
VisionLabs BestShotMobile Handbook

VisionLabs B.V.

Keizersgracht 311, 1016 EE, Amsterdam, the Netherlands

+31 20 369 04 93

info@visionlabs.ai

www.visionlabs.ai

Contents

Introduction 3

Glossary 4

1 BestShotMobile structure overview 5

2 BestShotMobile object 6
2.1 Configuration file . 6
2.2 Liveness algorithm types . 6
2.3 Pushing data . 7
2.4 Receiving results . 7

3 IBestShotMobileObserver interface 8
3.1 BestShot callback . 8
3.2 Liveness callback . 9
3.3 TrackEnd callback . 10
3.4 Settings the callbacks . 10

4 How to use 11

5 Configuration file description 15

VisionLabs B.V. 2 / 16

Introduction

BestShotMobile is a wrapper library with extended functionality, which utilizes FaceEngine and
TrackEngine building blocks to produce different solutions for the next tasks:

1. Make a bestshot from the video stream.
2. Make a liveness check for this bestshot.

This short guide describes the product core concepts, represents the main BestShotMobile features and
suggests usage scenarios.

It is strongly recommended to familiarize with FaceEngine Handbook (FaceEngine_Handbook.pdf in
the delivery package) before reading this guide since FaceEngine core concepts are widely used all over
this handbook without additional explanation.

VisionLabs B.V. 3 / 16

Glossary

Term Definition

Liveness Face features that allow distinguishing a living person from a photo/prearranged
video.

Best shot The best detection from the video stream or several photos for the recognition
algorithms

VisionLabs B.V. 4 / 16

1 BestShotMobile structure overview

BestShotMobile library contains several main parts:

• Themain BestShotMobile object. This object should be created for library use with the required
liveness algorithm type. All liveness algorithms will be discussed later.

• The user-defined BestShotMobileObserver. BestShotMobile library works based on the
asynchronous interface with returning results through serveral callbacks. To receive those
callbacks the user should implement the IBestShotMobileObserver in the user application.

VisionLabs B.V. 5 / 16

2 BestShotMobile object

TheBestShotMobile object is a root object of the entire BestShotMobile library. All functionality is based
on this object.

Thisobject shouldbecreatedbeforebeginningof thevideostreamprocessing. Call createBestShotMobile()
function to create a BestShotMobile instance.

As a wrapper library, the BestShotMobile library requires the FaceEngine instance and the TrackEngine
instance. Both pointers are expected as parameters of the createBestShotMobile() function.

2.1 Configuration file

For proper functioning BestShotMobile library requires the configuration file. The file is called
“bestshotmobile.conf” and stored in dataPath directory by default. See the “FaceEngine_Handbook”
for explanation of the “data” directory and its meaning.

At runtime, the configuration file data ismanaged by a special object that implements ISettingsProvider
interface. The provider is instantiated using createSettingsProvider() function that accepts
configuration file location as a parameter or uses a default one if not explicitly defined. For detail
of the ISettingsProvider usage see the “FaceEngine_Handbook”.

2.2 Liveness algorithm types

There are several supported liveness algorithm types:

• LivenessType::None - no any liveness checks. Use this liveness type if the liveness check is not
required. As a result, BestShotMobile will prepare the best shot, but this best shot will not be
checked for liveness.

• LivenessType::Offline - offline on device check. This algorithm does not required a network
connection. All checks are processed on the device.

This type of liveness check is supported only in the Complete SDK version.

• LivenessType::Online - online liveness check on the backend server. It is the recommended to use
liveness algorithm type. It is required to fill two fields in configuration file for correct algorithm
work

<param name="URL" type="Value::String" text="" />
<param name="Luna-Account-Id" type="Value::String" text="" />

VisionLabs B.V. 6 / 16

2.3 Pushing data

To catch the best shot from the video stream user should split the video stream to the frames and then
push it one by one to the BestShotMobile object through the IBestShotMobile::pushFramemethod.

Frames are handled in the separated thread by asyncronious scenario in the BestShotMobile library.

2.4 Receiving results

User shouldusecallbacks to receive results fromtheBestShotMobile library . See the“IBestShotMobileObserver
interface” chapter for details.

VisionLabs B.V. 7 / 16

3 IBestShotMobileObserver interface

Aswas explained in the “BestShotMobile object” chapter all frames are handled into the BestShotMobile
library with an asynchronous scheme.

To receive resultsof theprocessinguseshoulddefine thecallbacksby implementing the IBestShotMobileObserver
interface. This interface has several virtual methods that should be overridden.

3.1 BestShot callback

All frames from the pushFramemethod are handled with the next steps:

1. Face detection to find any face on the frame
2. Checking head pose with HeadPoseEstimator. See “FaceEngine_Handbook” for details.
3. Checking the quality of the frame with AGSEstimator. See “FaceEngine_Handbook” for details.

User codewill receive the bestShot callbackwith aBestShotInfo structure for every framewith detected
face. The BestShotInfo structure contains next fields:

struct BestShotInfo {
//! State of this frame
BestShotState state;

//! Source image
fsdk::Image image;
//! Detection with face
fsdk::Detection detection;
//! Face landmarks
fsdk::Landmarks5 landmarks;

//! Estimation of the head position.
//! This parameter could help to show notification to the user in

case of bad angles.
fsdk::HeadPoseEstimation headPoseEstimation;
//! AGS estimation result.
//! This parameter could help to show notification to the user in

case of bad quality.
float agsEstimation;

//! Index of the frame
tsdk::FrameId frameIndex;
//! Index of the track
tsdk::TrackId trackId;

};

VisionLabs B.V. 8 / 16

If all checks are successfully processed and the results are good enough (head angles are less
than thresholds, quality of the frame is good) the current frame is estimated as the best shot. The
BestShotInfo::state field will be set to BestShotState::Ok in this case.

If some parametes of the frame are not good or some error happened durint the processing the
BestShotInfo::state will be set to one of the next values: BestShotState::BadQuality - in case of bad
frame quality, BestShotState::BadHeadPose - in case of bad head angles, BestShotState::Error - in
case of some error during processing.

It can be a good solution to show some notification to the user about BestShotState::BadQuality
and BestShotState::BadHeadPose statuses of the bestshot.

If the best shotwithout liveness check is not required for any business logic and notification to the user is
not required this user-defined callback could be just empty. In case of someadditional logic (for example,
some user interaction) this callback could be useful.

3.2 Liveness callback

All the frames that were estimated as the best shot will be checked for the liveness state at the next
step. The result of this check will be sent through the separated liveness callback with the BestShotInfo
structure and the LivenessState enum.

The BestShotInfo structure was described in the previous section.

The LivenessState enum can contain the next states:

enum class LivenessState {
Alive, //!< Face was estimated as alive.
Fake, //!< Face was estimated as not alive.
None, //!< No liveness check at all.
NotReady, //!< Liveness check not ready for now.

Need more frames to handle.
BadHeadPose, //!< Head angles bigger than thresholds.
BadQuality, //!< Image quality is less than threshold.
FaceNotFound, //!< Face was not found.
FaceTooClose, //!< Face is too close to the camera.
FaceCloseToBorder, //!< Face is too close to the frame border

.
FaceTooSmall, //!< Face is too small.
TooManyFaces, //!< There is more than one face in the

frame.
Timeout, //!< Liveness timeout.
CriticalError //!< Critical during liveness processing.

};

VisionLabs B.V. 9 / 16

Note It can be a good solution to show some notification to the user about LivenessState::BadQuality,
LivenessState::BadHeadPose, LivenessState::FaceTooClose, LivenessState::FaceTooSmall and
LivenessState::TooManyFaces statuses of the liveness.

3.3 TrackEnd callback

The BestShotMobile library has a face tracking functionality. When the current face track has ended no
morebest shots shouldbeexpected from it. Tohandle this situationuser-defined trackEnd calbackcould
be used.

If such situation should not be handled by the business logic this callback could be just empty.

3.4 Settings the callbacks

Touseall callbacksuser should implement the IBestShotMobileObserver interface. Then theuser should
create this implementation class and pass the pointer to this class to the setBestShotMobileObserver
method.

VisionLabs B.V. 10 / 16

4 How to use

Follow the next steps to use the BestShotMobile library :

1. Implement the IBestShotMobileObserver interface. All virtual methods should be implemented.

2. Create FaceEngine and TrackEngine instances. See the “FaceEngine_Handbook” and the
“TrackEngine_Handbook” for details.

3. Create BestShotMobile instance.

4. Create an instance of the callbacks implementation class.

5. Pass a pointer to the callbacks implementation class to the setBestShotMobileObserver method
of the BestShotMobile instance.

6. Push all needed frames to the pushFramemethod of the BestShotMobile instance.

7. Receive and handle all needed callbacks.

8. Wait until the end of processing by calling the blocking method join of the BestShotMobile
instance.

See the next code example:

#include <IBestShotMobile.h>

#include <iostream>

struct BestShotMobileObserver : mobile::IBestShotMobileObserver {

void bestShot(const mobile::BestShotInfo& bestShotInfo) override {
std::cout << "This is just an example of the bestShot callback

implementation!" << std::endl;
}

void liveness(const mobile::LivenessState livenessSate,
const mobile::BestShotInfo& bestShotInfo) override {
std::cout << "This is just an example of the liveness callback

implementation!" << std::endl;
}

void trackEnd(const tsdk::TrackId& trackId) override {
std::cout << "This is just an example of the trackEnd callback

implementation!" << std::endl;
}

};

VisionLabs B.V. 11 / 16

fsdk::Image takeNextFrame() {
// some implementation of the frame capturing here
return fsdk::Image{};

}

int main() {
// Create the FaceEngine instance based on the configuration file
// (./data/faceengine.conf by default)
auto resFaceEngine = fsdk::createFaceEngineMobile("./data/faceengine.

conf");
if (!resFaceEgnine) {

...
}
fsdk::Ref<fsdk::FaceEngineType> faceEngine = resFaceEgnine.getValue();
if (!faceEngine) return -1;

// Take license object
fsdk::ILicense* license = faceEngine->getLicense();
if (!license) return -1;
// Make activation with license configuration file (./data/license.conf

by default)
if (!fsdk::activateLicense(license, "./data/license.conf"))

return -1;

// Create the TrackEngine settings instance and read parameters
// from the config (./data/trackengine.conf by default)
auto resTrackEngineSettings = fsdk::createSettingsProvider("./data/

trackengine.conf");
if (!resTrackEngineSettings)

return -1;
fsdk::Ref<fsdk::ISettingsProvider> trackEngineSettings =

resTrackEngineSettings.getValue();

// Create the TrackEngine instance.
fsdk::Ref<tsdk::ITrackEngine> trackEngine =

fsdk::acquire(
tsdk::createTrackEngine(

faceEngine,
trackEngineSettings

)
);

if (!trackEngine) return -1;

// Create the BestShotMobile settings instance and read parameters
// from the config (./data/bestshotmobile.conf by default)

VisionLabs B.V. 12 / 16

auto resBestShotMobileSettings = fsdk::createSettingsProvider("./data/
bestshotmobile.conf");

if (!resBestShotMobileSettings)
return -1;

bestShotMobileSettings = bestShotMobileSettings.getValue();
// Check the liveness type. Online in this example.
bestShotMobileSettings->setValue(

"BestShotMobile::Settings",
"LivenessType",
1

);
// Online liveness use a backend server.
// So, need to set the URL to the Liveness API
bestShotMobileSettings->setValue(

"LivenessOnline::Settings",
"URL",
"http://example.com:12345/5/liveness"

);
// And need to set the Account-Id
bestShotMobileSettings->setValue(

"LivenessOnline::Settings",
"Luna-Account-Id",
"aaaaaaaa-bbbb-cccc-dddd-eeeeeeeeeeee"

);
// Create the BestShotMobile instance
std::unique_ptr<mobile::IBestShotMobile> bsmobile {

mobile::createBestShotMobile(
faceEngine,
trackEngine,
bestShotMobileSettings

)
};
if (!bsmobile) return -1;

// Create the user defined BestShotMobileObserver class instance.
BestShotMobileObserver bestShotMobileObserver;
// Set this instance as an observer into the BestShotMobile instance.
bsmobile->setBestShotMobileObserver(&bestShotMobileObserver);

// Just for example
size_t maxFramesCount = 100;
for (size_t frameIndex = 0; frameIndex < maxFramesCount; /*empty*/) {

fsdk::Image nextFrame = takeNextFrame();

// Is the internal queue of the BestShotMobile has a free place, the

VisionLabs B.V. 13 / 16

frame
// will be taken into the processing and the ```pushFrame``` will

return true.
if (bsmobile->pushFrame(nextFrame, frameIndex))

++frameIndex;
}

// Wait all processing finish.
bsmobile->join();

return 0;
}

VisionLabs B.V. 14 / 16

5 Configuration file description

The configuration file has a module-based structure. Each liveness algorithm has its own parameters.

There is also a common section with the BestShotMobile parametes.

Table 2: BestShotMobile parameters

Parameter Description Type Default value

LivenessType Default liveness algorithm "Value::Int1" 0

Table 3: Liveness None parameters

Parameter Description Type Default value

AGSThreshold Threshold for the quality (AGS) check "Value::Float1" 0.5

HeadPoseThresholdThresholds for the head pose check.
Pitch, yaw, roll angles.

"Value::Float3" x="20.0"y="
20.0"z="
30.0"

Table 4: Liveness Online parameters

Parameter Description Type Default value

AGSThreshold Threshold for the quality (AGS) check "Value::Float1" 0.5

HeadPoseThresholdThresholds for the head pose check.
Pitch, yaw, roll angles.

"Value::Float3" x="20.0"y="
20.0"z="
30.0"

MinFaceSIze Minimum face size to check "Value:Int1" 220

MinFrameSize Minimum frame size to check "Value:Int1" 480

URL Backend API URL "Value::String" "" (empty)

Luna-Account-Id Account-id to work with backend API "Value::String" "" (empty)

VisionLabs B.V. 15 / 16

Table 5: Liveness Offline parameters

Parameter Description Type Default value

AGSThreshold Threshold for the quality (AGS) check "Value::Float1" 0.5

HeadPoseThresholdThresholds for the head pose check.
Pitch, yaw, roll angles.

"Value::Float3" x="20.0"y="
20.0"z="
30.0"

MinCheckCount Minimum best shots count to check "Value::Int1" 3

VisionLabs B.V. 16 / 16

	Introduction
	Glossary
	BestShotMobile structure overview
	BestShotMobile object
	Configuration file
	Liveness algorithm types
	Pushing data
	Receiving results

	IBestShotMobileObserver interface
	BestShot callback
	Liveness callback
	TrackEnd callback
	Settings the callbacks

	How to use
	Configuration file description

