. 163 /265

It should be noted, that the face detection area and the landmarks are required only for image warping,
the preparation stage for descriptor extraction (see chapter “Image warping”). If the source image
is already warped, it is possible to skip these parameters. For that purpose, the IDescriptorExtractor
interface provides a special extractFromWarpedimage() method.

Descriptor extraction implementation supports execution on GPUs.

The [DescriptorExtractor interface provides extractFromWarpedimageBatch() method which allows
you to extract batch of descriptors from the image array in one call. This method achieve higher
utilization of GPU and better performance (see the “GPU mode performance” table in appendix A
chapter “Specifications”).

Also [DescriptorExtractor returns descriptor score for each extracted descriptor. Descriptor score is
normalized value in range [0,1], where 1 - face in the warp, 0 - no face in the warp. This value allows you
filter descriptors extracted from false positive detections.

The IDescriptorExtractor interface provides extractFromWarpedimageBatchAsync() method which allows
you to extract batch of descriptors from the image array asynchronously in one call. This method achieve
higher utilization of GPU and better performance (see the “GPU mode performance” table in appendix A
chapter “Specifications”).

Note: Method extractFromWarpedimageBatchAsync() is experimental, and it’s interface may be changed
in the future.

Note: Method extractFromWarpedimageBatchAsync() is not marked as noexcept and may throw an
exception.

7.2.4 Descriptor Matching

It is possible to match a pair (or more) previously extracted descriptors to find out their similarity. With
this information, it is possible to implement face search and other analysis applications.

VisionLabs B.V. 164 / 265

99.47%

29.04% 6.77%

Figure 17: Matching

By means of match function defined by the IDescriptorMatcher interface it is possible to match a pair of
descriptors with each other or a single descriptor with a descriptor batch (see section “Descriptor batch”
for details on batches).

A simple rule to help you decide which storage to opt for:

+ when searching among less than a hundred descriptors use separate IDescriptor objects;
« when searching among bigger number of descriptors use a batch.

When working with big data, a common practice is to organize descriptors in several batches keeping a
batch per worker thread for processing.

Be aware that descriptor matching is not thread-safe, so you have to create a matcher object per a worker
thread.

7.2.5 Descriptor Indexing

7.2.5.1 Using HNSW
To accelerate a descriptor matching process, you can create a special index for a descriptor batch. With
the index, matching becomes a two-stage process:

VisionLabs B.V. 165 /265

First stage: build an indexed data structure — index — by using IIndexBuilder. This is quite a slow
process, so it is not supposed to be done frequently. To build it, you can:

- Append the “IDescriptor’ or ‘IDescriptorBatch’ objects
- Use the "IIndexBuilder::buildIndex’ build method

Second stage: use the index to quickly search the nearest neighbors for passed descriptors.
There are two types of indexes:

+ IDenseIndex
Read-only. Loading faster than IDynamicIndex. Once loaded, there are no performance
differences in terms of searching between the two indexes.

« IDynamicIndex
Editable. Allows you to append and remove descriptors. If you remove descriptors, they are
removed from the graph for searching.
To save IDynamicIndex with removed descriptors, first, call eraseRemovedDescriptors from
IDynamicIndex structure. The state of the stored dynamic search index is not guaranteed for
implementation reasons. If the descriptors are successfully erased, the remaining ID will move
up. The shift depends on the number of removed handles. If the index state after erasing is valid,
you can continue to use it for searching, otherwise you will have to rebuild it. > Important:
We recommend to avoid operations that remove descriptors and rebuild the index by calling
IIndexBuilder: :buildIndex from a new set of descriptors and save the result as the dynamic
index one more time.

You can only build a dynamic index. To get a dense index, you need to make it via deserialization. If you
have several processes that might need to search in the index, do one of the following:

« Build an index for every process separately.
>Warning: Building an index is a slow process.
« Build an index once and serialize it to a file.

7.2.5.2 Index serialization
To serialize an index, use the IDynamicIndex::saveToDenseIndex or IDynamicIndex::
saveToDynamicIndex methods.

Todeserializeanindex, usethe IFaceEngine: : loadDenseIndexorIFaceEngine: : loadDynamicIndex
methods.

Important notes:

« Index files are not cross-platform. If you serialize an index on some platform, it is only usable
on that exact platform. An operating system, as well as a different CPU architecture, may break
compatibility.

VisionLabs B.V. 166 / 265

« Embedded and 32-bit desktop platforms do not support the HNSW index.
« After large index files are loaded into RAM, the first lookup may take additional time due to process
allocations. We recommend that you perform an idle search of descriptors to warm up.

7.2.5.3 Dynamic index evaluation scheme. This feature is experimental. Backward compatibility is not
guaranteed.

In LUNA SDK v.5.17.0 and later, you can remove descriptors from a dynamic index in amounts of up to

80-90% of the total count. Deleting descriptors affects the internal structure of the index. The number of

removed descriptors increases. For this reason, you must assess an index state.

7.2.5.3.1 Simple rules

Call isvalidForSearch every 10% of deletions from the original number of descriptors.
Call evaluate after removing of 60% descriptors and every 10% of deletions after.
Rebuilding an index is mandatory in a case of getting DIS_INVALID.

Rebuilding an index is recommended if your index coefficient values are less than the ones in the
table below (searchForEvaluation=20):

Index size Value

10M 0.5
20M 0.4
30M 0.4
40M 0.35

7.2.5.3.2 isValidForSearch method Callthe isvalidForSearch method after every removal of 10%
of the original descriptor count. This method returns an index state. If the received state differs from
DIS_VALID, you must rebuild the index to avoid unpredictable behavior.

The method specification is presented below:

virtual ResultValue<FSDKError, DynamicIndexState> disValidForSearch() const
noexcept = 0;

Where available range of DynamicIndexState is:

enum DynamicIndexState : uint8_t {
DIS_INVALID = 0, //!< DIS_INVALID - dindex 1is invalid for search.

VisionLabs B.V. 167 / 265

DIS_VALID,
DIS_UNKNOWN,
DIS_COUNT

+s

7.2.5.3.3 evaluate method Call the evaluate method after removing 60% of the original descriptor

count.

The evaluate method takes significantly longer to run compared to isValidForSearch. You can
specify searchForEvaluation and numThreads in the IndexBuilder::Settings section in
faceengine.conf to tune it. The number of threads numThreads should be selected not greater than
the number of cores in the system and not less than 0. By default, the number of threads is 0 and

corresponds to the number of available cores.

The larger the searchForEvaluation value is, the more precise the evaluation will be, and the longer
evaluate () method will run.

The method specification is presented below:

virtual ResultValue<FSDKError, float> evaluate() const noexcept = 0;

The method returns the status and the numerical value. The score is in the range [0, 1]
The table below shows estimated execution time, in minutes:

searchForEvaluationis LengthSearch.

Index size LengthSearch 20 LengthSearch 50 LengthSearch 100 LengthSearch 200

1.6M 1.65 2.44 2.73 3.19
10M 5.60 8.61 16.56 28.43
30M 22.10 32.03 39.60 58.63

Processor: Intel Xeon Skylake (IBRS)
Number of CPU cores: 32

CPU clock speed: 2.1 GHz

RAM capacity: 113 GB

It is necessary to rebuild the index after receiving the DIS_INVALID state regardless of the value. We
recommend you to rebuild the index in the DIS_VALID state when the value is below the threshold.

VisionLabs B.V. 168 /265

If the index state is DIS_INVALID, you can save it to a file and load subsequently. The following method
can be used to get a descriptor using its identifier:

virtual Result<FSDKError> descriptorByIndex(const DescriptorId -index,
IDescriptorx descriptor) const noexcept = 0;

VisionLabs B.V. 169 / 265

8 System Requirements

8.1 Windows OS installations

We support 64-bit versions of the following operating systems:

Desktop/workstation environment:

« Windows 10 version 1909 or newer is required. Older versions are not supported.

Server environment:

« Windows Server 2016 or newer is required. Older versions are not supported.

Supported compiler:

« Visual Studio 17 2022. Other compilers may work but were not tested.

Note 1: FaceEngine requires a 64-bit version of Visual C++ Redistributable for Visual Studio 2022 to

operate. The redistributable installer may be obtained from Microsoft via this link:

https://learn.microsoft.com/en-us/cpp/windows/latest-supported-vc-redist

8.2 Linux OS installations

We support the following operating systems:

« CentOS 8.2 64-bit
« AlmaLinux 8
« Ubuntu 2404 LTS 64-bit.

Supported compiler for CentOS 8.2 64-bit:
+ GCC=GNU 7.5.0
Supported compiler for Ubuntu 2404 LTS 64-bit:
« GCC=GNU13.2.0
Other compilers may work but were not tested.
Important notes:

+ 32-bit OS on x86_64 CPU are not supported.
+ Your OS should run glibc version 2.17 (CentOS) or 2.39 (Ubuntu), or newer.
+ System locale must be US English. Specifically LC_NUMERIC=en_US.UTF-8.

VisionLabs B.V.

170 /265

https://learn.microsoft.com/en-us/cpp/windows/latest-supported-vc-redist

9 Hardware requirements

9.1 Server /PCinstallations

See “Appendix A. Specifications” for information about hardware used for performance measurements.

9.1.1 General considerations

Be warned, that not all algorithms in the SDK have GPU or NPU implementations. If the desired algorithm

doesn’thave a GPU or NPU implementation, a fallback to the CPU implementation has to be made. In this

case, one should take care of possible memory transfers and latency they cause. Please see the algorithm

implementation matrix for details.

Neural network

FaceDet_v2_<detector_type>_first_<device>.plan
FaceDet_v2_<detector_type>_second_<device>.plan
FaceDet_v2_<detector_type>_third_<device>.plan
FaceDet_v3_<version>_<device>.plan
FaceDet_v3_redetect_<version>_<device>.plan
model_subjective_quality_<version>_<device>.plan
headpose_v3_<device>.plan

ags_v3_<device>.plan
attributes_estimation_<device>.plan
portrait_style_<version>_<device>.plan
background_<version>_<device>.plan
emotion_recognition_<version>_<device>.plan
glasses_estimation_v2_<device>.plan
eyes_estimation_flwr8_<device>.plan
eye_status_estimation_<device>.plan
eyes_estimation_ir_<device>.plan
gaze_<version>_<device>.plan
red_eye_<version>_<device>.plan
gaze_ir_<version>_<device>.plan

overlap_estimation_v1_<device>.plan

VisionLabs B.V.

CPU

yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes

yes

CPU AVX2

yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes

yes

NPU Atlas

yes

yes

yes

GPU

yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes

yes

171/ 265

Neural network

mouth_estimation_<version>_<device>.plan
face_occlusion_v1_<device>.plan
mask_clf_<version>_<device>.plan
ppe_estimation_<version>_<device>.plan
orientation_<device>.plan
LNet_precise_<version>_<device>.plan
LNet_ir_precise_<version>_<device>.plan
slnet_<version>_<device>.plan
liveness_model_<version>_<device>.plan
depth_estimation_<device>.plan
ir_liveness_universal_<device>.plan
eyebrow_estimation_<version>_<device>.plan
flying_faces_liveness_<version>_<device>.plan
rgbm_liveness_<device>.plan
rgbm_liveness_pp_hand_frg_<device>.plan
natural_light_<device>.plan
head_wear_<version>_<device>.plan
fisheye_<version>_<device>.plan
human_<version>_<device>.plan
human_redetect_<device>.plan
human_attributes_<version>_<device>.plan
reid_<reid_type>_102_<device>.plan (deprecated)
reid_<reid_type>_103_<device>.plan (deprecated)
reid_<reid_type>_104_<device>.plan (deprecated)
reid_<reid_type>_105_<device>.plan (deprecated)
reid_<reid_type>_106_<device>.plan (deprecated)
reid_<reid_type>_107_<device>.plan (deprecated)
reid_<reid_type>_108_<device>.plan

reid_<reid_type>_109_<device>.plan (deprecated)

VisionLabs B.V.

CPU

yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes

yes

CPU AVX2

yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes

yes

NPU Atlas

GPU

yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes

yes

172 / 265

Neural network

reid_<reid_type>_110_<device>.plan (deprecated)
reid_<reid_type>_112_<device>.plan
reid_<reid_type>_113_<device>.plan
cnn56b_<device>.plan

cnn56m_<device>.plan

cnn57b_<device>.plan

cnn58b_<device>.plan

cnn59m_<device>.plan

cnn62b_<device>.plan

cnn65b_<device>.plan
oneshot_rgb_liveness_<version>_model_1_<device>.plan
oneshot_rgb_liveness_<version>_model_2_<device>.plan
oneshot_rgb_liveness_<version>_model_3_<device>.plan
oneshot_rgb_liveness_<version>_model_7_<device>.plan
crowd_<version>_<device>.plan
depth_liveness_v2_<device>.plan
depth_rgb_<version>_<model_id>_<device>.plan
vlTracker_detection_<device>.plan
vlTracker_template_<device>.plan

vlTracker_update_<device>.plan

9.1.2 CPU requirements

CPU

yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes

yes

CPU AVX2

yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes

yes

NPU Atlas

yes

yes

yes
yes
yes
yes

yes

For NN with ”*_cpu.plan” in names, CPU should support at least the SSE4.2 instruction set.

GPU

yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes

yes

For NN with ”*_cpu-avx2.plan” in names, AVX2 instruction set support is required for the best

performance.

Only 64-bit CPUs are supported.

If in doubt, consider checking your CPU specifications at the following websites:

« Intel CPU: http://ark.intel.com

VisionLabs B.V.

173 /265

http://ark.intel.com

« AMD CPU: http://products.amd.com.

9.1.3 GPU requirements

For GPU acceleration an NVIDIA GPU is required. The following architectures are supported:

+ Pascal or newer
« Compute Capability. The version depends on the platform (see “Requirements for GPU
acceleration”)

A minimum of 6GB or dedicated video RAM is required. 8 GB or more VRAM recommended.

9.1.4 The number of SDK threads while using GPU

If Runtime: :numThreads in runtime.conf is not -1, then the SDK creates numThreads - 1 worker
threads. Besides, the user-created thread that initializes the SDK is used as a worker thread too.

In addition to worker threads, the SDK creates approximately GPU_count + 1 CUDA threads, where
GPU_count is the number of GPUs in the system. The number of CUDA threads may slightly vary
depending on drivers.

Example Assume Runtime: :numThreads=4 and there is 1 GPU. If we list all threads in the process, we
get something like the following:

thread id=4162 (unittest_core_t)
thread i1d=4170 (Worker 1)
thread id=4171 (Worker 2)
thread id=4172 (Worker 3)
thread 1d=4186 (cudaf0001400006)
thread i1d=4273 (cuda-EvtHandlr)

Here the thread unittest_core_t is created by the user (“main thread”) and is used to initialize the
SDK. It will be used as one of worker threads by the SDK. Worker 1,Worker 2,Worker 3are3workers
created by the SDK. The 2 CUDA threads are also created by the SDK (1 GPU +1).

9.1.5 NPU requirements
Huawei Atlas NPU was utilized with the following drivers and additional SW installed:
Drivers:

« Version=20.2.0
« ascendhal_version =4.0.0
+ aicpu_version=1.0

VisionLabs B.V. 174 / 265

http://products.amd.com/en-us/

tdt_version=1.0

log_version=1.0

prof_version =2.0

« dvppkernels_version =1.1

« tsfw_version=1.0

« required_firmware_firmware_version =1.0

Firmware:

» Version=1.76.22.3.220
« firmware_version=1.0

Toolkit:

« Version=1.76.22.3.220

9.1.6 RAM requirements

System memory consumption differs depending on a usage scenario and is proportional to the number
of worker threads. This is true for both CPU (think system RAM) and GPU (think VRAM) execution modes.

For example, in CPU execution mode 1GB RAM is enough for a typical pipeline, which consists of a face
detector and a face descriptor extractor running on a single core (one worker thread) and processing
1080p input images with 10-12 faces on average. If this setup is scaled up to 8 worker threads, overall
memory consumption grows up to 8GB.

Itis recommended to assume at least 1GB of free RAM per worker thread.

9.1.7 Storage requirements

FaceEngine requires 1GB of free space to install. Thisincludes model datafor both CPU and GPU execution
modes that should be redistributed with your application. If only one execution mode is planned, reduce
space requirements by half.

9.1.8 Approaches to software design targeting different hardware

When performing inference on different hardware, several key differences should be taken into account
to reach maximum possible performance:

9.1.8.1 CPU
Key points:

« Memory used by the inference engine is physically located on the same chips where OS and
business logic data reside. Source data (images/video frames) also reside there.

VisionLabs B.V. 175/ 265

« The CPU is general-purpose hardware, not tailored for many operations specific to NN inference.
Implications:

« No memory transfers ever performed, memory access latency is low. the CPU is easily saturated
with work.
+ Both memory and CPU may receive additional pressure from background processes.

Recommendations:

« Don’t expect profit from batching. If the software isn’t expected to ever run/support GPU or NPU,
don’timplement it at all. Instead, consider culling computation-heavy algorithms early (e.g. check
head pose and AGS score before attempting to extract a descriptor in order to avoid the extraction
for bad faces).

+ Use tools like taskset() to isolate different types of workload on process level on servers.

« Consider running a separate SDK process per node on NUMA systems. Note, that SDK itself is not
NUMA-aware.

9.1.8.2 GPU/NPU
Key points:

+ Memory used by the inference engine is physically located on the device and source data
(images/video frames) is on the host memory.

« While servers typically use DDR memory, GPU/NPU devices prefer GDDR, which offers higher
throughput at the cost of higher latency.

« GPU/NPU devices process excessive amounts of data in hundreds/thousands of threads without
external interference. In addition, they implement specialized instructions for many typical NN
inference operations.

« GPU/NPU are fed with work by the CPU.

Implications:

« Memory transfers should be taken into account. Such transfers typically take place by means of the
PCl-e bus and the bus may become the performance bottleneck. GPU/NPU generally needs much
more input data to saturate it with work.

Recommendations:

+ Batch multiple source images together and do inference for the entire match at once. This helps
to saturate both the bus and the device. See recommended batch sizes in chapter Appendix A.
Specifications.

+ Take care of memory residence. While SDK will do an implicit memory transfer for you, in some
cases it is beneficial to do this yourself. E. g. Both Tesla and Atlas cards implement on-board
hardware accelerated decoders for JPEG and h264 formats. If your software utilizes these decoders,

VisionLabs B.V. 176 / 265

don’t transfer the decoder output to the host memory. Instead, pass the device pointer to the SDK
directly. Note, that SDFK Image class can wrap an existing memory pointer at no cost.

+ Take care of device work scheduling. The general rule of thumb:

- Don’t acces the same device from multiple threads/processes, this may involve kernel level
locks or be unsupported at all

- Access different devices from different threads/processes. This way work scheduling is less
likely to be CPU-bound.

- Workload isolation recommendations for the CPU also apply here.

SDK algorithms are device-bound. To support multiple devices in one process, you are required to create
each algorithm implementation you need on a per-device basis and bind it to the corresponding device
as shown in the example below:

int32_t npuDeviceIndex = 1;

fsdk: :LaunchOptions launchOptions;
launchOptions.deviceClass = fsdk::DeviceClass: :NPU_ASCEND;
launchOptions.npuDevice = npuDeviceIndex;

auto result = faceEngine->createDetector(
detectorType,
fsdk::SensorType::Visible,
&launchOptions

)5
ASSERT_TRUE (result.isOk());

auto detector = result.getValue();

GPU specific recommendations
GPUs tend to be harder to saturate with work. Consider bigger batches.
NPU specific recommendations

Atlas 3001 NPU is designed such that there are 4 different NPU devices per accelerator card. This means
that you have to design your software for multi-device scenarios from the ground up to achieve the best
performance. The card has a PCl-e x8 bus connector and each NPU device consumes x2 lanes from it; the
busis likely to become the bottleneck. Atlas 3001 NPU is saturated with work quite easily; batching makes
sense for some particularly lightweight NNs mostly. Memory operations on the device (copy, clears) are
particularly slow.

9.1.9 Requirements for GPU acceleration

Recommended versions of CUDA:

VisionLabs B.V. 177 / 265

« For Win64 - CUDA Toolkit 11.6
« For Linux(CentOS, AlmaLinux) - CUDA Toolkit 11.4
« For Linux(Ubuntu) - CUDA Toolkit 12.4

The most current version of these release notes can be found online at http://docs.nvidia.com/cuda/
cuda-toolkit-release-notes/index.html.

Important: For Win64 and Linux (CentOS, AlmaLinux) there are additional requirements - Compute
Capability 6.1 or higher.

CUDA version on Linux can be found using command below:

Snvidia—-smi

CUDA version on Windows can be found in Control Panel\Programs\Programs and Featuresas
in figure below

Figure 18: CUDA version on Win

We recommend that you use suggested version of CUDA for your operating system. But if your
version is older than required, we do not guarantee, that it will work successfully. For details about
CUDA Compatibility, see https://docs.nvidia.com/deploy/cuda- compatibility/index.html.

9.2 Embedded installations
9.2.1 CPU requirements

Supported CPU architectures:

 ARMVT-A;
+ ARMv8-A (ARM64).

VisionLabs B.V. 178 / 265

https://developer.nvidia.com/cuda-11-6-0-download-archive
https://developer.nvidia.com/cuda-11-4-0-download-archive
https://developer.nvidia.com/cuda-12-4-0-download-archive
http://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html
http://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html
https://docs.nvidia.com/deploy/cuda-compatibility/index.html

10 Migration guide

10.1 Overview

Here you can find information about important changes in the next releases of LUNA SDK.

10.2 v.5.27.0

10.2.1 Multithreading usage of factory functions (for example: createAGSEstimator,
createHeadWearEstimator...)

Before 5.27.0 we describe rules of FaceEngine interface usage in matter of multithreading in Chapter 1
Core Concepts. Now, we assert this rules by adding strict checks by thread_id. Now if rules is not followed
user will get errors.

10.3 v.5.24.0
10.3.1 IDetector

The FaceDetV1 has been removed since v.5.24.0.

10.4 v.5.23.0
10.4.1 limageTransfer

Since version 5.23.0, a method for a single image in the IimageTransfer interface has been removed.

Example of code (before version 5.23.0):

auto result = imageTransfer->transfer(image, fsdk::Image::
MemoryResidence: :MemoryGPU) ;

// or
auto result = imageTransfer->transfer(images, fsdk::Image::
MemoryResidence: :MemoryGPU) ;

Example of code (from version 5.23.0):

auto result = imageTransfer->transfer(images, fsdk::Image::
MemoryResidence: :MemoryGPU) ;

10.4.2 IDetector

The FaceDetV1 has been deprecated since v.5.23.0. Use FaceDetV3 instead.

VisionLabs B.V. 179 / 265

10.5 v.5.22.0
10.5.1 IHeadPoseEstimator

Since version v.5.22.0, an estimation method of THeadPoseEstimator, based on Landmarksé68 has
been dropped. Accordingly, the configuration block - "HeadPoseEstimator: :Settings", which
allows the user to define which method to use, has also been dropped.

10.5.2 IHeadPoseEstimator and IAGSEstimator

Since version v.5.22.0, IHeadPoseEstimator and IAGSEstimator have been reconsidered and
reinstated.

10.6 v.5.20.0
10.6.1 ILivenessFlowEstimator

Since v.5.20.0 the ILivenessFlowEstimator estimator has been removed.

10.7 v.5.19.0
10.7.1 ILivenessFlowEstimator

Since v.5.19.0 the ILivenessFlowEstimator estimator has been deprecated. If you still need this
estimator, please, contact VisionLabs for details.

10.8 v.5.18.0
10.8.1 IChildEstimator

Since v.5.18.0 the IChildEstimator estimator has been removed. Use the IAttributeEstimator
(SeeIAttributeEstimator.h)withIAttributeEstimator::EstimationRequest::estimateAge
instead.

10.8.2 IHeadAndShouldersLivenessEstimator

Since v.5.18.0 the THeadAndShouldersLivenessEstimator estimator has been removed. If you still
need this estimator, please, contact VisionLabs for details.

VisionLabs B.V. 180 /265

10.9 v.5.17.0
10.9.1 IHeadAndShouldersLivenessEstimator

Since v.5.17.0 the estimator IHeadAndShouldersLivenessEstimator has been deprecated (See
IHeadAndShouldersLivenessEstimator.h). If you need this estimator, please, contact VisionLabs
for details.

10.9.2 IChildEstimator

Since v.5.17.0 the estimator IChildEstimator has been deprecated (See IChildEstimator.h).
Use the IAttributeEstimator (See IAttributeEstimator.h) with IAttributeEstimator::
EstimationRequest: :estimateAge instead.

Example of code (before version v.5.17.0):

// Create child estimator.
auto resChildEstimator = faceEngine->createChildEstimator();
if(!resChildEstimator) {
std::cerr << "Failed to create child estimator instance. Reason: "
<< resChildEstimator.what();
std::cerr << std::endl;
return -1;
}
fsdk::IChildEstimatorPtr childEstimator = resChildEstimator.getValue();

// Get child estimation.
fsdk::ChildEstimation childEstimation;
fsdk: :Result<fsdk::FSDKError> childEstimationResult = childEstimator->
estimate(warp, childEstimation);
if(childEstimationResult.isOk()) {
std::cout << "\nChild estimate:";
std::cout << "\nchildScore: " << childEstimation.childScore << " (
range [0, 1])";
std::cout << "\nis child: " << childEstimation.isChild << " (1 - 1s
child, 0 - is adult)";
std::cout << std::endl;
} else {
std::cerr << "Failed child estimation. Reason: " <<
childEstimationResult.what() << std::endl;

Example of code (from version v.5.17.0):

VisionLabs B.V. 181/ 265

auto resAttributeEstimator = faceEngine->createAttributeEstimator();
if(!resAttributeEstimator) {
std::cerr << "Failed to create attribute estimator -instance. Reason:
" << resAttributeEstimator.what();
std::cerr << std::endl;
return -1;
}
fsdk::IAttributeEstimatorPtr attributeEstimator = resAttributeEstimator.
getValue();

using AttrsRequest = fsdk::IAttributeEstimator::EstimationRequest;
AttrsRequest attributesRequest = AttrsRequest::estimateAge;
fsdk: :IAttributeEstimator::EstimationResult attributeEstimation;

fsdk::Result<fsdk: :FSDKError> attributeEstimatorResult =
attributeEstimator->estimate(warp, attributesRequest,
attributeEstimation);

if(attributeEstimatorResult.isOk()) {
std::cout << "\nAttribute estimate:";
std::cout << "\nage: " << attributeEstimation.age.value() << " (din
years)" << std::endl;
std::cout << std::endl;
1 else {
std::cerr << "Failed to make attribute estimation. Reason: " <<
attributeEstimatorResult.what();
std::cerr << std::endl;

10.9.3 Index

Since v.5.17.0 IDynamiclndex can be saved as a file to hard disc after removing of descriptors.

Example of code (before version v.5.17.0):

for (std::size_t i = 0; i < nRemoved; ++1i) {
auto resRemove = +index->removeDescriptor(i);
if (resRemove.isError()) {

VisionLabs B.V. 182 /265

Example of code (from version v.5.17.0):

// remove descriptors
for (std::size_t i = 0; i < nRemoved; ++i) {
auto resRemove = index->removeDescriptor(i);
if (resRemove.isError()) {
// process error

// erase descriptors
auto resEraseRemovedDescs = index->eraseRemovedDescriptors();
if(resEraseRemovedDescs.isError()) {

// process error

// get map of new descriptors
auto map = resEraseRemovedDescs.getValue();
for (std::size_t i = 0; i < count; ++i) {
// if the old ID is not found, the error InvalidDescriptorId will be
returned
auto resMapFind = map->getId(i);
if (resMapFind.disError()) {
// process error or skip not found -d

}
// we can get new 1id by old -id

auto newId = resMapFind.getValue();

// now we can save index
auto resSave = index->saveToDynamicIndex("your_index_name.bin");
if (resSave.isError()) {

// process error

VisionLabs B.V. 183 /265

10.9.4 FishEyeEstimator

Since v.5.13.0 method estimate of IFishEyeEstimator by crop and detection has been deprecated
(See IFishEyeEstimator.h). Use estimate by warped image instead.

Example of code (before version 5.13.0):

fsdk::FishEyeEstimation estimation;
fsdk: :Result<fsdk: :FSDKError> res = fishEyeEstimator->estimate(image,
detection, estimation);

Example of code (from version 5.13.0):

fsdk::FishEyeEstimation estimation;
fsdk: :Result<fsdk: :FSDKError> res = fishEyeEstimator->estimate(warp,
estimation);

10.10 v.5.6.0
10.10.1 Vector2

Since v.5.6.0, the member array in fsdk: :Vector2 has been removed. You should use the x andy
members instead of the removed array one.

Example of code (before version 5.6.0):

fsdk::Vector2<int> vector2;
vector2.x = 10;

vector2.y = 20;

/] or

vector2.array[0] 10;
vector2.array[1l] = 20;

Example of code (from version 5.6.0):

fsdk: :Vector2<int> vector2;
vector2.x = 10;
vector2.y = 20;

VisionLabs B.V. 184 /265

10.10.2 BlackWhiteEstimator

Since v.5.6.0 method estimate of IBlackWhiteEstimator by full image has been deprecated (See
IBlackWhiteEstimator.h). Use estimate by warped image instead.

Example of code (before version 5.6.0):

bool isGray = false;
Result<FSDKError> res = BlackWhiteEstimator->estimate(fullImage, isGray)

)

Example of code (from version 5.6.0):

fsdk::ImageColorEstimation estimation;
Result<FSDKError> res = BlackWhiteEstimator->estimate(warp, estimation);

10.11 v.5.5.0

From v.5.5.0 the default value of numThreads (runtime.conf) was replaced by -1. Which means that
will be taken the maximum number of available threads. This number of threads is equal to according
number of available processor cores.

Example of setting (before version 5.5.0):

<param name="numThreads" type="Value::Intl" x="4" />

Example of setting (from version 5.5.0):

<param name="numThreads" type="Value::Intl" x="-1" />

From v.5.5.0 the method loadFromFile(const charx path) (See ILicense.h)is deprecated. The
use is allowed, but can be useless. Please use the method loadFromFile(const charx* path,
const fsdk::ISettingsProvider* settings) instead.

10.11.0.1 Examples of code
Example of code (before version 5.5.0):

const bool islLicenseFilelLoadedSuccessfully = license->loadFromFile(path)
.is0k());

VisionLabs B.V. 185 /265

Example of code (from version 5.5.0):

auto resSettings = fsdk::createSettingsProvider("License Config Path");
if (!resSettings.isOk()) {
return -1;

fsdk::ISettingsProviderPtr settings = resSettings.getValue();

// Create new license from file
const bool dislLicenseFilelLoadedSuccessfully = license->loadFromFile(path,
settings) .is0k());

10.12 v.5.2.0

From v.5.2.0 the 101 version of human descriptor is not supported, it was changed by 104. Currently,
three versions are available: 102 (tracker), 103 (precise), 104 (regular). It means that all instances (such
as IDescriptorExtractor,IDescriptorMatcher and etc.) cannot be created with the version 101.

10.13 v.5.1.0

From version v.5.1.0 IHeadPoseEstimatorPtr and IAGSEstimatorPtr are deprecated. Use
IBestShotQualityEstimatorPtr instead.

Note. AGS scorethresholds are differentfor IAGSEstimatorPtrand IBestShotQualityEstimatorPtr
. Read more on the BestShotQuality estimation page.

10.14 v.5.0.0
10.14.1 Objects creation

The fsdk::acquire(...) method for the pointer acquiring for IFaceEngine objects is not allowed
for usage starting from version 5.0.0. In addition, the types of values returned from the create methods
of IFaceEngine were changed.

Most of the create methods now return the following structure - fsdk::ResultValue<fsdk::
FSDKError, ObjectClassPtr> Thus it is easy to check the correctness of the result (using one of
the following methods result.isOk() or result.isError()) and get an error (using the result
.getError () method). The result.what() method can be used to get the text description of the
error.

VisionLabs B.V. 186 /265

10.14.1.1 Examples of code
Example of code (before version 5.0.0):

fsdk: :IAttributeEstimatorPtr estimator = fsdk::acquire(faceEngine->
createAttributeEstimator());
if (estimator.isNull()) {
std::cout << "Object pointer 1is nullptr" << std::endl;
// process error

Example of code (from version 5.0.0):

fsdk::ResultValue<fsdk: :FSDKError, fsdk::IAttributeEstimatorPtr>
resEstimator = faceEngine->createAttributeEstimator();
if (resEstimator.isError()) {
std::cout << "Error: " << resEstimator.what() << std::endl;
// process error

fsdk: :IAttributeEstimatorPtr estimator = resEstimator.getValue();

10.14.2 Interface of ILicense

From version v.5.0.0 we changed the interface of ILicense. Now all methods of this class return
fsdk::Result<fsdk: :FSDKError>, fsdk: :ResultValue<fsdk::FSDKError, bool> or fsdk::
ResultValue<fsdk::FSDKError, uint32_t> instead of bool.

10.14.2.1 Examples of code
Example of code (before version 5.0.0):

const bool res = license->isActivated();
if (lres) {
/* error case code x/

Example of code (from version 5.0.0):

const fsdk::ResultValue<fsdk::FSDKError, bool> result = license->
isActivated();
if (result.isError()) {

VisionLabs B.V. 187 /265

const bool value = result.getValue();
if (lvalue) {

Fromversionv.5.0.0 we changed the arguments of methods getExpirationDateand checkFeatureld

in class ILicense. Now the input arguments of getExpirationDate and checkFeatureId is
fsdk::LicenseFeature instead of uint32_t. And the second argument of getExpirationDate
was removed. The return value of getExpirationDate is fsdk: :ResultValue<fsdk: :FSDKError
, uint32_t>.

Example of code (before version 5.0.0):

long long expDate

const bool result

license->getExpirationDate(static_cast<uint32_t>(fsdk::
LicenseFeature: :Detection), expDate);

CH

if (result == false) {

Example of code (from version 5.0.0):

const fsdk::ResultValue<fsdk::FSDKError, uint32_t> result =
license->getExpirationDate(fsdk::LicenseFeature: :Detection);

if (result.isError()) {

const uint32_t expDate = result.getValue();

Example of code (before version 5.0.0):

const bool res = license->checkFeatureId(static_cast<uint32_t>(fsdk::
LicenseFeature: :Detection));
if (lres) {

VisionLabs B.V. 188 /265

Example of code (from version 5.0.0):

const fsdk::ResultValue<fsdk::FSDKError, bool> result = license->
checkFeatureld(fsdk: :LicenseFeature: :Detection);

if (result.isError()) {
/* error case code x/

const bool value = result.getValue();
if (!value) {
/* false case code x/

10.14.3 Interface of HumanLandmark

From version v.5.0.0 we changed the interface of HumanLandmark. Now member point doesn’t store
zero coordinates in the case when it is not visible. For this purposes we added member visible which
stores true if pointis visible.

Example of code (before version 5.0.0):

if (humanLandmark.point.x == 0 && humanLandmark.point.y == 0) {
// point is not visible case code

}
else {

// point 1is visible case code
}

Example of code (from version 5.0.0):

if (humanLandmark.visible == false) {
// point is not visible case code
}
else {
// point 1is visible case code
}

10.14.3.1 HumanDetectionType
Since v.5.19.0 the HDT_POINTS was dropped, but the the enum HumanDetectionType kept for
backward compatibility

VisionLabs B.V. 189 / 265

10.14.3.2 HumanLandmarks17

Since v.5.19.0 were dropped the HumanLandmarks17, special points for the body parts visible in the
image, and the member function getLandmarks17, which was intended to return HumanLandmarks17
Span.

10.14.3.3 IHumanLandmarksDetector
Sincev.5.19.0 were dropped the THumanLandmarksDetector -ahumanlandmark(HumanLandmarks17
) detector.

10.14.4 Interface of IDescriptorBatch

From version v.5.0.0 we renamed method IDescriptorBatch::getDescriptorSize() to
IDescriptorBatch: :getDescriptorLength().

Example of code (before version 5.0.0):

uint32_t descriptorLength = descriptorBatch->getDescriptorSize();

Example of code (from version 5.0.0):

uint32_t descriptorLength = descriptorBatch->getDescriptorLength();

10.14.5 Interface of Detection

From version v.5.0.0 we changed the interface of the Detection structure. Now all members of this
structure are private and could be available through the public methods.

Example of code (before version 5.0.0):

fsdk: :Detection detection = ...; // Somehow initialized detection object
fsdk::Rect rect = detection.rect; // Get the detection rect
float score = detection.score; // Get the detection score

Example of code (from version 5.0.0):

fsdk: :Detection detection = ...; // Somehow initialized detection object
fsdk::Rect rect = detection.getRect(); // Get the detection rect
float score = detection.getScore(); // Get the detection score

VisionLabs B.V. 190/ 265

10.14.6 Interface of IDetector

From version v.5.0.0 we changed the interface of IDetector structure. Now method detect returns
ResultValue<FSDKError, Ref<IFaceDetectionBatch>> instead of ResultValue<FSDKError,
Ref<IResultBatch<Face>>>.

Example of code (before version 5.0.0):

fsdk::ResultValue<fsdk::FSDKError, fsdk::Ref<fsdk::IResultBatch<fsdk::Face
>>> detectorResult = faceDetector->detect(
fsdk: :Span<const fsdk::Image>(&image, 1),
fsdk::Span<const fsdk::Rect>(&imageRect, 1),
detectionsCount,
fsdk::DT_ALL);

Example of code (from version 5.0.0):

fsdk: :ResultValue<fsdk: :FSDKError, fsdk::Ref<fsdk::IFaceDetectionBatch>>
detectorResult = faceDetector->detect(
fsdk: :Span<const fsdk::Image>(&image, 1),
fsdk: :Span<const fsdk::Rect>(&imageRect, 1),
detectionsCount,
fsdk::DT_ALL);

Also we changed input and output parameters of the method redetectOne. Now it takes Image and
Detectioninstead of Face. And returns ResultValue<FSDKError, Face> instead of ResultValue
<FSDKError, bool>.

Example of code (before version 5.0.0):

fsdk::ResultValue<fsdk: :FSDKError, bool> redetectResult = faceDetector->
redetectOne(face);

Example of code (from version 5.0.0):

fsdk::ResultValue<fsdk: :FSDKError, fsdk::Face> redetectResult = faceDetector
->redetectOne(image, detection);

10.14.7 IFaceDetectionBatch

We added IFaceDetectionBatch structure to replace IResultBatch<Face>.

Example of code (before version 5.0.0):

VisionLabs B.V. 191/ 265

fsdk: :Ref<IResultBatch<Face>> resultBatch = ...; // Somehow get the

IResultBatch<Face>
for (std::size_t i = 0; i < resultBatch->getSize(); ++i) {
fsdk: :Span<fsdk::Face> faces = resultBatch->getResults(i);
for (auto& face : faces) {
const fsdk::Rect& rect = face.detection.rect;
const float score = face.detection.score;
const fsdk::Landmarks5& 1lm5 = face.landmarks5.value();

const fsdk::Landmarks68& 1m68 = face.landmarks68.value();

// Some code which uses received objects

Example of code (from version 5.0.0):

fsdk::Ref<fsdk::IFaceDetectionBatch> faceDetectionBatch = ...;
get the IFaceDetectionBatch

for (std::size_t i = 0; i < faceDetectionBatch->getSize(); ++i) {

//

Somehow

fsdk: :Span<const fsdk::Detection> detections = faceDetectionBatch->

getDetections(i);

fsdk: :Span<const fsdk::Landmarks5> landmarks5 = faceDetectionBatch->

getLandmarks5(i);

fsdk: :Span<const fsdk::Landmarks68> landmarks68 = faceDetectionBatch->

getLandmarks68(i);

for (std::size_t j = 0; j < detections.size(); ++j) {
const fsdk::Rect& rect = detections[j].getRect();
const float score = detections[j].getScore();
const fsdk::Landmarks5& 1m5 = landmarks5[j];
const fsdk::Landmarks68& 1m68 = landmarks68[j];
// Some code which uses received objects

10.14.8 Interface of IHumanDetector

From version v.5.0.0 we changed the interface of IHumanDetector structure. Now method detect
returns ResultValue<FSDKError, Ref<IHumanDetectionBatch>> instead of ResultValue<

FSDKError, Ref<IResultBatch<Human>>>.

Example of code (before version 5.0.0):

VisionLabs B.V.

192 /265

fsdk::ResultValue<fsdk: :FSDKError, fsdk::Ref<fsdk::IResultBatch<fsdk::Human
>>> detectResult = humanDetector->detect(
fsdk: :Span<const fsdk::Image>(&image, 1),
fsdk: :Span<const fsdk::Rect>(&imageRect, 1),
detectionsCount,
fsdk: :DCT_ALL);

Example of code (from version 5.0.0):

fsdk::ResultValue<fsdk: :FSDKError, fsdk::Ref<fsdk::IHumanDetectionBatch>>
detectResult = humanDetector->detect(
fsdk: :Span<const fsdk::Image>(&image, 1),
fsdk: :Span<const fsdk::Rect>(&imageRect, 1),
detectionsCount,
fsdk: :HDT_ALL);

Also we changed input and output parameters of the method redetectOne. Now it takes Image
and Detection instead of Human. And returns ResultValue<FSDKError, Human> instead of
ResultValue<FSDKError, bool>.

Example of code (before version 5.0.0):

fsdk::ResultValue<fsdk: :FSDKError, bool> redetectResult = humanDetector->
redetectOne (human) ;

Example of code (from version 5.0.0):

fsdk: :ResultValue<fsdk: :FSDKError, fsdk::Human> redetectResult =
humanDetector->redetectOne(image, detection);

10.14.9 IHumanDetectionBatch

Since v.5.19.0 were dropped the member function getLandmarks17, which was intended to return
HumanLandmarks17 Span.

We added ITHumanDetectionBatch structure to replace IResultBatch<Human>.
Example of code (before version 5.0.0):
fsdk: :Ref<IResultBatch<Human>> resultBatch =
for (std::size_t i = 0; i < resultBatch->getSize(); ++i) {

fsdk: :Span<fsdk: :Human> humans = resultBatch->getResults(i);

VisionLabs B.V. 193 /265

for (auto& human : humans) {
const fsdk::Rect& rect = human.detection.rect;

const float score = human.detection.score;
const fsdk::Landmarksl17& 1ml7 = face.landmarks5.value();
// Some code which uses received objects

Example of code (from version 5.0.0):

const fsdk::Ref<fsdk::IHumanDetectionBatch> humanDetectionBatch = ...; //

Somehow get the IHumanDetectionBatch
for (std::size_t i = 0; i < humanDetectionBatch->getSize(); ++i) {
fsdk: :Span<const fsdk::Detection> detections = humanDetectionBatch->

getDetections(i);
fsdk: :Span<const fsdk::HumanLandmarksl7> landmarks = humanDetectionBatch

->getLandmarks17(i);

for (std::size_t j = 0; j < detections.size(); ++j) {
const fsdk::Rect rect = detections[j].getRect();
const float score = detections[j].getScore();
const fsdk::HumanLandmarksl7 1ml7 = landmarks[j];
// Some code which uses received objects

10.14.10 Interface of ILivenessFlyingFaces

From version v.5.0.0 we changed the interface of ILivenessFlyingFaces structure. Now both

methods estimate take Image and Detection instead of Face.

Example of code (before version 5.0.0):

fsdk::LivenessFlyingFacesEstimation flyingFacesEstimation;
Result<fsdk: :FSDKError> flyingFacesResult = livenessFlyingFacesEstimator->

estimate(face, flyingFacesEstimation);

Example of code (from version 5.0.0):

fsdk::LivenessFlyingFacesEstimation flyingFacesEstimation;
Result<fsdk: :FSDKError> flyingFacesResult = livenessFlyingFacesEstimator->
estimate(
image,
detection,

VisionLabs B.V. 194 / 265

flyingFacesEstimation);

Example of code (before version 5.0.0):

Result<fsdk: :FSDKError> flyingFacesResult = livenessFlyingFacesEstimator->
estimate(
fsdk: :Span<const fsdk::Face>(&face, 1),
fsdk::Span<fsdk::LivenessFlyingFacesEstimation> (&estimation, 1));

Example of code (from version 5.0.0):

fsdk::LivenessFlyingFacesEstimation flyingFacesEstimation;
Result<fsdk::FSDKError> flyingFacesResult = livenessFlyingFacesEstimator->
estimate(
fsdk: :Span<const fsdk::Image>(&image, 1),
fsdk: :Span<const fsdk: :Detection>(&detection, 1),
fsdk: :Span<fsdk::LivenessFlyingFacesEstimation> (&
flyingFacesEstimation, 1));

10.15 v.3.10.1
10.15.1 Detector FaceDetV3 changes

From version 3.10.1 we changed the logic for image resizing in FaceDetV3 detector. Now you can
change the minimum and maximum sizes of the faces that will be searched in the photo from the
faceengine.conf configuration. To get new parameter which will be identical to old setting you need

tosetminFaceSize:

The old recommended imageSize=640 will be identical to new meaning of setting minFaceSize=20

config->setValue("FaceDetV3::Settings", "minFaceSize", 20);

and imageS+ize=320 will be identical to new meaning of setting minFaceS+ize=40

config->setValue("FaceDetV3::Settings", "minFaceSize", 40);

10.15.2 Detector FaceDetV1, FaceDetV2 changes

From version 3.10.1 we changed the name of parameterminSizetominFaceSizein faceengine.conf
for FaceDetV1, FaceDetV2 detector types. The logic and default value for image resizing left unchanged.

VisionLabs B.V. 195 /265

11 Best practices

This section provides a set of recommendations and performance tips that you should follow to get
optimal performance when running the LUNA SDK algorithms on your target device.

11.1 Thread pools

We recommend that you use thread pools for user-created threads when running LUNA SDK algorithms
ina multithreaded environment. For each thread, LUNA SDK caches some amount of thread local objects
under the hood in order to make its algorithms run faster next time the same thread is used at the cost
of higher memory footprint. For this reason, we recommend that you reuse threads from a pool to avoid
caching new internal objects and to reduce penalty of creating or destroying new user threads.

11.2 Estimator creation and inference

To optimize RAM usage and improve performance, create face engine objects once and reuse them
whenever a new estimate is needed.

Recreating estimators repeatedly results in reopening their corresponding .plan files each time, which
can be resource-intensive. These.plan files are cached individually upon loading and remain in memory
untilthey are either flushed from the cache or the FaceEngine root object’s destructoris called. By reusing
existing objects, you avoid unnecessary overhead and ensure efficient resource management.

11.3 Using CPU and GPU models for network inference

To ensure optimal performance and accuracy when using LUNA SDK, it is essential to follow our
recommendations for CPUs and GPUs based on the type of workload and network configurations.

11.3.1 CPU recommendations

+ Quantized networks and DL Boost support
If you plan to use quantized versions of neural networks, ensure that your CPU supports DL Boost.
Without this feature, you may experience a significant drop in inference accuracy. In such cases,
we recommend that you use the FP32 versions of the networks instead.

+ Processor requirements
Regardless of whether you are using quantized or non-quantized networks, we recommend that
you use processors from the Intel Pentium Gold series or higher. These CPUs include advanced
instruction sets like AVX512 FMA, which significantly enhance performance during network
inference. When selecting a processor, prioritize models with a higher number of accelerators, as
they directly impact computational efficiency.

VisionLabs B.V. 196 / 265

11.3.2 GPU recommendations

For GPU-based inference, only server-grade (compute-class) GPUs are supported. Gaming GPUs are not
recommended or supported for running LUNA SDK due to potential compatibility issues and performance
limitations. Below is the list of supported GPUs:

Microarchitecture Compute capability GPU

Turing 7.5 Nvidia Tesla T4
Ampere 8.0 Nvidia A30
Ampere 8.0 Nvidia A100
Ampere 8.6 Nvidia A40
Ampere 8.6 Nvidia A10
Ampere 8.6 Nvidia A16
Ampere 8.6 Nvidia A2

Ada Lovelace 8.9 Nvidia L4

Ada Lovelace 8.9 Nvidia L40

11.4 Forking process

UNIX-like operating systems implement a mechanism to duplicate a process. It creates a new
child process and copies its parents’ memory space into the child’s one. This is typically done
programmatically by calling the fork () system function in the parent process.

Care should be taken when forking a process running the SDK.

Important: Always fork before the first instance of IFaceEngine is created!

This is because the SDK internally maintains a pool of worker threads, which is created lazily at the
time the very first IFaceEngine object is born and destroyed right after the last IFaceEngine
objectis released. When using GPU or NPU devices, their runtime is initialized and shut down in the
same mannetr.

The hazard comes from the fact that while fork () copies process memory, it only creates just one thread
- the main thread. For details, see https://man7.org/linux/man-pages/man2/fork.2.html.

As a result, if at least one IFaceEngine object is alive at the time the process is being forked, the child
processes will inherit the knowledge of the object, and therefore, the implicit thread pool (and device
runtime, when appropriate). But there will be no worker threads actually running (in both, the inherited
pool and the runtime, when appropriate) and attempting to call certain SDK functions will cause a
deadlock.

VisionLabs B.V. 197/ 265

https://man7.org/linux/man-pages/man2/fork.2.html

11.5 Liveness estimator combination

Depending on your device and its camera, you can enhance the accuracy of the model by simultaneously
using a combination of two universal liveness estimators. For example, you might use:

+ LivenessDepthRGBEstimator and NIRLivenessEstimator
« LivenessDepthEstimator and LivenessOneShotRGBEstimator

To implement this, you need to aggregate the rates from each liveness estimator and adjust the
thresholds in the faceengine.conf configuration file.

11.5.1 Changing the threshold

All models are calibrated so that the base threshold is 0.5 for any model of any modality.

If you need greater protection against hacking, then the threshold can be raised, and if the convenience
of real users is more important, then lowered. We recommend that you configure specific values for
changing the threshold in deviation from the basic one on a client basis.

11.5.2 Aggregating the scores

Any of two liveness modalities can be aggregated with each other. To do this, you need to multiply the
speeds of the corresponding networks. The threshold in this case is also multiplied and becomes equal
to 0.25.

11.5.3 Recommended thresholds

The recommended threshold is an optimal balance between TPR and FPR.

11.5.4 Possible LivenessOneShotRGBEstimator model combinations

You can use the LivenessOneShotRGBEstimator models in the following combinations:
For version v11:

+ Use these models in the backend as an analogue of server LivenessOneShotRGBEstimator:

oneshot_rgb_T1liveness_v1l_model_1_cpu-avx2.plan

oneshot_rgb_T1liveness_v1l_model_2_cpu-avx2.plan

oneshot_rgb_liveness_v1l_model_3_cpu-avx2.plan

oneshot_rgb_T1liveness_v1l_model_7_cpu-avx2.plan
+ Use these models on smartphones as an analogue of LivenessOneShotRGBEstimator:
- oneshot_rgb_liveness_v1l_model_6_cpu-avx2.plan
+ Use the below models on devices with Orbbec cameras, such as payment terminals (POS) and self-
service cash registers (KCO):

VisionLabs B.V. 198 / 265

- oneshot_rgb_liveness_v1ll_model_4_cpu-avx2.plan
- oneshot_rgb_liveness_v1l_model_5_cpu-avx2.plan

+ Use the following models for extended backend processing with higher accuracy requirements:

oneshot_rgb_Tliveness_v1l_model_1_cpu-avx2.plan

oneshot_rgb_1liveness_v1l_model_2_cpu-avx2.plan
- oneshot_rgb_liveness_v1l_model_3_cpu-avx2.plan
- oneshot_rgb_liveness_v1l_model_7_cpu-avx2.plan
- oneshot_rgb_liveness_v1l_model_8_cpu-avx2.plan

- oneshot_rgb_liveness_v1l_model_9_cpu-avx2.plan
For version v10:

+ Use these models in the backend as an analogue of server LivenessOneShotRGBEstimator:

oneshot_rgb_1liveness_v10_model_1_cpu-avx2.plan

oneshot_rgb_T1liveness_v10_model_2_cpu-avx2.plan

oneshot_rgb_Tliveness_v10_model_3_cpu-avx2.plan

oneshot_rgb_T1liveness_v10_model_7_cpu-avx2.plan
+ Use these models on smartphones as an analogue of LivenessOneShotRGBEstimator:
- oneshot_rgb_liveness_v10_model_6_cpu-avx2.plan
+ Use the below models on devices with Orbbec cameras, such as payment terminals (POS) and self-
service cash registers (KCO):
- oneshot_rgb_liveness_v10_model_4_cpu-avx2.plan
- oneshot_rgb_liveness_v10_model_5_cpu-avx2.plan

+ Use the following models for extended backend processing with higher accuracy requirements:

oneshot_rgb_T1liveness_v10_model_1_cpu-avx2.plan
- oneshot_rgb_liveness_v10_model_2_cpu-avx2.plan
- oneshot_rgb_liveness_v10_model_3_cpu-avx2.plan
- oneshot_rgb_liveness_v10_model_7_cpu-avx2.plan
- oneshot_rgb_liveness_v10_model_8_cpu-avx2.plan

- oneshot_rgb_liveness_v10_model_9_cpu-avx2.plan

VisionLabs B.V. 199 /265

12 Device-specific constraints

12.1 Image constraints

When memory is allocated for Image pixel data storage, the following constraints are enforced depending
on the requested memory residence:

+ Image::MemoryResidence::CPU: base address alignment is 32 bytes;

+ Image::MemoryResidence::GPU: base address alignment is 128 bytes;

+ Image::MemoryResidence::NPU: base address alignment is 128 bytes;

+ Image::MemoryResidence::NPU_DPP: base address alignment is 128 bytes.

Also, in case of Image::MemoryResidence::NPU_DPP image width must be multiple of 16 and image
height must be multiple of 2.

When Image is initialized as a wrapper for a user-provided memory block, whose residence is said to
be Image::MemoryResidence::NPU or Image::MemoryResidence::NPU_DPP, the above requirements are
checked upon the initialization.

Image class implements limited functionality for device-side data. Only the following operations are
supported:

« construction (both with Image-owned memory and as a wrapper for a user-defined memory) and
assignment (including deep copy);

« destruction;
« set() family of functions (functionally the same as construction/assignment);

« convert() function, but only in transfer mode; This means that both source and destination formats
must match, only memory residency may differ. This function supports only synchronous memory
transfers in the following directions:

host <-> GPU
GPU <->GPU
host <-> NPU
- NPU<->NPU.

Full range of functionality (including format conversions) is currently only available for Images with host
memory data residence.

The following operations are NOT supported:

« compressed format encoding/decoding;

format/color space conversion;
+ subimage views (i.e. map() function);

padding and cropping (i.e. extract() function);

manipulation (e.g. getPixel(), setPixel(), etc.).

VisionLabs B.V. 200/ 265

13 Collecting information for Technical Support

To efficiently resolve a problem with LUNA SDK, collect all necessary information based on the error type
and provide it to VisionLabs Technical Support. Possible error types include:

« Specific error
« Non-specific error
« Unexpected result

13.1 Contact Technical Support

You can contact our Technical Support in either of the following ways:

« Via email: support@visionlabs.ai
« Via Service Portal: https://jira.visionlabs.ru/servicedesk/customer/portal/2

13.2 Specific error

These errors usually occur when LUNA SDK is used incorrectly. Examples include:

+ An estimator or detector does not work, resulting in an error when creating or using it.
« An error occurs when launching on a GPU device.
+ Alicense error is received.

In such cases, study the full launch logs and understand what was launched and where.
To get detailed logging in LUNA SDK, follow these steps:

1X In the luna-sdk/data/runtime.conf configuration file, set the verboselLogging parameter to 4.

<param name="verboselogging" type="Value::Intl" x="4" />

2[R In the luna-sdk/data/faceengine.conf configuration file, set the verboseLogging parameter to 4.

<param name="verboselogging" type="Value::Intl" x="4" />

3H In the luna-sdk/data/trackengine.conf configuration file, set the severity parameter to 0.

<param name="severity" type="Value::Intl" x="0" />

If you know which module the error occurs in, provide only that module’s log by changing the value only
in the relevant configuration file. If unsure, collect all logs.

VisionLabs B.V. 201/265

https://jira.visionlabs.ru/servicedesk/customer/portal/2

13.3 Non-specific error

Examples of non-specific errors include:

+ An application crashes at an uncertain time.
+ An application freezes unexpectedly.
« Thereis a memory leak.

In such cases, you need to understand in detail the application operation scenario, including what is
called and in what sequence.

Provide the following information:

+ The exact version of LUNA SDK (e.g., v.5.22.2, build for CentOS 8).

+ Information about the environment where the application runs (e.g., Docker container, launch via
Python bindings).

« Full launch logs.

+ Additional information like crash dumps, reports from third-party utilities, and system logs.

+ Code reproducing the problem, if any.

13.4 Unexpected Result

Unexpected results may occur due to:

+ Incorrect use of LUNA SDK
+ Algorithm errors
+ Launchingin unexpected conditions

Examples include:

+ Afaceis presentin a photo or video, but the detector doesn’t see it.
+ Apersonis smiling, but the emotion estimator indicates sadness.

Reasons for unexpected results vary, such as:

+ Incorrect use of LUNA SDK, for example, a wrong threshold in a configuration file.
« Incorrect input data, such as a poor-quality video or heavily compressed frames.
+ Occasional algorithm errors.

+ New data for the algorithm.

To understand and address the issue, provide:

« Fulllaunch logs.

+ All configuration files used during the launch:
- luna-sdk/data/runtime.conf
- luna-sdk/data/faceengine.conf
- luna-sdk/data/trackengine.conf

VisionLabs B.V. 202 /265

« An estimate of how often the unexpected result occurs, for example, every frame or once in a
thousand frames.
« Examples of data that produce unexpected results.

VisionLabs B.V. 203 /265

14 Useful tools

14.1 Performance testing

Performance testing is crucial for ensuring the reliability, accuracy, and efficiency of software systems.
It helps in optimizing resource usage, reducing latency, and providing consistent results across different
environments. Below are key concepts, metrics, parameters, and practical recommendations for
conducting effective performance tests.

14.1.1 Key concepts in performance testing

« Warm-up Phase
Initial iterations often include delays due to memory allocation, lazy data initialization, thread
creation, and caching. These effects diminish after a few iterations. Warm-up iterations are
excluded from final results to ensure accuracy.
+ Noise Compensation
Noise in performance tests arises from factors like OS multitasking, resource contention, and
memory management. To mitigate noise:
- Increase the number of iterations to average out high-frequency noise.
- Use statistical methods such as averaging or filtering to stabilize results.

14.2 Metrics for performance analysis

14.2.1 Common metrics

Metric Description

min The smallest measured time across all iterations.
It is protected by hardware limitations, less
sensitive to anomalies compared to max, avg, or
median and does not reflect worst-case
scenarios.

max The largest measured time across all iterations.
It reflects extreme cases (for example, system
delays) and is highly variable between runs, no
upper boundary, sensitive to OS delays.

avg The arithmetic mean of all measured times. Itis
simple to calculate and sensitive to outliers; a
single large value can significantly increase the
average.

VisionLabs B.V. 204 /265

Metric

median

mode

14.2.1.1 Practical use

Description

The middle value in the sorted list of measured
times. It is more robust than avg but less
reliable than min and resistant to moderate
anomalies. It can shift upward if multiple
anomalies fall into the upper half of the sorted
list.

The most frequently occurring value in the
measured times and the most reliable metric for
analysis, unaffected by rare anomalies, works
well with asymmetric distributions. It requires
careful histogram construction to avoid
instability.

+ Usemin for determining convergence because it approaches a hardware-determined lower bound

as iterations increase.

« Combine metrics for comprehensive analysis (for example, min for stability, max for outliers).

14.3 Performance test parameters

Below are additional command line parameters that allow you to customize performance test operation.

14.3.1 Test-specific parameters

Parameter

-t, —-test

-i, —--image

-0, —--out

-—-raw-out

VisionLabs B.V.

Description

Specifies the type of test being performed
(mandatory named parameter).

Specifies the input image for tests (named
parameter).

Specifies the output CSV file for final statistics
(mandatory named parameter).

Specifies the CSV file for recording operational
statistics after each iteration. Includes all
iterations, even those during warm-up.

205/265

14.3.2 Batch and sensor parameters

Parameter Description

-b, --batch Sets the batch size (named parameter).

-s, --sensor Sets the sensor type, for example, for the
EyesBatch test.

-y, —-yuv Sets the YUV image for YUVI2toRGB and
YUV21toRGB tests.

14.3.3 i0S-specific parameters

Parameter Description

--data Path to the data directory (used only in
non-standard iOS mode).

-—threads Number of threads used for testing (used only in
non-standard iOS mode).

--descriptor-model Specifies the descriptor model used in tests.

--detector-type Specifies the detector type used in tests.

14.3.4 Stopping condition parameters

Parameter Description

--max-rel-height Threshold for relative height of the last step. If
exceeded, stopping conditions are not met.

--min-step-width Minimum width of the last step. If narrower,
stopping conditions are not met.

--max-rel-slope Threshold for relative slope of the last step.
Combines the effects of -—max-rel-height
and -—-min-step-width.

--min-steps Minimum number of steps required before
stopping conditions can be evaluated.

--min-iters Minimum number of iterations required before
stopping.

VisionLabs B.V. 206 /265

Parameter Description

--max-iters Maximum number of iterations allowed
(emergency stop condition).

--max-time Maximum total execution time allowed
(emergency stop condition).

14.3.5 Recommendations for parameter selection

« Start with default parameters.
Avoid overriding these settings unless necessary, as doing so may unnecessarily extend the
execution time of most tests.

« Optimize runtime.
If the test runtime is excessively long, consider relaxing the thresholds for the following parameters:

- ——-min-step-width
- ——max-rel-height
- —-max-rel-slope
- ——-min-steps
- —-min-iters
Adjusting these parameters will cause the convergence-based stopping conditions to trigger more

quickly, thereby reducing the overall test duration. However, this approach may compromise the
reliability and stability of the results.

« Balance runtime and result quality.
Striking a balance between runtime efficiency and result quality is one of the key trade-offs when
configuring a performance test. While loosening thresholds can expedite the test, it is essential to
ensure that the resulting data remains sufficiently accurate and stable for meaningful analysis.

14.4 Stopping conditions
14.4.1 Normal stopping conditions
+ Convergence analysis:
The test analyzes the convergence of min values over iterations.
Key metrics:

- step_height - Absolute change in min between two consecutive iterations.
- rel_step_height - Relative change in min as a percentage of the previous value.
- step_width - Number of consecutive iterations where min does not improve.

VisionLabs B.V. 207/ 265

- rel_slope - Rate of change in min per iteration.
Conditions:

- Ifrel_step_heightis below a threshold (--max-rel-height), convergence is assumed.

- If step_width exceeds a threshold (--min-step-width), it indicates that further
improvements require too few iterations.

- If rel_slope is below a threshold (--max-rel-slope), it confirms slow changes in min.

« Minimum steps/iterations :

- At least —-min-steps must be generated to ensure stability.
- At least --min-iters iterations must be completed to ensure sufficient data collection.

14.4.2 Emergency stopping conditions

+ Exceeding iteration limit:
If the number of iterations reaches --max-1ters, the test stops regardless of convergence.
+ Exceeding time limit:
If the total execution time exceeds --max-t-ime, the test stops regardless of convergence.
+ Insufficient warm-up:
If an emergency stop occurs before completing the warm-up phase, results may be unreliable due
to incomplete stabilization of initial delay.

14.4.2.1 Configuration of emergency stop conditions

The --max-iters and --max-time parameters are designed to trigger an emergency stop of the test.
These safeguards prevent the performance test from running indefinitely in cases where convergence
issues arise.

A normal stop should occur before these emergency thresholds are reached. Ideally, the test will meet
its convergence criteria and terminate well before approaching the emergency limits. To ensure this, we
recommend that you set -—-max-iters and --max-time with a generous margin, so they significantly
exceed the expected duration for a successful, routine stop.

By doing so, you can avoid premature terminations due to overly restrictive settings and allow the test
sufficient time to achieve stable results under normal conditions.

14.4.3 Special cases

+ Local minima:
If small steps are formed early in the test, the ——-min-steps parameter ensures enough steps are
generated to confirm global convergence.

« Lastiteration uncertainty:
For the final iteration, future behavior is unknown, so no step parameters are defined.

VisionLabs B.V. 208 /265

14.5 Example console report

During a performance test execution, the console displays operational statistics that help you track the
current test results. Operational statistics show all iterations, including warm-up iterations. Here is how
itis organized:

Performing test.
width[iters] rel.height[%] rel.slope[%/iter] min[ms]

2.801

2.707
2.612
2.485

2.386

. 9437501
. 8774002
198667

. 7397144

W W W

(SN S S 8]

W

L) L
Bt B

.4oesed9y

B.11413

L
bk

b

. 3385998

N/A

Break condition = converged

188 total runs, 62 warmup runs, batch size = 32

AGSBatch execution time:
total 296.978 ms
avg per batch: 2. s image: 0.87485 ms
max per batch: ns image:
min per batch: 2.88 ms image:
std +/- 14 %
50% per batch: 2.33 image:
90% per batch: 2.5U3 image:
95% per ch: 2. image:
mode per batch: [2.279,2.292) image:

Figure 19: Performance test console report

By analyzing the console report, you can assess the stability of results, identify potential issues, and
ensure the test converges correctly before relying on the final output.

14.5.1 Structure of the first table

Each row in the table represents one “step” or “staircase” of the min value over time.

Between steps, there may be idle iterations that do not improve the min value; these are marked with
dots (.), one for each iteration.

VisionLabs B.V. 209 /265

14.5.2 Column contents

« First column: Step width (number of consecutive iterations). The sum of all step widths equals the
total number of iterations, including the warm-up phase.

+ Second column: Relative height of the step.

+ Third column: Relative slope of the step (percentage change per iteration).

14.5.3 Additional metrics

For every generated step, three metrics are displayed:

Metric Description

min Current minimum time after the current
iteration.

max Maximum time across all completed iterations.

avg Average time across all completed iterations.

14.5.4 Zero and last iterations

« Zero iteration: Parameters for the first step are undefined because no prior min values exist.
« Lastiteration: Parameters for the final step are also undefined since it is unknown whether further
iterations would have reduced min.

14.5.5 Color coding

Changes in relative height or slope compared to the previous step are color-coded:

« Greenindicates an increase in relative height or slope.
+ Red indicates a decrease in relative height or slope.

14.5.6 Reasons for stopping

After the table, the console displays the reason for stopping the test:
« Normal stop: Conditions for convergence were met.

« Emergency stop: Exceeded --max-time or --max-iters.

14.5.7 Operational vs. final statistics

VisionLabs B.V. 210/ 265

Operational statistics

Includes all iterations, even those during the
warm-up phase.

Values like max and avg in operational statistics
tend to be higher than in final statistics due to
the inclusion of warm-up data.

Operational max includes warm-up delays, so it
appears higher.

Final statistics

Excludes warm-up iterations and focuses on
post-warm-up data and adds the calculation of
mode (most frequent value) for better accuracy.

Warm-up iterations account for initial delays
(d(t)), which skew early results but are excluded
from final reports.

Final max excludes warm-up, providing a more
accurate representation of steady-state

performance.

14.6 Performance test challenges
14.6.1 Measurement range limitations

Performance tests are unsuitable for measuring time intervals in the range of a few nanoseconds

to several hundred microseconds. For such cases, use microbenchmark frameworks. However,

performance tests excel at measuring time in the required range — from milliseconds and above.

14.6.2 High-frequency noise

Performance tests effectively filter out high-frequency noise, such as random delays with periods much
shorter than the total execution time of the test across all iterations of one type.

14.6.3 Low-frequency noise

Performance tests cannot efficiently handle low-frequency noise if its characteristic duration is
comparable to or exceeds the test execution time. For example:

+ Delays during the warm-up phase (d(t)), which are predictable and easily compensated.

+ Service processes (updates, defragmentation, backups) running for several hours. If the test
runtime overlaps with these processes, results will be distorted.

« Low-frequency noise affects all types of measurements. Collecting long-term statistics to detect
and filter such noiseis often impractical or too resource-intensive. Therefore, minimizingitsimpact
relies on user intervention, such as proper server configuration.

14.6.4 Test execution duration

The primary new challenge for performance tests is the significant amount of time required to gather a
sufficient sample of data.

VisionLabs B.V. 211/ 265

14.6.5 Artificial constraints efficiency

Artificial constraints via -—-max-1iters or ——-max-time reduce the test’s effectiveness by limiting the

dataset size, potentially compromising reliability.

14.6.6 Launch recommendations

14.7

Run tests overnight when system load is minimal for optimal results.
Daytime runs can be conducted with reduced execution time for quick analysis but should be
treated as preliminary, as they may lack accuracy.

Potential improvements

These improvements aim to streamline the testing process, provide deeper insights, and reduce manual

intervention, ultimately resulting in more efficient and accurate performance evaluations:

14.8

Automatic chart generation

Utilize libraries like Plotly to create visually appealing and interactive web-based charts. This
enhances clarity, simplifies analysis, and improves usability.

Continuous function approximation

Instead of discrete histograms, approximate measurement distribution using continuous functions.
This eliminates issues related to bin size and count, improving accuracy.

Enhanced warm-Up logic

Dynamically calculate the required number of warm-up iterations based on specific test needs,
improving both accuracy and efficiency.

Automated result comparison

Implement an automated system to compare current results with previous runs, generating reports
on performance improvements or regressions. Visualizing changes through graphs and detecting
abnormal performance drops would enhance responsiveness to issues.

Advancements in convergence analysis

Refine algorithms for detecting stabilized metrics, incorporate advanced statistical methods to
handle noise and outliers, and improve heuristics for identifying global versus local minima during
the test.

Practical recommendations

Always include a warm-up phase to eliminate initialization delays from results.

Use a sufficient number of iterations to reduce noise and achieve stable metrics.

Focus on the min metric for determining convergence due to its stability and predictable behavior.
Visualize results using tools like CSV exports and graphs for better interpretation of trends and
anomalies.

VisionLabs B.V. 212 /265

https://plotly.com/

15 Appendix A. Specifications

15.1 Classification performance

Classification performance was measured on a two datasets:

« Cooperative dataset (containing 20K images from various sources obtained at several banks);
« Non cooperative dataset (containing 20K).

The two tables below contain true positive rates corresponding to select false positive rates.

Table 76: “Classification performance @ low FPR on cooperative dataset”

TPR TPRCNN TPRCNN TPR CNN TPRCNN TPR CNN TPRCNN
FPR CNNS58 59 59m 60 60m 62 65
107 0.9910 0.991 0.9809 0.9917 0.979 0.9916 0.9909
10 0.9916 0.9915 0.9876 0.9917 0.989 0.9917 0.9950
10° 0.9918 0.9919 0.9904 0.9919 0.990 0.9918 0.9976
10 0.9919 0.9921 0.9915 0.9921 0.991 0.9920 0.9988

Table 77: “Classification performance @ low FPR on non cooperative dataset”

TPRCNN TPRCNN TPRCNN TPRCNN TPR CNN TPR CNN TPR CNN

FPR 58 59 59m 60 60m 62 65

107 0.9834 0.9850 0.9059 0.9862 0.9279 0.9909 0.9909
10°® 0.9914 0.9907 0.9454 0.9931 0.9523 0.9950 0.9950
10° 0.9954 0.9956 0.9705 0.9967 0.9752 0.9976 0.9976
104 0.9983 0.9983 0.9868 0.9987 0.9888 0.9988 0.9988

15.2 Runtime performance for CentOS Linux environment

Face detection performance depends on input image parameters, including resolution, bit depth, and
the size of the detected face.

Input data characteristics:

+ Image resolution: 1920x1080px
+ Image format: 24 BPP RGB

VisionLabs B.V. 213 /265

Performance measurements for CPU, GPU, and NPU execution modes are presented in the tables below.
The measured values represent averages from at least 100 experiments.

Estimated memory consumption values are also provided for CPU and GPU. These values are highly
dependent on the input data and the experimental conditions.

The results for both minimum and optimal batch sizes are shown in the tables below, while all
intermediate and non-optimal values have been omitted.

Face detection is performed using the FaceDetV3 neural network. All types of face detection and re-
detection include capturing bounding boxes and five facial landmarks.

15.2.1 CPU performance

Benchmarking for CPU was performed on a server with the following hardware configuration:
CPU:

« Intel(R) Xeon(R) Silver 4210 CPU @ 2.20GHz;
« CPU(s): 40

« Thread(s) per core: 2

« Core(s) per socket: 10

« Socket(s): 2

« NUMA node(s): 2

« CPU with AVX2 instruction set was used

0S: CentOS Linux release 8.3.2011
RAM: 128 GB DDR4 (Clock Speed: 2133 MHz)

In experiments listed in tables below, face detection and descriptor extraction algorithms used all
available CPU cores, while the matching performance is specified on a per-core basis.

Descriptor matching is only implemented on the CPU.

15.2.1.1 CPU. Detector performance
The table below shows the performance of FaceDetV3 Detector on the CPU.

CPU Percentile 95 RAM Memory
Measurement threads BatchSize (ms) (Mb)
Detector (minFaceSize=20) 1 1 339.83 2005.0
Detector (minFaceSize=20) 8 1 116.0 2154.0
Detector (minFaceSize=20) 8 8 11.1 5385.0
Detector (minFaceSize=50) 1 1 56.25 1616.0

VisionLabs B.V. 214 / 265

CPU Percentile 95 RAM Memory

Measurement threads BatchSize (ms) (Mb)
Detector (minFaceSize=50) 8 1 22.74 1707.0
Detector (minFaceSize=50) 8 8 19.04 2356.0
Detector (minFaceSize=90) 1 1 20.58 1566.0
Detector (minFaceSize=90) 8 1 10.07 1628.0
Detector (minFaceSize=90) 8 8 6.79 1897.0
Redetect 1 1 0.65 1609.0
Redetect 8 1 0.79 1651.0
Redetect 8 8 0.23 2223.0
Landmarks5Detector 1 1 0.22 1614.0
Landmarks5Detector 8 1 0.29 1639.0
Landmarks5Detector 8 8 0.08 1642.0
Landmarks68Detector 1 1 4.08 1619.0
Landmarks68Detector 8 1 2.08 1639.0
Landmarks68Detector 8 8 1.1 1650.0
15.2.1.2 CPU. HumanDetector performance
The table below shows the performance of HumanDetector on the CPU.
RAM
CPU Batch Percentile 95 Memory
Measurement threads Size (ms) (Mb)
HumanDetector (resize to 320) 1 1 10.38 1542.0
HumanDetector (resize to 320) 8 1 5.98 1590.0
HumanDetector (resize to 320) 8 8 3.51 1817.0
HumanDetector (resize to 640) 1 1 36.18 1573.0
HumanDetector (resize to 640) 8 1 14.48 1631.0
HumanDetector (resize to 640) 8 8 11.66 2019.0
HumanRedetect 1 1 2.61 1572.0
HumanRedetect 8 1 2.4 1632.0

VisionLabs B.V. 215/ 265

RAM

CPU Batch Percentile 95 Memory
Measurement threads Size (ms) (Mb)
HumanRedetect 8 8 1.11 1941.0
HumanWarper 1 1 0.35 1536.0
HumanWarper 8 1 0.4 1544.0
HumanWarper 8 8 0.12 1582.0
HumanWarper 1 1 0.39 1558.0
HumanWarper 8 1 0.4 1584.0
HumanWarper 8 8 0.12 1622.0

15.2.1.3 CPU. HumanFaceDetector performance
The table below shows the performance of HumanFaceDetector on CPU with the AVX2 plan-file
(uselnt8=0)

RAM
CPU Percentile 95 Memory

Measurement threads BatchSize (ms) (Mb)
HumanFaceDetectorBoxesAndAssociations 1 1 372.94 2047.0
(minFaceSize=20)
HumanFaceDetectorBoxesAndAssociations 8 1 126.38 2300.0
(minFaceSize=20)
HumanFaceDetectorBoxesAndAssociations 8 8 121.79 5673.0
(minFaceSize=20)
HumanFaceDetectorBoxesAndAssociations 1 1 62.95 1639.0
(minFaceSize=50)
HumanFaceDetectorBoxesAndAssociations 8 1 24.09 1789.0
(minFaceSize=50)
HumanFaceDetectorBoxesAndAssociations 8 8 19.81 2469.0
(minFaceSize=50)
HumanFaceDetectorBoxesAndAssociations 1 1 22.55 1584.0
(minFaceSize=90)
HumanFaceDetectorBoxesAndAssociations 8 1 10.27 1709.0

(minFaceSize=90)

VisionLabs B.V. 216 / 265

CPU

Measurement threads
HumanFaceDetectorBoxesAndAssociations 8
(minFaceSize=90)

HumanFaceDetectorBoxes 1
(minFaceSize=20)

HumanFaceDetectorBoxes 8
(minFaceSize=20)

HumanFaceDetectorBoxes 8
(minFaceSize=20)

HumanFaceDetectorBoxes 1
(minFaceSize=50)

HumanFaceDetectorBoxes 8
(minFaceSize=50)

HumanFaceDetectorBoxes 8
(minFaceSize=50)

HumanFaceDetectorBoxes 1
(minFaceSize=90)

HumanFaceDetectorBoxes 8
(minFaceSize=90)

HumanFaceDetectorBoxes 8

(minFaceSize=90)

BatchSize

Percentile 95
(ms)

7.03

364.09

121.72

116.46

61.04

23.24

19.16

22.19

10.04

6.84

RAM
Memory
(Mb)

2049.0

2009.0

2285.0

5440.0

1626.0

1772.0

2445.0

1584.0

1716.0

2016.0

The table below shows the performance of HumanFaceDetector on CPU with the AVX2-INT8 plan-file

(uselnt8=1)
CPU

Type threads
HumanFaceDetectorBoxesAndAssociations 1
(minFaceSize=20)
HumanFaceDetectorBoxesAndAssociations 8
(minFaceSize=20)
HumanFaceDetectorBoxesAndAssociations 8

(minFaceSize=20)

VisionLabs B.V.

Batch
Size

Percentile 95
(ms)

350.14

132.29

127.61

RAM
Memory
(Mb)

1926.0

2028.0

4650.0

217/ 265

RAM

CPU Batch Percentile 95 Memory

Type threads Size (ms) (Mb)
HumanFaceDetectorBoxesAndAssociations 1 1 64.5 1627.0
(minFaceSize=50)

HumanFaceDetectorBoxesAndAssociations 8 1 26.7 1694.0
(minFaceSize=50)

HumanFaceDetectorBoxesAndAssociations 8 8 20.11 2210.0
(minFaceSize=50)

HumanFaceDetectorBoxesAndAssociations 1 1 25.85 1583.0
(minFaceSize=90)

HumanFaceDetectorBoxesAndAssociations 8 1 11.85 1654.0
(minFaceSize=90)

HumanFaceDetectorBoxesAndAssociations 8 8 7.38 1878.0
(minFaceSize=90)

HumanFaceDetectorBoxes 1 1 330.24 1896.0
(minFaceSize=20)

HumanFaceDetectorBoxes 8 1 117.24 2001.0
(minFaceSize=20)

HumanFaceDetectorBoxes 8 8 106.87 4388.0
(minFaceSize=20)

HumanFaceDetectorBoxes 1 1 65.7 1619.0
(minFaceSize=50)

HumanFaceDetectorBoxes 8 1 26.32 1691.0
(minFaceSize=50)

HumanFaceDetectorBoxes 8 8 19.33 2149.0
(minFaceSize=50)

HumanFaceDetectorBoxes 1 1 26.21 1581.0
(minFaceSize=90)

HumanFaceDetectorBoxes 8 1 12.2 1645.0
(minFaceSize=90)

HumanFaceDetectorBoxes 8 8 7.22 1871.0

(minFaceSize=90)

15.2.1.4 CPU. HeadDetector performance

VisionLabs B.V. 218 / 265

RAM Memory

Measurement CPU threads BatchSize Percentile 95 (ms) (Mb)
HeadDetector 1 1 340.62 1992.0
(minHeadSize=20)

HeadDetector 8 1 115.54 2151.0
(minHeadSize=20)

HeadDetector 8 8 111.67 5380.0
(minHeadSize=20)

HeadDetector 1 1 55.13 1610.0
(minHeadSize=50)

HeadDetector 8 1 22.28 1690.0
(minHeadSize=50)

HeadDetector 8 8 18.86 2348.0
(minHeadSize=50)

HeadDetector 1 1 20.85 1558.0
(minHeadSize=90)

HeadDetector 8 1 9.7 1648.0
(minHeadSize=90)

HeadDetector 8 8 6.79 1909.0

(minHeadSize=90)

15.2.1.5 CPU. Estimations performance with batch interface
The table below shows the performance of Estimations on the CPU for estimators that have a batch
interface. All these measurements are performed with minFaceSize=50.

RAM Memory

Measurement CPUthreads BatchSize Percentile 95 (ms) (Mb)

HeadPose 1 1 0.26 1646.0
HeadPose 8 1 0.17 1801.0
HeadPose 8 8 0.07 1840.0
Warper 1 1 2.08 1653.0
Warper 8 1 2.35 1804.0
Warper 8 8 0.57 1803.0
Eyes (RGB, useStatusPlan=0) 1 1 1.4 1648.0
Eyes (RGB, useStatusPlan=0) 8 1 0.43 1795.0

VisionLabs B.V. 219 /265

RAM Memory

Measurement CPUthreads BatchSize Percentile 95 (ms) (Mb)
Eyes (RGB, useStatusPlan=0) 8 8 0.23 1800.0
Eyes (RGB, useStatusPlan=1) 1 1 1.27 1643.0
Eyes (RGB, useStatusPlan=1) 8 1 0.43 1788.0
Eyes (RGB, useStatusPlan=1) 8 8 0.23 1800.0
Eyes (INFRA RED, 1 1 0.8 1557.0
useStatusPlan=0)

Eyes (INFRARED, 8 1 0.37 1632.0
useStatusPlan=0)

Eyes (INFRA RED, 8 8 0.18 1634.0
useStatusPlan=0)

Eyes (INFRA RED, 1 1 0.8 1565.0
useStatusPlan=1)

Eyes (INFRA RED, 8 1 0.38 1630.0
useStatusPlan=1)

Eyes (INFRA RED, 8 8 0.19 1634.0
useStatusPlan=1)

InfraRed 1 1 2.06 1562.0
InfraRed 8 1 0.94 1641.0
InfraRed 8 8 0.72 1640.0
AGS 1 1 0.25 1641.0
AGS 8 1 0.17 1788.0
AGS 8 8 0.08 1844.0
BestShotQuality 1 1 0.46 1652.0
BestShotQuality 8 1 0.22 1806.0
BestShotQuality 8 8 0.1 1837.0
MedicalMask 1 1 5.86 1656.0
MedicalMask 8 1 3.21 1819.0
MedicalMask 8 8 1.58 1860.0
LivenessOneShotRGBEstimator 1 1 577.05 2302.0
2XL

VisionLabs B.V. 220/ 265

Measurement

LivenessOneShotRGBEstimator

2XL

LivenessOneShotRGBEstimator

2XL

LivenessOneShotRGBEstimator

XL

LivenessOneShotRGBEstimator

XL

LivenessOneShotRGBEstimator

XL

Orientation
Orientation
Orientation
FacialHair
FacialHair
FacialHair
CredibilityCheck
CredibilityCheck
CredibilityCheck
BlackWhite
BlackWhite
BlackWhite
NaturalLight
NaturalLight
NaturalLight
PortraitStyle
PortraitStyle
PortraitStyle
FishEye

FishEye

VisionLabs B.V.

CPU threads

o o o 0 0 0

o

Batch Size

Percentile 95 (ms)

205.04

216.27

207.07

60.81

52.23

6.89
3.82
213
13.72
4.5
3.96
124.03
34.23
34.47
1.28
0.5
0.48
2.21
1.4
0.73
1.01
1.05
0.44
2.29
1.38

RAM Memory
(Mb)

2509.0

4263.0

1887.0

2100.0

2598.0

1543.0
1567.0
1615.0
1663.0
1820.0
1806.0
1765.0
1896.0
2181.0
1650.0
1816.0
1803.0
1650.0
1799.0
1806.0
1639.0
1792.0
1841.0
1653.0
1807.0

221/ 265

RAM Memory

Measurement CPUthreads BatchSize Percentile 95 (ms) (Mb)

FishEye 8 8 0.95 1823.0
EyeBrow 1 1 13.5 1662.0
EyeBrow 8 1 4.42 1821.0
EyeBrow 8 8 3.88 1807.0
HumanAttribute 1 1 12.79 1565.0
HumanAttribute 8 1 6.02 1589.0
HumanAttribute 8 8 3.77 1648.0
RedEye 1 1 2.64 1648.0
RedEye 8 1 0.87 1791.0
RedEye 8 8 0.79 1800.0
HeadWear 1 1 4.49 1657.0
HeadWear 8 1 2.63 1816.0
HeadWear 8 8 1.19 1822.0
Background 1 1 1.04 1644.0
Background 8 1 1.03 1794.0
Background 8 8 0.44 1859.0
Mouth 1 1 6.88 1657.0
Mouth 8 1 2.55 1810.0
Mouth 8 8 2.1 1801.0
Attributes (netType=0, precise) 1 1 62.5 1704.0
Attributes (netType=0, precise) 8 1 19.5 1843.0
Attributes (netType=0, precise) 8 8 18.0 2106.0
Attributes (netType=1, fast) 1 1 7.4 1665.0
Attributes (netType=1, fast) 8 1 3.5 1814.0
Attributes (netType=1, fast) 8 8 2.2 1826.0
Quality 1 1 1.3 1647.0
Quality 8 1 0.55 1798.0
Quality 8 8 0.41 1806.0

VisionLabs B.V. 222 /265

RAM Memory

Measurement CPUthreads BatchSize Percentile 95 (ms) (Mb)

Emotions 1 1 13.53 1662.0
Emotions 8 1 4.59 1819.0
Emotions 8 8 3.88 1814.0
EyesGaze 1 1 2.32 1656.0
EyesGaze 8 1 1.3 1801.0
EyesGaze 8 8 0.65 1794.0
Glasses 1 1 0.93 1647.0
Glasses 8 1 0.95 1786.0
Glasses 8 8 0.4 1800.0
LivenessFlyingFaces 1 1 14.89 1680.0
LivenessFlyingFaces 8 1 6.55 1878.0
LivenessFlyingFaces 8 8 4.78 1989.0
DynamicRange 1 1 1.37 1643.0
DynamicRange 8 1 1.69 1799.0
DynamicRange 8 8 0.39 1831.0
Ethnicity 1 1 13.24 1665.0
Ethnicity 8 1 4.45 1812.0
Ethnicity 8 8 3.87 1808.0
DeepFake 1 1 358.02 1993.0
DeepFake 8 1 120.95 2199.0
DeepFake 8 8 130.62 3916.0
Fights 1 1 230.46 1798.0
Fights 8 1 58.68 1825.0
NIRLivenessEstimator 1 1 17.1 1540.0
NIRLivenessEstimator 8 1 11.32 1560.0
NIRLivenessEstimator 8 8 10.64 1663.0
LivenessRGBMEstimator 1 1 27.83 1661.0
LivenessRGBMEstimator 8 1 10.52 1830.0

VisionLabs B.V. 223/ 265

Measurement

LivenessRGBMEstimator
DepthLivenessEstimator
DepthLivenessEstimator
DepthLivenessEstimator
YUV12toRGB
YUV12toRGB
YUV12toRGB
YUV21toRGB
YUV21toRGB
YUV21toRGB

Rotation

Rotation

FaceOcclusion
FaceOcclusion
FaceOcclusion
ImageModification
ImageModification

ImageModification

CPU threads

o o o

o

RAM Memory

Batch Size Percentile 95 (ms) (Mb)
8 8.53 2163.0
1 2.03 1524.0
1 1.23 1547.0
8 0.83 1569.0
1 6.26 112.0
1 6.33 12.0
8 6.26 111.0
1 6.71 110.0
1 6.76 111.0
8 6.72 112.0
1 12.02 120.0
1 1.97 118.0
1 7.58 1664.0
1 3.51 1807.0
8 2.94 1819.0
1 12.31 1557.0
1 5.75 1572.0
8 3.87 1679.0

15.2.1.6 CPU. Estimations performance without batch interface

Thetable below shows the performance of Estimations on the CPU for estimators that do not have a batch

interface. All these measurements are performed with minFaceSize=50.

Measurement

LivenessFPR
LivenessFPR
PPE
PPE

Overlap

VisionLabs B.V.

CPU threads

Percentile 95 (ms)

19.41
42.55
5.78
1217
1.22

RAM Memory (Mb)

1671.0
1644.0
1602.0
1584.0
1636.0

224 /265

Measurement CPU threads Percentile 95 (ms) RAM Memory (Mb)

Overlap 1 4.83 1612.0

15.2.1.7 CPU. Extractor performance
The table below shows the performance of Extractor on the CPU.

Model CPU threads Batch Size Percentile 95 (ms) RAM Memory (Mb)
58 1 1 213.91 1814.0
58 8 1 57.36 1835.0
58 8 8 61.0 1950.0
59 1 1 214.29 1810.0
59 8 1 56.84 1823.0
59 8 8 60.93 1957.0
60 1 1 215.24 1803.0
60 8 1 57.74 1830.0
60 8 8 61.25 1944.0
62 1 1 256.36 1866.0
62 8 1 65.44 1885.0
62 8 8 72.15 1985.0
65 1 1 341.79 1960.0
65 8 1 99.06 1971.0
65 8 8 100.14 2816.0
105 1 1 1.66 1604
105 8 8 0.7 1657
106 1 1 140.76 1892
106 8 8 39.01 1954
107 1 1 12.0 1637
107 8 8 3.7 1723
108 1 1 2.41 1522.0
108 8 1 2.27 1541.0

VisionLabs B.V. 225/ 265

Model CPU threads Batch Size Percentile 95 (ms) RAM Memory (Mb)

108 8 8 0.81 1598.0
109 1 1 133.7 1822
109 8 8 37.33 1889
110 1 1 15.53 1640
10 8 8 5.39 1733
12 1 1 118.69 1713.0
12 8 1 42.07 1727.0
12 8 8 34.05 1802.0
13 1 1 15.85 1553.0
13 8 1 6.8 1576.0
13 8 8 4.72 1633.0
15 1 1 119.36 1715.0
15 8 1 40.21 1736.0
15 8 8 34.06 1803.0
116 1 1 16.86 1550.0
116 8 1 7.2 1570.0
116 8 8 4.97 1638.0

15.2.1.8 CPU. Matcher performance
The table below shows the performance of Matcher on the CPU. The table includes average matcher per
second for descriptors received using the following CNN model versions:

Model CPU threads Batch Size PerSecond RAM Memory (Mb)
58 1 1000 41163.9 97.0
59 1 1000 41580.1 101.0
60 1 1000 41386.2 97.0
62 1 1000 41309.8 98.0
65 1 1000 41340.0 98.0
108 1 1000 41220.8 98.0

VisionLabs B.V. 226 /265

Model CPU threads Batch Size PerSecond RAM Memory (Mb)

12 1 1000 41652.3 97.0
13 1 1000 41796.1 97.0
15 1 1000 41408.9 97.0
116 1 1000 41487.4 99.0

Note: The value above represents the maximum performance of the matcher on a specific piece
of hardware. Overall performance does not depend on batch size; however, it may be limited by
memory performance when using large batch sizes.

15.2.1.9 CPU. CrowdEstimator performance
The table below shows the performance of CrowdEstimator on the CPU.

CPU Percentile 95 RAM Memory
Measurement threads Batch Size (ms) (Mb)
CrowdEstimator (Single, 1 1 3110.01 2488.0
minHeadSize=6)
CrowdEstimator (Single, 8 1 922.77 2490.0
minHeadSize=6)
CrowdEstimator (Single, 8 8 611.5 8649.0
minHeadSize=6)
CrowdEstimator (Single, 1 1 T74.76 1826.0
minHeadSize=12)
CrowdEstimator (Single, 8 1 235.78 1844.0
minHeadSize=12)
CrowdEstimator (Single, 8 8 139.94 3395.0
minHeadSize=12)
CrowdEstimator (TwoNets, 1 1 3185.38 2501.0
minHeadSize=6)
CrowdEstimator (TwoNets, 8 1 930.5 2679.0
minHeadSize=6)
CrowdEstimator (TwoNets, 8 8 636.19 9149.0
minHeadSize=6)
CrowdEstimator (TwoNets, 1 1 787.35 1854.0

minHeadSize=12)

VisionLabs B.V. 227 /265

CPU Percentile 95
Measurement threads Batch Size (ms)

CrowdEstimator (TwoNets, 8 1 237.6
minHeadSize=12

CrowdEstimator (TwoNets, 8 8 146.16
minHeadSize=12

(
)
(
)
15.2.2 GPU performance

Benchmarking for the GPU was performed on the following hardware configuration:
GPU: NVIDIA Tesla T4.

0S: CentOS Linux release 8.3.2011

15.2.2.1 GPU. Detector performance
The table below shows the performance of FaceDetV3 Detector on the GPU.

Percentile 95 GPU Memory

Measurement Batch Size (ms) (Mb)
Detector (minFaceSize=20) 1 24.93 1436.0
Detector (minFaceSize=20) 4 29.52 3946.0
Detector (minFaceSize=20) 8 32.65 7338.0
Detector (minFaceSize=50) 1 7.01 712.0
Detector (minFaceSize=50) 4 5.78 1242.0
Detector (minFaceSize=50) 8 5.42 1806.0
Detector (minFaceSize=90) 1 4.66 624.0
Detector (minFaceSize=90) 4 3.1 780.0
Detector (minFaceSize=90) 8 2.85 978.0
Redetect 1 2.3 712.0
Redetect 8 0.29 1758.0
Redetect 16 0.23 2834.0
Landmarks5Detector 1 213 712.0
Landmarks5Detector 8 0.31 712.0
Landmarks5Detector 16 0.2 712.0

VisionLabs B.V.

RAM Memory
(Mb)

1977.0

3790.0

RAM Memory
(Mb)
1674.0
1687.0
1742.0
1664.0
1696.0
1717.0
1658.0
1681.0
1700.0
1624.0
1641.0
1674.0
1670.0
1670.0
1678.0

228 / 265

Measurement

Landmarks68Detector
Landmarks68Detector

Landmarks68Detector

Batch Size

16

15.2.2.2 GPU. HumanDetector performance

Percentile 95
(ms)
2.38
0.54
0.25

GPU Memory
(Mb)
712.0
744.0
744.0

The table below shows the performance of HumanDetector on the GPU.

Measurement

HumanDetector (resize to 320)
HumanDetector (resize to 320)
HumanDetector (resize to 320)
HumanDetector (resize to 640)
HumanDetector (resize to 640)
HumanDetector (resize to 640)
HumanRedetect
HumanRedetect
HumanRedetect
HumanWarper

HumanWarper

HumanWarper

HumanWarper

HumanWarper

HumanWarper

Batch
Size

15.2.2.3 GPU. HeadDetector performance
The table below shows the performance of HeadDetector on the GPU.

VisionLabs B.V.

o Hh = 00 H

16

o

Percentile 95
(ms)
3.99
2.59
2.16
6.41
4.04
3.83
2.59
0.41
0.21
0.05
0.03
0.03
0.04
0.03
0.03

GPU
Memory
(Mb)
598.0
670.0
892.0
646.0
864.0
1222.0
646.0
1206.0
1778.0
604.0
622.0
648.0
652.0
670.0
696.0

RAM Memory
(Mb)
1610.0
1671.0
1612.0

RAM
Memory
(Mb)
1606.0
1610.0
1641.0
1594.0
1624.0
1651.0
1661.0
1664.0
1665.0
1592.0
1609.0
1621.0
1591.0
1608.0
1621.0

229 /265

Measurement Batch Size
HeadDetector 1
(minHeadSize=20)

HeadDetector 4
(minHeadSize=20)

HeadDetector 8
(minHeadSize=20)

HeadDetector 1
(minHeadSize=50)

HeadDetector 4
(minHeadSize=50)

HeadDetector 8
(minHeadSize=50)

HeadDetector 1
(minHeadSize=90)

HeadDetector 4
(minHeadSize=90)

HeadDetector 8

(minHeadSize=90)

Percentile 95 (ms)

15.2.2.4 GPU. HumanFace detector performance

24.61

29.29

34.19

6.36

5.64

5.34

4.01

2.99

2.76

GPU Memory
(Mb)

1436.0

3978.0

7366.0

712.0

1242.0

1806.0

624.0

780.0

978.0

The table below shows the performance of HumanFaceDetector on the GPU.

Measurement

HumanFaceDetectorBoxesAndAssociatior
(minFaceSize=20)

HumanFaceDetectorBoxesAndAssociations
(minFaceSize=20)

HumanFaceDetectorBoxesAndAssociatior
(minFaceSize=20)

HumanFaceDetectorBoxesAndAssociations
(minFaceSize=50)

VisionLabs B.V.

Batch
Size

4

1

Percentile 95

(ms)

26.7

30.92

32.76

6.97

GPU
Memory
(Mb)

0.0

0.0

0.0

0.0

RAM Memory

(Mb)

1614.0

1637.0

1681.0

1602.0

1625.0

1656.0

1602.0

1617.0

1638.0

RAM
Memory
(Mb)

1694.0

1786.0

1870.0

1685.0

230/265

GPU RAM

Batch Percentile 95 Memory Memory

Measurement Size (ms) (Mb) (Mb)
HumanFaceDetectorBoxesAndAssociatior 4 5.96 0.0 1712.0
(minFaceSize=50)

HumanFaceDetectorBoxesAndAssociations 8 5.6 0.0 1767.0
(minFaceSize=50)

HumanFaceDetectorBoxesAndAssociatior 1 4.75 0.0 1688.0
(minFaceSize=90)

HumanFaceDetectorBoxesAndAssociations 4 3.1 0.0 1709.0
(minFaceSize=90)

HumanFaceDetectorBoxesAndAssociatior 8 2.82 0.0 1730.0
(minFaceSize=90)

HumanFaceDetectorBoxes 1 24.88 0.0 1701.0
(minFaceSize=20)

HumanFaceDetectorBoxes 4 28.34 0.0 1719.0
(minFaceSize=20)

HumanFaceDetectorBoxes 8 31.21 0.0 1768.0
(minFaceSize=20)

HumanFaceDetectorBoxes 1 6.57 0.0 1696.0
(minFaceSize=50)

HumanFaceDetectorBoxes 4 5.7 0.0 1710.0
(minFaceSize=50)

HumanFaceDetectorBoxes 8 5.38 0.0 1740.0
(minFaceSize=50)

HumanFaceDetectorBoxes 1 4.48 0.0 1690.0
(minFaceSize=90)

HumanFaceDetectorBoxes 4 2.98 0.0 1713.0
(minFaceSize=90)

HumanFaceDetectorBoxes 8 2.76 0.0 1729.0

(minFaceSize=90)

15.2.2.5 GPU. Estimations performance with batch interface
The table below shows the performance of Estimations on the GPU for estimators that have a batch
interface. All these measurements are performed with minFaceS+ize=50.

VisionLabs B.V. 231/265

Percentile 95 GPU Memory ~ RAM Memory

Measurement Batch Size (ms) (Mb) (Mb)
HeadPose 1 1.97 712.0 1699.0
HeadPose 16 1.43 712.0 1785.0
HeadPose 32 1.4 902.0 1882.0
Warper 1 0.09 718.0 1685.0
Warper 16 0.05 814.0 1678.0
Warper 32 0.03 916.0 1673.0
Eyes (RGB, useStatusPlan=0) 1 0.78 0.0 1690.0
Eyes (RGB, useStatusPlan=0) 16 0.13 0.0 1701.0
Eyes (RGB, useStatusPlan=0) 32 0.16 0.0 1713.0
Eyes (RGB, useStatusPlan=1) 1 0.76 0.0 1697.0
Eyes (RGB, useStatusPlan=1) 16 0.13 0.0 1691.0
Eyes (RGB, useStatusPlan=1) 32 0.12 0.0 1701.0
Eyes (INFRA RED, 1 0.6 0.0 1698.0
useStatusPlan=0)

Eyes (INFRA RED, 16 0.1 0.0 1693.0
useStatusPlan=0)

Eyes (INFRARED, 32 0.09 0.0 1697.0
useStatusPlan=0)

Eyes (INFRA RED, 1 0.43 0.0 1695.0
useStatusPlan=1)

Eyes (INFRA RED, 16 0.1 0.0 1690.0
useStatusPlan=1)

Eyes (INFRARED, 32 0.13 0.0 1696.0
useStatusPlan=1)

InfraRed 1 0.92 600.0 1658.0
InfraRed 16 0.52 638.0 1697.0
InfraRed 32 0.52 674.0 1702.0
AGS 1 1.99 712.0 1677.0
AGS 16 1.42 712.0 1778.0
AGS 32 1.39 902.0 1864.0

VisionLabs B.V. 232 /265

Percentile 95 GPU Memory ~ RAM Memory

Measurement Batch Size (ms) (Mb) (Mb)
BestShotQuality 1 2.38 712.0 1683.0
BestShotQuality 16 1.44 744.0 1775.0
BestShotQuality 32 1.41 934.0 1864.0
MedicalMask 1 4.36 712.0 1725.0
MedicalMask 16 1.79 770.0 1810.0
MedicalMask 32 1.6 952.0 1896.0
LivenessOneShotRGBEstimator 1 21.69 0.0 2063.0
2XL

LivenessOneShotRGBEstimator 8 15.54 0.0 2099.0
2XL

LivenessOneShotRGBEstimator 16 19.98 0.0 2121.0
2XL

LivenessOneShotRGBEstimator 1 12.86 0.0 1871.0
XL

LivenessOneShotRGBEstimator 8 9.28 0.0 1883.0
XL

LivenessOneShotRGBEstimator 16 8.77 0.0 1901.0
XL

Orientation 1 2.6 580.0 1634.0
Orientation 16 0.65 696.0 1636.0
Orientation 32 0.64 824.0 1640.0
FacialHair 1 2.03 712.0 1717.0
FacialHair 16 0.72 712.0 1708.0
FacialHair 32 0.7 896.0 1716.0
CredibilityCheck 1 5.07 712.0 1789.0
CredibilityCheck 16 3.44 1330.0 1772.0
CredibilityCheck 32 3.38 1948.0 1802.0
BlackWhite 1 1.08 712.0 1699.0
BlackWhite 16 0.3 744.0 1698.0
BlackWhite 32 0.29 744.0 1708.0

VisionLabs B.V. 233/ 265

Percentile 95 GPU Memory ~ RAM Memory

Measurement Batch Size (ms) (Mb) (Mb)

NaturalLight 1 2.01 744.0 1710.0
NaturalLight 16 0.22 744.0 1702.0
NaturalLight 32 0.21 744.0 1705.0
PortraitStyle 1 2.4 712.0 1649.0
PortraitStyle 16 1.52 712.0 1795.0
PortraitStyle 32 1.48 902.0 1883.0
FishEye 1 1.22 712.0 1686.0
FishEye 16 0.23 744.0 1684.0
FishEye 32 0.21 712.0 1688.0
EyeBrow 1 2.05 712.0 1706.0
EyeBrow 16 0.74 712.0 1707.0
EyeBrow 32 0.7 896.0 1714.0
HumanAttribute 1 3.15 602.0 1722.0
HumanAttribute 16 0.9 704.0 1718.0
HumanAttribute 32 0.64 836.0 1717.0
RedEye 1 1.08 712.0 1684.0
RedEye 16 0.2 712.0 1681.0
RedEye 32 0.18 712.0 1678.0
HeadWear 1 2.32 712.0 1722.0
HeadWear 16 0.41 744.0 1724.0
HeadWear 32 0.27 712.0 1710.0
Background 1 2.42 712.0 1630.0
Background 16 1.54 712.0 1780.0
Background 32 1.45 902.0 1879.0
Mouth 1 1.65 744.0 1716.0
Mouth 16 0.45 744.0 1719.0
Mouth 32 0.42 940.0 1699.0
Attributes (netType=0, precise) 1 3.1 712.0 1784.0

VisionLabs B.V. 234 /265

Percentile 95 GPU Memory ~ RAM Memory

Measurement Batch Size (ms) (Mb) (Mb)

Attributes (netType=0, precise) 16 1.93 1214.0 1761.0
Attributes (netType=0, precise) 32 1.9 1736.0 1755.0
Attributes (netType=1, fast) 1 1.9 744.0 1707.0
Attributes (netType=1, fast) 16 0.5 744.0 1706.0
Attributes (netType=1, fast) 32 0.5 744.0 1711.0
Quality 1 0.64 0.0 1687.0
Quality 16 0.14 0.0 1690.0
Quality 32 0.12 0.0 1688.0
Emotions 1 1.95 712.0 1707.0
Emotions 16 0.74 712.0 1714.0
Emotions 32 0.72 896.0 1712.0
EyesGaze 1 117 712.0 1626.0
EyesGaze 16 0.45 712.0 1700.0
EyesGaze 32 0.42 712.0 1706.0
Glasses 1 0.97 712.0 1699.0
Glasses 16 0.17 712.0 1693.0
Glasses 32 0.15 712.0 1695.0
LivenessFlyingFaces 1 3.58 744.0 1713.0
LivenessFlyingFaces 16 1.95 1034.0 1808.0
LivenessFlyingFaces 32 1.91 1220.0 1892.0
DynamicRange 1 1.76 712.0 1625.0
DynamicRange 16 1.46 712.0 1715.0
DynamicRange 32 1.46 902.0 1810.0
Ethnicity 1 1.79 712.0 1714.0
Ethnicity 16 0.72 712.0 1710.0
Ethnicity 32 0.7 896.0 1701.0
DeepFake 1 9.6 0.0 1783.0
DeepFake 16 10.28 0.0 1876.0

VisionLabs B.V. 235/ 265

Percentile 95 GPU Memory ~ RAM Memory

Measurement Batch Size (ms) (Mb) (Mb)

DeepFake 32 11.48 0.0 1971.0
Fights 1 14.31 928.0 1855.0
NIRLivenessEstimator 1 9.35 0.0 1661.0
NIRLivenessEstimator 16 1.75 0.0 1752.0
NIRLivenessEstimator 32 8.22 0.0 1863.0
LivenessRGBMEstimator 1 7.46 712.0 1696.0
LivenessRGBMEstimator 16 4.25 1466.0 1821.0
LivenessRGBMEstimator 32 4.48 2066.0 1956.0
DepthLivenessEstimator 1 1.87 654.0 1676.0
DepthLivenessEstimator 16 0.46 612.0 1662.0
DepthLivenessEstimator 32 0.39 646.0 1675.0
YUV12toRGB 1 2.61 114.0 229.0
YUV12toRGB 16 2.63 114.0 228.0
YUV12toRGB 32 2.56 114.0 227.0
YUV21toRGB 1 3.16 126.0 248.0
YUV21toRGB 16 3.07 126.0 247.0
YUV21toRGB 32 3.09 126.0 246.0
Rotation 1 0.91 114.0 210.0
FaceOcclusion 1 1.96 744.0 1673.0
FaceOcclusion 16 0.79 968.0 1672.0
FaceOcclusion 32 0.76 1160.0 1678.0
ImageModification 1 413 600.0 1703.0
ImageModification 16 1.96 812.0 1783.0
ImageModification 32 2.02 1034.0 1878.0

15.2.2.6 GPU. Estimations performance without batch interface
The table below shows the performance of Estimations on the GPU for estimators that do not have a
batch interface. All these measurements are performed with minFaceSize=50.

VisionLabs B.V. 236 /265

Measurement Percentile 95 (ms) GPU Memory (Mb) RAM Memory (Mb)

LivenessFPR 10.07 776.0 1687.0
PPE 3.09 678.0 1676.0
Overlap 0.7 744.0 1665.0

15.2.2.7 GPU. Extractor performance
The table below shows the performance of Extractor on the GPU.

Model Batch Size Percentile 95 (ms) GPU Memory (Mb) RAM Memory (Mb)
58 1 9.57 0.0 1844.0
58 8 6.58 0.0 1835.0
58 16 6.24 0.0 1837.0
59 1 9.66 0.0 1848.0
59 8 6.68 0.0 1834.0
59 16 6.34 0.0 1836.0
60 1 9.67 0.0 1844.0
60 8 6.68 0.0 1842.0
60 16 6.32 0.0 1839.0
62 1 11.05 0.0 1877.0
62 8 7.97 0.0 1875.0
62 16 7.7 0.0 1878.0
65 1 2.83 0.0 1728.0
65 8 1.42 0.0 1736.0
65 16 1.37 0.0 1752.0
105 1 3.48 785 1664
105 16 0.3 815 1673
106 1 6.28 973 1893
106 16 9.38 1371 1894
107 1 3.4 807 1698
107 16 0.59 M 1696

VisionLabs B.V. 237 /265

Model Batch Size
108 1
108 8
108 16
109 1
109 16
10 1
10 16
12 1
12 8
12 16
13 1
13 8
13 16
115 1
115 8
115 16
16 1
16 8
16 16

Percentile 95 (ms)

2.65
0.5
0.35
6.22
7.83
3.38
0.76
5.6
4.31
2.95
2.65
0.78
0.97
5.65
4.35
2.96
2.6
0.81
1.05

15.2.2.8 GPU. CrowdEstimator performance

GPU Memory (Mb)

0.0
0.0
0.0
933
1261
809
939
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

The table below shows the performance of CrowdEstimator on the GPU.

Measurement

CrowdEstimator (Single,
minHeadSize=6)

CrowdEstimator (Single,
minHeadSize=6)

CrowdEstimator (Single,
minHeadSize=6)

VisionLabs B.V.

Batch Size

Percentile 95

(ms)

55.64

58.58

58.85

GPU Memory
(Mb)

1534.0

3528.0

3426.0

1675.0
1671.0
1675.0
1833
1833
1693
1693
1766.0
1775.0
1772.0
1695.0
1680.0
1687.0
1776.0
1777.0
1771.0
1689.0
1683.0
1689.0

RAM Memory (Mb)

RAM Memory
(Mb)

1779.0

181

0.0

1839.0

238/265

Percentile 95 GPU Memory ~ RAM Memory

Measurement Batch Size (ms) (Mb) (Mb)
CrowdEstimator (Single, 1 18.75 1008.0 1769.0
minHeadSize=12)

CrowdEstimator (Single, 4 17.7 1722.0 1790.0
minHeadSize=12)

CrowdEstimator (Single, 8 17.96 1766.0 1815.0
minHeadSize=12)

CrowdEstimator (TwoNets, 1 64.16 1712.0 1782.0
minHeadSize=6)

CrowdEstimator (TwoNets, 4 69.99 4192.0 1830.0
minHeadSize=6)

CrowdEstimator (TwoNets, 8 68.9 5006.0 1857.0
minHeadSize=6)

CrowdEstimator (TwoNets, 1 22.73 1078.0 1784.0

(
minHeadSize=12)
CrowdEstimator (TwoNets, 4 20.75 1946.0 1802.0
minHeadSize=12)
CrowdEstimator (TwoNets, 8 21.14 2194.0 1828.0
minHeadSize=12)

15.2.3 Rockchip (Ubuntu 24.04 LTS)

The number of threads auto means that will be taken the maximum number of available threads.
For this mode use the -1 value for the numThreads parameter in the runtime.conf. This number
of threads is equal to according number of available processor cores. We strongly recommend you
to follow this recommendation; otherwise, performance can be significantly reduced. Description of
according settings you can find in “Configuration Guide - Runtime settings”.

The performance measurements are presented for device with configurations as below:

Architecture: aarch64 Byte Order: Little Endian CPU(s): 8 On-line CPU(s) list: 0-7 Thread(s) per core: 1
Core(s) per socket: 4 Socket(s): 1Vendor ID: ARM Model: 0 Model name: Cortex-A55 Stepping: r2p0 CPU
max MHz: 1800.0000 CPU min MHz: 408.0000 BogoMIPS: 48.00 Flags: fp asimd evtstrm aes pmull shal
sha2 crc32 atomics fphp asimdhp cpuid asimdrdm Ircpc dcpop asimddp

The number of threads you can find in tables below.

*Note: In the case of these tests, power and weak refer to a Linux command (taskset -c j,k, where j and

VisionLabs B.V. 239/ 265

k are CPU cores) that explicitly sets the CPU affinity of a process. In simple terms, it tells the system to
run the process only on the specified CPU cores. Power stands for taskset -c 4-7 and weak stands
for taskset -c 0-3.

15.2.3.1 Rockchip (power) environment. Detector performance
The table below shows the performance of Detector on the Rockchip (power) environment.

CPU Percentile 95 RAM Memory
Type threads Batch Size (ms) (Mb)
Detector (minFaceSize=20) 1 1 4199.43 604.0
Detector (minFaceSize=20) 4 1 2408.09 650.0
Detector (minFaceSize=20) 4 8 2110.99 4716.0
Detector (minFaceSize=50) 1 1 540.44 137.0
Detector (minFaceSize=50) 4 1 394.12 167.0
Detector (minFaceSize=50) 4 8 315.08 829.0
Detector (minFaceSize=90) 1 1 169.76 76.0
Detector (minFaceSize=90) 4 1 88.09 106.0
Detector (minFaceSize=90) 4 8 124.26 344.0
Redetect 1 1 3.36 130.0
Redetect 4 1 202.56 136.0
Redetect 4 8 26.96 777.0
Landmarks5Detector 1 1 1.12 140.0
Landmarks5Detector 4 1 0.74 141.0
Landmarks5Detector 4 8 0.62 141.0
Landmarks68Detector 1 1 8.34 140.0
Landmarks68Detector 4 1 5.92 141.0
Landmarks68Detector 4 8 5.5 141.0

15.2.3.2 Rockchip (power) environment. Extractor performance
The table below shows the performance of Extractor on the Rockchip (power) environment.

VisionLabs B.V. 240 /265

Model CPU threads Batch Size Percentile 95 (ms) RAM Memory (Mb)

62 1 1 2130.74 389.0
62 2 1 2110.69 387.0
62 2 8 2216.14 387.0

15.2.3.3 Rockchip (power) environment. HeadDetector performance
The table below shows the performance of HeadDetector on the Rockchip (power) environment.

CPU Percentile 95 RAM Memory

Type threads Batch Size (ms) (Mb)
HeadDetector (minHeadSize=20) 1 1 4202.24 599.0
HeadDetector (minHeadSize=20) 4 1 2310.89 633.0
HeadDetector (minHeadSize=20) 4 8 2169.25 4708.0
HeadDetector (minHeadSize=50) 1 1 532.89 131.0
HeadDetector (minHeadSize=50) 4 1 483.73 158.0
HeadDetector (minHeadSize=50) 4 8 318.0 825.0
HeadDetector (minHeadSize=90) 1 1 155.04 71.0
HeadDetector (minHeadSize=90) 4 1 219.86 98.0
HeadDetector (minHeadSize=90) 4 8 123.74 339.0

15.2.3.4 Rockchip (power) environment. HumanDetector performance
The table below shows the performance of HumanDetector on the Rockchip (power) environment.

RAM
CPU Batch Percentile 95 Memory

Type threads Size (ms) (Mb)
HumanDetector (resize to 320) 1 1 70.32 56.0
HumanDetector (resize to 320) 2 1 80.67 55.0
HumanDetector (resize to 320) 2 8 83.49 177.0
HumanDetector (resize to 640) 1 1 316.34 89.0
HumanDetector (resize to 640) 2 1 321.24 90.0
HumanDetector (resize to 640) 2 8 352.26 454.0

VisionLabs B.V. 241/ 265

CPU

Type threads
HumanRedetect 1
HumanRedetect 2
HumanRedetect 2
HumanFaceDetectorBoxesAndAssociations 1
(minFaceSize=20)
HumanFaceDetectorBoxesAndAssociations 4
(minFaceSize=20)
HumanFaceDetectorBoxesAndAssociations 4
(minFaceSize=20)
HumanFaceDetectorBoxesAndAssociations 1
(minFaceSize=50)
HumanFaceDetectorBoxesAndAssociations 4
(minFaceSize=50)
HumanFaceDetectorBoxesAndAssociations 4
(minFaceSize=50)
HumanFaceDetectorBoxesAndAssociations 1
(minFaceSize=90)
HumanFaceDetectorBoxesAndAssociations 4
(minFaceSize=90)
HumanFaceDetectorBoxesAndAssociations 4
(minFaceSize=90)

HumanFaceDetectorBoxes 1
(minFaceSize=20)

HumanFaceDetectorBoxes 4
(minFaceSize=20)

HumanFaceDetectorBoxes 4
(minFaceSize=20)

HumanFaceDetectorBoxes 1
(minFaceSize=50)

HumanFaceDetectorBoxes 4

(minFaceSize=50)

VisionLabs B.V.

Batch
Size

Percentile 95
(ms)

14.49
14.38
14.42

4657.1

2483.13

2483.89

581.1

608.9

341.92

179.63

199.67

154.09

4830.09

2720.7

2467.61

599.35

501.08

RAM
Memory
(Mb)

88.0

88.0

413.0
605.0

652.0

4760.0

131.0

158.0

832.0

70.0

97.0

340.0

581.0

629.0

4602.0

128.0

155.0

242 / 265

RAM

CPU Batch Percentile 95 Memory

Type threads Size (ms) (Mb)
HumanFaceDetectorBoxes 4 8 348.5 806.0
(minFaceSize=50)

HumanFaceDetectorBoxes 1 1 172.04 69.0
(minFaceSize=90)

HumanFaceDetectorBoxes 4 1 294.96 99.0
(minFaceSize=90)

HumanFaceDetectorBoxes 4 8 128.67 331.0
(minFaceSize=90)

HumanWarper 1 1 0.64 51.0
HumanWarper 2 1 0.59 52.0
HumanWarper 2 8 1.02 93.0
HumanWarper 1 1 0.64 86.0
HumanWarper 2 1 0.61 87.0
HumanWarper 2 8 1.01 128.0

15.2.3.5 Rockchip (power) Estimations performance without batch interface
Thetable below shows the performance of Estimations on the CPU for estimators that do not have a batch
interface. All these measurements are performed with minFaceS+ize=50.

RAM Memory
Type CPU threads Percentile 95 (ms) (Mb)
LivenessFPR 4 363.49 154.0
LivenessFPR 1 348.18 151.0
PPE 4 38.72 100.0
PPE 1 68.62 100.0
Overlap 4 15.56 139.0
Overlap 1 29.45 140.0

VisionLabs B.V. 243 / 265

15.2.3.6 Rockchip (power) environment. Estimations performance with batch interface
The table below shows the performance of Estimations on the Rockchip (power) environment for
estimators that have a batch interface.

|: |: :J: :J: :: :| | HeadPose | 1| 1] 0.95 | 139.0 | |
HeadPose | 4| 1|300.84 | 138.0 | | HeadPose | 4 | 8 | 13.06 | 180.0 | | Warper | 1| 1] 4.62|130.0 | | Warper
| 4|1]310.52|131.0 | | Warper | 4 | 8 | 36.49 | 139.0 | | Eyes (RGB, useStatusPlan=0) | 1| 1| 4.84 | 134.0 | |
Eyes (RGB, useStatusPlan=0) | 4 | 1| 503.16 | 134.0 | | Eyes (RGB, useStatusPlan=0) | 4 | 8 | 27.58 | 136.0 | |
Eyes (RGB, useStatusPlan=1) | 1| 1| 4.74 | 134.0 | | Eyes (RGB, useStatusPlan=1) | 4 | 1| 2.43|134.0 | | Eyes
(RGB, useStatusPlan=1) | 4| 8 | 16.75 | 136.0 | | Eyes (INFRA RED, useStatusPlan=0) | 1| 1|2.61| 48.0 | | Eyes
(INFRA RED, useStatusPlan=0) | 4| 1|1.56 | 48.0 | | Eyes (INFRA RED, useStatusPlan=0) | 4 | 8 | 14.05 | 54.0 |
| Eyes (INFRA RED, useStatusPlan=1) | 1|1]2.59 | 48.0 | | Eyes (INFRA RED, useStatusPlan=1) | 4| 1|101.56
| 48.0 | | Eyes (INFRA RED, useStatusPlan=1) | 4 | 8 | 14.07 | 54.0 | | InfraRed | 1| 1] 13.69 | 51.0 | | InfraRed
|4]1]|7.48|51.0]||InfraRed | 4| 8 |12.04 | 71.0 | | AGS | 1] 1]0.91|138.0 | | AGS | 4 | 1]100.65|138.0 | |
AGS | 4| 8]0.56 | 180.0 | | BestShotQuality | 1]1]1.97 | 140.0 | | BestShotQuality | 4 | 1|201.53 | 140.0 |
| BestShotQuality | 4 | 8 | 62.36 | 182.0 | | MedicalMask | 1] 1] 37.53 | 157.0 | | MedicalMask | 4 | 1| 20.33 |
158.0 | | MedicalMask | 4 | 8 | 43.37 | 200.0 | | Orientation | 1| 1| 47.56 | 37.0 | | Orientation | 4 | 1] 227.6 |
42.0 | | Orientation | 4| 8| 62.78 | 85.0 | | FacialHair | 1]1]123.39|150.0 | | FacialHair | 4 | 1] 59.53 | 150.0 | |
FacialHair | 4| 8| 78.8 | 150.0 | | CredibilityCheck | 1|1]1148.36 | 224.0 | | CredibilityCheck | 4 | 1| 584.05 |
224.0 | | CredibilityCheck | 4 | 8 | 622.93 | 224.0 | | BlackWhite | 1|1 7.71]136.0 | | BlackWhite | 4| 1] 4.19 |
137.0 | | BlackWhite | 4 | 8| 4.33|139.0 | | NaturalLight | 1|1]15.09|140.0 | | NaturalLight | 4| 1| 8.83|141.0
| | NaturalLight | 4 | 819.91|140.0 | | PortraitStyle | 1] 1] 6.62 | 138.0 | | PortraitStyle | 4| 1] 4.26 | 138.0 | |
PortraitStyle | 4| 8| 4.36 | 180.0 | | FishEye | 1|1]16.56 | 141.0 | | FishEye | 4 | 1] 10.31|143.0 | | FishEye | 4 |
8110.09 | 143.0 | | EyeBrow | 1]1]119.65 | 150.0 | | EyeBrow | 4 | 1| 158.65|150.0 | | EyeBrow | 4| 8| 91.5
| 149.0 | | HumanAttribute | 1| 1] 89.08 | 59.0 | | HumanAttribute | 4 | 1| 47.84 | 59.0 | | HumanAttribute
| 4|8]50.29|78.0 || RedEye | 1|1]17.98 |135.0 | | RedEye | 4 |1]9.17 | 135.0 | | RedEye | 4 | 8 | 34.74 |
136.0 | | HeadWear | 1|1 26.77 | 150.0 | | HeadWear | 4 | 1|15.22 | 150.0 | | HeadWear | 4 | 8 | 37.24 | 150.0
| | Background | 1|1 6.75]138.0 | | Background | 4 | 1| 4.13|138.0 | | Background | 4 | 8 | 4.09 | 180.0 | |
Mouth | 1]1]51.01|141.0 | | Mouth | 4]1]28.2|142.0 || Mouth | 4 | 8 | 44.23|141.0 | | Attributes | 1] 1| 524.81
|182.0 | | Attributes | 4 | 1] 252.39 | 182.0 | | Attributes | 4 | 8 | 308.9 | 274.0 | | Quality | 1|1 6.35]133.0 | |
Quality | 4|1]3.37]133.0| | Quality | 4| 8|3.73|133.0 | | Emotions | 1| 1]118.09 | 149.0 | | Emotions | 4 | 1
| 158.05|149.0 | | Emotions | 4| 8 | 102.62 | 149.0 | | EyesGaze | 1|1 15.69 | 135.0 | | EyesGaze | 4| 1] 8.66 |
136.0 | | EyesGaze |4|8|9.25|136.0| | Glasses | 1]1]6.32]134.0 | | Glasses | 4 |1|3.91|134.0 | | Glasses | 4
| 83.57|134.0 | | LivenessFlyingFaces | 1] 1| 86.33|156.0 | | LivenessFlyingFaces | 4 | 1|142.59 | 183.0 | |
LivenessFlyingFaces | 4| 8|67.67|220.0 | | DynamicRange | 1]1]0.48|135.0 | | DynamicRange | 4 |1|92.53
|136.0 | | DynamicRange | 4 | 8| 53.96 | 178.0 | | Ethnicity | 1| 1|113.51|149.0 | | Ethnicity | 4| 1]159.18 | 149.0
| | Ethnicity | 4 | 8| 80.65|149.0 | | NIRLivenessEstimator | 1| 1| 84.2 | 44.0 | | NIRLivenessEstimator | 4 | 1|
47.22 | 44.0 | | NIRLivenessEstimator | 4 | 8 | 55.42 | 144.0 | | LivenessRGBMEstimator | 1|1]210.64|142.0 | |
LivenessRGBMEstimator |4 |1]109.86|141.0 | | LivenessRGBMEstimator | 4| 8|131.9 | 406.0 | | YUV12toRGB
|1]1]1.73]28.0 | | YUVI2toRGB | 4 | 1]1.67 | 28.0 | | YUVI2toRGB | 4 | 8 | 1.66 | 28.0 | | YUV21toRGB | 11

VisionLabs B.V. 244 [265

| 2.35[29.0 | | YUV21toRGB | 4 | 1| 1.75 | 29.0 | | YUV21toRGB | 4 | 8 | 2.31]29.0 | | Rotation | 1|1 17.49 |
36.0 | | Rotation | 4| 1]22.34 | 36.0 | | FaceOcclusion | 1|1 49.82|133.0 | | FaceOcclusion | 4|1 28.3 |
134.0 | | FaceOcclusion | 4 | 8 | 43.68 | 134.0 | | LivenessOneShotRGBEstimator XL | 1|1|1671.41| 315.0 | |
LivenessOneShotRGBEstimator XL |4 |1]1037.59|315.0 | | LivenessOneShotRGBEstimator XL | 4 | 8| 954.89
| 720.0 | | LivenessOneShotRGBEstimator Mobile | 1| 1] 66.32 | 156.0 | | LivenessOneShotRGBEstimator
Mobile | 4 | 1 | 36.42 | 157.0 | | LivenessOneShotRGBEstimator Mobile | 4 | 8 | 49.86 | 157.0 | |
LivenessOneShotRGBEstimator Lite | 1| 1| 616.58 | 166.0 | | LivenessOneShotRGBEstimator Lite | 4 |
1/403.76 | 163.0 | | LivenessOneShotRGBEstimator Lite | 4 | 8 | 266.19 | 475.0 |

15.2.3.7 Rockchip (weak) environment. Detector performance
The table below shows the performance of Detector on the Rockchip (weak) environment.

CPU Percentile 95 RAM Memory

Type threads Batch Size (ms) (Mb)

Detector (minFaceSize=20) 1 1 13355.6 604.0
Detector (minFaceSize=20) 4 1 6902.77 650.0
Detector (minFaceSize=20) 4 8 7023.7 4715.0
Detector (minFaceSize=50) 1 1 1908.48 136.0
Detector (minFaceSize=50) 4 1 1180.17 163.0
Detector (minFaceSize=50) 4 8 1052.15 834.0
Detector (minFaceSize=90) 1 1 569.72 76.0

Detector (minFaceSize=90) 4 1 481.89 102.0
Detector (minFaceSize=90) 4 8 365.46 351.0
Redetect 1 1 12.56 130.0
Redetect 4 1 409.6 134.0
Redetect 4 8 31.97 788.0
Landmarks5Detector 1 1 4.35 140.0
Landmarks5Detector 4 1 203.27 141.0
Landmarks5Detector 4 8 39.96 141.0
Landmarks68Detector 1 1 35.99 140.0
Landmarks68Detector 4 1 223.31 141.0
Landmarks68Detector 4 8 45.92 141.0

VisionLabs B.V. 245 / 265

15.2.3.8 Rockchip (weak) environment. Extractor performance
The table below shows the performance of Extractor on the Rockchip (weak) environment.

CPU Percentile 95 RAM Memory
Type threads Batch Size (ms) (Mb)
Extractor 1 1 8613.25 389.0
Extractor 4 1 4397.11 387.0

15.2.3.9 Rockchip (weak) environment. HeadDetector performance
The table below shows the performance of HeadDetector on the Rockchip (weak) environment.

CPU Percentile 95 RAM Memory

Type threads Batch Size (ms) (Mb)

HeadDetector (minHeadSize=20) 1 1 13130.7 599.0
HeadDetector (minHeadSize=20) 4 1 7099.49 632.0
HeadDetector (minHeadSize=20) 4 8 7089.21 4517.0
HeadDetector (minHeadSize=50) 1 1 1854.69 131.0
HeadDetector (minHeadSize=50) 4 1 1357.85 158.0
HeadDetector (minHeadSize=50) 4 8 1042.11 825.0
HeadDetector (minHeadSize=90) 1 1 611.98 71.0

HeadDetector (minHeadSize=90) 4 1 607.73 98.0

HeadDetector (minHeadSize=90) 4 8 361.1 338.0

15.2.3.10 Rockchip (weak) environment. HumanDetector performance
The table below shows the performance of HumanDetector on the Rockchip (weak) environment.

RAM

CPU Batch Percentile 95 Memory
Type threads Size (ms) (Mb)
HumanDetector (resize to 320) 1 1 299.54 57.0
HumanDetector (resize to 320) 4 1 269.02 78.0
HumanDetector (resize to 320) 4 8 191.12 190.0
HumanDetector (resize to 640) 1 1 1243.92 90.0

VisionLabs B.V. 246 / 265

RAM

CPU Batch Percentile 95 Memory

Type threads Size (ms) (Mb)
HumanDetector (resize to 640) 4 1 805.75 115.0
HumanDetector (resize to 640) 4 8 696.83 470.0
HumanRedetect 1 1 55.02 88.0
HumanRedetect 4 1 231.87 104.0
HumanRedetect 4 8 55.61 428.0
HumanFaceDetectorBoxesAndAssociations 1 1 14804.5 605.0
(minFaceSize=20)

HumanFaceDetectorBoxesAndAssociations 4 1 7646.54 653.0
(minFaceSize=20)

HumanFaceDetectorBoxesAndAssociations 4 8 7754.83 4572.0
(minFaceSize=20)

HumanFaceDetectorBoxesAndAssociations 1 1 2058.23 133.0
(minFaceSize=50)

HumanFaceDetectorBoxesAndAssociations 4 1 1368.82 161.0
(minFaceSize=50)

HumanFaceDetectorBoxesAndAssociations 4 8 1118.33 834.0
(minFaceSize=50)

HumanFaceDetectorBoxesAndAssociations 1 1 640.82 72.0
(minFaceSize=90)

HumanFaceDetectorBoxesAndAssociations 4 1 537.05 99.0
(minFaceSize=90)

HumanFaceDetectorBoxesAndAssociations 4 8 378.61 349.0
(minFaceSize=90)

HumanFaceDetectorBoxes 1 1 14719.2 584.0
(minFaceSize=20)

HumanFaceDetectorBoxes 4 1 7480.31 631.0
(minFaceSize=20)

HumanFaceDetectorBoxes 4 8 7674.93 4417.0
(minFaceSize=20)

HumanFaceDetectorBoxes 1 1 2040.64 130.0

(minFaceSize=50)

VisionLabs B.V. 247 / 265

RAM

CPU Batch Percentile 95 Memory

Type threads Size (ms) (Mb)
HumanFaceDetectorBoxes 4 1 1263.58 157.0
(minFaceSize=50)

HumanFaceDetectorBoxes 4 8 1118.03 808.0
(minFaceSize=50)

HumanFaceDetectorBoxes 1 1 660.46 71.0
(minFaceSize=90)

HumanFaceDetectorBoxes 4 1 642.33 99.0
(minFaceSize=90)

HumanFaceDetectorBoxes 4 8 395.33 334.0
(minFaceSize=90)

HumanWarper 1 1 2.34 54.0
HumanWarper 4 1 167.79 54.0
HumanWarper 4 8 25.04 95.0
HumanWarper 1 1 2.37 88.0
HumanWarper 4 1 288.84 89.0
HumanWarper 4 8 25.03 130.0

15.2.3.11 Rockchip (weak) Estimations performance without batch interface
Thetable below shows the performance of Estimations on the CPU for estimators that do not have a batch
interface. All these measurements are performed with minFaceSize=50.

RAM Memory
Type CPU threads Percentile 95 (ms) (Mb)
LivenessFPR 4 353.95 153.0
LivenessFPR 1 1199.35 150.0
PPE 4 88.89 100.0
PPE 1 277.88 100.0
Overlap 4 32.46 139.0
Overlap 1 110.82 140.0

VisionLabs B.V. 248 / 265

15.2.3.12 Rockchip (weak) environment. Estimations performance with batch interface
The table below shows the performance of Estimations on the Rockchip (weak) environment for
estimators that have a batch interface.

CPU Percentile 95 RAM Memory
Type threads Batch Size (ms) (Mb)
HeadPose 1 1 3.4 139.0
HeadPose 4 1 202.86 138.0
HeadPose 4 8 51.74 179.0
Warper 1 1 18.21 130.0
Warper 4 1 223.48 130.0
Warper 4 8 44.46 137.0
Eyes (RGB, useStatusPlan=0) 1 1 20.9 134.0
Eyes (RGB, useStatusPlan=0) 4 1 313.57 134.0
Eyes (RGB, useStatusPlan=0) 4 8 47.09 135.0
Eyes (RGB, useStatusPlan=1) 1 1 23.36 134.0
Eyes (RGB, useStatusPlan=1) 4 1 312.58 134.0
Eyes (RGB, useStatusPlan=1) 4 8 35.24 136.0
Eyes (INFRA RED, useStatusPlan=0) 1 1 10.18 48.0
Eyes (INFRA RED, useStatusPlan=0) 4 1 206.16 48.0
Eyes (INFRA RED, useStatusPlan=0) 4 8 18.86 50.0
Eyes (INFRA RED, useStatusPlan=1) 1 1 10.54 48.0
Eyes (INFRA RED, useStatusPlan=1) 4 1 469.17 48.0
Eyes (INFRA RED, useStatusPlan=1) 4 8 31.17 50.0
InfraRed 1 1 53.7 51.0
InfraRed 4 1 21.72 50.0
InfraRed 4 8 34.38 7.0
AGS 1 1 3.52 138.0
AGS 4 1 300.8 138.0
AGS 4 8 26.89 180.0
BestShotQuality 1 1 8.66 140.0
BestShotQuality 4 1 406.05 140.0

VisionLabs B.V. 249/ 265

Type

BestShotQuality

MedicalMask
MedicalMask
MedicalMask
Orientation
Orientation
Orientation
FacialHair
FacialHair

FacialHair

CredibilityCheck
CredibilityCheck
CredibilityCheck

BlackWhite
BlackWhite
BlackWhite
NaturalLight
NaturalLight
NaturalLight
PortraitStyle
PortraitStyle
PortraitStyle
FishEye
FishEye
FishEye
EyeBrow
EyeBrow

EyeBrow

VisionLabs B.V.

CPU
threads

4

S~ b &~ b S~ b A~ b > b &~ b &~ b

>~ b

Percentile 95

(ms)

28.78
191.77
39713
104.14
199.5
308.51
164.6
476.09
439.41
265.04
4419.75
2402.02
2444.64
31.5
16.85
17.49
73.54
239.47
55.7
28.65
316.93
52.92
67.25
238.72
59.63
45411
442.95
297.56

RAM Memory

(Mb)

182.0
157.0
159.0
200.0
37.0
39.0
86.0
150.0
150.0
149.0
224.0
224.0
224.0
136.0
137.0
138.0
140.0
141.0
141.0
138.0
139.0
180.0
141.0
143.0
143.0
150.0
150.0
150.0

250 /265

CPU Percentile 95 RAM Memory

Type threads Batch Size (ms) (Mb)
HumanAttribute 1 1 380.23 59.0
HumanAttribute 4 1 196.17 59.0
HumanAttribute 4 8 209.11 75.0
RedEye 1 1 70.76 135.0
RedEye 4 1 239.34 135.0
RedEye 4 8 46.07 135.0
HeadWear 1 1 138.35 150.0
HeadWear 4 1 216.67 150.0
HeadWear 4 8 79.63 149.0
Background 1 1 28.39 138.0
Background 4 1 417.31 139.0
Background 4 8 27.68 180.0
Mouth 1 1 201.22 141.0
Mouth 4 1 306.79 141.0
Mouth 4 8 139.64 141.0
Attributes 1 1 2546.66 182.0
Attributes 4 1 1397.4 182.0
Attributes 4 8 1307.17 275.0
Quality 1 1 23.12 133.0
Quality 4 1 313.21 133.0
Quality 4 8 37.31 133.0
Emotions 1 1 479.49 149.0
Emotions 4 1 626.0 149.0
Emotions 4 8 284.64 149.0
EyesGaze 1 1 67.54 135.0
EyesGaze 4 1 35.39 136.0
EyesGaze 4 8 33.1M 136.0
Glasses 1 1 26.46 133.0

VisionLabs B.V. 251/ 265

CPU Percentile 95 RAM Memory

Type threads Batch Size (ms) (Mb)
Glasses 4 1 142.21 134.0
Glasses 4 8 38.64 134.0
LivenessFlyingFaces 1 1 316.23 156.0
LivenessFlyingFaces 4 1 467.64 183.0
LivenessFlyingFaces 4 8 197.72 220.0
DynamicRange 1 1 1.55 135.0
DynamicRange 4 1 201.92 136.0
DynamicRange 4 8 2713 178.0
Ethnicity 1 1 459.94 149.0
Ethnicity 4 1 428.69 149.0
Ethnicity 4 8 346.07 150.0
NIRLivenessEstimator 1 1 352.93 44.0
NIRLivenessEstimator 4 1 190.97 44.0
NIRLivenessEstimator 4 8 203.99 144.0
LivenessRGBMEstimator 1 1 730.75 142.0
LivenessRGBMEstimator 4 1 393.06 141.0
LivenessRGBMEstimator 4 8 413.06 406.0
YUV12toRGB 1 1 3.68 28.0
YUV12toRGB 4 1 3.49 28.0
YUV12toRGB 4 8 3.6 28.0
YUV21toRGB 1 1 3.76 29.0
YUV21toRGB 4 1 3.7 29.0
YUV21toRGB 4 8 3.73 29.0
Rotation 1 1 54.05 36.0
Rotation 4 1 54.59 36.0
FaceOcclusion 1 1 196.6 133.0
FaceOcclusion 4 1 393.33 134.0
FaceOcclusion 4 8 132.38 133.0

VisionLabs B.V. 252 /265

Type

LivenessOneShotRGBEstimator XL
LivenessOneShotRGBEstimator XL
LivenessOneShotRGBEstimator XL

LivenessOneShotRGBEstimator
Mobile

LivenessOneShotRGBEstimator
Mobile

LivenessOneShotRGBEstimator
Mobile

LivenessOneShotRGBEstimator Lite
LivenessOneShotRGBEstimator Lite

LivenessOneShotRGBEstimator Lite

CPU
threads

A~ b

Batch Size

15.3 Runtime performance for embedded environment

Percentile 95
(ms)
5782.41
2974.57
2773.66
246.99

338.02

176.45

2126.15
1189.08
1094.52

RAM Memory
(Mb)
315.0
319.0
720.0
156.0

157.0

157.0

166.0
164.0
475.0

Face detection performance depends on input image parameters, including resolution, bit depth, and

the size of the detected face.
Input data characteristics:

+ Image resolution: 640x480px
+ Image format: 24 BPP RGB

The results for both minimum and optimal batch sizes are presented in the tables below, with all

intermediate and non-optimal values omitted.

Face detection is performed using the FaceDetV3 neural network.

15.4 Descriptor size

Table below shows size of serialized face descriptors to estimate memory requirements.

Face descriptor version Data size (bytes)

CNN 56

VisionLabs B.V.

512

Table 107: “Descriptor size”

Metadata size (bytes)

8

Total size

520

253 /265

Face descriptor version Data size (bytes) Metadata size (bytes) Total size

CNN 57 512 8 520
CNN 58 512 8 520
CNN 59 512 8 520
CNN 60 512 8 520
CNN 62 512 8 520
CNN 65 512 8 520

Table below shows size of serialized human descriptors to estimate memory requirements. Human
descriptors are used only for reidentification tasks.

Table 108: “Human descriptor size (used only for reidentification tasks)”

Human descriptor version Data size (bytes) Metadata size (bytes) Total size
CNN 102 (deprecated) 2048 8 2056
CNN 103 (deprecated) 2048 8 2056
CNN 104 (deprecated) 2048 8 2056
CNN 105 (deprecated) 512 8 520
CNN 106 (deprecated) 512 8 520
CNN 107 (deprecated) 512 8 520
CNN 108 512 8 520
CNN 109 (deprecated) 512 8 520
CNN 110 (deprecated) 512 8 520
CNN 112 512 8 520
CNN 113 512 8 520

Metadata includes signature and version information that may be omitted during serialization if the
NoSignature flag is specified.

When estimating individual descriptor size in memory or serialization storage requirements with default
options, consider using values from the “Total size” column.

When estimating memory requirements for descriptor batches, use values from the “Data size” column

VisionLabs B.V. 254 /265

instead, since a descriptor batch does not duplicate metadata per descriptor and thus is more memory-
efficient.

These numbers are for approximate computation only, since they do not include overhead like

memory alignment for accelerated SIMD processing and the like.

16 Appendix B. Glossary

Table 109: Glossary

Term Description

Host memory Computer system RAM

Device memory On-board RAM of GPU or NPU card

Memory transfer Operation that copies memory from host to device or vice-versa

16.1 Descriptor

A set of features meant to describe a real-world object (e.g., a person’s face). Computed by means of

computer vision algorithms, such features are typically matched to each other to determine the similarity

of represented objects.

16.2

Cooperative Photoshooting and Recognition

A procedure of taking person face photograph characterized by person awareness of the matter and

his/her will to assist.

Typical highlights:

Close to frontal head pose;

Neutral facial expression;

No occlusions (i.e., hair, hats, non-transparent eyewear, hands, other objects obscuring the face);
No extreme lighting conditions (i.e., reasonable illuminance, no direct sunlight);

Steady and well-tuned optics (i.e., no motion blur, depth of field, digital post-processing except
noise cancellation).

Cooperative photoshooting is opposite to the so-called “in the wild” photoshooting, which is also called
non-cooperative shooting (or recognition).

VisionLabs B.V. 255/ 265

16.3 Matching

The process of descriptors comparison. Matching is usually implemented as a distance function applied
to the feature sets and distances comparison later on. The smaller the distance, the closer are descriptors,
hence, the more similar are the objects.

For convenience, helper functions exist to convert distance to a normalized similarity score, where 100%
means completely identical, and 0% means completely different.

VisionLabs B.V. 256 /265

17 Appendix C. FAQ

Q: This document contains high-level descriptions and no code examples nor reference. Where can
one find them?

A: The complete type and function reference are provided as an interactive web-based documentation;
see the doc/fsdk/index.html inside the LUNA SDK package. The examples are located in the /examples
folder and “ExamplesGuide.pdf” is located in /doc folder of LUNA SDK package.

Q: Does FaceEngine support multicore / multiprocessor systems?

A: Yes, all internal algorithm implementations are multithreaded by design and take advantage of multi-
core systems. The number of threads may be controlled via the configuration file; see configuration
manual “ConfigurationGuide.pdf” or comments in the configuration file for details.

Q: What is the state of GPU support?

A: As of version 2.7 the GPU support is implemented for face detection and descriptor extraction
algorithms. Starting from version 2.9 GPU implementations are considered stable.

Q: What speedup may be expected from GPUs?

A: Typically GPUs allow accelerating algorithms by the factor of 2-4 times depending on microprocessor
architecture and input data.

Q: Are there any official bindings/wrappers for other languages (C#, Java)?

A: No, such bindings are not provided. FaceEngine officially implements C++ API only, bindings to other
languages should be created by users themselves. There are tools to automate this process, like, e.g.,
SWIG.

Q: Does FaceEngine support DBMS systems?

A: No, FaceEngine implements just computer vision algorithms. Users should implement DBMS
communication themselves using serialization methods described in section “Serializable object
interface” of chapter “Core concepts” and section “Archive interface” of chapter “Core facility”.

Q: What image formats does FaceEngine support?

A: FaceEngine does not implement image format encoding functions. If such functions are required, one
should use a third-party library, e.g., Freelmage.

FaceEngine functions typically expect image data in the form of uncompressed unencoded pixel data
(RGB color 24 bits per pixel or grayscale 8 bits per pixel).

FaceEngine implements convenience functions like RGB -> grayscale and RGB<-> BGR color conversions.
The rationale of this design is explained in section “Image type” of chapter “Core concepts”.

VisionLabs B.V. 257 / 265

18 Appendix D. Known issues

18.1 Overall known issues
18.1.1 Warnings during the compilation of user code that utilizes the SDK libraries

For example:

warning: 'fsdk::IQualityEstimator' has virtual functions but non-virtual
destructor [-Wnon-virtual-dtor]
struct IQualityEstimator : IRefCounted {

This is a normal and expected behavior. For details, see Core Concepts - Reference Counted Interface.

18.1.2 Premature end of JPEG file

Sometimes you can meet such a log:

[Error] [Image] FreeImage error: format=1, msg=Premature end of JPEG file.

This issue occurs if your JPEG file was not previously recorded or saved properly. You can find more
information on this error on the Internet. Fortunately, this error is not fatal and you can continue working
with the image and get valid detection, landmarks and warped image. You can also try to re-save this
image.

18.1.3 SDK stuck when run sdk algorithm in separate process after root FaceEngine object
initialized

For example:

void simpleDetect(const fsdk::Image& image, const fsdk::IDetectorPtr&
faceDetector) {
fsdk: :ResultValue<fsdk: :FSDKError, fsdk::Face> result = faceDetector->
detectOne(
image,
image.getRect(),
fsdk: :DetectionType: :DT_BBOX

)5

int main()

{

VisionLabs B.V. 258 /265

auto resFaceEngine = fsdk::createFaceEngine("./data");
fsdk::IFaceEnginePtr faceEngine = resFaceEngine.getValue();

fsdk::ILicensex license = faceEngine->getlLicense();
fsdk::activatelLicense(license, "./data/license.conf");

fsdk::Image image;
const string imagePath {"image_720.jpg"};
image.load(imagePath.c_str(), fsdk::Format::R8G8BS);

auto detRes = faceEngine->createDetector (fsdk::FACE_DET_V3);
fsdk: :IDetectorPtr faceDetector = detRes.getValue();

// Run detection in separate process
pid_t ch_pid = fork();
if (ch_pid == -1) {
perror("fork");
exit (EXIT_FAILURE);
} else if (ch_pid > 0) {
cout << "spawn child with pid - " << ch_pid << endl;
1 else {
simpleDetect(image, faceDetector);

pid_t child_pid;
while ((child_pid = wait(nullptr)) > 0)
cout << "child " << child_pid << " terminated" << endl;

return 0;

Cause deadlock. This behaviour observed since sdk version 5.4 and above. The problem can be solved
if you make all forks before creating the FaceEngine object. More reading in Best practices

18.1.4 Undefined behaviour with multithreaded usage of the FaceEngine and algorithms

Creation and destroying Luna SDK algorithms from the different threads is prohibited due to internal
implementation restrictions. In such case undefined behaviour is possible - segmentation faults or
invalid results. More reading in Best practices

18.1.5 Floating point exceptions when working with images that have GPU memory residence

If you’re getting floating point exceptions when using images with GPU memory residence please make
sure that Luna SDK runtime has been initialised with at least 2 worker threads. For more info about

VisionLabs B.V. 259 /265

runtime configuration please refer to Runtime settings chapter in ConfigurationGuide handbook.

18.1.6 Coordinate differences for batched detections

It is possible to obtain some small differences in detected image boxes and landmarks for different
placement of images within batches, when the sizes of different images are close to each other. This
note is correct for all detector types, including face detectors, human detectors, facethuman detectors
etc.

18.2 CentOS 8 known issues
18.2.1 Archive unpacking

We have detected such behavior on CentOS 8.

unzip *.zip;
error: 1invalid zip file with overlapped components (possible zip bomb)

while unpacking archives. The bug is caused by unzip-6.0-45.e18 package. We recommend to
downgrade it:

rpm -q unzip-6.0-45.e18 && yum remove unzip && yum install unzip-6.0-44.el8

VisionLabs B.V. 260 /265

Possible content of test.xcent:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/
DTDs/PropertylList-1.0.dtd">

<plist version="1.0">

<dict>
<key>com.apple.security.get-task-allow</key>
<true/>

</dict>

</plist>

18.3 Astra Linux known issues

18.3.1 Startup error
Applies to LUNA SDK v.5.26.0 and earlier.

This section provides a step-by-step guide to resolving the issue with the execstack tool, using the
FingerprintViewer application as an example.

The FingerprintViewer application has compatibility issues on Astra Linux because some LUNA SDK
shared libraries have the executable stack flag. This flag causes issues on secure operating systems like
Astra Linux, which do not allow executable stacks by default.

To fix this, you can remove the executable stack flag from the affected libraries using the execstack tool:
1. Install execstack.

Astra Linux does not include execstack in its standard repositories. To obtain it, you can download the
.deb package from Debian’s official repository.

1.1. Download the package:

wget http://ftp.ru.debian.org/debian/pool/main/p/prelink/execstack_0
.0.20131005-1+b10_amd64.deb

Example output:

VisionLabs B.V. 261/265

https://packages.debian.org/buster/amd64/execstack/download

--2025-03-03 11:09:39-- http://ftp.ru.debian.org/debian/pool/main/p/prelink
/execstack_0.0.20131005-1+b10_amd64.deb

Resolving ftp.ru.debian.org (ftp.ru.debian.org)... 85.143.112.112

Connecting to ftp.ru.debian.org (ftp.ru.debian.org)|85.143.112.112]:80...
connected.

HTTP request sent, awaiting response... 200 OK

Length: 88380 (86K) [application/octet-stream]

Saving to: ‘execstack_0.0.20131005-1+b10_amd64.’deb

execstack_0.0.20131005-1+b10_amd64.deb
86.31K --.-KB/s in 0.003s

2025-03-03 11:09:39 (28.6 MB/s) - ‘execstack_0.0.20131005-1+b10_amd64.’deb
saved [88380/88380]

1.2. Install the package:

sudo apt 1dinstall ./execstack_0.0.20131005-1+b10_amd64.deb

Example output:

Reading package lists... Done

Building dependency tree

Reading state information... Done

Note, selecting 'execstack' instead of './execstack_0.0.20131005-1+b10_amd64
.deb'

execstack is already the newest version (0.0.20131005-1+b10).
Updated 0 packages, installed 0 new packages, marked 0 for removal, and left
0® unchanged.

2. Identify libraries with executable stack flags.

2.1. Navigate to the directory containing the LUNA SDK shared libraries being used. For example:

cd ~/luna-sdk_astra_se_rel_v.X.X.X/1lib/gcc4/x64

2.2. Run the execstack command to check for libraries with the executable stack flag:

execstack *

Libraries marked with X have the executable stack flag set and require modification:

VisionLabs B.V. 262 /265

- libcublasLt.so

- libcublasLt.so.11

- libcublasLt.so0.11.6.5.2
- libcublas.so

- libcublas.so.11

- libcublas.so0.11.6.5.2

- libcudnn_cnn_infer.so

- libcudnn_cnn_infer.so.8
- libcudnn_cnn_infer.so.8.9.0
- libcudnn_ops_infer.so

- libcudnn_ops_infer.so.8
- libcudnn_ops_infer.so0.8.9.0
- libcudnn.so

- libcudnn.so.8

- libcudnn.so0.8.9.0
libFaceEngineSDK. so
libFaceEngineSDK.so.5
libFaceEngineSDK.so0.5.23
libflower.so
libMatchingKernel.so
libMatchingKernel.so.0
libMatchingKernel.so0.0.0
libTrackEngineSDK.so
libTrackEngineSDK.so0.0
libTrackEngineSDK.s0.0.0
libvlTracker.so

X X X X

<X X X X

3. Remove executable stack flags.

For each library marked with X, use the execstack tool to clear the executable stack flag:

execstack -c <library_name>

Example commands:

execstack -c libFaceEngineSDK.so
execstack -c libFaceEngineSDK.so0.5
execstack -c libFaceEngineSDK.s0.5.23
execstack -c libflower.so

execstack -c libTrackEngineSDK.so
execstack -c libTrackEngineSDK.so.0
execstack -c libTrackEngineSDK.so0.0.0
execstack -c libvlTracker.so

VisionLabs B.V.

263 /265

4, Verify changes.

After clearing the flags, verify that all shared libraries are free of the executable stack flag:

execstack *

Expected output after fixing:

- TlibcublaslLt.so
- libcublaslLt.so.11

- libcublaslLt.so0.11.6.5.

- libcublas.so

- libcublas.so.1l1

- libcublas.so0.11.6.5
- libcudnn_cnn_infer.
- libcudnn_cnn_infer.
- libcudnn_cnn_infer.
- libcudnn_ops_infer.
- libcudnn_ops_infer.
- libcudnn_ops_infer.
- libcudnn.so

- libcudnn.so.8

- libcudnn.so0.8.9.0

- libFaceEngineSDK.so
- libFaceEngineSDK.so

- libFaceEngineSDK.so.5.

- libflower.so
- libMatchingKernel.s

- libMatchingKernel.so.0

.2
SO

SO.
SO.

SO

SO.
SO.

.5

- libMatchingKernel.so.0.0

- libnppc.so

- libnppc.so.11

- libnppc.so0.11.4.0.1
- libnppicc.so

- libnppicc.so.11

10

- libnppicc.s0.11.4.0.110

- libnppidei.so
- libnppidei.so.11

- libnppidei.so0.11.4.0.110

- libTrackEngineSDK.s

- libTrackEngineSDK.so.0

(@)

- libTrackEngineSDK.s0.0.0

- libvlTracker.so

VisionLabs B.V.

264 /265

All libraries should now display a - instead of X, indicating that the executable stack flag has been
successfully removed.

5. Test FingerprintViewer.

After completing the above steps, launch the FingerprintViewer application. If the issue was caused by
the executable stack flag, the application should now start without errors.

VisionLabs B.V. 265/ 265

	Introduction
	Editions and Platforms
	Core Concepts
	SDK workflow
	Object lifetime
	Threading
	Detailed constraints

	Common Interfaces and Types
	Reference Counted Interface
	Automatic reference counting
	Referencing - without acquiring ownership of object lifetime
	Acquiring - own object lifetime

	Serializable object interface
	Auxiliary types
	Image type

	Beta Mode

	FaceEngine Structure Overview
	Core Facility
	Common Interfaces
	Face Engine Object
	Settings Provider

	Helper Interfaces
	Archive Interface

	Sensor type
	Data Paths
	Model Data
	Configuration Data

	Detection facility
	Overview
	Detection structure
	Face Detection
	Image coordinate system
	Face detection
	Redetect method
	Orientation Estimation
	Detector variants
	FaceDetV2 Configuration
	FaceDetV3 Configuration
	Face Alignment
	Five landmarks
	Sixty-eight landmarks

	Face Landmarks Detector
	Human Detection
	Image coordinate system
	Human body detection
	Constraints
	Camera position requirements
	Human body redetection
	Human keypoints
	Main results of each detection
	HumanFace redetection
	Performance
	Main results
	minFaceSize

	Head Detection
	Image coordinate system
	Main results
	minHeadSize

	Image Warping
	Parameter Estimation Facility
	Overview
	Use cases
	ISO estimation

	Best shot selection functionality
	BestShotQuality Estimation
	Image Quality Estimation

	Attributes estimation functionality
	Face Attribute Estimation
	Credibility Check Estimation

	Facial Hair Estimation
	Natural Light Estimation
	Fish Eye Estimation
	Eyebrows Estimation
	Portrait Style Estimation
	DynamicRange Estimation
	Headwear Estimation
	Background Estimation
	Grayscale, color or infrared Estimation
	Face features extraction functionality
	Eyes Estimation
	Red Eyes Estimation
	Gaze Estimation

	Head Pose Estimation
	Approximate Garbage Score Estimation (AGS)
	Glasses Estimation
	Overlap Estimation

	Emotion estimation functionality
	Emotions Estimation

	Mouth Estimation Functionality
	Face Occlusion Estimation Functionality
	DeepFake estimation functionality
	Liveness check functionality
	LivenessFlyingFaces Estimation
	LivenessRGBM Estimation
	Depth Liveness Estimation (LivenessDepthEstimator)
	Depth and RGB OneShotLiveness estimation
	Depth liveness estimation (DepthLivenessEstimator)
	LivenessOneShotRGB Estimation
	Usage example

	NIR Liveness estimation

	Personal Protection Equipment Estimation
	Medical Mask Estimation Functionality
	MedicalMaskEstimator thresholds
	MedicalMask enumeration
	MedicalMaskEstimation structure
	MedicalMaskExtended enumeration
	MedicalMaskEstimationExtended structure
	Filtration parameters

	Human Attribute Estimation
	Crowd Estimation
	Fights Estimation
	ImageModification Estimation

	Descriptor Processing Facility
	Overview
	Person Identification Task
	Person Reidentification Task

	Descriptor
	Descriptor Versions
	Face descriptor
	Human descriptor

	Descriptor Batch
	Descriptor Extraction
	Descriptor Matching
	Descriptor Indexing
	Using HNSW
	Index serialization
	Dynamic index evaluation scheme. This feature is experimental. Backward compatibility is not guaranteed.

	System Requirements
	Windows OS installations
	Linux OS installations

	Hardware requirements
	Server / PC installations
	General considerations
	CPU requirements
	GPU requirements
	The number of SDK threads while using GPU
	NPU requirements
	RAM requirements
	Storage requirements
	Approaches to software design targeting different hardware
	CPU
	GPU/NPU

	Requirements for GPU acceleration

	Embedded installations
	CPU requirements

	Migration guide
	Overview
	v.5.27.0
	Multithreading usage of factory functions (for example: createAGSEstimator, createHeadWearEstimator…)

	v.5.24.0
	IDetector

	v.5.23.0
	IImageTransfer
	IDetector

	v.5.22.0
	IHeadPoseEstimator
	IHeadPoseEstimator and IAGSEstimator

	v.5.20.0
	ILivenessFlowEstimator

	v.5.19.0
	ILivenessFlowEstimator

	v.5.18.0
	IChildEstimator
	IHeadAndShouldersLivenessEstimator

	v.5.17.0
	IHeadAndShouldersLivenessEstimator
	IChildEstimator
	Index
	FishEyeEstimator

	v.5.6.0
	Vector2
	BlackWhiteEstimator

	v.5.5.0
	Examples of code

	v.5.2.0
	v.5.1.0
	v.5.0.0
	Objects creation
	Examples of code

	Interface of ILicense
	Examples of code

	Interface of HumanLandmark
	HumanDetectionType
	HumanLandmarks17
	IHumanLandmarksDetector

	Interface of IDescriptorBatch
	Interface of Detection
	Interface of IDetector
	IFaceDetectionBatch
	Interface of IHumanDetector
	IHumanDetectionBatch
	Interface of ILivenessFlyingFaces

	v.3.10.1
	Detector FaceDetV3 changes
	Detector FaceDetV1, FaceDetV2 changes

	Best practices
	Thread pools
	Estimator creation and inference
	Using CPU and GPU models for network inference
	CPU recommendations
	GPU recommendations

	Forking process
	Liveness estimator combination
	Changing the threshold
	Aggregating the scores
	Recommended thresholds
	Possible LivenessOneShotRGBEstimator model combinations

	Device-specific constraints
	Image constraints

	Collecting information for Technical Support
	Contact Technical Support
	Specific error
	Non-specific error
	Unexpected Result

	Useful tools
	Performance testing
	Key concepts in performance testing

	Metrics for performance analysis
	Common metrics
	Practical use

	Performance test parameters
	Test-specific parameters
	Batch and sensor parameters
	iOS-specific parameters
	Stopping condition parameters
	Recommendations for parameter selection

	Stopping conditions
	Normal stopping conditions
	Emergency stopping conditions
	Configuration of emergency stop conditions

	Special cases

	Example console report
	Structure of the first table
	Column contents
	Additional metrics
	Zero and last iterations
	Color coding
	Reasons for stopping
	Operational vs. final statistics

	Performance test challenges
	Measurement range limitations
	High-frequency noise
	Low-frequency noise
	Test execution duration
	Artificial constraints efficiency
	Launch recommendations

	Potential improvements
	Practical recommendations

	Appendix A. Specifications
	Classification performance
	Runtime performance for CentOS Linux environment
	CPU performance
	CPU. Detector performance
	CPU. HumanDetector performance
	CPU. HumanFaceDetector performance
	CPU. HeadDetector performance
	CPU. Estimations performance with batch interface
	CPU. Estimations performance without batch interface
	CPU. Extractor performance
	CPU. Matcher performance
	CPU. CrowdEstimator performance

	GPU performance
	GPU. Detector performance
	GPU. HumanDetector performance
	GPU. HeadDetector performance
	GPU. HumanFace detector performance
	GPU. Estimations performance with batch interface
	GPU. Estimations performance without batch interface
	GPU. Extractor performance
	GPU. CrowdEstimator performance

	Rockchip (Ubuntu 24.04 LTS)
	Rockchip (power) environment. Detector performance
	Rockchip (power) environment. Extractor performance
	Rockchip (power) environment. HeadDetector performance
	Rockchip (power) environment. HumanDetector performance
	Rockchip (power) Estimations performance without batch interface
	Rockchip (power) environment. Estimations performance with batch interface
	Rockchip (weak) environment. Detector performance
	Rockchip (weak) environment. Extractor performance
	Rockchip (weak) environment. HeadDetector performance
	Rockchip (weak) environment. HumanDetector performance
	Rockchip (weak) Estimations performance without batch interface
	Rockchip (weak) environment. Estimations performance with batch interface

	Runtime performance for embedded environment
	Descriptor size

	Appendix B. Glossary
	Descriptor
	Cooperative Photoshooting and Recognition
	Matching

	Appendix C. FAQ
	Appendix D. Known issues
	Overall known issues
	Warnings during the compilation of user code that utilizes the SDK libraries
	Premature end of JPEG file
	SDK stuck when run sdk algorithm in separate process after root FaceEngine object initialized
	Undefined behaviour with multithreaded usage of the FaceEngine and algorithms
	Floating point exceptions when working with images that have GPU memory residence
	Coordinate differences for batched detections

	CentOS 8 known issues
	Archive unpacking

	Astra Linux known issues
	Startup error

