
VisionLabs FaceEngine Handbook

VisionLabs B.V.

Keizersgracht 311, 1016 EE, Amsterdam, the Netherlands

+31 20 369 04 93

info@visionlabs.ai

www.visionlabs.ai

Contents

Introduction 5

Editions and Platforms 6

1 Core Concepts 7
1.1 Common Interfaces and Types . 7

1.1.1 Reference Counted Interface . 7
1.1.2 Automatic reference counting . 7
1.1.3 Serializable object interface . 9
1.1.4 Auxiliary types . 9

1.1.4.1 Image type . 9
1.2 Beta Mode . 10

2 FaceEngine Structure Overview 11

3 Core Facility 12
3.1 Common Interfaces . 12

3.1.1 Face Engine Object . 12
3.1.2 Settings Provider . 12

3.2 Helper interfaces . 12
3.2.1 Archive interface . 12

3.3 Recognition mode . 13
3.4 Data Paths . 13

3.4.1 Model Data . 13
3.4.2 Configuration Data . 13

4 Detection facility 15
4.1 Overview . 15
4.2 Detection structure . 15
4.3 Face Detection . 15

4.3.1 Image coordinate system . 15
4.3.2 Face detection . 16
4.3.3 Redetect method . 19
4.3.4 Detector variants . 19
4.3.5 FaceDetV1 and FaceDetV2 Configuration . 19
4.3.6 FaceDetV3 Configurating . 20
4.3.7 Face Alignment . 20

4.3.7.1 Five landmarks . 20
4.3.7.2 Sixty-eight landmarks . 21

VisionLabs B.V. 2 / 71

4.4 Human Detection . 23
4.4.1 Image coordinate system . 24
4.4.2 Human body detection . 24
4.4.3 Constraints . 26
4.4.4 Camera position requirements . 26
4.4.5 Human body redetection . 28
4.4.6 Human Keypoints . 30
4.4.7 Detection . 31
4.4.8 Main Results of Each Detection . 31

5 Parameter Estimation Facility 32
5.1 Overview . 32
5.2 Face Attribute Estimation . 32
5.3 Color/Monochrome Estimation . 33
5.4 Image quality estimation . 33
5.5 Eyes Estimation . 38
5.6 Head pose estimation . 39
5.7 Gaze Estimation . 40
5.8 Smile Estimation . 41
5.9 Mouth Estimation . 41
5.10 Emotions Estimation . 41
5.11 Approximate Garbage Score Estimation (AGS) . 42
5.12 Glasses Estimation . 42
5.13 Overlap Estimation . 43
5.14 Child Estimation . 43
5.15 BestShotQuality Estimation . 44
5.16 HeadAndShouldersLiveness Estimation . 44
5.17 LivenessFlyingFaces Estimation . 44
5.18 LivenessRGBM Estimation . 45
5.19 Medical Mask Estimation and Medical Mask Estimation Extended 46

5.19.1 MedicalMaskEstimator thresholds . 47
5.19.2 MedicalMask enumeration . 47
5.19.3 MedicalMaskEstimation structure . 48
5.19.4 MedicalMaskExtended enumeration . 49
5.19.5 MedicalMaskEstimationExtended structure . 49

5.20 Credibility Check Estimation . 50
5.21 LivenessIREstimation Estimation . 52
5.22 Facial Hair Estimation . 53

5.22.1 FacialHair enumeration . 54
5.22.2 FacialHairEstimation structure . 54

VisionLabs B.V. 3 / 71

5.22.3 Beard enumeration . 55
5.22.4 BeardEstimation structure . 55
5.22.5 Mustache enumeration . 56
5.22.6 MustacheEstimation structure . 56

5.23 Headwear Estimation . 57
5.23.1 HeadWearState enumeration . 58
5.23.2 HeadWearType enumeration . 58
5.23.3 HeadWearStateEstimation structure . 59
5.23.4 HeadWearTypeEstimation structure . 60
5.23.5 HeadWearEstimation structure . 60

6 ImageWarping 62

7 Descriptor Processing Facility 63
7.1 Overview . 63

7.1.1 Person Identification Task . 63
7.1.2 Person Reidentification Task . 63

7.2 Descriptor . 64
7.2.1 Descriptor Versions . 64

7.2.1.1 Face descriptor . 65
7.2.1.2 Human descriptor . 65

7.3 Descriptor Batch . 65
7.4 Descriptor Extraction . 66
7.5 Descriptor Matching . 67
7.6 Descriptor Indexing . 68

7.6.1 Using HNSW . 68

8 System Requirements 69
8.0.1 Android installations . 69

8.1 Hardware requirements . 69
8.1.1 Embedded installations . 69

8.1.1.1 CPU requirements . 69
8.2 Android for embedded . 69

9 Appendix B. Glossary 70
9.1 Descriptor . 70
9.2 Cooperative Photoshooting and Recognition . 70
9.3 Matching . 70

10 Appendix C. FAQ 71

VisionLabs B.V. 4 / 71

Introduction

This is a short guide that describes core concepts of the product, shows main FaceEngine features and
suggests usage scenarios.

This document is not a full-featured API referencemanual nor a step by step tutorial. For reference pages,
please see Doxygen API documentation that is shipped with FaceEngine. For complete examples, please
head to our developer portal.

What this book does, however, is this:

• It describes ideas behind resourcemanagement and gives a clue why one or another decision was
made. With this in mind, you are ready to write efficient code with FaceEngine;

• It breaks down full face analysis and recognition pipeline in parts and shows how one part affects
all theothers. This informationwill help you toadaptFaceEngine toyourneeds,which is somewhat
more productive than blindly following tutorials;

• It details things that are important and omits things that are obvious, so you get information that
matters most.

This book is split up into several chapters. There are chapters dedicated to each FaceEngine facility; there
are chapters with conceptual overviews; there are chapters with generic information. We tried to write
the book starting from low-level concepts and moving on to face detection, description and recognition
tasks solving one problem at a time. Although sometimes we just had to give references to chapters
ahead, we tried to minimize such jumps.

The opening chapter of this book is called “Core concepts”. It will tell you about memory management
techniques, object creation and destruction strategies that are widely used across the entire FaceEngine.
The following chapters catch up telling how higher level FaceEngine components are created from those
building blocks.

VisionLabs B.V. 5 / 71

Editions and Platforms

FaceEngine supportsmultiple platforms and comes in two editions: the frontend edition (or FE for short)
and the complete edition. Supported software and hardware platforms differ depending on editions.

The Frontend edition is intended for lightweight software that does not need to implement searching
functions. For example, these could be:

• Face detection applications that take a picture of the user and send it to a server for processing,
such as verification;

• Face alignment applications, that only need the knowledge about head pose and facial shape;

• Simple ad-hoc analytics solutions like age & gender recognition for context-aware advertising;

• And so on.

The complete edition contains all the features of the frontend edition but adds face verification and
identification features. That said, the completeedition is amoreof abackendor server-oriented software.
Still, it can run not only on powerful servers, but on ordinary PCs and evenmobile devices as well.

This document covers the entire set of implemented features, that is - the complete edition. In the
distribution section you can find a feature matrix that shows what exact algorithms are implemented in
each edition and what platforms it supports.

VisionLabs B.V. 6 / 71

1 Core Concepts

1.1 Common Interfaces and Types

1.1.1 Reference Counted Interface

Everything in FaceEngine object system starts from here. The IRefCounted interface provides methods
for reference counter access, increment, and decrement. All reference counted objects imply a custom
memorymanagementmodel. Thisway they support automateddestructionwhen referencecountdrops
to zero as well as more sophisticated strategies of partial destruction and weak referencing required for
FaceEngine internal needs. The bare minimum of such functions is exposed to a user allowing:

• to notify the object that it is required by a client via retaining a reference to it;

• to notify the object that it is no longer required by releasing a reference to it;

• to get actual reference counter value.

Note: reference counted objects expect some special treatment as well. Be sure never to call delete on
any pointer to object derived from IRefCounted! Doing so leads to heap corruption. Simply calling
release notifies the systemwhen the object should be destroyed and it does this properly for you.

However, it is not recommended to interactwith the reference countingmechanismmanually asdoing so
maybeerror-prone. Instead, youare strongly advised touse smart pointers that are specially designed to
handle such objects and provided by FaceEngine. See section “Automatic reference counting” for details.

1.1.2 Automatic reference counting

For your convenience, a special smart pointer class Ref is provided. It is capable of automatic reference
counter incrementing upon its creation and automatic decrementing upon its destruction. It also does
an assertion of the inner raw pointer being non-null, thus preventing errors.

Note: Ref<> always increments a reference counter by 1 during initialization. You may be not expecting
such behavior from it in some first-time initialization scenarios. Consider a simple example:

ISomeObject* createSomeObject();
{
/* Here createSomeObject returns an object with initial reference count of 1

(otherwise, it would be dead). Then Ref adds another one for itself
making a total reference count of 2!

*/
Ref<ISomeObject> objref = createSomeObject();
/* Here we use the object in any way we want expecting it to be properly

destroyed when control will leave this scope.
*/

VisionLabs B.V. 7 / 71

}
/* Here we have left the scope and Ref was automatically destroyed like any

other object created on the stack. At the same time, it decreased
reference count of its internal object by 1 making it 1 again.

*/

However, the object is not destroyed automatically! For this to happen, it should have precisely 0
references. Moreover, in this example, the raw pointer to the object is lost, so it is impossible to fix it in
any way; thus a memory leak is introduced.

Sokeeping that inmindwe introduceaconceptof ownershipacquiring. Byacquiringanobject, youmean
that its rawpointer is not going to be used and only a valid Ref to it is required. To acquire ownership, use
a special ::acquire() function. The fixed version of the above example would look like this:

ISomeObject* createSomeObject();
{
/* Here createSomeObject returns an object with initial reference count of 1

(otherwise, it would be dead). Then we acquire it leaving a total
reference count of 1.

*/
Ref<ISomeObject> objref = acquire(createSomeObject());
/* Here we use the object in any way we want.
*/
}

/* Here we have left the scope and Ref was automatically destroyed like any
other object created on the stack. At the same time, it decreased
reference count of its internal object by 1 making it 0. The object is
destroyed properly by the object system.

*/

Note: be sure to not to store or use raw pointers to the object when using the ::acquire() function, as
ownership acquiring invalidates them.

To simply make a reference to existing raw pointer, you may use the ::make_ref() function pretty much
alike to the ::acquire() function.

You can statically cast object type during acquiring or referencing. To achieve this, use special versions
of the ::make_ref_as() and ::acquire_as() functions. It is your responsibility to ensure that such a cast is
possible.

Please refer to FaceEngine Reference Manual for more details on available convenience methods and
functions.

As a side note, be informed that typedefs for Ref’s to all reference counted types are declared. All of them

VisionLabs B.V. 8 / 71

match the followingnaming convention: InterfaceNamePtr. So, for example, Ref<IDetector> is equivalent
to IDetectorPtr.

1.1.3 Serializable object interface

This interface represents an object. Object’s contents may be serialized to some data stream and then
read back. Think of this as loading and saving.

To interact with the aforementioned data stream, the serializable object needs a user-provided adapter.
Suchadapter is called thearchive. Seeadetailedexplanationof it in section “Archive interface” in chapter
“Core facility”.

Serializable interfaces: IDescriptor, IDescriptorBatch.

1.1.4 Auxiliary types

1.1.4.1 Image type
Since FaceEngine is a computer vision library, it is natural for it to implement some image concept.
Therefore, an Image class exists. It is designed as a reference counted container for raw pixel color
data. Reference counting allows a single image to be shared by several objects. However, one should
understand, that each Image object is holding a reference to some data, so if the data is modified in any
way, this affects all other objects holding the same reference. To make a deep copy of an Image, one
should use the clone()method, since assignment operators just make a reference. It is also possible to
clip a part of an image into a new image bymeans of extract()method.

Pixel datamay be characterized by color channel layout, i.e., a number of color channels and their order.
The engine defines a Format structure for that. The Format determines:

• Number of color channels (e.g., RGB or grayscale);

• Order of color channel (e.g., RGB vs. BGR).

FaceEngine assumes 8 bits (i.e., 1 byte) per color channel and implements 8 BPP grayscale, 24 BPP
RGB/BGR and padded 32 BPP formats. Format conversion functions are also provided for convenience;
see the convert() function family.

The Image class supports data range mapping. It is possible to map a subset of bytes in a rectangular
area for reading or writing. The mapped pixels are represented by the SubImage structure. In contrast
to Image, SubImage is just a data view and is not reference counted. You are not supposed to store
SubImages longer that it is necessary to completedatamodification. See thedocumentationof themap()
function family for details.

The supports IO roitines to read/write OOM, JPEG, PNG and TIFF formats via FreeImage library.

The absence of image IO is dictated by the fact that FaceEngine focuses on being lightweight and with
theminimumpossible number of external dependencies. It is not designed solely with image processing

VisionLabs B.V. 9 / 71

purpose in mind. I.e., one may treat video frames as Images and process them one by one. In this case,
an external (possibly proprietary) video codec is required.

1.2 Beta Mode

Some features in LUNA SDK are available just in Beta mode. This is experimental features which may be
unstable. If you want use them, you have to activate betaMode param in config (faceengine.conf).

VisionLabs B.V. 10 / 71

2 FaceEngine Structure Overview

FaceEngine is subdivided into several facilities. Each facility is dedicated toa single function. Below there
is a list of all facilities with short descriptions of functionality they provide. Detailed informationmay be
found in corresponding chapters of this handbook.

FaceEngine facility list:

• Core facility. This facility stores shared low-level FaceEngine types and factories. This facility
is responsible for normal functioning of all other facilities by providing settings accessors and
common interfaces. The core facility also contains themain FaceEngine root object that is used to
create instances of all higher level objects;

• Face detection facility. This facility is dedicated to object detection. It contains various object
detector implementations and factories;

• Parameter estimation facility. This facility is dedicated to various image parameter estimation,
such as blurriness, transformation and so forth. It contains various estimator implementations
and factories;

• Descriptor processing facility. This facility is dedicated to descriptor extraction andmatching. The
descriptor is a set of features, describing an object, invariant to object transformation, size or other
parameters. Descriptor matching allows judging with certain probability whether two objects are
the same. This facility contains various descriptor extractors and containers as well as factories,
required to produce them.

So, each facility is a set of classes dedicated to some common for them problem domain. Facilities are
independent of each other, with several exceptions, like that all higher level facilities depend on the core
facility. Interfacility dependencies are thoroughly described in corresponding chapters of this handbook.
The actual set of facilitiesmay vary depending on particular FaceEngine distributions as facilitiesmay be
licensed and shipped separately.

This handbook describes the very complete FaceEngine distribution, assuming all facilities are available.
The facilities are listed in order of increasing complexity. Applying functions from these facilities in this
order allows creating a complete face detection, analysis, recognition and matching pipeline with a
significant degree of flexibility. The following chapters break down such pipeline in details.

VisionLabs B.V. 11 / 71

3 Core Facility

3.1 Common Interfaces

3.1.1 Face Engine Object

The Face Engine object is a root object of the entire FaceEngine. Everything begins with it, so it is
essential to create at least one instance of it. Although it is possible to have multiple instances of the
Face Engine, it is impractical to do so (as explained in section “Automatic reference counting” in chapter
“Core concepts”). To create a Face Engine instance call createFaceEngine function. Also, youmay specify
default dataPath and configPath in createFaceEngine parameters.

Note: if you plan to use GPU acceleration, you should keep in mind CUDA runtime initialization and
shutdown. Specifically, CUDA creates global runtime object with implicit lifetime; see
[http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#initialization]. To prevent
FaceEngine’s runtime and lifetimemismatch, it is recommended to avoid creating static global instances
of FaceEngine objects, as their destruction order is undetermined.

3.1.2 Settings Provider

Settings provider is a special entity that loads settings from various locations. Since settings might be
shared among several objects, it is useful to cache them tominimize disk reads and provide a dictionary-
like interface for named value lookup.

This is what the provider does. The provider object stands somewhat aside FaceEngine facility structure
and is created by a separate factory function createSettingsProvider. This function accepts configuration
file path as a parameter (see section “Configuration data” for details). By default, the engine holds a
single provider instance for all facilities. Think of it as a reference counted config file. This provider is
passed by the Face Engine object to each factory it creates. The factory, in turn, can read its configuration
data from the object and pass it further to its child objects. In typical scenarios, you should not bother
with providers as the engine does everything for you. However, when relying on custom factory creation
parameters (see thedescription in section “Faceengineobject”), youhave tocreateandsupplyaprovider
wherever it is required manually.

3.2 Helper interfaces

3.2.1 Archive interface

Archive interface is used to provide serialization functions with a data source. It contains methods
primarily for data reading and writing. Note, that IArchive is not derived from IRefCounted, thus does not
imply any special memory management strategies.

A few points to keep in mind when implementing your archive:

VisionLabs B.V. 12 / 71

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#initialization

• FaceEngineobjects that use IArchive for serializationpurposes do call onlywrite() (during saving) or
only read() (during loading) but never both during the same process unless otherwise is explicitly
stated;

• During savingor loadingFaceEngineobjects are free towriteor read their data in chunks; e.g., there
may be several sequential calls to write() in the scope of a single serialization request. The same
is true for read(). Basically, read() andwrite() should behave pretty much like C fread() and fwrite()
standard library functions.

Any IArchive implementation should be aware of these notes.

Since these interface methods are pretty obvious and mostly self-explanatory, we advise you to check
out FaceEngine Reference Manual for the details.

3.3 Recognitionmode

RecognitionModedetermineswhich recognitionmode touse. Currently two typesareavailable: RM_RGB
or RM_INFRA_RED. The user can indicate the required recognition mode when creating an object by
passing the appropriate parameter.

3.4 Data Paths

3.4.1 Model Data

VariousFaceEnginemodulesmay requiredata files tooperate. The files containvariousalgorithmmodels
and constants used at runtime. All the files are gathered together into a single data directory. The data
directory location is assumed to reside in:

• /opt/visionlabs/data on Linux
• ./data on Windows

One may override the data directory location by means of setDataDirectory()method which is available
in IFaceEngine. Current data location may be retrieved via getDataDirectory()method.

3.4.2 Configuration Data

Theconfiguration file is called faceengine.conf andstored in /datadirectorybydefault. ConfigurationGuide.pdf
with parameter description and default values is located at /doc package folder.

At runtime, the configuration file data is managed by a special object that implements ISettingsProvider
interface (seesection“Settingsprovider”). Theprovider is instantiatedbymeansof createSettingsProvider()
function that accepts configuration file location as a parameter or uses aforementioned defaults if not
specified.

VisionLabs B.V. 13 / 71

Onemay supply a different configuration to any factory object bymeans of setSettingsProvider()method,
which is available in each factory object interface, including IFaceEngine. Currently, bound settings
provider may be retrieved via getSettingsProvider()method.

VisionLabs B.V. 14 / 71

4 Detection facility

4.1 Overview

Object detection facility is responsible for quick and coarsedetection tasks, like finding a face in an image.

4.2 Detection structure

The detection structure represents an images-space bounding rectangle of the detected object aswell as
the detection score.

Detection score is a measure of confidence in the particular object classification result andmay be used
to pick the most “confident” face of many.

Note: Detection score is themeasure of classification confidence andnot the source imagequality. While
the score is related to quality (low-quality data generally results in a lower score), it is not a valid metric
to estimate the visual quality of an image.

Special estimators exist to fulfill this task (see section “Image quality estimation” in chapter “Parameter
estimation facility” for details).

4.3 Face Detection

Object detection is performed by the IDetector object. The function of interest is detect(). It requires an
image to detect on and an area of interest (to virtually crop the image and look for faces only in the given
location).

4.3.1 Image coordinate system

The origin of the coordinate system for each processed image is located in the upper left corner.

VisionLabs B.V. 15 / 71

Figure 1: Source image coordinate system

4.3.2 Face detection

When a face is detected, a rectangular area with the face is defined. The area is represented using
coordinates in the image coordinate system.

When a part of a face is outside of the frame, the detection area will also be beyond the frame borders.
Hence coordinates of the detection area may have the following values:

• When the face is beyond the left or the upper border of the frame, the detection coordinates will
have negative values;

In the image below, the upper left detection point is outside of the frame. Hence the X and Y coordinates
of the upper left detection point have negative values.

VisionLabs B.V. 16 / 71

Figure 2: Upper left detection point is outside of the frame

• When the face is beyond the right or the lower border of the frame, the detection coordinates will
have positive values, but their values will exceed the image size.

In the image below, the X coordinate is equal to X + n, where n is the length of the zone that exceeds the
image frame size.

VisionLabs B.V. 17 / 71

Figure 3: Lower right detection point is outside of the frame

NOTE! You must consider this feature when processing images to properly process the received
coordinates.

A code example for detection cropping is given below.

const fsdk::Rect brect = detection.rect & image.getRect();

VisionLabs B.V. 18 / 71

detection - face detection. image - source image.

4.3.3 Redetect method

Face detector implements redetect()method which is intended for face detection optimization on video
frame sequences. Instead of doing full-blown detection on each frame, one may detect() new faces at a
lower frequency (say, each5th frame) and just confirm them inbetweenwith redetect(). This dramatically
improves performance at the cost of detection recall. Note that redetect()updates face landmarks aswell.

Detector works faster with larger value of minFaceSize.

4.3.4 Detector variants

Supported detector variants:

• FaceDetV1
• FaceDetV2
• FaceDetV3

There are two basic detector families. The first of them includes two detector variants: FaceDetV1 and
FaceDetV2. The second family currently includes only one detector variant - FaceDetV3. FaceDetV3 is the
latest and most precise detector. For this type of detector can be passed recognition mode. In terms of
performance FaceDetV3 is similar to FaceDetV1 detector. User codemay specify necessary detector type
while creating IDetector object using parameter.

FaceDetV3 supports orientationmodeandcanestimateorientationofwhole image (Normal, Right90deg,
Left90deg or Upsidesown). Config option useOrientation should be 1 (see Configuration guide). You
can estimate orientationof imageby callingmethodestimateOrientationofDetector. Or orientation
will be automatically estimated while regular detection call if useOrientationwas turned of. Detector
estimate orientation in the beginning, then flip image if it necessary and detect on the correct oriented
image. Note: Correct oriented image will be stored in Face.img field (use this field in future processing).
Detection and landmarks coordinates are given in correct oriented image coordinates.

Note: FaceDetV1 and FaceDetV2 performance depends on number of faces on image and image
complexity. FaceDetV3 performance depends only on the target image resolution.

Note: FaceDetV3 works faster with batched redetect.

4.3.5 FaceDetV1 and FaceDetV2 Configuration

FaceDetV1 detector is more precise and FaceDetV2 works two times faster (See “Appendix A.
Specifications”).

VisionLabs B.V. 19 / 71

FaceDetV1 and FaceDetV2 detector’s performance depend on number of faces in image. FaceDetV3
doesn’t depend on it, so it may be slower then FaceDetV1 on images with one face andmuchmore faster
on images with many faces.

4.3.6 FaceDetV3 Configurating

FaceDetV3 detects faces from minFaceSize tomaxFaceSize (Note: maxFaceSize <=minFaceSize *
32). You can change the minimum and maximum sizes of the faces that will be searched in the photo
from the faceengine.conf configuration.

For example:

config->setValue("FaceDetV3::Settings", "minFaceSize", 20);

The logic of the detector is very understandable. The smaller the face size we need to find themore time
we need.

We recommend to use suchmeanings for minFaceSize: 20, 40 and 90. The size 90 pix is recommended
for recognition. If youwant to find faces with custom size value youwill need to point with size with: 95%
* value. For example we want to find faces with size of 50 pix, it means that in config we should set:

50 * 0.95 ~ 47 pix.

FaceDetV3 supports image orientation determining. Three main angles of image rotation are presented:
90, 180 and 270 degrees. In the case of rotated origin image the rectangles of detection and landmarks
will be returned in origin coordinate system. For example if image was rotated on 90 degrees rectangles
of detections and landmarks will be rotated on 90 degrees too. The total time for such detection will
be 2 times longer comparably with detection without orientation defining. Mode of image orientation is
switching on from faceengine.conf by setting useOrientationMode.

Note: FaceDetV3 may provide accurate 5 landmarks only for faces with size greater then 40x40, for
smaller faces it provides less accurate landmarks. If you have few faces on target images and target face
sizes after resize will less then 40x40, it’s recommended to require 68 landmarks. If you havemany faces
on target image (greater then 7) it will be faster increase minFaceSize to have big enough faces for
accurate landmarks estimation.

All last changes in Face Detection logic are described in Handbook/Chapter 10 Migration guide.

4.3.7 Face Alignment

4.3.7.1 Five landmarks
Face alignment is the process of special key points (called “landmarks”) detection on a face. FaceEngine
does landmark detection at the same time as the face detection since some of the landmarks are by-
products of that detection.

VisionLabs B.V. 20 / 71

At the very minimum, just 5 landmarks are required: two for eyes, one for a nose tip and two for mouth
corners. Using these coordinates, onemay warp the source photo image (see Chapter “Image warping”)
for use with all other FaceEngine algorithms.

All detector may provide 5 landmarks for each detection without additional computations.

Typical use cases for 5 landmarks:

• Image warping for use with other algorithms:

– Quality and attribute estimators;
– Descriptor extraction.

4.3.7.2 Sixty-eight landmarks
More advanced 68-points face alignment is also implemented. Use this when you need precise
information about face and its parts. The detected points look like in the image below.

The 68 landmarks require additional computation time, so don’t use it if you don’t need precise
information about a face. If you use 68 landmarks , 5 landmarks will be reassigned to more precise
subset of 68 landmarks.

VisionLabs B.V. 21 / 71

Figure 4: 68-point face alignment

The typical error for landmark estimation on a warped image (see Chapter “Image warping”) is in the
table below.

Table 1: “Average point estimation error per landmark”

Point
Error
(pixels) Point

Error
(pixels) Point

Error
(pixels) Point

Error
(pixels)

1 ±3,88 18 ±3,77 35 ±1,62 52 ±1,65

2 ±3,53 19 ±2,83 36 ±1,90 53 ±2,01

3 ±3,88 20 ±2,70 37 ±1,78 54 ±2,00

4 ±4,30 21 ±3,06 38 ±1,69 55 ±1,93

5 ±4,67 22 ±3,92 39 ±1,63 56 ±2,18

VisionLabs B.V. 22 / 71

Point
Error
(pixels) Point

Error
(pixels) Point

Error
(pixels) Point

Error
(pixels)

6 ±4,87 23 ±3,46 40 ±1,52 57 ±2,17

7 ±4,67 24 ±2,59 41 ±1,54 58 ±1,99

8 ±4,01 25 ±2,53 42 ±1,60 59 ±2,32

9 ±3,46 26 ±2,95 43 ±1,55 60 ±2,33

10 ±3,87 27 ±3,84 44 ±1,60 61 ±2,06

11 ±4,56 28 ±1,88 45 ±1,74 62 ±1,97

12 ±4,94 29 ±1,75 46 ±1,72 63 ±1,56

13 ±4,55 30 ±1,92 47 ±1,68 64 ±1,86

14 ±4,45 31 ±2,20 48 ±1,65 65 ±1,94

15 ±4,13 32 ±1,97 49 ±1,99 66 ±2,00

16 ±3,68 33 ±1,70 50 ±1,99 67 ±1,70

17 ±4,09 34 ±1,73 51 ±1,95 68 ±2,12

Simple 5-point landmarks roughly correspond to:

• Average of positions 37, 40 for a left eye;
• Average of positions 43, 46 for a right eye;
• Number 31 for a nose tip;
• Numbers 49 and 55 for mouth corners.

The landmarks for both cases are output by the face detector via Landmarks5 and Landmarks68
structures. Note, that performance-wise 5-point alignment result comes free with a face detection,
whereas 68-point result does not. So you should generally request the lowest number of points for your
task.

Typical use cases for 68 landmarks:

• Segmentation;
• Head pose estimation.

4.4 Human Detection

This functionality enables you to detect human bodies in the image.

During thedetectionprocesswereceive specialpoints (called“landmarks”orexactly “HumanLandmarks17”)
for the body parts visible in the image. These landmarks represent the keypoints of a human body (see
the Human keypoints section).

VisionLabs B.V. 23 / 71

Human body detection is performed by the IHumanDetector object. The function of interest is detect(). It
requires an image to detect on.

4.4.1 Image coordinate system

The origin of the coordinate system for each processed image is located in the upper left corner.

Figure 5: Source image coordinate system

4.4.2 Human body detection

When a human body is detected, a rectangular area with the body is defined. The area is represented
using coordinates in the image coordinate system.

When a part of a human body is outside of the frame, the detection area will also be beyond the frame
borders. Hence coordinates of the detection area may have the following values:

• When the human body is beyond the left or the upper border of the frame, the detection
coordinates will have negative values;

• When the human body is beyond the right or the lower border of the frame, the detection
coordinates will have positive values, but their values will exceed the image size.

In the image below, the upper left detection point and lower right points are outside of the frame.

The X and Y coordinates of the upper left detection point have negative values. The Y coordinate of the
lower right detection point is equal to Y + n, where n is the length of the zone that exceeds the image
frame size.

VisionLabs B.V. 24 / 71

Figure 6: Detection points are outside of the frame

VisionLabs B.V. 25 / 71

NOTE! You must consider this feature when processing images to properly process the received
coordinates.

A code example for detection cropping is given below.

const fsdk::Rect brect = detection.rect & image.getRect();

detection - human body detection. image - source image.

4.4.3 Constraints

Human body detection has the following constraints:

• Human body detector works correctly only with adult humans in an image;
• The detector may detect a body of size from 100 px to 640 px (in an image with a long side of 640
px). You may change the input image size in the config (see ./doc/ConfigurationGuide.pdf). The
image will be resized to specified size by the larger side while maintaining the aspect ratio.

4.4.4 Camera position requirements

In general, you should locate the camera for human detection according to the image below.

VisionLabs B.V. 26 / 71

Figure 7: Camera position for human detection

Follow these recommendations to correctly detect human body and keypoints:

• A person’s body should face the camera;

• Keep angle of view as close to horizontal as possible;

• There should be about 60% of the person’s body in the frame (upper body);

• There must not be any objects that overlap the person’s body in the frame;

• The camera should be located at about 165 cm from the floor, which corresponds to the average

VisionLabs B.V. 27 / 71

height of a human.

The examples of wrong camera positions are shown in the image below.

Figure 8:Wrong camera positions

4.4.5 Human body redetection

Like any other detector in Face Engine SDK, human detector also implements redetection model. The
user canmake full detectiononly in a first frameand then redetect the samehuman in thenext “n” frames
thereby boosting performance of the whole image processing loop.

VisionLabs B.V. 28 / 71

User can use redetectOne() method if only a single human detection is required, for more complex use
cases one should use redetect()which can redetect humans frommultiple images.

Note: Detector give an opportunity to detect human body keypoints in an image.

VisionLabs B.V. 29 / 71

4.4.6 Human Keypoints

The image below shows the keypoints detected for a human body.

Figure 9: 17-points of human body

Point Body Part Point Body Part

0 Nose 9 LeftWrist

1 Left Eye 10 Right Wrist

VisionLabs B.V. 30 / 71

Point Body Part Point Body Part

2 Right Eye 11 Left Hip

3 Left Ear 12 Right Hip

4 Right Ear 13 Left Knee

5 Left Shoulder 14 Right Knee

6 Right Shoulder 15 Left Ankle

7 Left Elbow 16 Right Ankle

8 Right Elbow

4.4.7 Detection

To detect Human Keypoints call detect() using fsdk::HumanDetectionType::DCT_BOX | fsdk::
HumanDetectionType::DCT_POINTS argument.

Note: Default is fsdk::HumanDetectionType::DCT_BOX.

4.4.8 Main Results of Each Detection

Themain result of each detection is an array. Each array element consists of a point (fsdk:: Point2f) and a
score. If the score value is less than the threshold, then the value of “x” and “y” coordinates will be equal
to 0.

Note: see ConfigurationGuide.pdf (“HumanDetector settings” section) for more information about
thresholds and configuration parameters.

VisionLabs B.V. 31 / 71

5 Parameter Estimation Facility

5.1 Overview

Estimation facility is the only multi-purpose facility in FaceEngine. It is designed as a collection of tools
that help to estimate various image or depicted object properties. These properties may be used to
increase the precision of algorithms implementedby other FaceEngine facilities or to accomplish custom
user tasks.

5.2 Face Attribute Estimation

Note. The estimator is trained to work with warped images (see Chapter “Image warping” for details).

The Attribute estimator determines face attributes. Currently, the following attributes are available:

• Age: determines person’s age;
• Gender: determines person’s gender;

Before using attribute estimator, user is free todecidewhether to estimate or not some specific attributes
listed above through IAttributeEstimator::EstimationRequests structure, which later get passed in main
estimate() method. Estimator overrides AttributeEstimationResults output structure, which consists of
optional fields describing results of user requested attributes.

• Age is reported in years:

– For cooperative (see “Appendix B. Glossary”) conditions: average error depends on person
age, see the table below for additional details. Estimation precision is 2.3

• For gender estimation 1 means male, 0 means female.

– Estimation precision in cooperative mode is 99.81%with the threshold 0.5;
– Estimation precision in non-cooperative mode is 92.5%.

Table 3: “Average age estimation error per age group for cooperative conditions”

Age (years) Average error (years)

0-3 ±3.3

4-7 ±2.97

8-12 ±3.06

13-17 ±4.05

17-20 ±3.89

20-25 ±1.89

VisionLabs B.V. 32 / 71

Age (years) Average error (years)

25-30 ±1.88

30-35 ±2.42

35-40 ±2.65

40-45 ±2.78

45-50 ±2.88

50-55 ±2.85

55-60 ±2.86

60-65 ±3.24

65-70 ±3.85

70-75 ±4.38

75-80 ±6.79

Note In earlier releases of Luna SDK Attribute estimator worked poorly in non-cooperative mode (only
56% gender estimation precision), and did not estimate child’s age. Having solved these problems
average estimation error per age group got a bit higher due to extended network functionality.

5.3 Color/Monochrome Estimation

This estimator detects if an input image is grayscale or color. It implements estimate() function that
accepts source image and outputs a Boolean, indicating if the image is grayscale (true) or not (false).

5.4 Image quality estimation

Note. The estimator is trained to work with warped images (see Chapter “Image warping” for details).

The general rule of thumb for quality estimation:

1. Detect a face, see if detection confidence is high enough. If not, reject the detection;
2. Produce a warped face image (see chapter “Descriptor processing facility”) using a face detection

and its landmarks;
3. Estimate visual quality using the estimator, finally reject low-quality images.

While the scheme above might seem a bit complicated, it is the most efficient performance-wise, since
possible rejections on each step reduce workload for the next step.

At the moment estimator exposes two interface functions to predict image quality:

VisionLabs B.V. 33 / 71

• virtual Result estimate(const Image&warp, Quality& quality);
• virtual Result estimate(const Image&warp, SubjectiveQuality& quality);

Each one of this functions use its own CNN internally and return slightly different quality criteria.

The first CNN is trained specifically on pre-warped human face images and will produce lower score
factors if one of the following conditions are satisfied:

• Image is blurred;
• Image is under-exposured (i.e., too dark);
• Image is over-exposured (i.e., too light);
• Image color variation is low (i.e., image is monochrome or close to monochrome).

Each one of this score factors is defined in [0..1] range, where higher value corresponds to better image
quality and vice versa.

Recommended thresholds for image quality of the first interface function are given below:

“saturationThreshold”: 0.0; “blurThreshold”: 0.93; “lightThreshold”: 0.9; “darkThreshold”: 0.9;

The second interface function output will produce lower factor if:

• The image is blurred;
• The image is underexposed (i.e., too dark);
• The image is overexposed (i.e., too light);
• The face in the image is illuminated unevenly (there is a great difference between light and dark
regions);

• Image contains flares on face (too specular).

The estimator determines the quality of the image based on each of the aforementioned parameters. For
each parameter, the estimator function returns two values: the quality factor and the resulting verdict.

As with the first estimator function the second one will also return the quality factors in the range [0..1],
where 0 corresponds to low image quality and 1 to high image quality. E. g., the estimator returns low
quality factor for the Blur parameter, if the image is too blurry.

The resulting verdict is a quality output based on the estimated parameter. E. g., if the image is too blurry,
the estimator returns “isBlurred = true”.

The threshold canbe specified for eachof theestimatedparameters. The resulting verdict and thequality
factor are linked through this threshold. If the received quality factor is lower than the threshold, the
image quality is low and the estimator returns “true”. E. g., if the image blur quality factor is higher than
the threshold, the resulting verdict is “false”.

If the estimated value for any of the parameters is lower than the corresponding threshold, the image is
considered of bad quality. If resulting verdicts for all the parameters are set to “False” the quality of the
image is considered good.

Examples are presented in the images below. Good quality images are shown on the right.

VisionLabs B.V. 34 / 71

Figure 10: Blurred image (left), not blurred image (right)

Figure 11: Dark image (left), good quality image (right)

VisionLabs B.V. 35 / 71

Figure 12: Light image (left), good quality image (right)

Figure 13: Image with uneven illumination (left), image with even illumination (right)

VisionLabs B.V. 36 / 71

Figure 14: Image with specularity - image contains flares on face (left), good quality image (right)

The quality factor is a value in the range [0..1] where 0 corresponds to low quality and 1 to high quality.

Note. Illuminationuniformity corresponds to the face illumination in the image. The lower thedifference
between light and dark zones of the face, the higher the estimated value. When the illumination is evenly
distributed throughout the face, the value is close to “1”.

Note. Specularity is a face possibility to reflect light. The higher the estimated value, the lower the
specularity and the better the image quality. If the estimated value is low, there are bright glares on
the face.

Table 4: Image quality parameters and their thresholds

Threshold Estimated property Recomended range Default value

blurThreshold Blur [0.57..0.65] 0.61

darknessThreshold Darkness [0.45..0.52] 0.50

lightThreshold Light [0.44..0.61] 0.57

illuminationThreshold Illumination uniformity [0..0.3] 0.1

specularityThreshold Specularity [0..0.3] 0.1

The most important parameters for face recognition are “blurThreshold”, “darknessThreshold” and
“lightThreshold”, so you should select them carefully.

VisionLabs B.V. 37 / 71

You can select images of better visual quality by setting higher values of the “illuminationThreshold” and
“specularityThreshold”. Face recognition is not greatly affected by uneven illumination or glares.

5.5 Eyes Estimation

Note. The estimator is trained to work with warped images (see Chapter “Image warping” for details).

For Eye estimator can be passed recognition mode.

This estimator aims to determine:

• Eye state: Open, Closed, Occluded;
• Precise eye iris location as an array of landmarks;
• Precise eyelid location as an array of landmarks.

You can only passwarped imagewith detected face to the estimator interface. Better image quality leads
to better results.

Eye state classifier supports three categories: “Open”, “Closed”, “Occluded”. Poor quality images or ones
that depict obscured eyes (think eyewear, hair, gestures) fall into the “Occluded” category. It is always a
good idea to check eye state before using the segmentation result.

The precise location allows iris and eyelid segmentation. The estimator is capable of outputting iris and
eyelid shapes as an array of points together forming an ellipsis. You should only use segmentation results
if the state of that eye is “Open”.

The estimator:

• Implements the estimate() function that accepts warped source image (see Chapter “Image
warping”) andwarped landmarks, either of type Landmarks5 or Landmarks68. The warped image
and landmarks are received from the warper (see IWarper::warp());

• Classifies eyes state and detects its iris and eyelid landmarks;
• Outputs EyesEstimation structures.

Note. Orientation terms “left” and “right” refer to theway you see the image as it is shown on the screen.
It means that left eye is not necessarily left from the person’s point of view, but is on the left side of the
screen. Consequently, right eye is the one on the right side of the screen. More formally, the label “left”
refers to subject’s left eye (and similarly for the right eye), such that xright < xleft.

EyesEstimation::EyeAttributes presents eye state as enum EyeState with possible values: Open, Closed,
Occluded.

Iris landmarks are presented with a template structure Landmarks that is specialized for 32 points.

Eyelid landmarks are presented with a template structure Landmarks that is specialized for 6 points.

VisionLabs B.V. 38 / 71

5.6 Head pose estimation

This estimator is designed to determine camera-space head pose. Since 3D head translation is hard to
determine reliably without camera-specific calibration, only 3D rotation component is estimated.

There are two head pose estimation method available:

• Estimate by 68 face-aligned landmarks (you may get it from Detector facility, see Chapter
“Detection facility”) ;

• Estimate by original input image in RGB format.

Estimation by image is more precise. If you have already extracted 68 landmarks for another facilities
youmay save time, and use fast estimator from 68 landmarks.

By default, all methods are available to use in config (faceengine.conf) in section “HeadPoseEstimator”.
Youmay disable these methods to decrease RAM usage and initialization time.

Estimation characteristics:

• Units (degrees);
• Notation (Euler angles);
• Precision (see the table below).

Note. Prediction precision decreases as a rotation angle increases. We present typical average errors for
different angle ranges in the table below.

Table 5: “Head pose prediction precision”

Range -45°…+45° < -45° or > +45°

Average prediction error (per axis) Yaw ±2.7° ±4.6°

Average prediction error (per axis) Pitch ±3.0° ±4.8°

Average prediction error (per axis) Roll ±3.0° ±4.6°

Zero position corresponds to a face placed orthogonally to camera direction, with the axis of symmetry
parallel to the vertical camera axis. See the image below for a reference.

VisionLabs B.V. 39 / 71

Figure 15: Head pose

Note. In order towork, this estimator requires precise 68-point face alignment results, so familiarizewith
section “Face alignment” in the “Detection facility” chapter as well.

5.7 Gaze Estimation

This estimator is designed to determine gaze direction relatively to head pose estimation. Since 3D head
translation is hard todetermine reliablywithout camera-specific calibration, only 3D rotation component
is estimated.

For Gaze estimator can be passed recognition mode.

Estimation characteristics:

• Units (degrees);
• Notation (Euler angles);
• Precision (see the table below).

Note. Roll angle is not estimated, prediction precision decreases as a rotation angle increases. We
present typical average errors for different angle ranges in the table below.

Table 6: “Gaze prediction precision”

Range -25°…+25° -25°… -45 ° or 25 °… +45°

Average prediction error (per axis) Yaw ±2.7° ±4.6°

Average prediction error (per axis) Pitch ±3.0° ±4.8°

VisionLabs B.V. 40 / 71

Zero position corresponds to a gaze direction orthogonally to face plane, with the axis of symmetry
parallel to the vertical camera axis. See figure Head pose estimation for a reference.

5.8 Smile Estimation

This estimator is designed to determine smile/mouth/occlusion probability using warped face image.

Smile estimation structure consists of:

• Smile score;
• Mouth score;
• Occlusion score.

Sumof scores always equals 1. Each scoremeans probability of corresponding state. Smile score prevails
in caseswhere smilewas successfullydetected. If there is anyobject onphoto thathidesmouthocclusion
score prevails. Mouth score prevails in cases where neither a smile nor an occlusion was detected.

5.9 Mouth Estimation

This estimator is designed to predict person’s mouth state. It returns the following bool flags:

• isOpened;
• isOccluded;
• isSmiling.

Each of this flags indicate specific mouth state that was predicted.

The combinedmouth state is assumed if multiple flags are set to true. For example there aremany cases
where person is smiling and its mouth is wide open.

Similar to smile estimator mouth estimator provides score probabilities for mouth states in case user
needmore detailed information:

• Mouth opened score;
• Smile score;
• Occlusion score.

Note: This estimator is trained to work with warped images (see Chapter “Image warping” for details).

5.10 Emotions Estimation

Note: The estimator is trained to work with warped images (see Chapter “Image warping” for details).

This estimator aims to determinewhether a face depicted on an image expresses the following emotions:

• Anger
• Disgust

VisionLabs B.V. 41 / 71

• Fear
• Happiness
• Surprise
• Sadness
• Neutrality

You can pass only warped images with detected faces to the estimator interface. Better image quality
leads to better results.

The estimator (see IEmotionsEstimator in IEstimator.h):

• Implements the estimate() function that accepts warped source image (see Chapter “Image
warping”). Warped image is received from the warper (see IWarper::warp());

• Estimates emotions expressed by the person on a given image;
• Outputs EmotionsEstimation structure with aforementioned data.

EmotionsEstimation presents emotions as normalized float values in the range of [0..1] where 0 is lack of
a specific emotion and 1 is the maximum intensity of an emotion.

5.11 Approximate Garbage Score Estimation (AGS)

This estimator aims to determine the source image score for further descriptor extraction andmatching.
The higher the score, the better matching result is received for the image.

When you have several images of a person, it is better to save the image with the highest AGS score.

Consult VisionLabs about the recommended threshold value for this parameter.

The estimator (see IAGSEstimator in IEstimator.h):

• Implements theestimate() function thataccepts source image inR8G8B8 formatand fsdk::Detection
structure of corresponding source image (see section “Detection structure” in chapter “Detection
facility”);

• Estimates garbage score of input image;
• Outputs garbage score value.

5.12 Glasses Estimation

Glasses estimator is designed to determine whether a person is currently wearing any glasses or not.
There are 3 types of states estimator is currently able to estimate:

• NoGlasses state determines whether a person is wearing any glasses at all;
• EyeGlasses state determines whether a person is wearing eyeglasses;
• SunGlasses state determines whether a person is wearing sunglasses.

VisionLabs B.V. 42 / 71

Note. Source input image must be warped in order for estimator to work properly (see Chapter “Image
warping”). Quality of estimation depends on threshold values located in faceengine configuration file
(faceengine.conf) in GlassesEstimator::Settings section. By default, these threshold values are set to
optimal.

The table below contains true positive rates corresponding to selected false positive rates.

Table 7: “Glasses estimator TPR/FPR rates”

State TPR FPR

NoGlasses 0.997 0.00234

EyeGlasses 0.9768 0.000783

SunGlasses 0.9712 0.000383

5.13 Overlap Estimation

This estimator tells whether the face is overlapped by any object. It returns a structure with 2 fields. One
is the value of overlapping in the range [0..1] where 0 is not overlapped and 1.0 is overlapped, the second
is a Boolean answer. A Boolean answer depends on the threshold listed below. If the value is greater than
the threshold, the answer returns true, else false.

The estimator (see IOverlapEstimator in IEstimator.h):

• Implements theestimate() function thataccepts source image inR8G8B8 formatand fsdk::Detection
structure of corresponding source image (see section “Detection structure”);

• Estimates whether the face is overlapped by any object on input image;
• Outputs structure with value of overlapping and Boolean answer.

5.14 Child Estimation

This estimator tells whether the person is child or not. Child is a personwho younger than 18 years old. It
returns a structurewith 2 fields. One is the score in the range from0.0 (is adult) to 1.0 (maximum, is child),
the second is a boolean answer. Boolean answer depends on the threshold in config (faceengine.conf).
If the value is more than the threshold, the answer is true (person is child), else - false (person is adult).

The estimator (see IChildEstimator in IEstimator.h):

• Implements the estimate() function accepts warped source image (see chapter “Image warping”).
Warped image is received from the warper (see IWarper::warp());

• Estimates whether the person is child or not on input warped image;
• Outputs ChildEstimation structure. Structure consists of score of and boolean answer.

VisionLabs B.V. 43 / 71

5.15 BestShotQuality Estimation

The BestShotQuality estimator represents a collection of estimator functionalities unified for end-user
convenience.

Estimation types that were merged into this estimator are described in the following list:

• AGS: image quality score (see section “Approximate garbage score estimation (AGS)” for more
details);

• HeadPose: determines person head rotation angles in 3D space, namely pitch, yaw and roll (see
section Head pose estimation for more details).

Before using this estimator, user is free to decide whether to estimate or not some specific attributes
listed above through IBestShotQualityEstimator::EstimationRequests structure, which later get passed in
main estimate()method.

Estimator overrides AQEEstimationResults output structure, which consists of optional fields describing
results of user requested attributes.

5.16 HeadAndShouldersLiveness Estimation

This estimator tellswhether theperson’s face is real or fake (photo, printed image) and confirmspresence
of a person’s body in the frame. Face should be in the center of the frame and the distance between the
face and the frameborders should be three times greater than space that face takes up in the frame. Both
person’s face and chest have to be in the frame. Camera should be placed at the waist level and directed
from bottom to top. The estimator check for borders of a mobile device to detect fraud. So there should
not be any rectangular areas within the frame (windows, pictures, etc.).

The estimator (see IHeadAndShouldersLiveness in IEstimator.h):

• Implements the estimateHeadLiveness() function that accepts source image in R8G8B8 format
and fsdk::Detection structure of corresponding source image (see section “Detection structure” in
chapter “Detection facility”).

• Estimates whether it is a real person or not. Outputs float normalized score in range [0..1], 1
- is real person, 0 - is fake. Implements the estimateShouldersLiveness() function that accepts
source image in R8G8B8 format and fsdk::Detection structure of corresponding source image (see
section “Detection structure” in chapter “Detection facility”). Estimates whether real person or
not. Outputs float score normalized in range [0..1], 1 - is real person, 0 - is fake.

5.17 LivenessFlyingFaces Estimation

This estimator tells whether the person’s face is real or fake (photo, printed image).

The estimator (see ILivenessFlyingFacesEstimator in IEstimator.h):

VisionLabs B.V. 44 / 71

• Implements the estimate() function that needs fsdk::Face with valid image in R8G8B8 format
and detection structure of corresponding source image (see section “Detection structure” in
chapter “Detection facility”). This method estimates whether a real person or not.

• Implements the estimate() function that needs the span of fsdk::Facewith valid source images
in R8G8B8 formats and fsdk::Detection structures of corresponding source images (see section
“Detection structure” in chapter “Detection facility”). Each element of span of fsdk::Facemust
be with valid image and detection.

Those methods estimate whether different persons are real or not. Corresponding estimation output
with float scores which are normalized in range [0..1], where 1 - is real person, 0 - is fake.

Note. The estimator is trained to work in combination with fsdk::ILivenessRGBMEstimator.

Note. The estimator is trained to work with face images that meet the following requirements:

Table 8: “Requirements for fsdk::BestShotQualityEstimator::EstimationResult”

Attribute Acceptable values

headPose.pitch [-30…30]

headPose.yaw [-30…30]

headPose.roll [-40…40]

ags [0.5…1.0]

Table 9: “Requirements for fsdk::Detection”

Attribute Minimum value

detection size 80

Note. Detection size is detection width.

const fsdk::Detection detection = ... // somehow get fsdk::Detection object
const int detectionSize = detection.rect.width;

5.18 LivenessRGBM Estimation

This estimator tells whether the person’s face is real or fake (photo, printed image).

The estimator (see ILivenessRGBMEstimator in IEstimator.h):

VisionLabs B.V. 45 / 71

• Implements the estimate() function that needs fsdk::Face with valid image in R8G8B8 format,
detection structure of corresponding source image (see section “Detection structure” in chapter
“Detection facility”) and fsdk::Image with accumulated background. This method estimates
whether a real person or not. Output estimation structure contains the float score and boolean
result. The float score normalized in range [0..1], where 1 - is real person, 0 - is fake. The boolean
result has value true for real person and false otherwise.

• Implements the update() function that needs the fsdk::Image with current frame , number
of that image and previously accumulated background. The accumulated background will be
overwritten by this call.

5.19 Medical Mask Estimation and Medical Mask Estimation Extended

This estimator aims to detect a medical mask on the face in the source image. For the interface with
MedicalMaskEstimation it can return the next results:

• A medical mask is on the face (see MedicalMask::Mask field in the MedicalMask enum);
• There is no medical mask on the face (see MedicalMask::NoMask field in the MedicalMask enum);
• The face is occluded with something (see MedicalMask::OccludedFace field in the MedicalMask
enum);

For the interface with MedicalMaskEstimationExtended it can return the next results:

• A medical mask is on the face (see MedicalMaskExtended::Mask field in the MedicalMaskExtended
enum);

• There is no medical mask on the face (see MedicalMaskExtended::NoMask field in the
MedicalMaskExtended enum);

• A medical mask is not on the right place (see MedicalMaskExtended::MaskNotInPlace field in the
MedicalMaskExtended enum);

• The face is occluded with something (see MedicalMaskExtended::OccludedFace field in the
MedicalMaskExtended enum);

The estimator (see IMedicalMaskEstimator in IEstimator.h):

• Implements the estimate() function that accepts source warped image in R8G8B8 format and
medical mask estimation structure to return results of estimation;

• Implements the estimate() function that accepts source image in R8G8B8 format, face detection to
estimate andmedical mask estimation structure to return results of estimation;

• Implements theestimate() function thataccepts fsdk::Spanof the sourcewarped images inR8G8B8
format and fsdk::Span of the medical mask estimation structures to return results of estimation;

• Implements the estimate() function that accepts fsdk::Spanof the source images inR8G8B8 format,
fsdk::Span of face detections and fsdk::Span of the medical mask estimation structures to return
results of the estimation.

Every method can be used with MedicalMaskEstimation and MedicalMaskEstimationExtended.

VisionLabs B.V. 46 / 71

The estimator was implemented for two use-cases:

1. When the user already has warped images. For example, when the medical mask estimation is
performed right before (or after) the face recognition;

2. When the user has face detections only.

Note: Calling the estimate() method with warped image and the estimate() method with image and
detection for the same image and the same face could lead to different results.

5.19.1 MedicalMaskEstimator thresholds

The estimator returns several scores, one for each possible result. The final result is based on that scores
and thresholds. If some score is above the corresponding threshold, that result is estimated as final. If
none of the scores exceed the matching threshold, the maximum value will be taken. If some of the
scores exceed their thresholds, the results will take precedence in the following order for the case with
MedicalMaskEstimation:

Mask, NoMask, OccludedFace

and for the case with MedicalMaskEstimationExtended:

Mask, NoMask, MaskNotInPlace, OccludedFace

The default values for all thresholds are taken from the configuration file. See Configuration guide for
details.

5.19.2 MedicalMask enumeration

The MedicalMask enumeration contains all possible results of the MedicalMask estimation:

enum class MedicalMask {
Mask = 0, //!< medical mask is on the face
NoMask, //!< no medical mask on the face
OccludedFace //!< face is occluded by something

};

enum class DetailedMaskType {
CorrectMask = 0, //!< correct mask on the face (mouth

and nose are covered correctly)
MouthCoveredWithMask, //!< mask covers only a mouth
ClearFace, //!< clear face - no mask on the face

VisionLabs B.V. 47 / 71

ClearFaceWithMaskUnderChin, //!< clear face with a mask around of
a chin, mask does not cover anything in the face region (from

mouth to eyes)
PartlyCoveredFace, //!< face is covered with not a

medical mask or a full mask
FullMask, //!< face is covered with a full mask

(such as balaclava, sky mask, etc.)
Count

};

• Maskis according to CorrectMask or MouthCoveredWithMask;
• NoMaskis according to ClearFace or ClearFaceWithMaskUnderChin;
• OccludedFace is according to PartlyCoveredFace or FullMask.

Note - NoMaskmeans absence of medical mask or any occlusion in the face region (frommouth to eyes).

5.19.3 MedicalMaskEstimation structure

The MedicalMaskEstimation structure contains results of the estimation:

struct MedicalMaskEstimation {
MedicalMask result; //!< estimation result (@see

MedicalMask enum)
DetailedMaskType maskType; //!< detailed type (@see

DetailedMaskType enum)

// scores
float maskScore; //!< medical mask is on the face score
float noMaskScore; //!< no medical mask on the face score
float occludedFaceScore; //!< face is occluded by something score

float scores[static_cast<int>(DetailedMaskType::Count)]{}; //!<
detailed estimation scores

inline float getScore(DetailedMaskType type) const;
};

There are two groups of the fields:

1. The first group contains the result:

MedicalMask result;

VisionLabs B.V. 48 / 71

Result enum field MedicalMaskEstimation contains the target results of the estimation. Also you can see
the more detailed type in MedicalMaskEstimation.

DetailedMaskType maskType; //!< detailed type

2. The second group contains scores:

float maskScore; //!< medical mask is on the face score
float noMaskScore; //!< no medical mask on the face score
float occludedFaceScore; //!< face is occluded by something score

The score group contains the estimation scores for each possible result of the estimation. All scores are
defined in [0,1] range. They can be useful for users who want to change the default thresholds for this
estimator. If the default thresholds are used, the groupwith scores could be just ignored in the user code.
More detailed scores for every type of a detailed type of face covering are

float scores[static_cast<int>(DetailedMaskType::Count)]{}; //!< detailed
estimation scores

• maskScore is the sum of scores for CorrectMask, MouthCoveredWithMask;
• NoMask is the sum of scores for ClearFace and ClearFaceWithMaskUnderChin;
• occludedFaceScore is the sum of scores for PartlyCoveredFace and FullMask fields.

5.19.4 MedicalMaskExtended enumeration

The MedicalMask enumeration contains all possible results of the MedicalMask estimation:

enum class MedicalMaskExtended {
Mask = 0, //!< medical mask is on the face
NoMask, //!< no medical mask on the face
MaskNotInPlace, //!< mask is not on the right place
OccludedFace //!< face is occluded by something

};

5.19.5 MedicalMaskEstimationExtended structure

The MedicalMaskEstimationExtended structure contains results of the estimation:

struct MedicalMaskEstimationExtended {

VisionLabs B.V. 49 / 71

MedicalMaskExtended result; //!< estimation result (@see
MedicalMaskExtended enum)

// scores
float maskScore; //!< medical mask is on the face score
float noMaskScore; //!< no medical mask on the face score
float maskNotInPlace; //!< mask is not on the right place
float occludedFaceScore; //!< face is occluded by something score

};

There are two groups of the fields:

1. The first group contains only the result enum:

MedicalMaskExtended result;

Result enum field MedicalMaskEstimationExtended contains the target results of the estimation.

2. The second group contains scores:

float maskScore; //!< medical mask is on the face score
float noMaskScore; //!< no medical mask on the face score
float maskNotInPlace; //!< mask is not on the right place
float occludedFaceScore; //!< face is occluded by something score

The score group contains the estimation scores for each possible result of the estimation. All scores are
defined in [0,1] range.

5.20 Credibility Check Estimation

This estimator estimates reliability of a person.

The estimator (see ICredibilityCheckEstimator in IEstimator.h):

• Implements the estimate() function that accepts warped image in R8B8G8 format and fsdk::
CredibilityCheckEstimation structure.

• Implements the estimate() function that accepts span of warped images in R8B8G8 format and
span of fsdk::CredibilityCheckEstimation structures.

Note. The estimator is trained to work with face images that meet the following requirements:

Table 10: “Requirements for fsdk::HeadPoseEstimation”

Attribute Acceptable angle range(degrees)

pitch [-20…20]

VisionLabs B.V. 50 / 71

Attribute Acceptable angle range(degrees)

yaw [-20…20]

roll [-20…20]

Table 11: “Requirements for fsdk::SubjectiveQuality”

Attribute Minimum value

blur 0.61

light 0.57

Table 12: “Requirements for fsdk::AttributeEstimationResult”

Attribute Minimum value

age 18

Table 13: “Requirements for fsdk::OverlapEstimation”

Attribute State

overlapped false

Table 14: “Requirements for fsdk::Detection”

Attribute Minimum value

detection size 100

Note. Detection size is detection width.

const fsdk::Detection detection = ... // somehow get fsdk::Detection object
const int detectionSize = detection.rect.width;

VisionLabs B.V. 51 / 71

5.21 LivenessIREstimation Estimation

This estimator tells whether the person’s face is real or fake (photo, printed image).

The estimator (see ILivenessIREstimator in IEstimator.h):

• Implements the estimate() function that accepts warped image in R8G8B8, R16 or IR_X8X8X8
format and fsdk::IREstimation structure.

• Implements the estimate() function that accepts span of warped images in R8G8B8, R16 or
IR_X8X8X8 format and span of fsdk::IREstimation structures.

Note. The estimator for Verme camera is trained to work with face images that meet the following
requirements:

Table 15: “Requirements for fsdk::HeadPoseEstimation”

Attribute Acceptable angle range(degrees)

pitch [-20…20]

yaw [-20…20]

roll [-20…20]

Table 16: “Requirements for fsdk::SubjectiveQuality”

Attribute Minimum value

blur 0.4

light 0.1

darkness 0.3

illumination 0.6

specularity 0.5

Table 17: “Requirements for fsdk::EyesEstimation”

Attribute State

left eye fsdk::EyesEstimation::EyeAttributes::State::Open

right eye fsdk::EyesEstimation::EyeAttributes::State::Open

VisionLabs B.V. 52 / 71

Table 18: “Requirements for fsdk::Detection”

Attribute Minimum value

detection size 160

Note. Detection size is detection width.

const fsdk::Detection detection = ... // somehow get fsdk::Detection object
const int detectionSize = detection.rect.width;

5.22 Facial Hair Estimation

This estimator aims to detect a facial hair type on the face in the source image.

In case of FacialHairEstimation estimator can return the next results:

• There is no hair on the face (see FacialHair::NoHair field in the FacialHair enum);
• There is stubble on the face (see FacialHair::Stubble field in the FacialHair enum);
• There is mustache on the face (see FacialHair::Mustache field in the FacialHair enum);
• There is beard on the face (see FacialHair::Beard field in the FacialHair enum);

In case of FacialHairEstimationExtended estimator can return the next results:

• There is no beard on the face (see Beard::NoBeard in the Beard enum);
• There is a stubble beard on the face (see Beard::Stubble in the Beard enum);
• There is a short beard on the face (see Beard::ShortBeard in the Beard enum);
• There is a long beard on the face (see Beard::LongBeard in the Beard enum);
• There is no mustache on the face (see Mustache::NoMustache in the Mustache enum);
• There is a mustache on the face (see Mustache::Mustache in the Mustache enum);
• There is a stubble mustache on the face (see Mustache::Stubble in the Mustache enum).

The estimator (see IFacialHairEstimator in IFacialHairEstimator.h):

• Implements the estimate() function that accepts source warped image in R8G8B8 format and
FacialHairEstimation structure to return results of estimation;

• Implements theestimate() function thataccepts fsdk::Spanof the sourcewarped images inR8G8B8
format and fsdk::Span of the FacialHairEstimation structures to return results of estimation;

• Implements the estimate() function that accepts source warped image in R8G8B8 format and
FacialHairEstimationExtended structure to return results of estimation;

• Implements the estimate() function that accepts fsdk::Span of the source warped images in
R8G8B8 format and fsdk::Span of the FacialHairEstimationExtended structures to return results of
estimation.

VisionLabs B.V. 53 / 71

5.22.1 FacialHair enumeration

The FacialHair enumeration contains all possible results of the FacialHair estimation:

enum class FacialHair {
NoHair = 0, //!< no hair on the face
Stubble, //!< stubble on the face
Mustache, //!< mustache on the face
Beard //!< beard on the face

};

5.22.2 FacialHairEstimation structure

The FacialHairEstimation structure contains results of the estimation:

struct FacialHairEstimation {
FacialHair result; //!< estimation result (@see FacialHair

enum)
// scores
float noHairScore; //!< no hair on the face score
float stubbleScore; //!< stubble on the face score
float mustacheScore; //!< mustache on the face score
float beardScore; //!< beard on the face score

};

There are two groups of the fields:

1. The first group contains only the result enum:

FacialHair result; //!< estimation result (@see FacialHair
enum)

Result enum field FacialHairEstimation contain the target results of the estimation.

2. The second group contains scores:

float noHairScore; //!< no hair on the face score
float stubbleScore; //!< stubble on the face score
float mustacheScore; //!< mustache on the face score
float beardScore; //!< beard on the face score

The scores group contains the estimation scores for each possible result of the estimation. All scores are
defined in [0,1] range. Sum of scores always equals 1.

VisionLabs B.V. 54 / 71

5.22.3 Beard enumeration

The Beard enumeration contains all possible results of the FacialHair beard estimation:

struct BeardEstimation {
Beard result; //!< estimation result (@see Beard enum

)
// scores
float noBeardScore; //!< no beard on the face score
float stubbleScore; //!< stubble beard on the face score
float shortBeardScore; //!< short beard on the face score
float longBeardScore; //!< long beard on the face score

};

5.22.4 BeardEstimation structure

The BeardEstimation structure contains results of the estimation:

struct BeardEstimation {
Beard result; //!< estimation result (@see Beard enum

)
// scores
float noBeardScore; //!< no beard on the face score
float stubbleScore; //!< stubble beard on the face score
float shortBeardScore; //!< short beard on the face score
float longBeardScore; //!< long beard on the face score

};

There are two groups of the fields:

1. The first group contains only the result enum:

Beard result; //!< estimation result (@see Beard enum
)

Result enum field BeardEstimation contain the target results of the estimation.

2. The second group contains scores:

float noBeardScore; //!< no beard on the face score
float stubbleScore; //!< stubble beard on the face score
float shortBeardScore; //!< short beard on the face score
float longBeardScore; //!< long beard on the face score

VisionLabs B.V. 55 / 71

The scores group contains the estimation scores for each possible result of the estimation. All scores are
defined in [0,1] range. Sum of scores always equals 1.

5.22.5 Mustache enumeration

The Mustache enumeration contains all possible results of the FacialHair mustache estimation:

enum class Mustache {
NoMustache = 0, //!< no mustache on the face
Mustache, //!< mustache on the face
Stubble //!< stubble mustache on the face

};

5.22.6 MustacheEstimation structure

The MustacheEstimation structure contains results of the estimation:

struct MustacheEstimation {
Mustache result; //!< estimation result (@see Mustache

enum)
// scores
float noMustacheScore; //!< no mustache on the face score
float mustacheScore; //!< mustache on the face score
float stubbleScore; //!< stubble mustache on the face score

};

There are two groups of the fields:

1. The first group contains only the result enum:

Mustache result; //!< estimation result (@see Mustache
enum)

Result enum field MustacheEstimation contain the target results of the estimation.

2. The second group contains scores:

float noMustacheScore; //!< no mustache on the face score
float mustacheScore; //!< mustache on the face score
float stubbleScore; //!< stubble mustache on the face score

VisionLabs B.V. 56 / 71

The scores group contains the estimation scores for each possible result of the estimation. All scores are
defined in [0,1] range. Sum of scores always equals 1.

Note. The estimator is trained to work with face images that meet the following requirements:

Table 19: “Requirements for fsdk::HeadPoseEstimation”

Attribute Acceptable angle range(degrees)

pitch [-40…40]

yaw [-40…40]

roll [-40…40]

Table 20: “Requirements for fsdk::MedicalMaskEstimation”

Attribute State

result fsdk::MedicalMask::NoMask

Table 21: “Requirements for fsdk::Detection”

Attribute Minimum value

detection size 40

Note. Detection size is detection width.

const fsdk::Detection detection = ... // somehow get fsdk::Detection object
const int detectionSize = detection.rect.width;

5.23 Headwear Estimation

This estimator aims to detect a headwear status and headwear type on the face in the source image.

It can return the next headwear status results:

• There is headwear (see HeadWearState::Yes field in the HeadWearState enum);
• There is no headwear (see HeadWearState::No field in the HeadWearState enum);

VisionLabs B.V. 57 / 71

And this headwear type results:

• There is no headwear on the head (see HeadWearType::NoHeadWear field in the HeadWearType
enum);

• There is baseball cap on the head (see HeadWearType::BaseballCap field in the HeadWearType
enum);

• There is beanie on the head (see HeadWearType::Beanie field in the HeadWearType enum);
• There is peaked cap on the head (see HeadWearType::PeakedCap field in the HeadWearType
enum);

• There is shawl on the head (see HeadWearType::Shawl field in the HeadWearType enum);
• There is hat with ear flaps on the head (see HeadWearType::HatWithEarFlaps field in the
HeadWearType enum);

• There is helmet on the head (see HeadWearType::Helmet field in the HeadWearType enum);
• There is hood on the head (see HeadWearType::Hood field in the HeadWearType enum);
• There is hat on the head (see HeadWearType::Hat field in the HeadWearType enum);
• There is somethingotheron thehead (seeHeadWearType::Other field in theHeadWearTypeenum);

The estimator (see IHeadWearEstimator in IHeadWearEstimator.h):

• Implements the estimate() function that accepts warped image in R8G8B8 format and
HeadWearEstimation structure to return results of estimation;

• Implements theestimate() function thataccepts fsdk::Spanof the sourcewarped images inR8G8B8
format and fsdk::Span of the HeadWearEstimation structures to return results of estimation.

5.23.1 HeadWearState enumeration

The HHeadWearState enumeration contains all possible results of the Headwear state estimation:

enum class HeadWearState {
Yes = 0, //< there is headwear
No, //< there is no headwear
Count

};

5.23.2 HeadWearType enumeration

The HeadWearType enumeration contains all possible results of the Headwear type estimation:

enum class HeadWearType : uint8_t {
NoHeadWear = 0, //< there is no headwear on the head
BaseballCap, //< there is baseball cap on the head
Beanie, //< there is beanie on the head

VisionLabs B.V. 58 / 71

PeakedCap, //< there is peaked cap on the head
Shawl, //< there is shawl on the head
HatWithEarFlaps, //< there is hat with ear flaps on the head
Helmet, //< there is helmet on the head
Hood, //< there is hood on the head
Hat, //< there is hat on the head
Other, //< something other is on the head
Count

};

5.23.3 HeadWearStateEstimation structure

The HeadWearStateEstimation structure contains results of the Headwear state estimation:

struct HeadWearStateEstimation {
HeadWearState result; //!< estimation result (@see HeadWearState

enum)
float scores[static_cast<int>(HeadWearState::Count)]; //!<

estimation scores

/**
* @brief Returns score of required headwear state.
* @param [in] state headwear state.
* @see HeadWearState for more info.
* */

inline float getScore(HeadWearState state) const;
};

There are two groups of the fields:

1. The first group contains only the result enum:

HeadWearState result; //!< estimation result (@see HeadWearState
enum)

2. The second group contains scores:

float scores[static_cast<int>(HeadWearState::Count)]; //!<
estimation scores

The scores group contains the estimation scores for each possible result of the estimation. All scores are
defined in [0,1] range. Sum of scores always equals 1.

VisionLabs B.V. 59 / 71

5.23.4 HeadWearTypeEstimation structure

The HeadWearTypeEstimation structure contains results of the Headwear type estimation:

struct HeadWearTypeEstimation {
HeadWearType result; //!< estimation result (@see HeadWearType enum)
float scores[static_cast<int>(HeadWearType::Count)]; //!< estimation

scores

/**
* @brief Returns score of required headwear type.
* @param [in] type headwear type.
* @see HeadWearType for more info.
* */

inline float getScore(HeadWearType type) const;
};

There are two groups of the fields:

1. The first group contains only the result enum:

HeadWearType result; //!< estimation result (@see HeadWearType enum)

2. The second group contains scores:

float scores[static_cast<int>(HeadWearType::Count)]; //!< estimation
scores

The scores group contains the estimation scores for each possible result of the estimation. All scores are
defined in [0,1] range. Sum of scores always equals 1.

5.23.5 HeadWearEstimation structure

The HeadWearEstimation structure contains results of both Headwear state and type estimations:

struct HeadWearEstimation {
HeadWearStateEstimation state; //!< headwear state estimation

//!< (@see HeadWearStateEstimation)
HeadWearTypeEstimation type; //!< headwear type estimation

//!< (@see HeadWearTypeEstimation)
};

Note. The estimator is trained to work with face images that meet the following requirements:

VisionLabs B.V. 60 / 71

Table 22: “Requirements for fsdk::Detection”

Attribute Minimum value

detection size 80

Note. Detection size is detection width.

const fsdk::Detection detection = ... // somehow get fsdk::Detection object
const int detectionSize = detection.rect.width;

VisionLabs B.V. 61 / 71

6 ImageWarping

Warping is theprocess of face imagenormalization. It requires landmarks and facedetection (see chapter
“Detection facility”) to operate. The purpose of the process is to:

• compensate image plane rotation (roll angle);
• center the image using eye positions;
• properly crop the image.

This way all warped images look the same and one can tell that, e.g., left eye is always in a box, defined
by the certain coordinates. This way certain transform invariance is achieved for input data so various
algorithms can perform better.

Figure 16: Face warping

Be aware that imagewarping is not thread-safe, so you have to create awarper object per worker thread.

VisionLabs B.V. 62 / 71

7 Descriptor Processing Facility

7.1 Overview

The section describes descriptors and all the processes and objects corresponding to them.

Descriptor itself is a set of object parameters that are specially encoded. Descriptors are typically more
or less invariant to various affine object transformations and slight color variations. This property allows
efficient use of such sets to identify, lookup, and compare real-world objects images.

To receive a descriptor you should perform a special operation called descriptor extraction.

The general case of descriptors usage iswhen you compare twodescriptors and find their similarity score.
Thus you can identify persons by comparing their descriptors with your descriptors database.

All descriptor comparison operations are called matching. The result of the two descriptors matching
is a distance between components of the corresponding sets that are mentioned above. Thus, from a
magnitude of this distance, we can tell if two objects are presumably the same.

There are two different tasks solved using descriptors: person identification and person reidentification.

7.1.1 Person Identification Task

Facial recognition is the task ofmaking an identification of a face in a photo or video image against a pre-
existing database of faces. It begins with detection - distinguishing human faces from other objects in
the image - and thenworks on the identification of those detected faces. To solve this problem, we use a
face descriptor, which extracted from an image face of a person. A person’s face is invariable throughout
his life.

In a case of the face descriptor, the extraction is performed from object image areas around some
previously discovered facial landmarks, so the quality of the descriptor highly depends on them and the
image it was obtained from.

The process of face recognition consists of 4 main stages:

• face detection in an image;
• warping of face detection – compensation of affine angles and centering of a face;
• descriptor extraction;
• comparing of extracted descriptors (matching).

Note: Additionally you can extract face features (gender, age, emotions, etc) or image attributes (light,
dark, blur, specularity, illumination, etc.).

7.1.2 Person Reidentification Task

Note! This functionality is experimental.

VisionLabs B.V. 63 / 71

The person reidentification enables you to detect a person who appears on different cameras. For
example, it is used when you need to track a human, who appears on different supermarket cameras.
Reidentification can be used for:

• building of human traffic warmmaps;
• analysing of visitors movement;
• tracking of visitors;
• etc.

For reidentification purposes, we use so-called human descriptors. The extraction of the human
descriptor is performed using the detected area with a person’s body on an image or video frame. The
descriptor is a unique data set formed based on a person’s appearance. Descriptors extracted for the
same person in different clothes will be significantly different.

The face descriptor and the human descriptor are almost the same from the technical point of view,
but they solve fundamentally different tasks.

The process of reidentifications consists of the following stages:

• human detection in an image;
• warping of human detection – centering and cropping of the human body;
• descriptor extraction;
• comparing of extracted descriptors (matching).

The human descriptor does not support the descriptor score at all. The returned value of the
descriptor score is always equal to 1.0.

7.2 Descriptor

Descriptor object stores a compact set of packed properties aswell as some helper parameters that were
used to extract these properties from the source image. Together these parameters determine descriptor
compatibility. Not all descriptors are compatible with each other. It is impossible to batch and match
incompatible descriptors, so you should pay attention towhat settings do you usewhen extracting them.
Refer to section “Descriptor extraction” for more information on descriptor extraction.

7.2.1 Descriptor Versions

Face descriptor algorithm evolves with time, so newer FaceEngine versions contain improvedmodels of
the algorithm.

Note. Descriptors of different versions are incompatible! This means that you cannot match descriptors
with different versions. This does not apply to base and mobilenet versions of the same model: they are
compatible.

VisionLabs B.V. 64 / 71

See chapter “Appendix A. Specifications” for details about the performance and precision of different
descriptor versions.

Descriptor version 59 is the best one by precision. And it works well Personal protective equipment on
face like medical mask.

Descriptor versionmay be specified in the configuration file (see section “Configuration data” in chapter
“Core facility”).

7.2.1.1 Face descriptor
Currently next versions are available: 46, 52, 54, 56, 57, 58, 59. Descriptors have backend andmobilenet
implementations. Versions 57 and 58 supports only backend implementation. Backend versions more
precise, but mobilenet faster and have smaller model files (See Appendix A). Versions 57, 56, 54 and 52
more precise then 46, but version 46 works very fast on GPU. See Appendix A.1 and A.2 for details about
performance and precision of different descriptor versions. Version 59 is the most precise.

Note Version 46 and 52 are deprecated since LUNA SDK release v.4.1.0. Use 54, 56 or 57 versions in new
projects.

7.2.1.2 Human descriptor
Currently, only one version of human descriptor is available: 101.

To create a human descriptor, human batch, human descriptor extractor, human descriptor matcher
youmust pass theminimumhumandescriptor version (DV_MIN_HUMAN_DESCRIPTOR_VERSION)which
equals 101.

7.3 Descriptor Batch

Whenmatching significant amounts of descriptors, it is desired that they reside continuously inmemory
for performance reasons (think cache-friendly data locality and coherence). This is where descriptor
batches come into play. While descriptors are optimized for faster creation and destruction, batches are
optimized for long life and better descriptor data representation for the hardware.

A batch is created by the factory like any other object. Aside from type, a size of the batch should be
specified. Size is a memory reservation this batch makes for its data. It is impossible to add more data
than specified by this reservation.

Next, the batch must be populated with data. You have the following options:

• add an existing descriptor to the batch;
• load batch contents from an archive.

The following notes should be kept in mind:

VisionLabs B.V. 65 / 71

• Whenadding anexistingdescriptor, its data is copied into thebatch. Thismeans that thedescriptor
object may be safely released.

• When adding the first descriptor to an empty batch, initial memory allocation occurs. Before that
moment the batch does not allocate. At the samemoment, internal descriptor helper parameters
are copied into the batch (if there are any). This effectively determines compatibility possibilities
of the batch. When the batch is initialized, it does not accept incompatible descriptors.

After initialization, a batch may bematched pretty much the same way as a simple descriptor.

Like any other data storage object, a descriptor batch implements the ::clear()method. An effect of this
method is the batch translation to a non-initialized state except memory deallocation. In other words,
batch capacity stays the same, and nomemory is reallocated. However, an actual number of descriptors
in the batch and their parameters are reset. This allows re-populating the batch.

Memory deallocation takes place when a batch is released.

Care should be taken when serializing and deserializing batches. When a batch is created, it is assigned
with a fixed-sizememory buffer. The size of the buffer is embedded into the batch BLOBwhen it is saved.
So, when allocating a batch object for reading the BLOB into, make sure its size is at least the same as
it was for the batch saved to the BLOB (even if it was not full at the moment). Otherwise, loading fails.
Naturally, it is okay to deserialize a smaller batch into a larger another batch this way.

7.4 Descriptor Extraction

Descriptor extractor is the entity responsible for descriptor extraction. Like any other object, it is created
by the factory. To extract a descriptor, aside from the source image, you need:

• a face detection area inside the image (see chapter “Detection facility”)
• a pre-allocated descriptor (see section “Descriptor”)
• a pre-computed landmarks (see chapter “Image warping”)

A descriptor extractor object is responsible for this activity. It is represented by the straightforward
IDescriptorExtractor interface with only one method extract(). Note, that the descriptor object must be
created prior to calling extract() by calling an appropriate factory method.

Landmarks are used as a set of coordinates of object points of interest, that in turn determine source
image areas, the descriptor is extracted from. This allows extracting only data that matters most for
a particular type of object. For example, for a human face we would want to know at least definitive
properties of eyes, nose, andmouth to be able to compare it to another face. Thus, we should first invoke
a feature extractor to locate where eyes, nose, andmouth are and put these coordinates into landmarks.
Then the descriptor extractor takes those coordinates and builds a descriptor around them.

Descriptor extraction is one of themost computation-heavy operations. For this reason, threadingmight
be considered. Be aware that descriptor extraction is not thread-safe, so you have to create an extractor
object per a worker thread.

VisionLabs B.V. 66 / 71

It should be noted, that the face detection area and the landmarks are required only for image warping,
the preparation stage for descriptor extraction (see section “Image warping”). If the source image
is already warped, it is possible to skip these parameters. For that purpose, the IDescriptorExtractor
interface provides a special extractFromWarpedImage()method.

Also IDescriptorExtractor returns descriptor score for each extracted descriptor. Descriptor score is
normalized value in range [0,1], where 1 - face in the warp, 0 - no face in the warp. This value allows you
filter descriptors extracted from false positive detections.

7.5 Descriptor Matching

It is possible to match a pair (or more) previously extracted descriptors to find out their similarity. With
this information, it is possible to implement face search and other analysis applications.

Figure 17:Matching

By means ofmatch function defined by the IDescriptorMatcher interface it is possible to match a pair of
descriptors with each other or a single descriptor with a descriptor batch (see section “Descriptor batch”
for details on batches).

A simple rule to help you decide which storage to opt for:

• when searching among less than a hundred descriptors use separate IDescriptor objects;
• when searching among bigger number of descriptors use a batch.

When working with big data, a common practice is to organize descriptors in several batches keeping a
batch per worker thread for processing.

VisionLabs B.V. 67 / 71

Be aware that descriptormatching is not thread-safe, so youhave to create amatcher object per aworker
thread.

7.6 Descriptor Indexing

7.6.1 Using HNSW

In order to accelerate the descriptor matching process, a special indexmay be created for a descriptor
batch. With the index, matching becomes a two-stage process:

• First, you need to build indexed data structure - index - using IIndexBuilder. This is quite slow
process so it is not supposed to be done frequently. You build it by appending IDescriptor objects
or IDescriptorBatch objects and finally using build method - IIndexBuilder::buildIndex;

• Once you have index, you can use it to search nearest neighbors for passed descriptor very fast.

There are two types of indexes: IDenseIndex and IDynamicIndex. The interface difference is very simple:
dense index is read only and dynamic index is editable: you can append or remove descriptors.

You can only build a dynamic index. So how can you get a dense index? The answer is through
deserialization. Imagine you have several processes that might need to search in index. One option is
for every one of them to build index separately, but as mentioned before building of index is very slow
and you probably don’t want to do it more than needed. So the second option is to build it once and
serialize it to file. This is where the dense and dynamic difference arises: formats used to store these two
types of index are different. From the user’s point of view, the difference is that dense index loads faster,
but it is read only. Once loaded, there are no performance difference in terms of searching on these two
types of indexes.

To serialize index use IDynamicIndex::saveToDenseIndex or IDynamicIndex::saveToDynamicIndex
methods. To deserialized use IFaceEngine::loadDenseIndex or IFaceEngine::loadDynamicIndex.

Note: Index files are not cross-platform. If you serialize index on some platform, it’s only usable on that
exact platform. Notonly theoperating systembreaks compatibility, but alsodifferent architectureof CPU
might break it.

Note: HNSW index isn’t supported on embedded and 32-bit desktop platforms.

VisionLabs B.V. 68 / 71

8 System Requirements

8.0.1 Android installations

FaceEngine requires:

• Android version 4.4.4 or newer.

For development:

• Android SDK 21;
• Android NDK 21 {Pkg.Revision = 21.0.6113669}.

Note: Android development dependencies listed above can be downloaded directly from SDKmanager
in Android Studio IDE or via SDK manager command line tool. For more information, please visit https:
//developer.android.com/studio/command-line/sdkmanager.

8.1 Hardware requirements

8.1.1 Embedded installations

8.1.1.1 CPU requirements
Supported CPU architectures:

• ARMv7-A;
• ARMv8-A (ARM64).

8.2 Android for embedded

One more step to online activation process, in addition to information about LUNA SDK licensing,
described in VisionLabs LUNA SDK Licensing, paragraph License activation.

Besides the common steps for online-activation, described in document VisionLabs LUNA SDK
Licensing, for Android for embedded systems, execute a native licensed binary for Android for
embeddedwith root permissions at least once.

VisionLabs B.V. 69 / 71

https://developer.android.com/studio/command-line/sdkmanager
https://developer.android.com/studio/command-line/sdkmanager

9 Appendix B. Glossary

9.1 Descriptor

A set of features meant to describe a real-world object (e.g., a person’s face). Computed by means of
computer vision algorithms, such features are typicallymatched to eachother todetermine the similarity
of represented objects.

9.2 Cooperative Photoshooting and Recognition

A procedure of taking person face photograph characterized by person awareness of the matter and
his/her will to assist.

Typical highlights:

• Close to frontal head pose;
• Neutral facial expression;
• No occlusions (i.e., hair, hats, non-transparent eyewear, hands, other objects obscuring the face);
• No extreme lighting conditions (i.e., reasonable illuminance, no direct sunlight);
• Steady and well-tuned optics (i.e., no motion blur, depth of field, digital post-processing except
noise cancellation).

Cooperative photoshooting is opposite to the so-called “in the wild” photoshooting, which is also called
non-cooperative shooting (or recognition).

9.3 Matching

The process of descriptors comparison. Matching is usually implemented as a distance function applied
to the feature sets anddistances comparison later on. The smaller thedistance, the closer aredescriptors,
hence, the more similar are the objects.

For convenience, helper functions exist to convert distance to a normalized similarity score, where 100%
means completely identical, and 0%means completely different.

VisionLabs B.V. 70 / 71

10 Appendix C. FAQ

Q: This document contains high-level descriptions and no code examples nor reference. Where can
one find them?

A: The complete type and function reference are provided as an interactive web-based documentation;
see the doc/fsdk/index.html inside the LUNA SDK package. The examples are located in the /examples
folder and “ExamplesGuide.pdf” is located in /doc folder of LUNA SDK package.

Q: Does FaceEngine support multicore / multiprocessor systems?

A: Yes, all internal algorithm implementations are multithreaded by design and take advantage of multi-
core systems. The number of threads may be controlled via the configuration file; see configuration
manual “ConfigurationGuide.pdf” or comments in the configuration file for details.

Q: What is the state of GPU support?

A: As of version 2.7 the GPU support is implemented for face detection and descriptor extraction
algorithms. Starting from version 2.9 GPU implementations are considered stable.

Q: What speedupmay be expected from GPUs?

A: Typically GPUs allow accelerating algorithms by the factor of 2-4 times depending onmicroprocessor
architecture and input data.

Q: Are there any official bindings/wrappers for other languages (C#, Java)?

A: No, such bindings are not provided. FaceEngine officially implements C++ API only, bindings to other
languages should be created by users themselves. There are tools to automate this process, like, e.g.,
SWIG.

Q: Does FaceEngine support DBMS systems?

A: No, FaceEngine implements just computer vision algorithms. Users should implement DBMS
communication themselves using serialization methods described in section “Serializable object
interface” of chapter “Core concepts” and section “Archive interface” of chapter “Core facility”.

Q: What image formats does FaceEngine support?

A: FaceEngine does not implement image format encoding functions. If such functions are required, one
should use a third-party library, e.g., FreeImage.

FaceEngine functions typically expect image data in the form of uncompressed unencoded pixel data
(RGB color 24 bits per pixel or grayscale 8 bits per pixel).

FaceEngine implements convenience functions like RGB -> grayscale and RGB<-> BGR color conversions.
The rationale of this design is explained in section “Image type” of chapter “Core concepts”.

VisionLabs B.V. 71 / 71

	Introduction
	Editions and Platforms
	Core Concepts
	Common Interfaces and Types
	Reference Counted Interface
	Automatic reference counting
	Serializable object interface
	Auxiliary types
	Image type

	Beta Mode

	FaceEngine Structure Overview
	Core Facility
	Common Interfaces
	Face Engine Object
	Settings Provider

	Helper interfaces
	Archive interface

	Recognition mode
	Data Paths
	Model Data
	Configuration Data

	Detection facility
	Overview
	Detection structure
	Face Detection
	Image coordinate system
	Face detection
	Redetect method
	Detector variants
	FaceDetV1 and FaceDetV2 Configuration
	FaceDetV3 Configurating
	Face Alignment
	Five landmarks
	Sixty-eight landmarks

	Human Detection
	Image coordinate system
	Human body detection
	Constraints
	Camera position requirements
	Human body redetection
	Human Keypoints
	Detection
	Main Results of Each Detection

	Parameter Estimation Facility
	Overview
	Face Attribute Estimation
	Color/Monochrome Estimation
	Image quality estimation
	Eyes Estimation
	Head pose estimation
	Gaze Estimation
	Smile Estimation
	Mouth Estimation
	Emotions Estimation
	Approximate Garbage Score Estimation (AGS)
	Glasses Estimation
	Overlap Estimation
	Child Estimation
	BestShotQuality Estimation
	HeadAndShouldersLiveness Estimation
	LivenessFlyingFaces Estimation
	LivenessRGBM Estimation
	Medical Mask Estimation and Medical Mask Estimation Extended
	MedicalMaskEstimator thresholds
	MedicalMask enumeration
	MedicalMaskEstimation structure
	MedicalMaskExtended enumeration
	MedicalMaskEstimationExtended structure

	Credibility Check Estimation
	LivenessIREstimation Estimation
	Facial Hair Estimation
	FacialHair enumeration
	FacialHairEstimation structure
	Beard enumeration
	BeardEstimation structure
	Mustache enumeration
	MustacheEstimation structure

	Headwear Estimation
	HeadWearState enumeration
	HeadWearType enumeration
	HeadWearStateEstimation structure
	HeadWearTypeEstimation structure
	HeadWearEstimation structure

	Image Warping
	Descriptor Processing Facility
	Overview
	Person Identification Task
	Person Reidentification Task

	Descriptor
	Descriptor Versions
	Face descriptor
	Human descriptor

	Descriptor Batch
	Descriptor Extraction
	Descriptor Matching
	Descriptor Indexing
	Using HNSW

	System Requirements
	Android installations
	Hardware requirements
	Embedded installations
	CPU requirements

	Android for embedded

	Appendix B. Glossary
	Descriptor
	Cooperative Photoshooting and Recognition
	Matching

	Appendix C. FAQ

