VisionLabs

MACHINES CAN SEE

VisionLabs FaceEngine Handbook

VisionLabs B.V. © +3120369 0493

Keizersgracht 311, 1016 EE, Amsterdam, the Netherlands 1 info@visionlabs.ai

www.visionlabs.ai

Contents

Introduction 5
Editions and Platforms 6
1 Core Concepts 7
11 Commoninterfacesand Types 0 i e e e e 7
111 Reference CountedlInterface 7

1.2 Automaticreferencecounting Lo 7

11.3 Serializableobjectinterface 9

114 Auxiliarytypes o e e e e 9

1.1.4. Imagetype e 9

1.2 BetaMode. e e e e e e e e 10

2 FaceEngine Structure Overview 1
3 Core Facility 12
31 Commonlinterfaces. e 12
311 FaceEngineObject e 12

3.1.2 SettingsProvider 12

3.2 Helperinterfaces e e e 12
3.21 Archiveinterface 12

3.3 Recognitionmode e e e e e 13
3.4 DataPaths e e 13
341 ModelData 13

3.42 ConfigurationData e e 13

4 Detection facility 15
40 OVEIVIEW . o o vt e 15
4.2 Detectionstructure L L 15
4.3 FaceDetection e e e 15
431 Imagecoordinatesystem 15

43.2 Facedetection e e e 16

43.3 Redetectmethod. 19

4.3.4 Detectorvariants e e e e e 19

4.3.5 FaceDetVl1and FaceDetV2 Configuration 19

43.6 FaceDetV3 Configurating 20

43.7 FaceAlignment e e e e e e 20

4371 Fivelandmarks 20

4.3.7.2 Sixty-eightlandmarks.o o L oL 21

VisionLabs B.V. 2/ 71

4.4 HumanDetection L e e e 23
441 Imagecoordinatesystem 24

442 Humanbodydetection e 24

4.43 Constraints e e e e e e e e 26
4.4.4 Camerapositionrequirements e 26

445 Humanbodyredetection e 28
446 HumanKeypoints e e e e e 30

447 DeteCtion o e e e e e e e e e e 31
4,48 MainResultsof EachDetection, 31

5 Parameter Estimation Facility 32
501 0VervIEW e e e e e e e e e e e e e e e e 32
5.2 FaceAttribute Estimation e 32
5.3 Color/Monochrome Estimation e 33
5.4 Imagequalityestimation. 33
5.5 EyesEstimation e e 38
5.6 Headposeestimation e 39
57 GazeEstimation e e e e 40
5.8 SmileEstimation L e e e e e 41
5.9 MouthEstimation. e 41
510 EmotionsEstimation e e e 41
511 Approximate Garbage Score Estimation (AGS) 42
512 GlassesEstimation 42
513 OverlapEstimation e e e 43
514 ChildEstimation e e e e 43
5.15 BestShotQuality Estimation e 44
5.16 HeadAndShouldersLivenessEstimation 44
5.17 LivenessFlyingFaces Estimation e 44
5.18 LivenessRGBM Estimation 45
5.19 Medical Mask Estimation and Medical Mask Estimation Extended 46
5.19.1 MedicalMaskEstimatorthresholds 47
5.19.2 MedicalMask enumeration. L e 47
5.19.3 MedicalMaskEstimationstructure o 48
5.19.4 MedicalMaskExtended enumeration o, 49
5.19.5 MedicalMaskEstimationExtended structure 49
5.20 Credibility Check Estimation e 50
5.21 LivenessIREstimation Estimation 52
5.22 Facial HairEstimation e 53
5.22.1 FacialHairenumeration e 54
5.22.2 FacialHairEstimationstructure 54

VisionLabs B.V. 3/7

5.22.3 Beardenumeration
5.22.4 BeardEstimationstructure.
5.22.5 Mustacheenumeration
5.22.6 MustacheEstimationstructure
5.23 Headwear Estimation
5.23.1 HeadWearState enumeration
5.23.2 HeadWearType enumeration

5.23.3 HeadWearStateEstimation structure

5.23.4 HeadWearTypeEstimation structure

5.23.5 HeadWearEstimation structure

6 Image Warping

7 Descriptor Processing Facility

T1 0vVerview e e e e e e e e e
711 PersonldentificationTask

7.1.2 Person ReidentificationTask

T2 Descriptor. e e e e
7.2.1 DescriptorVersions,
7.2.1.1 Facedescriptor

7.21.2 Humandescriptor.

7.3 DescriptorBatch
7.4 DescriptorExtraction o L
7.5 DescriptorMatching
7.6 Descriptorindexing
7.6.1 UsingHNSW

8 System Requirements

8.0.1 Androidinstallations

8.1 Hardwarerequirements,
8.1.1 Embeddedinstallations
8.1.1.1 CPUrequirements.

8.2 Androidforembedded

9 Appendix B. Glossary

9.1 Descriptor e e e e e

9.2 Cooperative Photoshooting and Recognition

9.3 Matching e

10 Appendix C. FAQ

VisionLabs B.V.

4 /71

Introduction

This is a short guide that describes core concepts of the product, shows main FaceEngine features and
suggests usage scenarios.

This document is not a full-featured API reference manual nor a step by step tutorial. For reference pages,
please see Doxygen APl documentation that is shipped with FaceEngine. For complete examples, please
head to our developer portal.

What this book does, however, is this:

+ It describes ideas behind resource management and gives a clue why one or another decision was
made. With this in mind, you are ready to write efficient code with FaceEngine;

+ It breaks down full face analysis and recognition pipeline in parts and shows how one part affects
allthe others. Thisinformation will help you to adapt FaceEngine to your needs, which is somewhat
more productive than blindly following tutorials;

« It details things that are important and omits things that are obvious, so you get information that
matters most.

This book is split up into several chapters. There are chapters dedicated to each FaceEngine facility; there
are chapters with conceptual overviews; there are chapters with generic information. We tried to write
the book starting from low-level concepts and moving on to face detection, description and recognition
tasks solving one problem at a time. Although sometimes we just had to give references to chapters
ahead, we tried to minimize such jumps.

The opening chapter of this book is called “Core concepts”. It will tell you about memory management
techniques, object creation and destruction strategies that are widely used across the entire FaceEngine.
The following chapters catch up telling how higher level FaceEngine components are created from those
building blocks.

VisionLabs B.V. 5/T71

Editions and Platforms
FaceEngine supports multiple platforms and comes in two editions: the frontend edition (or FE for short)
and the complete edition. Supported software and hardware platforms differ depending on editions.

The Frontend edition is intended for lightweight software that does not need to implement searching
functions. For example, these could be:

+ Face detection applications that take a picture of the user and send it to a server for processing,

such as verification;
+ Face alignment applications, that only need the knowledge about head pose and facial shape;
+ Simple ad-hoc analytics solutions like age & gender recognition for context-aware advertising;
+ Andsoon.

The complete edition contains all the features of the frontend edition but adds face verification and
identification features. That said, the complete edition is a more of a backend or server-oriented software.
Still, it can run not only on powerful servers, but on ordinary PCs and even mobile devices as well.

This document covers the entire set of implemented features, that is - the complete edition. In the
distribution section you can find a feature matrix that shows what exact algorithms are implemented in
each edition and what platforms it supports.

VisionLabs B.V. 6/T1

1 Core Concepts

1.1 Common Interfaces and Types
1.1.1 Reference Counted Interface

Everything in FaceEngine object system starts from here. The IRefCounted interface provides methods
for reference counter access, increment, and decrement. All reference counted objects imply a custom
memory management model. This way they support automated destruction when reference count drops
to zero as well as more sophisticated strategies of partial destruction and weak referencing required for
FaceEngine internal needs. The bare minimum of such functions is exposed to a user allowing:

+ to notify the object that it is required by a client via retaining a reference to it;
+ to notify the object that it is no longer required by releasing a reference to it;
+ to get actual reference counter value.

Note: reference counted objects expect some special treatment as well. Be sure never to call delete on
any pointer to object derived from IRefCounted! Doing so leads to heap corruption. Simply calling
release notifies the system when the object should be destroyed and it does this properly for you.

However, itis not recommended to interact with the reference counting mechanism manually as doing so
may be error-prone. Instead, you are strongly advised to use smart pointers that are specially designed to
handle such objects and provided by FaceEngine. See section “Automatic reference counting” for details.

1.1.2 Automatic reference counting

For your convenience, a special smart pointer class Ref is provided. It is capable of automatic reference
counter incrementing upon its creation and automatic decrementing upon its destruction. It also does
an assertion of the inner raw pointer being non-null, thus preventing errors.

Note: Ref<> always increments a reference counter by 1 during initialization. You may be not expecting
such behavior from it in some first-time initialization scenarios. Consider a simple example:

ISomeObjectx createSomeObject();

{

/* Here createSomeObject returns an object with initial reference count of 1

(otherwise, it would be dead). Then Ref adds another one for itself

making a total reference count of 2!

*/

Ref<ISomeObject> objref = createSomeObject();

/* Here we use the object in any way we want expecting it to be properly
destroyed when control will leave this scope.

*/

VisionLabs B.V. 7/T1

}

/* Here we have left the scope and Ref was automatically destroyed like any
other object created on the stack. At the same time, it decreased
reference count of 1dits internal object by 1 making it 1 again.

*/

However, the object is not destroyed automatically! For this to happen, it should have precisely 0
references. Moreover, in this example, the raw pointer to the object is lost, so it is impossible to fix it in
any way; thus a memory leak is introduced.

So keepingthatin mind we introduce a concept of ownership acquiring. By acquiring an object, you mean
that its raw pointeris not going to be used and only a valid Ref to it is required. To acquire ownership, use
a special ::acquire() function. The fixed version of the above example would look like this:

ISomeObject* createSomeObject();
{

/* Here createSomeObject returns an object with initial reference count of 1
(otherwise, it would be dead). Then we acquire it leaving a total
reference count of 1.
*/
Ref<ISomeObject> objref = acquire(createSomeObject());
/* Here we use the object in any way we want.

*/
}

/* Here we have left the scope and Ref was automatically destroyed like any
other object created on the stack. At the same time, it decreased
reference count of 1its 1dinternal object by 1 making it 0. The object ds
destroyed properly by the object system.

*/
Note: be sure to not to store or use raw pointers to the object when using the ::acquire() function, as
ownership acquiring invalidates them.

To simply make a reference to existing raw pointer, you may use the ::make_ref() function pretty much
alike to the ::acquire() function.

You can statically cast object type during acquiring or referencing. To achieve this, use special versions
of the ::make_ref_as() and ::acquire_as() functions. It is your responsibility to ensure that such a cast is
possible.

Please refer to FaceEngine Reference Manual for more details on available convenience methods and
functions.

As a side note, be informed that typedefs for Ref’s to all reference counted types are declared. All of them

VisionLabs B.V. 8/T1

match the following naming convention: InterfaceNamePtr. So, for example, Ref</Detector>is equivalent
to IDetectorPtr.

1.1.3 Serializable object interface

This interface represents an object. Object’s contents may be serialized to some data stream and then
read back. Think of this as loading and saving.

To interact with the aforementioned data stream, the serializable object needs a user-provided adapter.
Such adapteris called the archive. See a detailed explanation of itin section “Archive interface” in chapter
“Core facility”.

Serializable interfaces: IDescriptor, IDescriptorBatch.

1.1.4 Auxiliary types

1.1.4.1 Image type

Since FaceEngine is a computer vision library, it is natural for it to implement some image concept.
Therefore, an Image class exists. It is designed as a reference counted container for raw pixel color
data. Reference counting allows a single image to be shared by several objects. However, one should
understand, that each Image object is holding a reference to some data, so if the data is modified in any
way, this affects all other objects holding the same reference. To make a deep copy of an Image, one
should use the clone() method, since assignment operators just make a reference. It is also possible to
clip a part of an image into a new image by means of extract() method.

Pixel data may be characterized by color channel layout, i.e., a number of color channels and their order.
The engine defines a Format structure for that. The Format determines:

« Number of color channels (e.g., RGB or grayscale);
+ Order of color channel (e.g., RGB vs. BGR).

FaceEngine assumes 8 bits (i.e., 1 byte) per color channel and implements 8 BPP grayscale, 24 BPP
RGB/BGR and padded 32 BPP formats. Format conversion functions are also provided for convenience;
see the convert() function family.

The Image class supports data range mapping. It is possible to map a subset of bytes in a rectangular
area for reading or writing. The mapped pixels are represented by the Subimage structure. In contrast
to Image, Sublmage is just a data view and is not reference counted. You are not supposed to store
Sublmages longer that itis necessary to complete data modification. See the documentation of the map()
function family for details.

The supports 10 roitines to read/write OOM, JPEG, PNG and TIFF formats via Freelmage library.

The absence of image 10 is dictated by the fact that FaceEngine focuses on being lightweight and with
the minimum possible number of external dependencies. Itis not designed solely with image processing

VisionLabs B.V. 9/ 11

purpose in mind. l.e., one may treat video frames as Images and process them one by one. In this case,
an external (possibly proprietary) video codec is required.

1.2 Beta Mode

Some features in LUNA SDK are available just in Beta mode. This is experimental features which may be
unstable. If you want use them, you have to activate betaMode param in config (faceengine.conf).

VisionLabs B.V. 10/7

2 FaceEngine Structure Overview

FaceEngineis subdivided into several facilities. Each facility is dedicated to a single function. Below there
is a list of all facilities with short descriptions of functionality they provide. Detailed information may be
found in corresponding chapters of this handbook.

FaceEngine facility list:

« Core facility. This facility stores shared low-level FaceEngine types and factories. This facility
is responsible for normal functioning of all other facilities by providing settings accessors and
common interfaces. The core facility also contains the main FaceEngine root object that is used to
create instances of all higher level objects;

» Face detection facility. This facility is dedicated to object detection. It contains various object
detector implementations and factories;

« Parameter estimation facility. This facility is dedicated to various image parameter estimation,
such as blurriness, transformation and so forth. It contains various estimator implementations
and factories;

« Descriptor processing facility. This facility is dedicated to descriptor extraction and matching. The
descriptor is a set of features, describing an object, invariant to object transformation, size or other
parameters. Descriptor matching allows judging with certain probability whether two objects are
the same. This facility contains various descriptor extractors and containers as well as factories,
required to produce them.

So, each facility is a set of classes dedicated to some common for them problem domain. Facilities are
independent of each other, with several exceptions, like that all higher level facilities depend on the core
facility. Interfacility dependencies are thoroughly described in corresponding chapters of this handbook.
The actual set of facilities may vary depending on particular FaceEngine distributions as facilities may be
licensed and shipped separately.

This handbook describes the very complete FaceEngine distribution, assuming all facilities are available.
The facilities are listed in order of increasing complexity. Applying functions from these facilities in this
order allows creating a complete face detection, analysis, recognition and matching pipeline with a
significant degree of flexibility. The following chapters break down such pipeline in details.

VisionLabs B.V. n/n

3 Core Facility

3.1 Common Interfaces
3.1.1 Face Engine Object

The Face Engine object is a root object of the entire FaceEngine. Everything begins with it, so it is
essential to create at least one instance of it. Although it is possible to have multiple instances of the
Face Engine, it is impractical to do so (as explained in section “Automatic reference counting” in chapter
“Core concepts”). To create a Face Engine instance call createFaceEngine function. Also, you may specify
default dataPath and configPath in createFaceEngine parameters.

Note: if you plan to use GPU acceleration, you should keep in mind CUDA runtime initialization and
shutdown. Specifically, CUDA creates global runtime object with implicit lifetime; see
[http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#initialization]. To prevent
FaceEngine’s runtime and lifetime mismatch, it is recommended to avoid creating static global instances
of FaceEngine objects, as their destruction order is undetermined.

3.1.2 Settings Provider

Settings provider is a special entity that loads settings from various locations. Since settings might be
shared among several objects, it is useful to cache them to minimize disk reads and provide a dictionary-
like interface for named value lookup.

This is what the provider does. The provider object stands somewhat aside FaceEngine facility structure
and is created by a separate factory function createSettingsProvider. This function accepts configuration
file path as a parameter (see section “Configuration data” for details). By default, the engine holds a
single provider instance for all facilities. Think of it as a reference counted config file. This provider is
passed by the Face Engine object to each factory it creates. The factory, in turn, can read its configuration
data from the object and pass it further to its child objects. In typical scenarios, you should not bother
with providers as the engine does everything for you. However, when relying on custom factory creation
parameters (see the descriptionin section “Face engine object”), you have to create and supply a provider
wherever it is required manually.

3.2 Helperinterfaces
3.2.1 Archive interface

Archive interface is used to provide serialization functions with a data source. It contains methods
primarily for data reading and writing. Note, that /Archive is not derived from IRefCounted, thus does not
imply any special memory management strategies.

A few points to keep in mind when implementing your archive:

VisionLabs B.V. 12/ 71

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#initialization

« FaceEngine objects that use /Archive for serialization purposes do call only write() (during saving) or
only read() (during loading) but never both during the same process unless otherwise is explicitly
stated;

+ Duringsavingorloading FaceEngine objects are free to write or read their data in chunks; e.g., there
may be several sequential calls to write() in the scope of a single serialization request. The same
is true for read(). Basically, read() and write() should behave pretty much like C fread() and fwrite()
standard library functions.

Any IArchive implementation should be aware of these notes.

Since these interface methods are pretty obvious and mostly self-explanatory, we advise you to check
out FaceEngine Reference Manual for the details.

3.3 Recognition mode

RecognitionMode determines which recognition mode to use. Currently two types are available: RM_RGB
or RM_INFRA_RED. The user can indicate the required recognition mode when creating an object by
passing the appropriate parameter.

3.4 Data Paths
3.4.1 Model Data

Various FaceEngine modules may require data files to operate. Thefiles contain various algorithm models
and constants used at runtime. All the files are gathered together into a single data directory. The data
directory location is assumed to reside in:

« Jopt/visionlabs/data on Linux
« ./data on Windows

One may override the data directory location by means of setDataDirectory() method which is available
in IFaceEngine. Current data location may be retrieved via getDataDirectory() method.

3.4.2 Configuration Data

The configurationfileis called faceengine.conf and stored in /data directory by default. ConfigurationGuide.pdf
with parameter description and default values is located at /doc package folder.

At runtime, the configuration file data is managed by a special object that implements ISettingsProvider
interface (seesection “Settings provider”). The providerisinstantiated by means of createSettingsProvider()
function that accepts configuration file location as a parameter or uses aforementioned defaults if not
specified.

VisionLabs B.V. 13/ 71

One may supply a different configuration to any factory object by means of setSettingsProvider() method,
which is available in each factory object interface, including IFaceEngine. Currently, bound settings
provider may be retrieved via getSettingsProvider() method.

VisionLabs B.V. 14 /71

4 Detection facility

4,1 Overview

Object detection facility is responsible for quick and coarse detection tasks, like finding a facein animage.

4.2 Detection structure

The detection structure represents an images-space bounding rectangle of the detected object as well as
the detection score.

Detection score is a measure of confidence in the particular object classification result and may be used
to pick the most “confident” face of many.

Note: Detection score is the measure of classification confidence and not the source image quality. While
the score is related to quality (low-quality data generally results in a lower score), it is not a valid metric
to estimate the visual quality of an image.

Special estimators exist to fulfill this task (see section “Image quality estimation” in chapter “Parameter
estimation facility” for details).

4.3 Face Detection

Object detection is performed by the IDetector object. The function of interest is detect(). It requires an
image to detect on and an area of interest (to virtually crop the image and look for faces only in the given
location).

4.3.1 Image coordinate system

The origin of the coordinate system for each processed image is located in the upper left corner.

VisionLabs B.V. 15/ 71

(0.0) X

Y (image)

Figure 1: Source image coordinate system

4.3.2 Face detection

When a face is detected, a rectangular area with the face is defined. The area is represented using
coordinates in the image coordinate system.

When a part of a face is outside of the frame, the detection area will also be beyond the frame borders.
Hence coordinates of the detection area may have the following values:

« When the face is beyond the left or the upper border of the frame, the detection coordinates will
have negative values;

In the image below, the upper left detection point is outside of the frame. Hence the X and Y coordinates
of the upper left detection point have negative values.

VisionLabs B.V. 16 /11

Figure 2: Upper left detection point is outside of the frame

+ When the face is beyond the right or the lower border of the frame, the detection coordinates will
have positive values, but their values will exceed the image size.

In the image below, the X coordinate is equal to X + n, where n is the length of the zone that exceeds the
image frame size.

VisionLabs B.V. 17/ 717

=
+
53
=

4{5#”" ke [P i AL

(X+n, Y)
Figure 3: Lower right detection point is outside of the frame
NOTE! You must consider this feature when processing images to properly process the received
coordinates.

A code example for detection cropping is given below.

const fsdk::Rect brect = detection.rect & image.getRect();

VisionLabs B.V. 18/ 1

detection - face detection. image - source image.

4.3.3 Redetect method

Face detector implements redetect() method which is intended for face detection optimization on video
frame sequences. Instead of doing full-blown detection on each frame, one may detect() new faces at a
lower frequency (say, each 5th frame) and just confirm them in between with redetect(). This dramatically
improves performance at the cost of detection recall. Note that redetect() updates face landmarks as well.

Detector works faster with larger value of minFaceSize.

4.3.4 Detector variants

Supported detector variants:

« FaceDet\V1
» FaceDetV2
« FaceDetV3

There are two basic detector families. The first of them includes two detector variants: FaceDetV1 and
FaceDetV2. The second family currently includes only one detector variant - FaceDetV3. FaceDetV3 is the
latest and most precise detector. For this type of detector can be passed recognition mode. In terms of
performance FaceDetV3 is similar to FaceDetV1 detector. User code may specify necessary detector type
while creating IDetector object using parameter.

FaceDetV3 supports orientation mode and can estimate orientation of whole image (Normal, Right90deg,
Left90deg or Upsidesown). Config option useOrientation should be 1 (see Configuration guide). You
can estimate orientation ofimage by calling method estimateOrientation of Detector. Ororientation
will be automatically estimated while regular detection call if useOrientation was turned of. Detector
estimate orientation in the beginning, then flip image if it necessary and detect on the correct oriented
image. Note: Correct oriented image will be stored in Face.img field (use this field in future processing).
Detection and landmarks coordinates are given in correct oriented image coordinates.

Note: FaceDetV1 and FaceDetV2 performance depends on number of faces on image and image
complexity. FaceDetV3 performance depends only on the target image resolution.

Note: FaceDetV3 works faster with batched redetect.

4.3.5 FaceDetV1 and FaceDetV2 Configuration

FaceDetV1 detector is more precise and FaceDetV2 works two times faster (See “Appendix A.
Specifications”).

VisionLabs B.V. 19/711

FaceDetV1 and FaceDetV2 detector’s performance depend on number of faces in image. FaceDetV3
doesn’t depend on it, so it may be slower then FaceDetV1 on images with one face and much more faster
on images with many faces.

4.3.6 FaceDetV3 Configurating

FaceDetV3 detects faces from minFaceSize tomaxFaceSize (Note: maxFaceSize <=minFaceSize *
32). You can change the minimum and maximum sizes of the faces that will be searched in the photo
from the faceengine.conf configuration.

For example:

config->setValue("FaceDetV3::Settings", "minFaceSize", 20);

The logic of the detector is very understandable. The smaller the face size we need to find the more time
we need.

We recommend to use such meanings forminFaceSize: 20,40 and 90. The size 90 pix is recommended
for recognition. If you want to find faces with custom size value you will need to point with size with: 95%

*x value. For example we want to find faces with size of 50 pix, it means that in config we should set:
50 x 0.95 ~ 47 pix.

FaceDetV3 supports image orientation determining. Three main angles of image rotation are presented:
90, 180 and 270 degrees. In the case of rotated origin image the rectangles of detection and landmarks
will be returned in origin coordinate system. For example ifimage was rotated on 90 degrees rectangles
of detections and landmarks will be rotated on 90 degrees too. The total time for such detection will
be 2 times longer comparably with detection without orientation defining. Mode of image orientation is
switching on from faceengine.conf by settinguseOrientationMode.

Note: FaceDetV3 may provide accurate 5 landmarks only for faces with size greater then 40x40, for
smaller faces it provides less accurate landmarks. If you have few faces on target images and target face
sizes after resize will less then 40x40, it’s recommended to require 68 landmarks. If you have many faces
on target image (greater then 7) it will be faster increase minFaceSize to have big enough faces for
accurate landmarks estimation.

All last changes in Face Detection logic are described in Handbook/Chapter 10 Migration guide.

4.3.7 Face Alignment

4.3.7.1 Five landmarks

Face alignment is the process of special key points (called “landmarks”) detection on a face. FaceEngine
does landmark detection at the same time as the face detection since some of the landmarks are by-
products of that detection.

VisionLabs B.V. 20/ 71

At the very minimum, just 5 landmarks are required: two for eyes, one for a nose tip and two for mouth
corners. Using these coordinates, one may warp the source photo image (see Chapter “Image warping”)
for use with all other FaceEngine algorithms.

All detector may provide 5 landmarks for each detection without additional computations.
Typical use cases for 5 landmarks:
+ Image warping for use with other algorithms:

- Quality and attribute estimators;
- Descriptor extraction.

4.3.7.2 Sixty-eight landmarks
More advanced 68-points face alignment is also implemented. Use this when you need precise
information about face and its parts. The detected points look like in the image below.

The 68 landmarks require additional computation time, so don’t use it if you don’t need precise
information about a face. If you use 68 landmarks , 5 landmarks will be reassigned to more precise
subset of 68 landmarks.

VisionLabs B.V. 21/ 71

* 25
%19 *20 21 —_— x23 ¥ * 26
%18 * 27
* 38 * 39 * 28 * 44 * 45
*30
*16
*2 * 31
* 32 334 341 3530 %15
*3
*¥51 %52 *353
*
%4 veal %62 *63 *64 >4 *14
* 49% 61 * 65k 55
* 68 * 66
* 67
* 60 * 56 %13
*5 * 59 %58 *57
*12
*6
w7 *11
* *10
2 *9

Figure 4: 68-point face alignment

The typical error for landmark estimation on a warped image (see Chapter “Image warping”) is in the
table below.

Table 1: “Average point estimation error per landmark”

Error Error Error Error
Point (pixels) Point (pixels) Point (pixels) Point (pixels)
1 +3,88 18 3,77 35 1,62 52 *1,65
2 +3,53 19 +2,83 36 +1,90 53 12,01
3 +3,88 20 2,70 37 1,78 54 12,00
4 +4,30 21 13,06 38 +1,69 55 +1,93
5 +4,67 22 13,92 39 11,63 56 2,18

VisionLabs B.V. 22/

Error Error Error Error

Point (pixels) Point (pixels) Point (pixels) Point (pixels)
6 14,87 23 13,46 40 +1,52 57 12,17
7 +4,67 24 +2,59 41 +1,54 58 +1,99
8 4,01 25 +2,53 42 +1,60 59 12,32
9 +3,46 26 12,95 43 +1,55 60 12,33
10 +3,87 27 +3,84 44 +1,60 61 +2,06
n +4,56 28 +1,88 45 1,74 62 £1,97
12 4,94 29 *1,75 46 1,72 63 +1,56
13 +4,55 30 +1,92 47 +1,68 64 +1,86
14 +4,45 31 +2,20 48 +1,65 65 +1,94
15 +4,13 32 1,97 49 +1,99 66 12,00
16 13,68 33 11,70 50 +1,99 67 11,70
17 +4,09 34 +1,73 51 +1,95 68 +2.12

Simple 5-point landmarks roughly correspond to:

« Average of positions 37, 40 for a left eye;

« Average of positions 43, 46 for a right eye;
« Number 31 for a nose tip;

+ Numbers 49 and 55 for mouth corners.

The landmarks for both cases are output by the face detector via Landmarks5 and Landmarks68
structures. Note, that performance-wise 5-point alignment result comes free with a face detection,
whereas 68-point result does not. So you should generally request the lowest number of points for your
task.

Typical use cases for 68 landmarks:

« Segmentation;
« Head pose estimation.

4.4 Human Detection

This functionality enables you to detect human bodies in the image.

Duringthe detection process we receive special points (called “landmarks” or exactly “HumanLandmarks17”)
for the body parts visible in the image. These landmarks represent the keypoints of a human body (see
the Human keypoints section).

VisionLabs B.V. 23/ 7

Human body detection is performed by the IHumanDetector object. The function of interest is detect(). It
requires an image to detect on.

4.4.1 Image coordinate system

The origin of the coordinate system for each processed image is located in the upper left corner.

(0,0) X

Y (image)

Figure 5: Source image coordinate system

4.4.2 Human body detection

When a human body is detected, a rectangular area with the body is defined. The area is represented
using coordinates in the image coordinate system.

When a part of a human body is outside of the frame, the detection area will also be beyond the frame
borders. Hence coordinates of the detection area may have the following values:

« When the human body is beyond the left or the upper border of the frame, the detection
coordinates will have negative values;

+ When the human body is beyond the right or the lower border of the frame, the detection
coordinates will have positive values, but their values will exceed the image size.

In the image below, the upper left detection point and lower right points are outside of the frame.

The X and Y coordinates of the upper left detection point have negative values. The Y coordinate of the
lower right detection point is equal to Y + n, where n is the length of the zone that exceeds the image
frame size.

VisionLabs B.V. 24 /T

(X, _Y)

(‘X, _Y]

(X, Y+n)

Figure 6: Detection points are outside of the frame

25/71

VisionLabs B.V.

NOTE! You must consider this feature when processing images to properly process the received
coordinates.

A code example for detection cropping is given below.

const fsdk::Rect brect = detection.rect & image.getRect();

detection - human body detection. image - source image.

4.4.3 Constraints

Human body detection has the following constraints:

« Human body detector works correctly only with adult humans in an image;

+ The detector may detect a body of size from 100 px to 640 px (in an image with a long side of 640
px). You may change the input image size in the config (see ./doc/ConfigurationGuide.pdf). The
image will be resized to specified size by the larger side while maintaining the aspect ratio.

4.4.4 Camera position requirements

In general, you should locate the camera for human detection according to the image below.

VisionLabs B.V. 26 /71

165 cm

N

N\
N\

Figure 7: Camera position for human detection

NN

Follow these recommendations to correctly detect human body and keypoints:
+ Aperson’s body should face the camera;
+ Keep angle of view as close to horizontal as possible;
+ There should be about 60% of the person’s body in the frame (upper body);
« There must not be any objects that overlap the person’s body in the frame;

« The camera should be located at about 165 cm from the floor, which corresponds to the average

VisionLabs B.V. 27/ 711

height of a human.

The examples of wrong camera positions are shown in the image below.

Figure 8: Wrong camera positions

4.4.5 Human body redetection

Like any other detector in Face Engine SDK, human detector also implements redetection model. The
user can make full detection only in a first frame and then redetect the same humanin the next “n” frames
thereby boosting performance of the whole image processing loop.

VisionLabs B.V. 28 /71

User can use redetectOne() method if only a single human detection is required, for more complex use
cases one should use redetect() which can redetect humans from multiple images.

Note: Detector give an opportunity to detect human body keypoints in an image.

VisionLabs B.V. 29/ 71

4.4.6 Human Keypoints

The image below shows the keypoints detected for a human body.

Figure 9: 17-points of human body

Point Body Part Point Body Part
0 Nose 9 Left Wrist
1 Left Eye 10 Right Wrist

VisionLabs B.V. 30/ 71

Point Body Part Point Body Part

2 Right Eye 1 Left Hip
3 Left Ear 12 Right Hip
4 Right Ear 13 Left Knee

Left Shoulder 14 Right Knee

6 Right Shoulder 15 Left Ankle
7 Left Elbow 16 Right Ankle
8 Right Elbow

4.4.7 Detection

To detect Human Keypoints call detect() using fsdk: :HumanDetectionType::DCT_BOX | fsdk::
HumanDetectionType: :DCT_POINTS argument.

Note: Defaultis fsdk: :HumanDetectionType: :DCT_BOX.

4.4.8 Main Results of Each Detection

The main result of each detection is an array. Each array element consists of a point (fsdk:: Point2f) and a

score. If the score value is less than the threshold, then the value of “x” and “y” coordinates will be equal
to 0.

Note: see ConfigurationGuide.pdf (“HumanDetector settings” section) for more information about
thresholds and configuration parameters.

VisionLabs B.V. 31/ 71

5 Parameter Estimation Facility

5.1 Overview

Estimation facility is the only multi-purpose facility in FaceEngine. It is designed as a collection of tools
that help to estimate various image or depicted object properties. These properties may be used to
increase the precision of algorithms implemented by other FaceEngine facilities or to accomplish custom
user tasks.

5.2 Face Attribute Estimation

Note. The estimator is trained to work with warped images (see Chapter “Image warping” for details).
The Attribute estimator determines face attributes. Currently, the following attributes are available:

+ Age: determines person’s age;
« Gender: determines person’s gender;

Before using attribute estimator, user is free to decide whether to estimate or not some specific attributes
listed above through IAttributeEstimator::EstimationRequests structure, which later get passed in main
estimate() method. Estimator overrides AttributeEstimationResults output structure, which consists of
optional fields describing results of user requested attributes.

+ Ageisreported in years:

- For cooperative (see “Appendix B. Glossary”) conditions: average error depends on person
age, see the table below for additional details. Estimation precision is 2.3

+ For gender estimation 1 means male, 0 means female.

- Estimation precision in cooperative mode is 99.81% with the threshold 0.5;
- Estimation precision in non-cooperative mode is 92.5%.

Table 3: “Average age estimation error per age group for cooperative conditions”

Age (years) Average error (years)

0-3 3.3

4-7 +2.97
8-12 +3.06
13-17 +4.05
17-20 +3.89
20-25 +1.89

VisionLabs B.V. 32/7

Age (years) Average error (years)

25-30 +1.88
30-35 +2.42
35-40 +2.65
40-45 +2.78
45-50 +2.88
50-55 +2.85
55-60 +2.86
60-65 +3.24
65-70 +3.85
70-75 +4.38
75-80 +6.79

Note In earlier releases of Luna SDK Attribute estimator worked poorly in non-cooperative mode (only
56% gender estimation precision), and did not estimate child’s age. Having solved these problems
average estimation error per age group got a bit higher due to extended network functionality.

5.3 Color/Monochrome Estimation

This estimator detects if an input image is grayscale or color. It implements estimate() function that
accepts source image and outputs a Boolean, indicating if the image is grayscale (true) or not (false).

5.4 Image quality estimation
Note. The estimator is trained to work with warped images (see Chapter “Image warping” for details).
The general rule of thumb for quality estimation:

1. Detect a face, see if detection confidence is high enough. If not, reject the detection;

2. Produce a warped face image (see chapter “Descriptor processing facility”) using a face detection
and its landmarks;

3. Estimate visual quality using the estimator, finally reject low-quality images.

While the scheme above might seem a bit complicated, it is the most efficient performance-wise, since
possible rejections on each step reduce workload for the next step.

At the moment estimator exposes two interface functions to predict image quality:

VisionLabs B.V. 33/71

« virtual Result estimate(const Image& warp, Quality& quality);
« virtual Result estimate(const Image& warp, SubjectiveQuality& quality);

Each one of this functions use its own CNN internally and return slightly different quality criteria.

The first CNN is trained specifically on pre-warped human face images and will produce lower score
factors if one of the following conditions are satisfied:

+ Image is blurred;

Image is under-exposured (i.e., too dark);
+ Image is over-exposured (i.e., too light);

Image color variation is low (i.e., image is monochrome or close to monochrome).

Each one of this score factors is defined in [0..1] range, where higher value corresponds to better image
quality and vice versa.

Recommended thresholds for image quality of the first interface function are given below:
“saturationThreshold”: 0.0; “blurThreshold”: 0.93; “lightThreshold”: 0.9; “darkThreshold”: 0.9;
The second interface function output will produce lower factor if:

+ Theimage is blurred;

« The image is underexposed (i.e., too dark);

« The image is overexposed (i.e., too light);

+ The face in the image is illuminated unevenly (there is a great difference between light and dark
regions);

+ Image contains flares on face (too specular).

The estimator determines the quality of the image based on each of the aforementioned parameters. For
each parameter, the estimator function returns two values: the quality factor and the resulting verdict.

As with the first estimator function the second one will also return the quality factors in the range [0..1],
where 0 corresponds to low image quality and 1 to high image quality. E. g., the estimator returns low
quality factor for the Blur parameter, if the image is too blurry.

The resulting verdict is a quality output based on the estimated parameter. E. g., if theimage is too blurry,
the estimator returns “isBlurred = true”.

Thethreshold can be specified for each of the estimated parameters. The resulting verdict and the quality
factor are linked through this threshold. If the received quality factor is lower than the threshold, the
image quality is low and the estimator returns “true”. E. g., if the image blur quality factor is higher than
the threshold, the resulting verdict is “false”.

If the estimated value for any of the parameters is lower than the corresponding threshold, the image is
considered of bad quality. If resulting verdicts for all the parameters are set to “False” the quality of the
image is considered good.

Examples are presented in the images below. Good quality images are shown on the right.

VisionLabs B.V. 34 /71

Figure 11: Dark image (left), good quality image (right)

VisionLabs B.V. 35/ 71

o

Figure 13: Image with uneven illumination (left), image with even illumination (right)

VisionLabs B.V. 36/ 71

Figure 14: Image with specularity - image contains flares on face (left), good quality image (right)

The quality factor is a value in the range [0..1] where 0 corresponds to low quality and 1to high quality.

Note. Illumination uniformity corresponds to the face illumination in the image. The lower the difference
between light and dark zones of the face, the higher the estimated value. When the illumination is evenly
distributed throughout the face, the value is close to “1”.

Note. Specularity is a face possibility to reflect light. The higher the estimated value, the lower the
specularity and the better the image quality. If the estimated value is low, there are bright glares on

the face.
Table 4: Image quality parameters and their thresholds

Threshold Estimated property Recomended range Default value
blurThreshold Blur [0.57..0.65] 0.61
darknessThreshold Darkness [0.45..0.52] 0.50
lightThreshold Light [0.44..0.61] 0.57
illuminationThreshold Illumination uniformity [0..0.3] 0.1
specularityThreshold Specularity [0..0.3] 0.1

The most important parameters for face recognition are “blurThreshold”, “darknessThreshold” and
“lightThreshold”, so you should select them carefully.

VisionLabs B.V. 37/ 1

You can selectimages of better visual quality by setting higher values of the “illuminationThreshold” and
“specularityThreshold”. Face recognition is not greatly affected by uneven illumination or glares.

5.5 Eyes Estimation

Note. The estimator is trained to work with warped images (see Chapter “Image warping” for details).
For Eye estimator can be passed recognition mode.
This estimator aims to determine:

+ Eye state: Open, Closed, Occluded;
« Precise eye iris location as an array of landmarks;
« Precise eyelid location as an array of landmarks.

You can only pass warped image with detected face to the estimator interface. Better image quality leads
to better results.

Eye state classifier supports three categories: “Open”, “Closed”, “Occluded”. Poor quality images or ones
that depict obscured eyes (think eyewear, hair, gestures) fall into the “Occluded” category. Itis always a
good idea to check eye state before using the segmentation result.

The precise location allows iris and eyelid segmentation. The estimator is capable of outputting iris and
eyelid shapes as an array of points together forming an ellipsis. You should only use segmentation results
if the state of that eye is “Open”.

The estimator:

+ Implements the estimate() function that accepts warped source image (see Chapter “Image
warping”) and warped landmarks, either of type Landmarks5 or Landmarks68. The warped image
and landmarks are received from the warper (see IWarper::warp());

« Classifies eyes state and detects its iris and eyelid landmarks;

« Outputs EyesEstimation structures.

Note. Orientation terms “left” and “right” refer to the way you see the image as it is shown on the screen.
It means that left eye is not necessarily left from the person’s point of view, but is on the left side of the
screen. Consequently, right eye is the one on the right side of the screen. More formally, the label “left”
refers to subject’s left eye (and similarly for the right eye), such that xright < xleft.

EyesEstimation::EyeAttributes presents eye state as enum EyeState with possible values: Open, Closed,
Occluded.

Iris landmarks are presented with a template structure Landmarks that is specialized for 32 points.

Eyelid landmarks are presented with a template structure Landmarks that is specialized for 6 points.

VisionLabs B.V. 38/ T

5.6 Head pose estimation

This estimator is designed to determine camera-space head pose. Since 3D head translation is hard to
determine reliably without camera-specific calibration, only 3D rotation component is estimated.

There are two head pose estimation method available:

« Estimate by 68 face-aligned landmarks (you may get it from Detector facility, see Chapter
“Detection facility”) ;
« Estimate by original input image in RGB format.

Estimation by image is more precise. If you have already extracted 68 landmarks for another facilities
you may save time, and use fast estimator from 68 landmarks.

By default, all methods are available to use in config (faceengine.conf) in section “HeadPoseEstimator”.
You may disable these methods to decrease RAM usage and initialization time.

Estimation characteristics:

+ Units (degrees);
+ Notation (Euler angles);
« Precision (see the table below).

Note. Prediction precision decreases as a rotation angle increases. We present typical average errors for
different angle ranges in the table below.

Table 5: “Head pose prediction precision”

Range -45°,..+45° <-45° or > +45°
Average prediction error (per axis) Yaw +2.7° +4.6°
Average prediction error (per axis) Pitch +3.0° +4.8°
Average prediction error (per axis) Roll +3.0° +4.6°

Zero position corresponds to a face placed orthogonally to camera direction, with the axis of symmetry
parallel to the vertical camera axis. See the image below for a reference.

VisionLabs B.V. 39/71

Figure 15: Head pose

Note. In order to work, this estimator requires precise 68-point face alignment results, so familiarize with
section “Face alignment” in the “Detection facility” chapter as well.

5.7 Gaze Estimation

This estimator is designed to determine gaze direction relatively to head pose estimation. Since 3D head
translation is hard to determine reliably without camera-specific calibration, only 3D rotation component
is estimated.

For Gaze estimator can be passed recognition mode.
Estimation characteristics:

+ Units (degrees);
+ Notation (Euler angles);
« Precision (see the table below).

Note. Roll angle is not estimated, prediction precision decreases as a rotation angle increases. We
present typical average errors for different angle ranges in the table below.

Table 6: “Gaze prediction precision”

Range -25°,..+25° -25°...-45°0r25° ... +45°
Average prediction error (per axis) Yaw £2.7° +4.6°
Average prediction error (per axis) Pitch $3.0° +4.8°

VisionLabs B.V. 40/ 1M

Zero position corresponds to a gaze direction orthogonally to face plane, with the axis of symmetry
parallel to the vertical camera axis. See figure Head pose estimation for a reference.

5.8 Smile Estimation

This estimator is designed to determine smile/mouth/occlusion probability using warped face image.
Smile estimation structure consists of:

« Smile score;
« Mouth score;
+ Occlusion score.

Sum of scores always equals 1. Each score means probability of corresponding state. Smile score prevails
in cases where smile was successfully detected. If there is any object on photo that hides mouth occlusion
score prevails. Mouth score prevails in cases where neither a smile nor an occlusion was detected.

5.9 Mouth Estimation

This estimator is designed to predict person’s mouth state. It returns the following bool flags:

« isOpened;
« isOccluded;

+ isSmiling.
Each of this flags indicate specific mouth state that was predicted.

The combined mouth state is assumed if multiple flags are set to true. For example there are many cases
where person is smiling and its mouth is wide open.

Similar to smile estimator mouth estimator provides score probabilities for mouth states in case user
need more detailed information:

« Mouth opened score;
« Smile score;
+ Occlusion score.

Note: This estimator is trained to work with warped images (see Chapter “Image warping” for details).

5.10 Emotions Estimation
Note: The estimator is trained to work with warped images (see Chapter “Image warping” for details).
This estimator aims to determine whether a face depicted on an image expresses the following emotions:

« Anger
 Disgust

VisionLabs B.V. 41/11

o Fear

Happiness

Surprise
« Sadness
+ Neutrality

You can pass only warped images with detected faces to the estimator interface. Better image quality
leads to better results.

The estimator (see IEmotionsEstimator in IEstimator.h):

« Implements the estimate() function that accepts warped source image (see Chapter “Image
warping”). Warped image is received from the warper (see IWarper::warp());

+ Estimates emotions expressed by the person on a given image;

« Outputs EmotionsEstimation structure with aforementioned data.

EmotionsEstimation presents emotions as normalized float values in the range of [0..1] where 0 is lack of
a specific emotion and 1is the maximum intensity of an emotion.

5.11 Approximate Garbage Score Estimation (AGS)

This estimator aims to determine the source image score for further descriptor extraction and matching.
The higher the score, the better matching result is received for the image.

When you have several images of a person, it is better to save the image with the highest AGS score.

Consult VisionLabs about the recommended threshold value for this parameter.

The estimator (see IAGSEstimator in IEstimator.h):

« Implementsthe estimate() function that accepts source image in R8G8B8 format and fsdk::Detection
structure of corresponding source image (see section “Detection structure” in chapter “Detection
facility”);

« Estimates garbage score of input image;

« Outputs garbage score value.

5.12 Glasses Estimation

Glasses estimator is designed to determine whether a person is currently wearing any glasses or not.
There are 3 types of states estimator is currently able to estimate:

+ NoGlasses state determines whether a person is wearing any glasses at all;
+ EyeGlasses state determines whether a person is wearing eyeglasses;
+ SunGlasses state determines whether a person is wearing sunglasses.

VisionLabs B.V. 42 /71

Note. Source input image must be warped in order for estimator to work properly (see Chapter “Image
warping”). Quality of estimation depends on threshold values located in faceengine configuration file
(faceengine.conf) in GlassesEstimator::Settings section. By default, these threshold values are set to

optimal.

The table below contains true positive rates corresponding to selected false positive rates.

Table 7: “Glasses estimator TPR/FPR rates”

State TPR FPR

NoGlasses 0.997 0.00234
EyeGlasses 0.9768 0.000783
SunGlasses 0.9712 0.000383

5.13 Overlap Estimation

This estimator tells whether the face is overlapped by any object. It returns a structure with 2 fields. One
is the value of overlapping in the range [0..1] where 0 is not overlapped and 1.0 is overlapped, the second
is a Boolean answer. ABoolean answer depends on the threshold listed below. If the value is greater than
the threshold, the answer returns true, else false.

The estimator (see I0verlapEstimator in IEstimator.h):

« Implementsthe estimate() function that accepts source image in R8G8B8 format and fsdk::Detection
structure of corresponding source image (see section “Detection structure”);

+ Estimates whether the face is overlapped by any object on input image;

« Outputs structure with value of overlapping and Boolean answer.

5.14 Child Estimation

This estimator tells whether the person is child or not. Child is a person who younger than 18 years old. It
returns a structure with 2 fields. One is the score in the range from 0.0 (is adult) to 1.0 (maximum, is child),
the second is a boolean answer. Boolean answer depends on the threshold in config (faceengine.conf).
If the value is more than the threshold, the answer is true (person is child), else - false (person is adult).

The estimator (see IChildEstimator in IEstimator.h):

+ Implements the estimate() function accepts warped source image (see chapter “Image warping”).
Warped image is received from the warper (see IWarper::warp());

+ Estimates whether the person is child or not on input warped image;

« Outputs ChildEstimation structure. Structure consists of score of and boolean answer.

VisionLabs B.V. 43 /11

5.15 BestShotQuality Estimation

The BestShotQuality estimator represents a collection of estimator functionalities unified for end-user
convenience.

Estimation types that were merged into this estimator are described in the following list:

« AGS: image quality score (see section “Approximate garbage score estimation (AGS)” for more
details);

+ HeadPose: determines person head rotation angles in 3D space, namely pitch, yaw and roll (see
section Head pose estimation for more details).

Before using this estimator, user is free to decide whether to estimate or not some specific attributes
listed above through IBestShotQualityEstimator::EstimationRequests structure, which later get passed in
main estimate() method.

Estimator overrides AQEEstimationResults output structure, which consists of optional fields describing
results of user requested attributes.

5.16 HeadAndShouldersLiveness Estimation

This estimator tells whether the person’s face is real or fake (photo, printed image) and confirms presence
of a person’s body in the frame. Face should be in the center of the frame and the distance between the
face and the frame borders should be three times greater than space that face takes up in the frame. Both
person’s face and chest have to be in the frame. Camera should be placed at the waist level and directed
from bottom to top. The estimator check for borders of a mobile device to detect fraud. So there should
not be any rectangular areas within the frame (windows, pictures, etc.).

The estimator (see IHeadAndShouldersLiveness in IEstimator.h):

« Implements the estimateHeadLiveness() function that accepts source image in R8G8B8 format
and fsdk::Detection structure of corresponding source image (see section “Detection structure” in
chapter “Detection facility”).

+ Estimates whether it is a real person or not. Outputs float normalized score in range [0..1], 1
- is real person, 0 - is fake. Implements the estimateShouldersLiveness() function that accepts
source image in R8G8B8 format and fsdk::Detection structure of corresponding source image (see
section “Detection structure” in chapter “Detection facility”). Estimates whether real person or
not. Outputs float score normalized in range [0..1], 1 - is real person, 0 - is fake.

5.17 LivenessFlyingFaces Estimation

This estimator tells whether the person’s face is real or fake (photo, printed image).

The estimator (see ILivenessFlyingFacesEstimator in IEstimator.h):

VisionLabs B.V. 44 /11

« Implements the estimate() function that needs fsdk: : Face with valid image in R8G8B8 format
and detection structure of corresponding source image (see section “Detection structure” in
chapter “Detection facility”). This method estimates whether a real person or not.

+ Implements the estimate() function that needs the span of fsdk: : Face with valid source images
in R8G8B8 formats and fsdk::Detection structures of corresponding source images (see section
“Detection structure” in chapter “Detection facility”). Each element of span of fsdk: : Face must
be with valid image and detection.

Those methods estimate whether different persons are real or not. Corresponding estimation output
with float scores which are normalized in range [0..1], where 1- is real person, 0 - is fake.

Note. The estimator is trained to work in combination with fsdk: : ILivenessRGBMEstimator.

Note. The estimator is trained to work with face images that meet the following requirements:
Table 8: “Requirements for fsdk: :BestShotQualityEstimator: :EstimationResult”

Attribute Acceptable values

headPose.pitch [-30...30]
headPose.yaw [-30...30]
headPose.roll [-40...40]
ags [0.5...1.0]

Table 9: “Requirements for fsdk: :Detection”

Attribute Minimum value

detection size 80

Note. Detection size is detection width.

const fsdk::Detection detection = ... // somehow get fsdk::Detection object
const int detectionSize = detection.rect.width;

5.18 LivenessRGBM Estimation

This estimator tells whether the person’s face is real or fake (photo, printed image).

The estimator (see ILivenessRGBMEstimator in |IEstimator.h):

VisionLabs B.V. 45/ 71

« Implements the estimate() function that needs fsdk: : Face with valid image in R8G8B8 format,
detection structure of corresponding source image (see section “Detection structure” in chapter
“Detection facility”) and fsdk: : Image with accumulated background. This method estimates
whether a real person or not. Output estimation structure contains the float score and boolean
result. The float score normalized in range [0..1], where 1 - is real person, 0 - is fake. The boolean
result has value true for real person and false otherwise.

« Implements the update() function that needs the fsdk::Image with current frame , number
of that image and previously accumulated background. The accumulated background will be
overwritten by this call.

5.19 Medical Mask Estimation and Medical Mask Estimation Extended

This estimator aims to detect a medical mask on the face in the source image. For the interface with
MedicalMaskEstimation it can return the next results:

« A medical mask is on the face (see MedicalMask::Mask field in the MedicalMask enum);

« There is no medical mask on the face (see MedicalMask::NoMask field in the MedicalMask enum);

+ The face is occluded with something (see MedicalMask::OccludedFace field in the MedicalMask
enum);

For the interface with MedicalMaskEstimationExtended it can return the next results:

+ A medical mask is on the face (see MedicalMaskExtended::Mask field in the MedicalMaskExtended
enum);

« There is no medical mask on the face (see MedicalMaskExtended::NoMask field in the
MedicalMaskExtended enum);

+ A medical mask is not on the right place (see MedicalMaskExtended::MaskNotInPlace field in the

MedicalMaskExtended enum);

The face is occluded with something (see MedicalMaskExtended::OccludedFace field in the

MedicalMaskExtended enum);
The estimator (see IMedicalMaskEstimator in IEstimator.h):

+ Implements the estimate() function that accepts source warped image in R8G8B8 format and
medical mask estimation structure to return results of estimation;

+ Implements the estimate() function that accepts source image in R8G8B8 format, face detection to
estimate and medical mask estimation structure to return results of estimation;

+ Implementsthe estimate() function that accepts fsdk::Span of the source warped images in R8G8B8
format and fsdk::Span of the medical mask estimation structures to return results of estimation;

+ Implementsthe estimate() function that accepts fsdk::Span of the source images in R8G8B8 format,
fsdk::Span of face detections and fsdk::Span of the medical mask estimation structures to return
results of the estimation.

Every method can be used with MedicalMaskEstimation and MedicalMaskEstimationExtended.

VisionLabs B.V. 46 /11

The estimator was implemented for two use-cases:

1. When the user already has warped images. For example, when the medical mask estimation is
performed right before (or after) the face recognition;
2. When the user has face detections only.

Note: Calling the estimate() method with warped image and the estimate() method with image and
detection for the same image and the same face could lead to different results.

5.19.1 MedicalMaskEstimator thresholds

The estimator returns several scores, one for each possible result. The final result is based on that scores
and thresholds. If some score is above the corresponding threshold, that result is estimated as final. If
none of the scores exceed the matching threshold, the maximum value will be taken. If some of the
scores exceed their thresholds, the results will take precedence in the following order for the case with
MedicalMaskEstimation:

Mask, NoMask, OccludedFace

and for the case with MedicalMaskEstimationExtended:

Mask, NoMask, MaskNotInPlace, OccludedFace

The default values for all thresholds are taken from the configuration file. See Configuration guide for
details.

5.19.2 MedicalMask enumeration

The MedicalMask enumeration contains all possible results of the MedicalMask estimation:

enum class MedicalMask {

Mask = 0, //!< medical mask is on the face
NoMask, //'< no medical mask on the face
OccludedFace //'< face 1is occluded by something

}s

enum class DetailedMaskType {
CorrectMask = 0, //!< correct mask on the face (mouth

and nose are covered correctly)

MouthCoveredWithMask, //!< mask covers only a mouth
ClearFace, //'< clear face - no mask on the face

VisionLabs B.V. 47 /711

}s

ClearFaceWithMaskUnderChin, // 1< clear face with a mask around of
a chin, mask does not cover anything in the face region (from
mouth to eyes)
PartlyCoveredFace, //!'< face 1is covered with not a
medical mask or a full mask
FullMask, // 1< face is covered with a full mask
(such as balaclava, sky mask, etc.)
Count

+ Maskis according to CorrectMask or MouthCoveredwithMask;

« NoMaskis according to ClearFace or ClearFaceWithMaskUnderChin;

+ OccludedFace is according to PartlyCoveredFace or FullMask.

Note - NoMask means absence of medical mask or any occlusion in the face region (from mouth to eyes).

5.19.3 MedicalMaskEstimation structure

The MedicalMaskEstimation structure contains results of the estimation:

struct MedicalMaskEstimation {

s

MedicalMask result; //!< estimation result (@see
MedicalMask enum)

DetailedMaskType maskType; //!< detailed type (@see
DetailedMaskType enum)

// scores

float maskScore; //'< medical mask is on the face score
float noMaskScore; //'< no medical mask on the face score
float occludedFaceScore; //!< face 1is occluded by something score

float scores[static_cast<int>(DetailedMaskType::Count)]{}; [/ <
detailed estimation scores

inline float getScore(DetailedMaskType type) const;

There are two groups of the fields:

1. The first group contains the result:

MedicalMask result;

VisionLabs B.V. 48 /11

Result enum field MedicalMaskEstimation contains the target results of the estimation. Also you can see
the more detailed type in MedicalMaskEstimation.

DetailedMaskType maskType; // < detailed type

2. The second group contains scores:

float maskScore; //'< medical mask is on the face score
float noMaskScore; //'< no medical mask on the face score
float occludedFaceScore; //!< face 1is occluded by something score

The score group contains the estimation scores for each possible result of the estimation. All scores are
defined in [0,1] range. They can be useful for users who want to change the default thresholds for this
estimator. If the default thresholds are used, the group with scores could be justignored in the user code.
More detailed scores for every type of a detailed type of face covering are

float scores[static_cast<int>(DetailedMaskType::Count)]{}; //'< detailed
estimation scores

« maskScore is the sum of scores for CorrectMask, MouthCoveredWithMask;
« NoMask is the sum of scores for ClearFace and ClearFaceWithMaskUnderCh-in;
« occludedFaceScore is the sum of scores for PartlyCoveredFace and FullMask fields.

5.19.4 MedicalMaskExtended enumeration

The MedicalMask enumeration contains all possible results of the MedicalMask estimation:

enum class MedicalMaskExtended {

Mask = 0, //'< medical mask is on the face
NoMask, //!'< no medical mask on the face
MaskNotInPlace, //'< mask is not on the right place
OccludedFace //!< face is occluded by something

+s

5.19.5 MedicalMaskEstimationExtended structure

The MedicalMaskEstimationExtended structure contains results of the estimation:

struct MedicalMaskEstimationExtended {

VisionLabs B.V. 49 /71

MedicalMaskExtended result; // < estimation result (@see
MedicalMaskExtended enum)

// scores

float maskScore; //'< medical mask is on the face score
float noMaskScore; //'< no medical mask on the face score
float maskNotInPlace; //'< mask is not on the right place
float occludedFaceScore; //!< face 1is occluded by something score

+s
There are two groups of the fields:
1. The first group contains only the result enum:
MedicalMaskExtended result;

Result enum field MedicalMaskEstimationExtended contains the target results of the estimation.

2. The second group contains scores:

float maskScore; //'< medical mask is on the face score
float noMaskScore; //!'< no medical mask on the face score
float maskNotInPlace; //'< mask is not on the right place

float occludedFaceScore; //!< face is occluded by something score

The score group contains the estimation scores for each possible result of the estimation. All scores are
defined in [0,1] range.

5.20 Credibility Check Estimation
This estimator estimates reliability of a person.
The estimator (see ICredibilityCheckEstimator in IEstimator.h):

+ Implements the estimate() function that accepts warped image in R8B8G8 format and fsdk::
CredibilityCheckEstimation structure.

« Implements the estimate() function that accepts span of warped images in R8B8G8 format and
span of fsdk: :CredibilityCheckEstimation structures.

Note. The estimator is trained to work with face images that meet the following requirements:

Table 10: “Requirements for fsdk: :HeadPoseEstimation”

Attribute Acceptable angle range(degrees)

pitch [-20...20]

VisionLabs B.V. 50/ 71

Attribute Acceptable angle range(degrees)

yaw [-20...20]
roll [-20...20]

Table 11;: “Requirements for fsdk: : SubjectiveQuality”

Attribute Minimum value

blur 0.61
light 0.57

Table 12: “Requirements for fsdk: :AttributeEstimationResult”

Attribute Minimum value

age 18

Table 13: “Requirements for fsdk: :OverlapEstimation”

Attribute State

overlapped false

Table 14: “Requirements for fsdk: :Detection”

Attribute Minimum value

detection size 100

Note. Detection size is detection width.

const fsdk::Detection detection = ... // somehow get fsdk::Detection object
const int detectionSize = detection.rect.width;

VisionLabs B.V. 51/ 71

5.21 LivenessIREstimation Estimation

This estimator tells whether the person’s face is real or fake (photo, printed image).
The estimator (see ILivenessIREstimator in IEstimator.h):

+ Implements the estimate() function that accepts warped image in R8G8B8, R16 or IR_X8X8X8
format and fsdk: : IREstimation structure.

« Implements the estimate() function that accepts span of warped images in R8G8BS8, R16 or
IR_X8X8X8 format and span of fsdk: : IREstimation structures.

Note. The estimator for Verme camera is trained to work with face images that meet the following
requirements:

Table 15: “Requirements for fsdk: :HeadPoseEstimation”

Attribute Acceptable angle range(degrees)
pitch [-20...20]
yaw [-20...20]
roll [-20...20]

Table 16: “Requirements for fsdk: : SubjectiveQuality”

Attribute Minimum value
blur 0.4
light 0.1

darkness 0.3
illumination 0.6

specularity 0.5

Table 17: “Requirements for fsdk: :EyesEstimation”

Attribute State
left eye fsdk::EyesEstimation: :EyeAttributes::State: :0pen
right eye fsdk::EyesEstimation: :EyeAttributes::State: :0pen

VisionLabs B.V. 52/ 1

Table 18: “Requirements for fsdk: :Detection”

Attribute Minimum value

detection size 160

Note. Detection size is detection width.

const fsdk::Detection detection =
const int detectionSize = detection.rect.width;

5.22 Facial Hair Estimation

This estimator aims to detect a facial hair type on the face in the source image.
In case of FacialHairEstimation estimator can return the next results:

« Thereis no hair on the face (see FacialHair::NoHair field in the FacialHair enum);

+ There is stubble on the face (see FacialHair::Stubble field in the FacialHair enum);

» There is mustache on the face (see FacialHair::Mustache field in the FacialHair enum);
« Thereis beard on the face (see FacialHair::Beard field in the FacialHair enum);

In case of FacialHairEstimationExtended estimator can return the next results:

« Thereis no beard on the face (see Beard::NoBeard in the Beard enum);

« Thereis a stubble beard on the face (see Beard::Stubble in the Beard enum);

« Thereis a short beard on the face (see Beard::ShortBeard in the Beard enum);

+ Thereis a long beard on the face (see Beard::LongBeard in the Beard enum);

« There is no mustache on the face (see Mustache::NoMustache in the Mustache enum);

» There is a mustache on the face (see Mustache::Mustache in the Mustache enum);

» Thereis a stubble mustache on the face (see Mustache::Stubble in the Mustache enum).

The estimator (see IFacialHairEstimator in IFacialHairEstimator.h):

+ Implements the estimate() function that accepts source warped image in R8G8B8 format and
FacialHairEstimation structure to return results of estimation;

+ Implementsthe estimate() function that accepts fsdk::Span of the source warped images in R8G8B8
format and fsdk::Span of the FacialHairEstimation structures to return results of estimation;

+ Implements the estimate() function that accepts source warped image in R8G8B8 format and
FacialHairEstimationExtended structure to return results of estimation;

« Implements the estimate() function that accepts fsdk::Span of the source warped images in
R8G8BS8 format and fsdk::Span of the FacialHairEstimationExtended structures to return results of
estimation.

VisionLabs B.V. 53/71

5.22.1 FacialHair enumeration

The FacialHair enumeration contains all possible results of the FacialHair estimation:

enum class FacialHair {

NoHair = 0, //!'< no hair on the face
Stubble, //!< stubble on the face
Mustache, //!'< mustache on the face
Beard //'< beard on the face

+s

5.22.2 FacialHairEstimation structure

The FacialHairEstimation structure contains results of the estimation:

struct FacialHairEstimation {

FacialHair result; //!< estimation result (@see FacialHair
enum)

// scores

float noHairScore; //'< no hair on the face score

float stubbleScore; //!'< stubble on the face score

float mustacheScore; //!< mustache on the face score

float beardScore; //!'< beard on the face score

+s
There are two groups of the fields:

1. The first group contains only the result enum:

FacialHair result; //!'< estimation result (@see FacialHair
enum)

Result enum field FacialHairEstimation contain the target results of the estimation.

2. The second group contains scores:

float noHairScore; //'< no hair on the face score
float stubbleScore; // 1< stubble on the face score
float mustacheScore; //!< mustache on the face score
float beardScore; //!< beard on the face score

The scores group contains the estimation scores for each possible result of the estimation. All scores are
defined in [0,1] range. Sum of scores always equals 1.

VisionLabs B.V. 54 /71

5.22.3 Beard enumeration

The Beard enumeration contains all possible results of the FacialHair beard estimation:

struct BeardEstimation {

Beard result; /])<
)

// scores

float noBeardScore; //)<

float stubbleScore;]/)<

float shortBeardScore; /] <

float longBeardScore; // <

}s

5.22.4 BeardEstimation structure

estimation result (@see Beard enum

no beard on the face score
stubble beard on the face score
short beard on the face score
long beard on the face score

The BeardEstimation structure contains results of the estimation:

struct BeardEstimation {

Beard result; /] <
)

// scores

float noBeardScore; // <

float stubbleScore; /])<

float shortBeardScore; // 1<

float longBeardScore; // <

+s
There are two groups of the fields:

1. The first group contains only the result enum:

Beard result; // 1<
)

estimation result (@see Beard enum

no beard on the face score
stubble beard on the face score
short beard on the face score
long beard on the face score

estimation result (@see Beard enum

Result enum field BeardEstimation contain the target results of the estimation.

2. The second group contains scores:

float noBeardScore; / /<
float stubbleScore; /] <
float shortBeardScore; //)<

float longBeardScore; // 1<

VisionLabs B.V.

no beard on the face score
stubble beard on the face score
short beard on the face score
long beard on the face score

55/ 71

The scores group contains the estimation scores for each possible result of the estimation. All scores are
defined in [0,1] range. Sum of scores always equals 1.

5.22.5 Mustache enumeration

The Mustache enumeration contains all possible results of the FacialHair mustache estimation:

enum class Mustache {

NoMustache = 0, //!'< no mustache on the face
Mustache, //!'< mustache on the face
Stubble //'< stubble mustache on the face

s

5.22.6 MustacheEstimation structure

The MustacheEstimation structure contains results of the estimation:

struct MustacheEstimation {

Mustache result; //!< estimation result (@see Mustache
enum)

// scores

float noMustacheScore; //'< no mustache on the face score

float mustacheScore; //!< mustache on the face score

float stubbleScore; //!< stubble mustache on the face score

+s
There are two groups of the fields:

1. The first group contains only the result enum:

Mustache result; //!< estimation result (@see Mustache
enum)

Result enum field MustacheEstimation contain the target results of the estimation.

2. The second group contains scores:

float noMustacheScore; //!'< no mustache on the face score
float mustacheScore; //!'< mustache on the face score
float stubbleScore; // < stubble mustache on the face score

VisionLabs B.V. 56 /T

The scores group contains the estimation scores for each possible result of the estimation. All scores are
defined in [0,1] range. Sum of scores always equals 1.

Note. The estimator is trained to work with face images that meet the following requirements:

Table 19: “Requirements for fsdk: :HeadPoseEstimation”

Attribute Acceptable angle range(degrees)
pitch [-40...40]
yaw [-40...40]
roll [-40...40]

Table 20: “Requirements for fsdk: :MedicalMaskEstimation”

Attribute State

result fsdk::MedicalMask::NoMask

Table 21: “Requirements for fsdk: : Detection”

Attribute Minimum value

detection size 40

Note. Detection size is detection width.

const fsdk::Detection detection = ... // somehow get fsdk::Detection object
const int detectionSize = detection.rect.width;

5.23 Headwear Estimation

This estimator aims to detect a headwear status and headwear type on the face in the source image.
It can return the next headwear status results:

« There is headwear (see HeadWearState::Yes field in the HeadWearState enum);
« Thereis no headwear (see HeadWearState::No field in the HeadWearState enum);

VisionLabs B.V. 57 /711

And this headwear type results:

« There is no headwear on the head (see HeadWearType::NoHeadWear field in the HeadWearType
enum);

+ There is baseball cap on the head (see HeadWearType::BaseballCap field in the HeadWearType
enum);

« There is beanie on the head (see HeadWearType::Beanie field in the HeadWearType enum);

« There is peaked cap on the head (see HeadWearType::PeakedCap field in the HeadWearType
enum);

» Thereis shawl on the head (see HeadWearType::Shawl field in the HeadWearType enum);

« There is hat with ear flaps on the head (see HeadWearType::HatWithEarFlaps field in the
HeadWearType enum);

+ There is helmet on the head (see HeadWearType::Helmet field in the HeadWearType enum);

« Thereis hood on the head (see HeadWearType::Hood field in the HeadWearType enum);

« There is hat on the head (see HeadWearType::Hat field in the HeadWearType enum);

« Thereissomething other onthe head (see HeadWearType::Other field in the HeadWearType enum);

The estimator (see IHeadWearEstimator in IHeadWearEstimator.h):

« Implements the estimate() function that accepts warped image in R8G8B8 format and
HeadWearEstimation structure to return results of estimation;

+ Implements the estimate() function that accepts fsdk::Span of the source warped images in R8G8B8
format and fsdk::Span of the HeadWearEstimation structures to return results of estimation.

5.23.1 HeadWearState enumeration

The HHeadWearState enumeration contains all possible results of the Headwear state estimation:

enum class HeadWearState {

Yes = 0, //< there 1is headwear
No, //< there 1is no headwear
Count

+s

5.23.2 HeadWearType enumeration

The HeadWearType enumeration contains all possible results of the Headwear type estimation:

enum class HeadWearType : uint8_t {

NoHeadWear = 0, //< there is no headwear on the head
BaseballCap, //< there 1is baseball cap on the head
Beanie, //< there 1is beanie on the head

VisionLabs B.V. 58 /11

PeakedCap, //< there is peaked cap on the head

Shawl, //< there is shawl on the head
HatWithEarFlaps, //< there 1dis hat with ear flaps on the head
Helmet, //< there is helmet on the head

Hood, //< there 1is hood on the head

Hat, //< there 1is hat on the head

Other, //< something other is on the head

Count

}s

5.23.3 HeadWearStateEstimation structure

The HeadWearStateEstimation structure contains results of the Headwear state estimation:

struct HeadWearStateEstimation {
HeadWearState result; //!< estimation result (@see HeadWearState
enum)
float scores[static_cast<int>(HeadWearState::Count)]; //!<
estimation scores

[**

X%

@brief Returns score of required headwear state.

*

@param [in] state headwear state.

*

@see HeadWearState for more info.
**/
inline float getScore(HeadWearState state) const;

}s
There are two groups of the fields:

1. The first group contains only the result enum:

HeadWearState result; //!< estimation result (@see HeadWearState
enum)

2. The second group contains scores:

float scores[static_cast<int>(HeadWearState::Count)]; //!<
estimation scores

The scores group contains the estimation scores for each possible result of the estimation. All scores are
defined in [0,1] range. Sum of scores always equals 1.

VisionLabs B.V. 59/7

5.23.4 HeadWearTypeEstimation structure

The HeadWearTypeEstimation structure contains results of the Headwear type estimation:

struct HeadWearTypeEstimation {
HeadWearType result; //!< estimation result (@see HeadWearType enum)
float scores[static_cast<int>(HeadWearType::Count)]; //!< estimation
scores

[**

>*

@brief Returns score of required headwear type.
@param [1in] type headwear type.
@see HeadWearType for more info.
* %/
inline float getScore(HeadWearType type) const;

>*

*

+s
There are two groups of the fields:

1. The first group contains only the result enum:

HeadWearType result; //!< estimation result (@see HeadWearType enum)
2. The second group contains scores:

float scores[static_cast<int>(HeadWearType::Count)]; //!< estimation
scores

The scores group contains the estimation scores for each possible result of the estimation. All scores are
defined in [0,1] range. Sum of scores always equals 1.

5.23.5 HeadWearEstimation structure

The HeadWearEstimation structure contains results of both Headwear state and type estimations:

struct HeadWearEstimation {
HeadWearStateEstimation state; //!< headwear state estimation
//!< (@see HeadWearStateEstimation)
HeadWearTypeEstimation type; //!'< headwear type estimation

//'< (@see HeadWearTypeEstimation)
+s

Note. The estimator is trained to work with face images that meet the following requirements:

VisionLabs B.V. 60/ 71

Table 22: “Requirements for fsdk: : Detection”

Attribute Minimum value

detection size 80

Note. Detection size is detection width.

const fsdk::Detection detection = ... // somehow get fsdk::Detection object
const int detectionSize = detection.rect.width;

VisionLabs B.V. 61/ 71

6 Image Warping
Warping is the process of face image normalization. It requires landmarks and face detection (see chapter
“Detection facility”) to operate. The purpose of the process is to:

« compensate image plane rotation (roll angle);
+ center the image using eye positions;
+ properly crop the image.

This way all warped images look the same and one can tell that, e.g., left eye is always in a box, defined
by the certain coordinates. This way certain transform invariance is achieved for input data so various
algorithms can perform better.

Detection Warping

@

®

Figure 16: Face warping

Be aware that image warping is not thread-safe, so you have to create a warper object per worker thread.

VisionLabs B.V. 62/ 11

7 Descriptor Processing Facility

7.1 Overview

The section describes descriptors and all the processes and objects corresponding to them.

Descriptor itself is a set of object parameters that are specially encoded. Descriptors are typically more
or less invariant to various affine object transformations and slight color variations. This property allows
efficient use of such sets to identify, lookup, and compare real-world objects images.

To receive a descriptor you should perform a special operation called descriptor extraction.

The general case of descriptors usage is when you compare two descriptors and find their similarity score.
Thus you can identify persons by comparing their descriptors with your descriptors database.

All descriptor comparison operations are called matching. The result of the two descriptors matching
is a distance between components of the corresponding sets that are mentioned above. Thus, from a
magnitude of this distance, we can tell if two objects are presumably the same.

There are two different tasks solved using descriptors: person identification and person reidentification.

7.1.1 Person Identification Task

Facial recognition is the task of making an identification of a face in a photo or video image against a pre-
existing database of faces. It begins with detection - distinguishing human faces from other objects in
the image - and then works on the identification of those detected faces. To solve this problem, we use a
face descriptor, which extracted from an image face of a person. A person’s face is invariable throughout
his life.

In a case of the face descriptor, the extraction is performed from object image areas around some
previously discovered facial landmarks, so the quality of the descriptor highly depends on them and the
image it was obtained from.

The process of face recognition consists of 4 main stages:

« face detection in an image;

warping of face detection - compensation of affine angles and centering of a face;
« descriptor extraction;
« comparing of extracted descriptors (matching).

Note: Additionally you can extract face features (gender, age, emotions, etc) or image attributes (light,
dark, blur, specularity, illumination, etc.).
7.1.2 Person Reidentification Task

Note! This functionality is experimental.

VisionLabs B.V. 63/71

The person reidentification enables you to detect a person who appears on different cameras. For
example, it is used when you need to track a human, who appears on different supermarket cameras.
Reidentification can be used for:

+ building of human traffic warm maps;
+ analysing of visitors movement;

« tracking of visitors;

 etc.

For reidentification purposes, we use so-called human descriptors. The extraction of the human
descriptor is performed using the detected area with a person’s body on an image or video frame. The
descriptor is a unique data set formed based on a person’s appearance. Descriptors extracted for the
same person in different clothes will be significantly different.

The face descriptor and the human descriptor are almost the same from the technical point of view,
but they solve fundamentally different tasks.

The process of reidentifications consists of the following stages:

« human detection in an image;

« warping of human detection - centering and cropping of the human body;
« descriptor extraction;

« comparing of extracted descriptors (matching).

The human descriptor does not support the descriptor score at all. The returned value of the
descriptor score is always equal to 1.0.

7.2 Descriptor

Descriptor object stores a compact set of packed properties as well as some helper parameters that were
used to extract these properties from the sourceimage. Together these parameters determine descriptor
compatibility. Not all descriptors are compatible with each other. It is impossible to batch and match
incompatible descriptors, so you should pay attention to what settings do you use when extracting them.
Refer to section “Descriptor extraction” for more information on descriptor extraction.

7.2.1 Descriptor Versions

Face descriptor algorithm evolves with time, so newer FaceEngine versions contain improved models of
the algorithm.

Note. Descriptors of different versions are incompatible! This means that you cannot match descriptors
with different versions. This does not apply to base and mobilenet versions of the same model: they are
compatible.

VisionLabs B.V. 64 /71

See chapter “Appendix A. Specifications” for details about the performance and precision of different
descriptor versions.

Descriptor version 59 is the best one by precision. And it works well Personal protective equipment on
face like medical mask.

Descriptor version may be specified in the configuration file (see section “Configuration data” in chapter
“Core facility”).

7.2.1.1 Face descriptor

Currently next versions are available: 46, 52, 54, 56, 57, 58, 59. Descriptors have backend and mobilenet
implementations. Versions 57 and 58 supports only backend implementation. Backend versions more
precise, but mobilenet faster and have smaller model files (See Appendix A). Versions 57, 56, 54 and 52
more precise then 46, but version 46 works very fast on GPU. See Appendix A.1 and A.2 for details about
performance and precision of different descriptor versions. Version 59 is the most precise.

Note Version 46 and 52 are deprecated since LUNA SDK release v.4.1.0. Use 54, 56 or 57 versions in new
projects.

7.2.1.2 Human descriptor
Currently, only one version of human descriptor is available: 101.

To create a human descriptor, human batch, human descriptor extractor, human descriptor matcher
you must pass the minimum human descriptor version (DV_MIN_HUMAN_DESCRIPTOR_VERSION) which
equals 101.

7.3 Descriptor Batch

When matching significant amounts of descriptors, it is desired that they reside continuously in memory
for performance reasons (think cache-friendly data locality and coherence). This is where descriptor
batches come into play. While descriptors are optimized for faster creation and destruction, batches are
optimized for long life and better descriptor data representation for the hardware.

A batch is created by the factory like any other object. Aside from type, a size of the batch should be
specified. Size is a memory reservation this batch makes for its data. It is impossible to add more data
than specified by this reservation.

Next, the batch must be populated with data. You have the following options:

+ add an existing descriptor to the batch;
+ load batch contents from an archive.

The following notes should be kept in mind:

VisionLabs B.V. 65/ 71

« When adding an existing descriptor, its data is copied into the batch. This means that the descriptor
object may be safely released.

« When adding the first descriptor to an empty batch, initial memory allocation occurs. Before that
moment the batch does not allocate. At the same moment, internal descriptor helper parameters
are copied into the batch (if there are any). This effectively determines compatibility possibilities
of the batch. When the batch is initialized, it does not accept incompatible descriptors.

After initialization, a batch may be matched pretty much the same way as a simple descriptor.

Like any other data storage object, a descriptor batch implements the ::clear() method. An effect of this
method is the batch translation to a non-initialized state except memory deallocation. In other words,
batch capacity stays the same, and no memory is reallocated. However, an actual number of descriptors
in the batch and their parameters are reset. This allows re-populating the batch.

Memory deallocation takes place when a batch is released.

Care should be taken when serializing and deserializing batches. When a batch is created, it is assigned
with a fixed-size memory buffer. The size of the bufferis embedded into the batch BLOB when it is saved.
So, when allocating a batch object for reading the BLOB into, make sure its size is at least the same as
it was for the batch saved to the BLOB (even if it was not full at the moment). Otherwise, loading fails.
Naturally, it is okay to deserialize a smaller batch into a larger another batch this way.

7.4 Descriptor Extraction

Descriptor extractor is the entity responsible for descriptor extraction. Like any other object, it is created
by the factory. To extract a descriptor, aside from the source image, you need:

+ aface detection area inside the image (see chapter “Detection facility”)
« apre-allocated descriptor (see section “Descriptor”)
+ apre-computed landmarks (see chapter “Image warping”)

A descriptor extractor object is responsible for this activity. It is represented by the straightforward
IDescriptorExtractor interface with only one method extract(). Note, that the descriptor object must be
created prior to calling extract() by calling an appropriate factory method.

Landmarks are used as a set of coordinates of object points of interest, that in turn determine source
image areas, the descriptor is extracted from. This allows extracting only data that matters most for
a particular type of object. For example, for a human face we would want to know at least definitive
properties of eyes, nose, and mouth to be able to compare it to another face. Thus, we should firstinvoke
a feature extractor to locate where eyes, nose, and mouth are and put these coordinates into landmarks.
Then the descriptor extractor takes those coordinates and builds a descriptor around them.

Descriptor extraction is one of the most computation-heavy operations. For this reason, threading might
be considered. Be aware that descriptor extraction is not thread-safe, so you have to create an extractor
object per a worker thread.

VisionLabs B.V. 66 /71

It should be noted, that the face detection area and the landmarks are required only for image warping,
the preparation stage for descriptor extraction (see section “Image warping”). If the source image
is already warped, it is possible to skip these parameters. For that purpose, the IDescriptorExtractor
interface provides a special extractFromWarpedimage() method.

Also IDescriptorExtractor returns descriptor score for each extracted descriptor. Descriptor score is
normalized value in range [0,1], where 1 - face in the warp, 0 - no face in the warp. This value allows you
filter descriptors extracted from false positive detections.

7.5 Descriptor Matching

It is possible to match a pair (or more) previously extracted descriptors to find out their similarity. With

this information, it is possible to implement face search and other analysis applications.

Matching

95%

5%

Figure 17: Matching

By means of match function defined by the IDescriptorMatcher interface it is possible to match a pair of
descriptors with each other or a single descriptor with a descriptor batch (see section “Descriptor batch”

for details on batches).
A simple rule to help you decide which storage to opt for:

+ when searching among less than a hundred descriptors use separate IDescriptor objects;
« when searching among bigger number of descriptors use a batch.

When working with big data, a common practice is to organize descriptors in several batches keeping a

batch per worker thread for processing.

VisionLabs B.V. 67 /71

Be aware that descriptor matching is not thread-safe, so you have to create a matcher object per a worker
thread.

7.6 Descriptor Indexing
7.6.1 Using HNSW

In order to accelerate the descriptor matching process, a special index may be created for a descriptor
batch. With the index, matching becomes a two-stage process:

« First, you need to build indexed data structure - index - using lIndexBuilder. This is quite slow
process so it is not supposed to be done frequently. You build it by appending IDescriptor objects
or IDescriptorBatch objects and finally using build method - lindexBuilder::buildindex;

+ Once you have index, you can use it to search nearest neighbors for passed descriptor very fast.

There are two types of indexes: IDenselndex and IDynamicindex. The interface difference is very simple:
dense index is read only and dynamic index is editable: you can append or remove descriptors.

You can only build a dynamic index. So how can you get a dense index? The answer is through
deserialization. Imagine you have several processes that might need to search in index. One option is
for every one of them to build index separately, but as mentioned before building of index is very slow
and you probably don’t want to do it more than needed. So the second option is to build it once and
serialize it to file. This is where the dense and dynamic difference arises: formats used to store these two
types of index are different. From the user’s point of view, the difference is that dense index loads faster,
butitis read only. Once loaded, there are no performance difference in terms of searching on these two
types of indexes.

To serialize index use IDynamiclndex::saveToDenselndex or [IDynamiclndex::saveToDynamicindex
methods. To deserialized use IFaceEngine::loadDenselndex or IFaceEngine::loadDynamicindex.

Note: Index files are not cross-platform. If you serialize index on some platform, it’s only usable on that
exact platform. Not only the operating system breaks compatibility, but also different architecture of CPU
might break it.

Note: HNSW index isn’t supported on embedded and 32-bit desktop platforms.

VisionLabs B.V. 68/ T1

8 System Requirements

8.0.1 Android installations

FaceEngine requires:
« Android version 4.4.4 or newer.
For development:

« Android SDK 21;
+ Android NDK 21 {Pkg.Revision = 21.0.6113669}.

Note: Android development dependencies listed above can be downloaded directly from SDK manager
in Android Studio IDE or via SDK manager command line tool. For more information, please visit https:
//developer.android.com/studio/command-line/sdkmanager.

8.1 Hardware requirements
8.1.1 Embedded installations

8.1.1.1 CPU requirements
Supported CPU architectures:

* ARMVT-A;
« ARMvS8-A (ARM64).

8.2 Android for embedded

One more step to online activation process, in addition to information about LUNA SDK licensing,
described in VisionLabs LUNA SDK Licensing, paragraph License activation.

Besides the common steps for online-activation, described in document VisionLabs LUNA SDK
Licensing, for Android for embedded systems, execute a native licensed binary for Android for
embedded with root permissions at least once.

VisionLabs B.V. 69 /71

https://developer.android.com/studio/command-line/sdkmanager
https://developer.android.com/studio/command-line/sdkmanager

9 Appendix B. Glossary

9.1 Descriptor

A set of features meant to describe a real-world object (e.g., a person’s face). Computed by means of
computer vision algorithms, such features are typically matched to each other to determine the similarity
of represented objects.

9.2 Cooperative Photoshooting and Recognition

A procedure of taking person face photograph characterized by person awareness of the matter and
his/her will to assist.

Typical highlights:

« Close to frontal head pose;

Neutral facial expression;

No occlusions (i.e., hair, hats, non-transparent eyewear, hands, other objects obscuring the face);

No extreme lighting conditions (i.e., reasonable illuminance, no direct sunlight);
Steady and well-tuned optics (i.e., no motion blur, depth of field, digital post-processing except

noise cancellation).

Cooperative photoshooting is opposite to the so-called “in the wild” photoshooting, which is also called
non-cooperative shooting (or recognition).

9.3 Matching

The process of descriptors comparison. Matching is usually implemented as a distance function applied
to the feature sets and distances comparison later on. The smaller the distance, the closer are descriptors,
hence, the more similar are the objects.

For convenience, helper functions exist to convert distance to a normalized similarity score, where 100%
means completely identical, and 0% means completely different.

VisionLabs B.V. 70/ 71

10 Appendix C. FAQ

Q: This document contains high-level descriptions and no code examples nor reference. Where can
one find them?

A: The complete type and function reference are provided as an interactive web-based documentation;
see the doc/fsdk/index.html inside the LUNA SDK package. The examples are located in the /examples
folder and “ExamplesGuide.pdf” is located in /doc folder of LUNA SDK package.

Q: Does FaceEngine support multicore / multiprocessor systems?

A: Yes, all internal algorithm implementations are multithreaded by design and take advantage of multi-
core systems. The number of threads may be controlled via the configuration file; see configuration
manual “ConfigurationGuide.pdf” or comments in the configuration file for details.

Q: What is the state of GPU support?

A: As of version 2.7 the GPU support is implemented for face detection and descriptor extraction
algorithms. Starting from version 2.9 GPU implementations are considered stable.

Q: What speedup may be expected from GPUs?

A: Typically GPUs allow accelerating algorithms by the factor of 2-4 times depending on microprocessor
architecture and input data.

Q: Are there any official bindings/wrappers for other languages (C#, Java)?

A: No, such bindings are not provided. FaceEngine officially implements C++ API only, bindings to other
languages should be created by users themselves. There are tools to automate this process, like, e.g.,
SWIG.

Q: Does FaceEngine support DBMS systems?

A: No, FaceEngine implements just computer vision algorithms. Users should implement DBMS
communication themselves using serialization methods described in section “Serializable object
interface” of chapter “Core concepts” and section “Archive interface” of chapter “Core facility”.

Q: What image formats does FaceEngine support?

A: FaceEngine does not implement image format encoding functions. If such functions are required, one
should use a third-party library, e.g., Freelmage.

FaceEngine functions typically expect image data in the form of uncompressed unencoded pixel data
(RGB color 24 bits per pixel or grayscale 8 bits per pixel).

FaceEngine implements convenience functions like RGB -> grayscale and RGB<-> BGR color conversions.
The rationale of this design is explained in section “Image type” of chapter “Core concepts”.

VisionLabs B.V. 7/

	Introduction
	Editions and Platforms
	Core Concepts
	Common Interfaces and Types
	Reference Counted Interface
	Automatic reference counting
	Serializable object interface
	Auxiliary types
	Image type

	Beta Mode

	FaceEngine Structure Overview
	Core Facility
	Common Interfaces
	Face Engine Object
	Settings Provider

	Helper interfaces
	Archive interface

	Recognition mode
	Data Paths
	Model Data
	Configuration Data

	Detection facility
	Overview
	Detection structure
	Face Detection
	Image coordinate system
	Face detection
	Redetect method
	Detector variants
	FaceDetV1 and FaceDetV2 Configuration
	FaceDetV3 Configurating
	Face Alignment
	Five landmarks
	Sixty-eight landmarks

	Human Detection
	Image coordinate system
	Human body detection
	Constraints
	Camera position requirements
	Human body redetection
	Human Keypoints
	Detection
	Main Results of Each Detection

	Parameter Estimation Facility
	Overview
	Face Attribute Estimation
	Color/Monochrome Estimation
	Image quality estimation
	Eyes Estimation
	Head pose estimation
	Gaze Estimation
	Smile Estimation
	Mouth Estimation
	Emotions Estimation
	Approximate Garbage Score Estimation (AGS)
	Glasses Estimation
	Overlap Estimation
	Child Estimation
	BestShotQuality Estimation
	HeadAndShouldersLiveness Estimation
	LivenessFlyingFaces Estimation
	LivenessRGBM Estimation
	Medical Mask Estimation and Medical Mask Estimation Extended
	MedicalMaskEstimator thresholds
	MedicalMask enumeration
	MedicalMaskEstimation structure
	MedicalMaskExtended enumeration
	MedicalMaskEstimationExtended structure

	Credibility Check Estimation
	LivenessIREstimation Estimation
	Facial Hair Estimation
	FacialHair enumeration
	FacialHairEstimation structure
	Beard enumeration
	BeardEstimation structure
	Mustache enumeration
	MustacheEstimation structure

	Headwear Estimation
	HeadWearState enumeration
	HeadWearType enumeration
	HeadWearStateEstimation structure
	HeadWearTypeEstimation structure
	HeadWearEstimation structure

	Image Warping
	Descriptor Processing Facility
	Overview
	Person Identification Task
	Person Reidentification Task

	Descriptor
	Descriptor Versions
	Face descriptor
	Human descriptor

	Descriptor Batch
	Descriptor Extraction
	Descriptor Matching
	Descriptor Indexing
	Using HNSW

	System Requirements
	Android installations
	Hardware requirements
	Embedded installations
	CPU requirements

	Android for embedded

	Appendix B. Glossary
	Descriptor
	Cooperative Photoshooting and Recognition
	Matching

	Appendix C. FAQ

