VisionLabs

MACHINES CAN SEE

VisionLabs FaceEngine Handbook

written for LUNA SDK Mobile iOS version 4.6.0

VisionLabs B.V. © +3120369 0493

Keizersgracht 311, 1016 EE, Amsterdam, the Netherlands 1 info@visionlabs.ai

&) www.visionlabs.ai

Contents
Introduction

1 Core Concepts

11 Commoninterfacesand Types
111 Reference CountedInterface

11.2 Automaticreferencecounting

11.3 Serializable objectinterface

114 Auxiliarytypes
1.1.4.1 Imagetype

12 BetaMode. e

2 FaceEngine Structure Overview

3 Core Facility

31 Commoninterfaces.
311 FaceEngineObject.
3.1.2 SettingsProvider
3.2 Helperinterfaces
3.21 Archivelnterface
3.3 DataPaths e
331 ModelData
3.3.2 ConfigurationData

4 Detection facility

401 OVeIVIEW . . v v it e e e e e e e e e e e e e
4.2 Detectionstructure L L oo
43 FaceDetection
431 Imagecoordinatesystem

43.2 Facedetection,
43.3 Redetectmethod.
434 FaceAlignment.
43.41 Fivelandmarks

5 Parameter Estimation Facility

51 0verview e e e e
5.2 EyesEstimation.
5.3 Headposeestimation

5.4 Approximate Garbage Score Estimation (AGS)

5.5 BestShotQuality Estimation

VisionLabs B.V.

2/34

6 Image Warping

7 Descriptor Processing Facility

T1 OVervIeW . . . L e e e e e

710 PersonldentificationTask
T2 Descriptor o o e e e e e

7.21 DescriptorVersions o e
7.3 DescriptorBatch
7.4 DescriptorExtraction o
7.5 DescriptorMatching o oL

8 Licensing

8.1 Mobileplatforms e
8.1.1 Licensefeatures

9 System Requirements

9.0.1 iOSinstallations

9.1 Hardwarerequirements
9.11 Mobileinstallations
9.1.11 CPUrequirements.

9.1.1.2 Memory requirements

9.1.1.3 Number of threads on mobile devices

10 Appendix A. Specifications

10.1 Runtimeperformance
10.1.1 Mobileenvironment L.
10000 10S & . . e e

10.2 Descriptorsize e

11 Appendix B. Glossary

1.1 Descriptor o o o e e e e e
11.2 Cooperative Photoshooting and Recognition
1.3 Matching e

VisionLabs B.V.

3/34

Introduction

This is a short guide that describes core concepts of the product, shows main FaceEngine features and
suggests usage scenarios.

This document is not a full-featured API reference manual nor a step by step tutorial. For reference pages,
please see Doxygen APl documentation that is shipped with FaceEngine. For complete examples, please
head to our developer portal.

What this book does, however, is this:

+ It describes ideas behind resource management and gives a clue why one or another decision was
made. With this in mind, you are ready to write efficient code with FaceEngine;

+ It breaks down full face analysis and recognition pipeline in parts and shows how one part affects
allthe others. Thisinformation will help you to adapt FaceEngine to your needs, which is somewhat
more productive than blindly following tutorials;

« It details things that are important and omits things that are obvious, so you get information that
matters most.

This book is split up into several chapters. There are chapters dedicated to each FaceEngine facility; there
are chapters with conceptual overviews; there are chapters with generic information. We tried to write
the book starting from low-level concepts and moving on to face detection, description and recognition
tasks solving one problem at a time. Although sometimes we just had to give references to chapters
ahead, we tried to minimize such jumps.

The opening chapter of this book is called “Core concepts”. It will tell you about memory management
techniques, object creation and destruction strategies that are widely used across the entire FaceEngine.
The following chapters catch up telling how higher level FaceEngine components are created from
those building blocks. Starting from chapter “Licensing” this book covers less code-oriented topics like
licensing and system requirements.

VisionLabs B.V. 4/34

1 Core Concepts

1.1 Common Interfaces and Types
1.1.1 Reference Counted Interface

Everything in FaceEngine object system starts from here. The IRefCounted interface provides methods
for reference counter access, increment, and decrement. All reference counted objects imply a custom
memory management model. This way they support automated destruction when reference count drops
to zero as well as more sophisticated strategies of partial destruction and weak referencing required for
FaceEngine internal needs. The bare minimum of such functions is exposed to a user allowing:

+ to notify the object that it is required by a client via retaining a reference to it;
+ to notify the object that it is no longer required by releasing a reference to it;
+ to get actual reference counter value.

Note: reference counted objects expect some special treatment as well. Be sure never to call delete on
any pointer to object derived from IRefCounted! Doing so leads to heap corruption. Simply calling
release notifies the system when the object should be destroyed and it does this properly for you.

However, itis not recommended to interact with the reference counting mechanism manually as doing so
may be error-prone. Instead, you are strongly advised to use smart pointers that are specially designed to
handle such objects and provided by FaceEngine. See section “Automatic reference counting” for details.

1.1.2 Automatic reference counting

For your convenience, a special smart pointer class Ref is provided. It is capable of automatic reference
counter incrementing upon its creation and automatic decrementing upon its destruction. It also does
an assertion of the inner raw pointer being non-null, thus preventing errors.

Note: Ref<> always increments a reference counter by 1 during initialization. You may be not expecting
such behavior from it in some first-time initialization scenarios. Consider a simple example:

ISomeObjectx createSomeObject();

{

/* Here createSomeObject returns an object with initial reference count of 1

(otherwise, it would be dead). Then Ref adds another one for itself

making a total reference count of 2!

*/

Ref<ISomeObject> objref = createSomeObject();

/* Here we use the object in any way we want expecting it to be properly
destroyed when control will leave this scope.

*/

VisionLabs B.V. 5/34

}

/* Here we have left the scope and Ref was automatically destroyed like any
other object created on the stack. At the same time, it decreased
reference count of 1dits internal object by 1 making it 1 again.

*/

However, the object is not destroyed automatically! For this to happen, it should have precisely 0
references. Moreover, in this example, the raw pointer to the object is lost, so it is impossible to fix it in
any way; thus a memory leak is introduced.

So keepingthatin mind we introduce a concept of ownership acquiring. By acquiring an object, you mean
that its raw pointeris not going to be used and only a valid Ref to it is required. To acquire ownership, use
a special ::acquire() function. The fixed version of the above example would look like this:

ISomeObject* createSomeObject();
{

/* Here createSomeObject returns an object with initial reference count of 1
(otherwise, it would be dead). Then we acquire it leaving a total

reference count of 1.

*/

Ref<ISomeObject> objref = acquire(createSomeObject());

/* Here we use the object in any way we want.

*/

+

/* Here we have left the scope and Ref was automatically destroyed like any
other object created on the stack. At the same time, it decreased
reference count of 1its 1dinternal object by 1 making it 0. The object ds
destroyed properly by the object system.

*/

Note: be sure to not to store or use raw pointers to the object when using the ::acquire() function, as
ownership acquiring invalidates them.

To simply make a reference to existing raw pointer, you may use the ::make_ref() function pretty much
alike to the ::acquire() function.

You can statically cast object type during acquiring or referencing. To achieve this, use special versions
of the ::make_ref_as() and ::acquire_as() functions. It is your responsibility to ensure that such a cast is
possible.

Please refer to FaceEngine Reference Manual for more details on available convenience methods and
functions.

As a side note, be informed that typedefs for Ref’s to all reference counted types are declared. All of them

VisionLabs B.V. 6/34

match the following naming convention: InterfaceNamePtr. So, for example, Ref</Detector>is equivalent
to IDetectorPtr.

1.1.3 Serializable object interface

This interface represents an object. Object’s contents may be serialized to some data stream and then
read back. Think of this as loading and saving.

To interact with the aforementioned data stream, the serializable object needs a user-provided adapter.
Such adapteris called the archive. See a detailed explanation of itin section “Archive interface” in chapter
“Core facility”.

Serializable interfaces: IDescriptor, IDescriptorBatch.

1.1.4 Auxiliary types

1.1.4.1 Image type

Since FaceEngine is a computer vision library, it is natural for it to implement some image concept.
Therefore, an Image class exists. It is designed as a reference counted container for raw pixel color
data. Reference counting allows a single image to be shared by several objects. However, one should
understand, that each Image object is holding a reference to some data, so if the data is modified in any
way, this affects all other objects holding the same reference. To make a deep copy of an Image, one
should use the clone() method, since assignment operators just make a reference. It is also possible to
clip a part of an image into a new image by means of extract() method.

Pixel data may be characterized by color channel layout, i.e., a number of color channels and their order.
The engine defines a Format structure for that. The Format determines:

« Number of color channels (e.g., RGB or grayscale);
+ Order of color channel (e.g., RGB vs. BGR).

FaceEngine assumes 8 bits (i.e., 1 byte) per color channel and implements 8 BPP grayscale, 24 BPP
RGB/BGR and padded 32 BPP formats. Format conversion functions are also provided for convenience;
see the convert() function family.

The Image class supports data range mapping. It is possible to map a subset of bytes in a rectangular
area for reading or writing. The mapped pixels are represented by the Subimage structure. In contrast
to Image, Sublmage is just a data view and is not reference counted. You are not supposed to store
Sublmages longer that itis necessary to complete data modification. See the documentation of the map()
function family for details.

The supports 10 roitines to read/write OOM, JPEG, PNG and TIFF formats via Freelmage library.

The absence of image 10 is dictated by the fact that FaceEngine focuses on being lightweight and with
the minimum possible number of external dependencies. Itis not designed solely with image processing

VisionLabs B.V. 7/34

purpose in mind. l.e., one may treat video frames as Images and process them one by one. In this case,
an external (possibly proprietary) video codec is required.

1.2 Beta Mode

Some features in LUNA SDK are available just in Beta mode. This is experimental features which may be
unstable. If you want use them, you have to activate betaMode param in config (faceengine.conf).

VisionLabs B.V. 8/34

2 FaceEngine Structure Overview

FaceEngineis subdivided into several facilities. Each facility is dedicated to a single function. Below there
is a list of all facilities with short descriptions of functionality they provide. Detailed information may be
found in corresponding chapters of this handbook.

FaceEngine facility list:

« Core facility. This facility stores shared low-level FaceEngine types and factories. This facility
is responsible for normal functioning of all other facilities by providing settings accessors and
common interfaces. The core facility also contains the main FaceEngine root object that is used to
create instances of all higher level objects;

» Face detection facility. This facility is dedicated to object detection. It contains various object
detector implementations and factories;

« Parameter estimation facility. This facility is dedicated to various image parameter estimation,
such as blurriness, transformation and so forth. It contains various estimator implementations
and factories;

« Descriptor processing facility. This facility is dedicated to descriptor extraction and matching. The
descriptor is a set of features, describing an object, invariant to object transformation, size or other
parameters. Descriptor matching allows judging with certain probability whether two objects are
the same. This facility contains various descriptor extractors and containers as well as factories,
required to produce them.

So, each facility is a set of classes dedicated to some common for them problem domain. Facilities are
independent of each other, with several exceptions, like that all higher level facilities depend on the core
facility. Interfacility dependencies are thoroughly described in corresponding chapters of this handbook.
The actual set of facilities may vary depending on particular FaceEngine distributions as facilities may be
licensed and shipped separately.

This handbook describes the very complete FaceEngine distribution, assuming all facilities are available.
The facilities are listed in order of increasing complexity. Applying functions from these facilities in this
order allows creating a complete face detection, analysis, recognition and matching pipeline with a
significant degree of flexibility. The following chapters break down such pipeline in details.

VisionLabs B.V. 9/34

3 Core Facility

3.1 Common Interfaces
3.1.1 Face Engine Object

The Face Engine object is a root object of the entire FaceEngine. Everything begins with it, so it is
essential to create at least one instance of it. Although it is possible to have multiple instances of the
Face Engine, it is impractical to do so (as explained in section “Automatic reference counting” in chapter
“Core concepts”). To create a Face Engine instance call createFaceEngine function. Also, you may specify
default dataPath and configPath in createFaceEngine parameters.

3.1.2 Settings Provider

Settings provider is a special entity that loads settings from various locations. Since settings might be
shared among several objects, it is useful to cache them to minimize disk reads and provide a dictionary-
like interface for named value lookup.

This is what the provider does. The provider object stands somewhat aside FaceEngine facility structure
and is created by a separate factory function createSettingsProvider. This function accepts configuration
file path as a parameter (see section “Configuration data” for details). By default, the engine holds a
single provider instance for all facilities. Think of it as a reference counted config file. This provider is
passed by the Face Engine object to each factory it creates. The factory, in turn, can read its configuration
data from the object and pass it further to its child objects. In typical scenarios, you should not bother
with providers as the engine does everything for you. However, when relying on custom factory creation
parameters (see the description in section “Face engine object”), you have to create and supply a provider
wherever it is required manually.

3.2 Helper Interfaces
3.2.1 Archive Interface

Archive interface is used to provide serialization functions with a data source. It contains methods
primarily for data reading and writing. Note, that /Archive is not derived from IRefCounted, thus does not
imply any special memory management strategies.

A few points to keep in mind when implementing your archive:

+ FaceEngine objects that use IArchive for serialization purposes do call only write() (during saving) or
only read() (during loading) but never both during the same process unless otherwise is explicitly
stated;

«+ Duringsavingorloading FaceEngine objects are free to write or read their data in chunks; e.g., there
may be several sequential calls to write() in the scope of a single serialization request. The same

VisionLabs B.V. 10/34

is true for read(). Basically, read() and write() should behave pretty much like C fread() and fwrite()
standard library functions.

Any IArchive implementation should be aware of these notes.

Since these interface methods are pretty obvious and mostly self-explanatory, we advise you to check
out FaceEngine Reference Manual for the details.

3.3 Data Paths
3.3.1 Model Data

Various FaceEngine modules may require datafiles to operate. The files contain various algorithm models
and constants used at runtime. All the files are gathered together into a single data directory.

One may override the data directory location by means of setDataDirectory() method which is available
in IFaceEngine. Current data location may be retrieved via getDataDirectory() method.

3.3.2 Configuration Data

The configuration file is called faceengine.conf and stored in /data directory by default. ConfigurationGuide.pdf
with parameter description and default values is located at /doc package folder.

At runtime, the configuration file data is managed by a special object that implements ISettingsProvider
interface (see section “Settings provider”). The provideris instantiated by means of createSettingsProvider()
function that accepts configuration file location as a parameter or uses aforementioned defaults if not
specified.

One may supply a different configuration to any factory object by means of setSettingsProvider() method,
which is available in each factory object interface, including IFaceEngine. Currently, bound settings
provider may be retrieved via getSettingsProvider() method.

VisionLabs B.V. 1n/34

4 Detection facility

4,1 Overview

Object detection facility is responsible for quick and coarse detection tasks, like finding a facein animage.

4.2 Detection structure

The detection structure represents an images-space bounding rectangle of the detected object as well as
the detection score.

Detection score is a measure of confidence in the particular object classification result and may be used
to pick the most “confident” face of many.

Note: Detection score is the measure of classification confidence and not the source image quality. While
the score is related to quality (low-quality data generally results in a lower score), it is not a valid metric
to estimate the visual quality of an image.

4.3 Face Detection

Object detection is performed by the IDetector object. The function of interest is detect(). It requires an
image to detect on and an area of interest (to virtually crop the image and look for faces only in the given
location).

4.3.1 Image coordinate system

The origin of the coordinate system for each processed image is located in the upper left corner.

(0.0) X

Y (image)

Figure 1: Source image coordinate system

VisionLabs B.V. 12/34

4.3.2 Face detection

When a face is detected, a rectangular area with the face is defined. The area is represented using
coordinates in the image coordinate system.

When a part of a face is outside of the frame, the detection area will also be beyond the frame borders.
Hence coordinates of the detection area may have the following values:

« When the face is beyond the left or the upper border of the frame, the detection coordinates will
have negative values;

In the image below, the upper left detection point is outside of the frame. Hence the X and Y coordinates
of the upper left detection point have negative values.

('X, _Y)'-

Figure 2: Upper left detection point is outside of the frame

+ When the face is beyond the right or the lower border of the frame, the detection coordinates will
have positive values, but their values will exceed the image size.

VisionLabs B.V. 13/34

In the image below, the X coordinate is equal to X + n, where n is the length of the zone that exceeds the

image frame size.

>

+n, Y)

(X+n, Y)

Figure 3: Lower right detection point is outside of the frame
NOTE! You must consider this feature when processing images to properly process the received

coordinates.

A code example for detection cropping is given below.

VisionLabs B.V. 14 /34

const fsdk::Rect brect = detection.rect & image.getRect();

detection - face detection. image - source image.

4.3.3 Redetect method

Face detector implements redetect() method which is intended for face detection optimization on video
frame sequences. Instead of doing full-blown detection on each frame, one may detect() new faces at a
lower frequency (say, each 5th frame) and just confirm them in between with redetect(). This dramatically
improves performance at the cost of detection recall. Note that redetect() updates face landmarks as well.

Detector works faster with larger value of minFaceSize.

4.3.4 Face Alignment

4.3.4.1 Five landmarks

Face alignment is the process of special key points (called “landmarks”) detection on a face. FaceEngine
does landmark detection at the same time as the face detection since some of the landmarks are by-
products of that detection.

At the very minimum, just 5 landmarks are required: two for eyes, one for a nose tip and two for mouth
corners. Using these coordinates, one may warp the source photo image (see Chapter “Image warping”)
for use with all other FaceEngine algorithms.

All detector may provide 5 landmarks for each detection without additional computations.
Typical use cases for 5 landmarks:
+ Image warping for use with other algorithms:

- Quality and attribute estimators;
- Descriptor extraction.

VisionLabs B.V. 15/34

5 Parameter Estimation Facility

5.1 Overview

Estimation facility is the only multi-purpose facility in FaceEngine. It is designed as a collection of tools
that help to estimate various image or depicted object properties. These properties may be used to
increase the precision of algorithms implemented by other FaceEngine facilities or to accomplish custom
user tasks.

5.2 Eyes Estimation

Note. The estimator is trained to work with warped images (see Chapter “Image warping” for details).
This estimator aims to determine:

« Eye state: Open, Closed, Occluded;
« Precise eye iris location as an array of landmarks;
+ Precise eyelid location as an array of landmarks.

You can only pass warped image with detected face to the estimator interface. Betterimage quality leads
to better results.

Eye state classifier supports three categories: “Open”, “Closed”, “Occluded”. Poor quality images or ones
that depict obscured eyes (think eyewear, hair, gestures) fall into the “Occluded” category. It is always a
good idea to check eye state before using the segmentation result.

The precise location allows iris and eyelid segmentation. The estimator is capable of outputting iris and
eyelid shapes as an array of points together forming an ellipsis. You should only use segmentation results
if the state of that eye is “Open”.

The estimator:

« Implements the estimate() function that accepts warped source image (see Chapter “Image
warping”) and warped landmarks, either of type Landmarks5 or Landmarks68. The warped image
and landmarks are received from the warper (see IWarper::warp());

« Classifies eyes state and detectsiits iris and eyelid landmarks;

« Outputs EyesEstimation structures.

Note. Orientation terms “left” and “right” refer to the way you see the image as it is shown on the screen.
It means that left eye is not necessarily left from the person’s point of view, but is on the left side of the
screen. Consequently, right eye is the one on the right side of the screen. More formally, the label “left”
refers to subject’s left eye (and similarly for the right eye), such that xright < xleft.

EyesEstimation::EyeAttributes presents eye state as enum EyeState with possible values: Open, Closed,
Occluded.

Iris landmarks are presented with a template structure Landmarks that is specialized for 32 points.

VisionLabs B.V. 16 / 34

Eyelid landmarks are presented with a template structure Landmarks that is specialized for 6 points.

5.3 Head pose estimation

This estimator is designed to determine camera-space head pose. Since 3D head translation is hard to
determine reliably without camera-specific calibration, only 3D rotation component is estimated.

There are two head pose estimation method available:

+ Estimate by 68 face-aligned landmarks (you may get it from Detector facility, see Chapter
“Detection facility”) ;
+ Estimate by original inputimage in RGB format.

Estimation by image is more precise. If you have already extracted 68 landmarks for another facilities
you may save time, and use fast estimator from 68 landmarks.

By default, all methods are available to use in config (faceengine.conf) in section “HeadPoseEstimator”.
You may disable these methods to decrease RAM usage and initialization time.

Estimation characteristics:

« Units (degrees);
+ Notation (Euler angles);
+ Precision (see the table below).

Note. Prediction precision decreases as a rotation angle increases. We present typical average errors for
different angle ranges in the table below.

Table 1: “Head pose prediction precision”

Range -45°,..+45° <-45° or > +45°
Average prediction error (per axis) Yaw +2.7° +4.6°
Average prediction error (per axis) Pitch +3.0° +4.8°
Average prediction error (per axis) Roll +3.0° +4.6°

Zero position corresponds to a face placed orthogonally to camera direction, with the axis of symmetry
parallel to the vertical camera axis. See the image below for a reference.

VisionLabs B.V. 17/ 34

Y |
| |
(==y vitch
R o 4 —_— — —
L N - N,
\./I [.,
PN S R S .
(L=} S N T
{ - oA j_//[S/
f T 3 F
4 b - N ~ -
mter]
1/
N/

Figure 4: Head pose

Note. In order to work, this estimator requires precise 68-point face alignment results, so familiarize with
section “Face alignment” in the “Detection facility” chapter as well.

5.4 Approximate Garbage Score Estimation (AGS)

This estimator aims to determine the source image score for further descriptor extraction and matching.
The higher the score, the better matching result is received for the image.

When you have several images of a person, it is better to save the image with the highest AGS score.

Consult VisionLabs about the recommended threshold value for this parameter.

The estimator (see IAGSEstimator in |[Estimator.h):

+ Implementsthe estimate() function that accepts source image in R8G8B8 format and fsdk::Detection
structure of corresponding source image (see section “Detection structure” in chapter “Detection
facility”);

« Estimates garbage score of input image;

+ Outputs garbage score value.

5.5 BestShotQuality Estimation

The BestShotQuality estimator represents a collection of estimator functionalities unified for end-user

convenience.
Estimation types that were merged into this estimator are described in the following list:

+ AGS: image quality score (see section “Approximate garbage score estimation (AGS)” for more
details);

VisionLabs B.V. 18/ 34

+ HeadPose: determines person head rotation angles in 3D space, namely pitch, yaw and roll (see
section Head pose estimation for more details).

Before using this estimator, user is free to decide whether to estimate or not some specific attributes
listed above through IBestShotQualityEstimator::EstimationRequests structure, which later get passed in
main estimate() method.

Estimator overrides AQEEstimationResults output structure, which consists of optional fields describing
results of user requested attributes.

VisionLabs B.V. 19/ 34

6 Image Warping
Warping is the process of face image normalization. It requires landmarks and face detection (see chapter
“Detection facility”) to operate. The purpose of the process is to:

« compensate image plane rotation (roll angle);
+ center the image using eye positions;
+ properly crop the image.

This way all warped images look the same and one can tell that, e.g., left eye is always in a box, defined
by the certain coordinates. This way certain transform invariance is achieved for input data so various
algorithms can perform better.

Detection Warping

@

®

Figure 5: Face warping

Be aware that image warping is not thread-safe, so you have to create a warper object per worker thread.

VisionLabs B.V. 20/34

7 Descriptor Processing Facility

7.1 Overview

The section describes descriptors and all the processes and objects corresponding to them.
Note: Decriptors and extraction facility is available only in the Complete edition only!

Descriptor itself is a set of object parameters that are specially encoded. Descriptors are typically more
or less invariant to various affine object transformations and slight color variations. This property allows
efficient use of such sets to identify, lookup, and compare real-world objects images.

To receive a descriptor you should perform a special operation called descriptor extraction.

The general case of descriptors usage is when you compare two descriptors and find their similarity score.
Thus you can identify persons by comparing their descriptors with your descriptors database.

All descriptor comparison operations are called matching. The result of the two descriptors matching
is a distance between components of the corresponding sets that are mentioned above. Thus, from a
magnitude of this distance, we can tell if two objects are presumably the same.

7.1.1 Person Identification Task

Facial recognition is the task of making an identification of a face in a photo or video image against a pre-
existing database of faces. It begins with detection - distinguishing human faces from other objects in
the image - and then works on the identification of those detected faces. To solve this problem, we use a
face descriptor, which extracted from an image face of a person. A person’s face is invariable throughout
his life.

In a case of the face descriptor, the extraction is performed from object image areas around some
previously discovered facial landmarks, so the quality of the descriptor highly depends on them and the
image it was obtained from.

The process of face recognition consists of 4 main stages:

« face detection in an image;

« warping of face detection - compensation of affine angles and centering of a face;
« descriptor extraction;

« comparing of extracted descriptors (matching).

7.2 Descriptor

Descriptor object stores a compact set of packed properties as well as some helper parameters that were
used to extract these properties from the sourceimage. Together these parameters determine descriptor
compatibility. Not all descriptors are compatible with each other. It is impossible to batch and match

VisionLabs B.V. 21/34

incompatible descriptors, so you should pay attention to what settings do you use when extracting them.
Refer to section “Descriptor extraction” for more information on descriptor extraction.

7.2.1 Descriptor Versions

Face descriptor algorithm evolves with time, so newer FaceEngine versions contain improved models of
the algorithm.

Note. Descriptors of different versions are incompatible! This means that you cannot match descriptors
with different versions. This does not apply to base and mobilenet versions of the same model: they are
compatible.

See chapter “Appendix A. Specifications” for details about the performance and precision of different
descriptor versions.

Descriptor version may be specified in the configuration file (see section “Configuration data” in chapter
“Core facility”).

7.3 Descriptor Batch

When matching significant amounts of descriptors, it is desired that they reside continuously in memory
for performance reasons (think cache-friendly data locality and coherence). This is where descriptor
batches come into play. While descriptors are optimized for faster creation and destruction, batches are
optimized for long life and better descriptor data representation for the hardware.

A batch is created by the factory like any other object. Aside from type, a size of the batch should be
specified. Size is a memory reservation this batch makes for its data. It is impossible to add more data
than specified by this reservation.

Next, the batch must be populated with data. You have the following options:

«+ add an existing descriptor to the batch;
« load batch contents from an archive.

The following notes should be kept in mind:

« When adding an existing descriptor, its data is copied into the batch. This means that the descriptor
object may be safely released.

« When adding the first descriptor to an empty batch, initial memory allocation occurs. Before that
moment the batch does not allocate. At the same moment, internal descriptor helper parameters
are copied into the batch (if there are any). This effectively determines compatibility possibilities
of the batch. When the batch is initialized, it does not accept incompatible descriptors.

After initialization, a batch may be matched pretty much the same way as a simple descriptor.

Like any other data storage object, a descriptor batch implements the ::clear() method. An effect of this
method is the batch translation to a non-initialized state except memory deallocation. In other words,

VisionLabs B.V. 22 /34

batch capacity stays the same, and no memory is reallocated. However, an actual number of descriptors
in the batch and their parameters are reset. This allows re-populating the batch.

Memory deallocation takes place when a batch is released.

Care should be taken when serializing and deserializing batches. When a batch is created, it is assigned
with a fixed-size memory buffer. The size of the buffer is embedded into the batch BLOB when it is saved.
So, when allocating a batch object for reading the BLOB into, make sure its size is at least the same as
it was for the batch saved to the BLOB (even if it was not full at the moment). Otherwise, loading fails.
Naturally, it is okay to deserialize a smaller batch into a larger another batch this way.

7.4 Descriptor Extraction

Descriptor extractor is the entity responsible for descriptor extraction. Like any other object, it is created
by the factory. To extract a descriptor, aside from the source image, you need:

« aface detection area inside the image (see chapter “Detection facility”)
« a pre-allocated descriptor (see section “Descriptor”)
« apre-computed landmarks (see chapter “Image warping”)

A descriptor extractor object is responsible for this activity. It is represented by the straightforward
IDescriptorExtractor interface with only one method extract(). Note, that the descriptor object must be
created prior to calling extract() by calling an appropriate factory method.

Landmarks are used as a set of coordinates of object points of interest, that in turn determine source
image areas, the descriptor is extracted from. This allows extracting only data that matters most for
a particular type of object. For example, for a human face we would want to know at least definitive
properties of eyes, nose, and mouth to be able to compare it to another face. Thus, we should first invoke
a feature extractor to locate where eyes, nose, and mouth are and put these coordinates into landmarks.
Then the descriptor extractor takes those coordinates and builds a descriptor around them.

Descriptor extraction is one of the most computation-heavy operations. For this reason, threading might
be considered. Be aware that descriptor extraction is not thread-safe, so you have to create an extractor
object per a worker thread.

It should be noted, that the face detection area and the landmarks are required only for image warping,
the preparation stage for descriptor extraction (see section “Image warping”). If the source image
is already warped, it is possible to skip these parameters. For that purpose, the IDescriptorExtractor
interface provides a special extractFromWarpedimage() method.

Also IDescriptorExtractor returns descriptor score for each extracted descriptor. Descriptor score is
normalized value in range [0,1], where 1 - face in the warp, 0 - no face in the warp. This value allows you
filter descriptors extracted from false positive detections.

VisionLabs B.V. 23 /34

7.5 Descriptor Matching

It is possible to match a pair (or more) previously extracted descriptors to find out their similarity. With

this information, it is possible to implement face search and other analysis applications.

Matching

95%

5%

Figure 6: Matching

By means of match function defined by the IDescriptorMatcher interface it is possible to match a pair of
descriptors with each other or a single descriptor with a descriptor batch (see section “Descriptor batch”
for details on batches).

A simple rule to help you decide which storage to opt for:

+ when searching among less than a hundred descriptors use separate IDescriptor objects;
+ when searching among bigger number of descriptors use a batch.

When working with big data, a common practice is to organize descriptors in several batches keeping a
batch per worker thread for processing.

Be aware that descriptor matching is not thread-safe, so you have to create a matcher object per a worker
thread.

VisionLabs B.V. 24 /34

8 Licensing

8.1 Mobile platforms

FaceEngine supports per-features node-locked licensing for every supported platform. This means that
by activating and deactivating the licensed features a final customer version of FaceEngine might be
customized. For that reason, not all algorithms and modules described in this book might be available to
you. Each SDK instance should be activated on every device. License, which was activated for one device
could not be used on some other device. Interface for License objects ILicense (see file ILicense.h) gives
you possibility to:

« checkif license is already activated;

save license for next usage to some file;

« load license from file;

+ check if some feature of FaceEngine is available for this license;
+ check the expiration date for each feature in this license.

Typical usage scenario:

+ Create a FaceEngineType object (see file FaceEngine.h);

+ Get license pointer through fsdk::FaceEngineType::getLicense.

+ Make activation for that license object through fsdk::activateLicense. This method requires full or
relative path to the license.conf file.

NOTE: Descriptor license feature allows creating no more than 1000 descriptors on mobile platforms.

NOTE: If the feature is not available for the current license or the feature has expired, an attempt to use
the corresponding functionality will result in an error.

8.1.1 License features

To work with license featuresin code the LicenseFeature enum should be used (seefile ILicense.h). Some
features are not available for some platforms.

Full list of features and according list of estimators available on mobile platforms:

« Detection - allows to create IDetector instance to find person face on a frame;

« BestShot - allows to create IAGSEstimator, IBestShotQualityEstimator, IHeadPoseEstimator
instance;

+ FaceFeatures - allows to create IEyeEstimator instance;

« Descriptor-allows to create IDescriptor, IDescriptorBatch, IDescriptorExtractor, IDescriptorMatcher
instances to extract face features of a concrete person and work with them;

+ Liveness - allows to create IBestShotMobile instance to get a bestshot from video.

« TrackEngine - allows to create ITrackEngine instance to track person on video.

VisionLabs B.V. 25/34

If the license for the selected feature is invalid, the factory instantiation method will return
nullptr. For example, method: [IFaceEngine::createAGSEstimator will return nullptr in case if
LicenseFeature::BestShot in not available.

NOTE: Other features such as Attributes, Emotions, Liveness, Descriptorindex, LivenessEngine,
HumanDetection are not availabls on mobile platforms.

VisionLabs B.V. 26 /34

9 System Requirements

9.0.1 iOS installations

FaceEngine requires:
« i0S version 11.0.
For development:

« XCode 11.4.

9.1 Hardware requirements
9.1.1 Mobile installations

9.1.1.1 CPU requirements
Note: Fat libraries are provided within iOS frameworks.

Note: Bitcode-enabled libraries are available for iOS.

9.1.1.2 Memory requirements
RAM requirements are given for common for mobile platform verification pipeline.

Storage is amount of space specific version of installation takes on device. For iOS app thinning before
deployment is assumed. As the result *.frameworks files in your final app archive will occupy (up to 30-
60%, depending on platform) less storage space compared to ones found in the distribution.

Table 2: “Memory requirements”

Requirements for i0S

RAM 400 MB
Storage Full 200 MB
Storage Frontend 170 MB

9.1.1.3 Number of threads on mobile devices

The description of according settings you can find in “Configuration Guide - Runtime settings”. The
setting <param name="numThreads"type="Value::Intl"x="-1"/> means that will be taken
the maximum number of available threads. This number of threads is equal to according number of
available processor cores. We strongly recommend you to follow this recommendation; otherwise,
performance can be significantly reduced.

VisionLabs B.V. 27/ 34

10 Appendix A. Specifications

10.1 Runtime performance
10.1.1 Mobile environment

Face detection performance depends on inputimage parameters such as resolution and bit depth as well
as the size of the detected face. The iOS platform uses mobilenet by default.

Input data characteristics:

+ Image resolution: 640x480px;
+ Image format: 24 BPP RGB;
+ Typical face size: ~260x260px.

10.1.1.1 10S

Performance measurements are presented for ARM of iPhones X, 7 and 6 in tables below. Measured
values are averages of at least 100 experiments. Mobilenet is used by default. The number of threads
auto means that will be taken the maximum number of available threads. For this mode use the -1 value
for the numThreads parameter in the runtime.conf. This number of threads is equal to according
number of available processor cores. We strongly recommend you to follow this recommendation;
otherwise, performance can be significantly reduced. Description of accoding settings you can find in
“Configuration Guide - Runtime settings”.

Table 3: “Performance of iPhone X. Extractor and matcher”

Measurement Model Threads Average (ms) Units
Extractor 54 1 91.6 ms

54 auto 51.4
Matcher 54 - 3.0M matches/sec

Table 4: “Performance of iPhone X. Extractor batch”

Measurement Model Threads Average (ms) Batch Size
Extractor Batch 54 auto 51.6 1

54 auto 46.1 4

54 auto 53.3 8

VisionLabs B.V. 28 /34

Table 5: “Performance of iPhone X. Detection and estimation”

Measurement Threads Average (ms) Batch Size
Detector (FaceDetV2) 1 1.3/12.7/32.6 -
(Easy/complex/6 faces) auto 10.2/11.0/28.9 -
Warper 1 1.4 -
auto 1.4 =
Head Pose by Image 1 0.9 -
auto 0.9 =
Head Pose Batch auto 0.9 1
auto 0.6 4
auto 0.5 8
Eyes 1 1.7 -
auto 5.7 -
Eyes Batch auto 5.8 1
auto 3.4 4
auto 2.9 8
AGS 1 1.7 -
auto 1.5 =
AGS Batch auto 1.5 1
auto 1.1 4
auto 1.0 8
Best Shot Quality 1 4.8 -
auto 4.2 -
Best Shot Quality Batch auto 4.2 1
auto 2.6 4
auto 2.3 8

VisionLabs B.V. 29/34

Table 6: “Performance of iPhone 7. Extractor and matcher”

Type Model NumThreads Average Units
Extractor 54 1 105.0 ms

54 auto 62.0
Matcher 54 - 1.0M matches/sec

Table 7: “Performance of iPhone 7. Extractor batch”

Type Model NumThreads Average (ms) Batch Size
Extractor Batch 54 auto 69.0 1

54 auto 69.1 4

54 auto 75.6 8

Table 8: “Performance of iPhone 7. Detection and estimation”

Measurement Threads Average (ms) Batch Size
Detector (FaceDetV2) 1 14.3/13.2/59.3 -
(Easy/complex/6 faces) auto 14.0/12.9/41.8 -
Warper 1 2.0 -
auto 2.0 -
Head Pose by Image 1 1.1 -
auto 1.1 =
Head Pose Batch auto 1.1 1
auto 0.7 4
Eyes 1 9.3 -
auto 8.2 =
Eyes Batch auto 8.5 1
auto 6.0 4

VisionLabs B.V.

30/34

Measurement Threads Average (ms) Batch Size
auto 5.7 8
AGS 1 1.8 -
auto 1.7 -
AGS Batch auto 1.7 1
auto 1.2 4
auto 1.2 8
Best Shot Quality 1 45 -
auto 4.3 =
Best Shot Quality Batch auto 47 1
auto 3.2 4
auto 2.8 8

Table 9: “Performance of iPhone 6. Extractor and matcher”

Measurement Model Threads Average Units
Extractor 1 191.4 ms
auto 106.7
Matcher - 0.5M matches/sec
Table 10: “Performance of iPhone 6. Extractor batch”
Measurement Model Threads Average (ms) Batch Size
Extractor Batch 54 auto 138.2 1
54 auto 139.6 4
54 auto 143.5 8

VisionLabs B.V.

31/34

Table 11: “Performance of iPhone 6. Detection and estimation”

Measurement Threads Average (ms) Batch Size
Detector (FaceDetV2) 1 32.5/28.6/121.8 -
(Easy/complex/6 faces) auto 37.0/31.2/101.2 -
Warper 1 5.1 -
auto 5.0 =
Head Pose by Image 1 2.9 -
auto 3.7 =
Head Pose Batch auto 37 1
auto 2.2 4
auto 2.0 8
Eyes 1 14.2 -
auto n.7 -
Eyes Batch auto 14.4 1
auto 9.9 4
auto 9.1 8
AGS 1 5.3 -
auto 5.0 =
AGS Batch auto 5.5 -
auto 4.1 =
auto 3.9 -
Best Shot Quality 1 11.9 -
auto 1.0 -
Best Shot Quality Batch auto 13.2 1
auto 8.9 4
auto 8.2 8

VisionLabs B.V. 32/34

10.2 Descriptor size

The table below shows size of serialized descriptors to estimate memory requirements.

Table 12: “Descriptor size”

Descriptor version Data size (bytes) Metadata size (bytes) Total size

CNN 54 512 8 520

Metadata includes signature and version information that may be omitted during serialization if the
NoSignature flag is specified.

When estimating individual descriptor size in memory or serialization storage requirements with default
options, consider using values from the “Total size” column.

When estimating memory requirements for descriptor batches, use values from the “Data size” column
instead, since a descriptor batch does not duplicate metadata per descriptor and thus is more memory-
efficient.

Note: these numbers are for approximate computation only, since they do not include overhead like
memory alignment for accelerated SIMD processing and the like.

VisionLabs B.V. 33/34

11 Appendix B. Glossary

11.1 Descriptor

A set of features meant to describe a real-world object (e.g., a person’s face). Computed by means of
computer vision algorithms, such features are typically matched to each other to determine the similarity
of represented objects.

11.2 Cooperative Photoshooting and Recognition

A procedure of taking person face photograph characterized by person awareness of the matter and
his/her will to assist.

Typical highlights:

« Close to frontal head pose;

Neutral facial expression;

No occlusions (i.e., hair, hats, non-transparent eyewear, hands, other objects obscuring the face);

No extreme lighting conditions (i.e., reasonable illuminance, no direct sunlight);

Steady and well-tuned optics (i.e., no motion blur, depth of field, digital post-processing except
noise cancellation).

Cooperative photoshooting is opposite to the so-called “in the wild” photoshooting, which is also called
non-cooperative shooting (or recognition).

11.3 Matching

The process of descriptors comparison. Matching is usually implemented as a distance function applied
to the feature sets and distances comparison later on. The smaller the distance, the closer are descriptors,
hence, the more similar are the objects.

For convenience, helper functions exist to convert distance to a normalized similarity score, where 100%
means completely identical, and 0% means completely different.

VisionLabs B.V. 34/34

	Introduction
	Core Concepts
	Common Interfaces and Types
	Reference Counted Interface
	Automatic reference counting
	Serializable object interface
	Auxiliary types
	Image type

	Beta Mode

	FaceEngine Structure Overview
	Core Facility
	Common Interfaces
	Face Engine Object
	Settings Provider

	Helper Interfaces
	Archive Interface

	Data Paths
	Model Data
	Configuration Data

	Detection facility
	Overview
	Detection structure
	Face Detection
	Image coordinate system
	Face detection
	Redetect method
	Face Alignment
	Five landmarks

	Parameter Estimation Facility
	Overview
	Eyes Estimation
	Head pose estimation
	Approximate Garbage Score Estimation (AGS)
	BestShotQuality Estimation

	Image Warping
	Descriptor Processing Facility
	Overview
	Person Identification Task

	Descriptor
	Descriptor Versions

	Descriptor Batch
	Descriptor Extraction
	Descriptor Matching

	Licensing
	Mobile platforms
	License features

	System Requirements
	iOS installations
	Hardware requirements
	Mobile installations
	CPU requirements
	Memory requirements
	Number of threads on mobile devices

	Appendix A. Specifications
	Runtime performance
	Mobile environment
	IOS

	Descriptor size

	Appendix B. Glossary
	Descriptor
	Cooperative Photoshooting and Recognition
	Matching

