VisionLabs

MACHINES CAN SEE

VisionLabs LivenessEngine Handbook

VisionLabs B.V. © +3120369 0493

Keizersgracht 311, 1016 EE, Amsterdam, the Netherlands 1 info@visionlabs.ai

&) www.visionlabs.ai

Contents

Introduction 3
Glossary 4
1 LivenessEngine structure overview 5
2 Core facility 6
2.1 LivenessEngineobject L. e 6
210 Datapaths e e 6

21.2 Configurationfile. 6

3 Liveness facility 7
30 OVeIVIEW . o ot o e e e e e e e e e e e e e e e e e 7
3.2 Livenessfacilityarchitecture 7
3.3 Coordinatesystem e e e e e e 7
3.4 LIiVEeNesStypes i e e e e e e e e e e e e e e 8
3.41 Simpleliveness. e e e e e 8

3.4.1.1 Basicliveness e 8

3412 Angleliveness L e 9

3.41.3 Mouthliveness e 10

3404 Eyesliveness e e e e 1

3415 Eyebrowsliveness. e 1

3.41.6 Flowliveness e n

3417 Smileliveness e 12

3.41.8 Infraredliveness. 12

3.41.9 Unifiedliveness 12

3.42 Complexliveness. e e 13

3421 Depthliveness. e 13

4 How touse 14
5 System requirements 16
6 Appendix A. Configuration file description 17
7 Appendix B. FAQ 21
8 Appendix C. LivenessEngine and models 22
9 Appendix D. Changelog 23

VisionLabs B.V.

2/23

Introduction

LivenessEngine is a wrapper library with added functionality, which utilizes FaceEngine building blocks
to produce different solutions for liveness detection problem. This short guide describes product’s core
concepts, represents main LivenessEngine features and suggests usage scenarios.

It is strongly recommended to familiarize with FaceEngine Handbook (FaceEngine_Handbook.pdf in
the delivery package) before reading this guide since FaceEngine core concepts are widely used all over
this handbook without additional explanation.

Note! This document is not a full-featured API reference manual nor a step by step tutorial. For reference
pages, see Doxygen APl documentation that is delivered with LivenessEngine (/doc/lsdk folder of the
package).

VisionLabs B.V. 3/23

Glossary

Term Definition
Liveness Face features that allow distinguishing a living person from a photo/prearranged
video.

VisionLabs B.V. 4/23

1 LivenessEngine structure overview

LivenessEngine is subdivided into two facilities:

+ Core facility. This facility is responsible for normal functioning of all other facilities. The
core facility provides settings accessors and common interfaces. It also contains the main
LivenessEngine root object that is used to create instances of all liveness test scenarios.

« Liveness detection facility. Thisfacility is dedicated to liveness determination which is performed
by different algorithms.

Both facilities are a set of classes dedicated to some common for them (yet specific) problem domain.
Core facility is used for liveness detection facilities configuration and production.

VisionLabs B.V. 5/23

2 Core facility

2.1 LivenessEngine object

The LivenessEngine object is a root object of the entire LivenessEngine. Everything begins with
it, so it is essential to create at least one instance of it. Although it is possible to have multiple
instances of the LivenessEngine, it is impractical to do so. Call createlLivenessEngine() function to
create a LivenessEngine instance . Also, you may specify default dataPath in createLivenessEngine()
parameters.

The LivenessEngine requires Face Engine instance as well for internal sub-module initialization. If no
Face Engine is provided, a new one is created implicitly.

2.1.1 Data paths

Various LivenessEngine modules may require data files to operate. These files contain various constants
used at runtime. The data directory location is assumed to reside in:

+ Jopt/visionlabs/data for the Linux CentOS delivery package;
+ ./data for the Windows delivery package.

One may override the data directory location using setDataDirectory() method which is available in
ILivenessEngine. Current data location may be retrieved via getDataDirectory() method

2.1.2 Configuration file

For proper functioning LivenessEngine requires the configuration file. Thefileis called livenessengine.conf
and stored in dataPath directory by default.

It contains configuration parameters which are required for every liveness scenario included in the library
(face tracking configuration, each test scenario duration, various thresholds and so forth). More details
on configuration file contents are in Appendix A.

At runtime, the configuration file data is managed by a special object that implements ISettingsProvider
interface. ~ The provider is instantiated using createSettingsProvider() function that accepts
configuration file location as a parameter or uses a default one if not explicitly defined.

One may supply a different configuration to any factory object using setSettingsProvider() method
which is available in each factory object interface, including ILivenessEngine. Currently, bound settings
provider can be retrieved via getSettingsProvider() method.

VisionLabs B.V. 6/23

3 Liveness facility

3.1 Overview

Liveness detection facility is responsible for the determination whether or not a living person is in the

image sequence. By image sequence here we mean a video stream from the camera or a local video file.

Liveness facility contains liveness detection algorithm structures implemented as state machines.
These machines change their state each time update() function is called. Combined with FaceEngine
descriptor processing facility it can be transformed into the powerful tool for user authentication.

Liveness detection structure can be created via

createliveness(), createUnifiedLiveness(), createComplexLiveness()

methods for simple, unified and complex liveness types respectively.

3.2 Liveness facility architecture

Liveness types are implemented according to the inheritance architecture.

Basic
| |
Mouth Angle Eyes
Pitch up Pitch Yaw left Yaw right Eyebrows

3.3 Coordinate system

Figure 1: Liveness architecture

LivenessEngine uses the three-dimensional coordinate system. The coordinate system’s center is

represented in the image below.

VisionLabs B.V.

7/23

Figure 2: Coordinate system’s midpoint

Actions required in liveness scenarios are performed regarding the accepted coordinate system
(for example, “left turn” equals to counterclockwise head spin around the vertical axis). Graphical
illustrations in the next chapters provide a visual representation of each scenario for better
understanding.

3.4 Livenesstypes

Implemented liveness classes are divided into Simple and Complex types.

3.4.1 Simple liveness

These liveness types require single video sequence for operation. Frames should be in R8G8B8 format.
Refer to FaceEngine Handbook for additional information about fsdk::image structure. All simple
liveness tests have common interface represented as ILiveness structure.

3.4.1.1 Basic liveness
Each liveness type is inherited from the basic liveness class which utilizes a generic execution cycle and
performs such common tasks as:

VisionLabs B.V. 8/23

basic initialization;

face detection;
additional data extraction / calculation;

face tracking analysis;
- using detection rectangles;
- using landmark points;

state change.

Each liveness test traces and analyzes primary for the test estimated attribute, and produces some result.
The result is positive if a user succeeds in the correct alteration of the attribute. Otherwise, the result is
negative.

3.4.1.2 Angle liveness
Angle liveness additionally performs head pose estimation. Refer to FaceEngine Handbook (chapter
“Parameter estimation facility” section “Head pose estimation”) for more information on angle

estimation.
Angle liveness types are the following:
1. Pitch angle

a. Nod scenario means smooth head tilt in a positive direction until the required threshold is
exceeded.

o

Figure 3: Head tilt in a positive direction

b. Head raise scenario requires smooth head tilt in a negative direction until the required threshold
is exceeded.

=

Figure 4: Head tilt in a negative direction

VisionLabs B.V. 9/23

1. Yaw angle

c. Leftturnscenariorequires smooth head rotationin a positive direction until the required threshold
is exceeded.

—

Figure 5: Smooth head rotation in a positive direction

d. Right turn scenario requires smooth head rotation in a negative direction until the required
threshold is exceeded.

=

Figure 6: Smooth head rotation in a negative direction

3.4.1.3 Mouth liveness
Mouth liveness performs mouth landmarks analysis. In this scenario distance between mouth landmarks
increases until the required threshold is exceeded (i.e. a user opens a mouth).

—)

Figure 7: Mouth liveness

Refer to FaceEngine Handbook for more information on face alignment.

VisionLabs B.V. 10/23

3.4.1.4 Eyes liveness
Eyes liveness performs eye state estimation and analysis. In this scenario a user should blink, i.e., both
eyes are opened, closed and opened again simultaneously.

—> —

Figure 8: Eyes liveness

Refer to FaceEngine Handbook (Chapter “Parameters estimation facility” section “Eyes estimation”) for
more information on eyes estimation.

3.4.1.5 Eyebrows liveness
Eyebrow liveness performs eyebrow landmarks analysis. This scenario requires increase of the distance
between eyebrows and eyes landmarks (i.e. eyebrow rising) until the required threshold is exceeded.

—

Figure 9: Eyebrow liveness

Refer to FaceEngine Handbook (chapter “Face detection facility” section “Face alignment”) for more
information on face alignment.

3.4.1.6 Flow liveness
Flow liveness performs optical flow analysis. This scenario requires a smooth increase of face detection
rectangle area to obtain a required number of frames to calculate the optical flow.

VisionLabs B.V. 1n/23

—

Figure 10: Flow liveness

This liveness type is designed for mobile phones, and the results may be erroneous on other
platforms. *

3.4.1.7 Smile liveness
Smile liveness performs face warp analysis. This scenario requires user to smile until the probability
calculated by neural network will be above threshold, specialized by configuration file.

3.4.1.8 Infrared liveness

Infrared liveness performs face warp analysis using image acquired from infrared camera. This scenario
requires user to normally appear in front of a camera until the probability calculated by neural network
will be above threshold, specialized by configuration file.

Most Infrared cameras provide 1-channel grayscale image, such image should be converted to 3-
channel grayscale image before passing into infrared liveness.

3.4.1.9 Unified liveness

Unified liveness combines previous types algorithms with the exception of flow and blink types, and apart
from tracking of main entity, which was specialized on creation stage, performs additional calculation
and analysis in order to detect fraud attempts.

Calculated and tracked entities:

+ angles;
« mouth landmarks distance;
« eyebrow landmarks distance;

eye states (blinks);
smile probability;

Rigidity of fraud tracking is set by configuration parameters.User can adjust fraud checking by enabling
or disabling additional verifications with consider method.

VisionLabs B.V. 12/23

The main action scenario is borrowed from simple liveness type at creation stage, however user should
not perform any actions except main one, because it will be considered as a fraud attempt.

3.4.2 Complex liveness

These liveness types require additional unordinary data for analysis. Such data cannot be obtained by
common rgb camera, so it requires the use of complementary devices for operating.

3.4.2.1 Depth liveness.

Currently depth liveness is the only complex type that is supported. It requires 16 bit depth matrix,
which contains information relating to the distance of the surfaces of scene objects from a viewpoint in
millimeters. For correct operation face should be placed on distance from 0.5 to 4.5 meters.

This liveness type does not require any actions because it performs depth map face region of interest
analysis using neural networks. For additional information refer to Doxygen APl documentation that is
delivered with LivenessEngine.

Rgb image and 16 bit depth map must be aligned.

VisionLabs B.V. 13/23

4 How to use

Each liveness test is implemented as state machine which modifies it state with each call of update()
method. Current state can be identified by error value returned after update call.

Soin common scenario user should submitimages for processing and analyze returned error. Error types:

ERR_OK - denotes that result is ready for acquisition. ERR_NOT_INITIALIZED - denotes that liveness test
is not initialized, it happens in critical cases when LivenessEngine or FaceEngine core objects were not
initialized. Make sure that data and configuration paths are correct and try to recreate core modules, or
call loadSettings() method.

ERR_NOT_READY - denotes that result is not ready and additional update calls are required.

ERR_PRECONDITION_FAILED - denotes that test has not yet begun and preconditions are not done
(Preconditions can vary depending on liveness type).

ERR_INTERNAL - denotes that internal error occurred, please dump input data and contact your SDK
advisor.

Right error sequence described below:

ERR_NOT_INITIALIZED -> ERR_PRECONDITION_FAILED -> ERR_NOT_READY -> ERR_NOT_READY ->... ->
ERR_NOT_READY -> ERR_OK

The following is the common usage of the liveness detector types:

1) Initialize video capture.

2) Create FaceEngine and LivenessEngine structures:
IFaceEnginePtr faceEngine = acquire(createFaceEngine(...));
ILivenessEnginePtr livenessEngine = acquire(
createLivenessEngine(faceEngine, ...));

3) Create required liveness test type:
auto liveness = acquire(livenessEngine->createLiveness(
LivenessAlgoritmType::LA_INFRARED));

4) In cycle acquire image from video stream, preprocess it if
necessary.

5) Submit photos and check result status:
ResultValue<LSDKError, bool> result = liveness->update(img);
In case of complex liveness:

ResultValue<LSDKError,bool>result =

VisionLabs B.V. 14 /23

depthLiveness->update(color,depth);

6) If resultis not erroneous retrieve result:
if (result.getResult() == LSDKError::ERR_OK)
liveness = result.getValue();

For more detailed information about liveness usage please refer to example_liveness and example_depth
located at “/examples” folder of the LivenessEngine package.

VisionLabs B.V. 15/23

5 System requirements

LivenessEngine requires FaceEngine version 3.0.1+ for proper operation.

Other system requirements (supported OS, compilers and so forth) are similar to FaceEngine (see chapter
9 for additional information).

VisionLabs B.V. 16 /23

6 Appendix A. Configuration file description

The configuration file has a module-based structure. Each liveness algorithm has:

« basic parameters which are extracted from Liveness::Basic section;

+ a set of unique
section.

Parameter name

maxRuntime

successLength

Parameter name

trackAreaThreshold

parameters which are extracted from corresponding Liveness::<LivenessType>

Table 2: Common parameters.

Description Default value

Parameter is responsible for the liveness scenario’s length 140
(in frames). If liveness is not verified during amount of

frames less or equal to maxRuntime value, liveness

scenario is failed.

Parameter is responsible for the required length of 5
successful actions in the liveness test (in frames). For

example, angle liveness test is passed if amount of frames

with angle higher than angleThreshold exceeds the
successLength.

Table 3: Parameters for tracking analysis.

Description Default value

Sets face detection area alteration threshold. If the 1
difference between detection areas on the previous and

the current frame is higher than the frame area multiplied

by threshold, track loss is detected.

trackCenterThreshold Sets face detection rectangle center alteration threshold. 1

allowedTrackLoss

VisionLabs B.V.

If the difference between rectangle centers on the
previous and the current frame is higher than the frame
width multiplied by threshold, track loss is detected.

Sets the number of frames in a row that can have no track 20
on them. If amount of frames exceeds the threshold, a
liveness scenario is failed.

17/23

Parameter name

verticalPadding

horizontalPadding

allowMultipleFaces

landmarkThreshold

redetectTolerance

Parameter

name Description

angleThreshold Sets the threshold of the corresponding angle

Description

Sets vertical padding for allowed area on image. As
starting condition face should be placed in formed frame.
Result frame height = input image height -
2verticalPaddinginput image height.

Sets horizontal padding for allowed area on image. As
starting condition face should be placed in formed frame.
Result frame width = input image width-
2horizontalPaddinginput image width.

Allows or forbids multiple faces on image, liveness test
will fail, when more than one face will be detected, if this
value is set to 0.

Sets face landmarks alteration threshold. If the difference
between mean landmarks alteration on the previous and
the current frame is higher than the threshold, track loss
is detected. If threshold is set to 0.0 landmark tracking is
disabled.

Sets the tolerance which is used in redetection. Refer to
FaceEngine Handbook (chapter “Face detection facility”
section “Face detection”) for more information.

Default value

0.01

0.01

0.0

20

Table 4: Angle liveness parameters.

which should be surpassed.

angleRange Sets the initial range of all angles required to start 10.0

the test. For example, if roll is +5, pitch is +8 and
yaw is -7, and angleRange is 10 the test can be

started.

VisionLabs B.V.

Default value

depends on the liveness type

18 /23

Parameter

name Description

heldAngleRange Sets the range of not tracked angles, which should

be maintained during the test. For example, if test

requires pitch angle to be above 20,

ncreasing/decreasing yaw above/less

+-heldAngleRange will result test failure . Used in

unified liveness.

Parameter
name

successThreshol

startThreshold

fraudThreshold

Parameter name

15.0

Default value

Table 5: Eyebrow, Mouth, and Eye liveness parameters.

Description

Sets the final threshold of the measured value in
corresponding tests. Similar to angleThreshold in
angle liveness.

Sets threshold which is used as starting condition for
tracked attribute. In case of eyebrow liveness
startThreshold is initialized with value calculated on
first frame.

Sets the threshold which is used to track fraud
attempts. For example, if test requires pitch angle
increase, and calculated mouth distance > mouth
fraudThreshold then fraud attempt is detected and
test results failure. Used in unified liveness.

Description

Default value

depends on the liveness
type

depends on the liveness
type

depends on the liveness
type

Table 6: Flow parameters.

Default value

smallFaceThreshol Image sequence starts with the face detection rectangle 0.45
width lower than (smallFaceThreshold * frame width).

bigFaceThreshold

VisionLabs B.V.

Required for flow liveness as a starting condition.

Image sequence finishes with the face detection rectangle 0.7
width higher than (bigFaceThreshold * frame width).

Required for flow liveness as a finish condition.

19/23

Parameter name Description Default value

sequenceThresholc Sets required number of images in sequence. Sequence 10
length increase results increase of accuracy and processing

time.

VisionLabs B.V. 20/23

7 Appendix B. FAQ

1. Q: This document contains high-level descriptions and no code examples nor reference. Where can
one find them?

A: The complete type and function reference are provided as an interactive web-based documentation;
see the doc/Isdk/index.html inside the LUNA SDK package. The examples are located in the /examples
folder of the package.

VisionLabs B.V. 21/23

8 Appendix C. LivenessEngine and models

You can find all required information in the “LivenessEngine_and_models.htm” table.

VisionLabs B.V. 22/23

9 Appendix D. Changelog

Date Version Notes

31.10.17 1 Initial release.

14117 2 Added FAQ section.

13.12.17 3 Added complex liveness information.

201217 4 Added unified liveness information, fixed configuration parameters
description.

19.02.18 4.1 Additional information about types, added usage scenario, more links to

doxygen and examples.

02.03.18 AppendixC LivenessEngine and models

VisionLabs B.V. 23/23

	Introduction
	Glossary
	LivenessEngine structure overview
	Core facility
	LivenessEngine object
	Data paths
	Configuration file

	Liveness facility
	Overview
	Liveness facility architecture
	Coordinate system
	Liveness types
	Simple liveness
	Basic liveness
	Angle liveness
	Mouth liveness
	Eyes liveness
	Eyebrows liveness
	Flow liveness
	Smile liveness
	Infrared liveness
	Unified liveness

	Complex liveness
	Depth liveness.

	How to use
	System requirements
	Appendix A. Configuration file description
	Appendix B. FAQ
	Appendix C. LivenessEngine and models
	Appendix D. Changelog

