
VisionLabs FaceEngine Handbook

VisionLabs B.V.

Keizersgracht 311, 1016 EE, Amsterdam, the Netherlands

+31 20 369 04 93

info@visionlabs.ai

www.visionlabs.ai

Contents

Introduction 7

1 Core Concepts 8
1.1 Common Interfaces and Types . 8

1.1.1 Reference Counted Interface . 8
1.1.2 Automatic reference counting . 8

1.1.2.1 Referencing - without acquiring ownership of object lifetime 8
1.1.2.2 Acquiring - own object lifetime . 9

1.1.3 Serializable object interface . 10
1.1.4 Auxiliary types . 10

1.1.4.1 Image type . 10
1.2 Beta Mode . 11

2 FaceEngine Structure Overview 12

3 Core Facility 13
3.1 Common Interfaces . 13

3.1.1 Face Engine Object . 13
3.1.2 Settings Provider . 13

3.2 Helper Interfaces . 13
3.2.1 Archive Interface . 13

3.3 Sensor type . 14
3.4 Data Paths . 14

3.4.1 Model Data . 14
3.4.2 Configuration Data . 14

4 Detection facility 16
4.1 Overview . 16
4.2 Detection structure . 16
4.3 Face Detection . 16

4.3.1 Image coordinate system . 16
4.3.2 Face detection . 17
4.3.3 Redetect method . 17
4.3.4 Orientation Estimation . 17
4.3.5 FaceDetV1 and FaceDetV2 Configuration . 19
4.3.6 FaceDetV3 Configurating . 19
4.3.7 Face Alignment . 20

4.3.7.1 Five landmarks . 20
4.3.7.2 Sixty-eight landmarks . 20

VisionLabs B.V. 2 / 136

4.4 Face Landmarks Detector . 22
4.5 Human Detection . 23

4.5.1 Image coordinate system . 23
4.5.2 Human body detection . 23
4.5.3 Constraints . 23
4.5.4 Camera position requirements . 24
4.5.5 Human body redetection . 26
4.5.6 Human Keypoints . 27
4.5.7 Detection . 28
4.5.8 Main Results of Each Detection . 28

4.6 HumanFace Detection. Face to body association . 28
4.6.1 HumanFace redetection . 29
4.6.2 Main results . 29
4.6.3 minFaceSize . 30

5 ImageWarping 31

6 Parameter Estimation Facility 32
6.1 Overview . 32
6.2 Use cases . 32

6.2.1 ISO estimation . 32
6.3 Best shot selection functionality . 34

6.3.1 BestShotQuality Estimation . 34
6.3.2 Image Quality Estimation . 37

6.4 Attributes estimation functionality . 43
6.4.1 Face Attribute Estimation . 43
6.4.2 Child Estimation . 46
6.4.3 Credibility Check Estimation . 48

6.5 Facial Hair Estimation . 51
6.6 Natural Light Estimation . 54
6.7 Fish Eye Estimation . 57
6.8 Eyebrows Estimation . 60
6.9 Portrait Style Estimation . 62
6.10 Headwear Estimation . 65
6.11 Background Estimation . 69
6.12 Grayscale, color or infrared Estimation . 72
6.13 Face features extraction functionality . 74

6.13.1 Eyes Estimation . 74
6.13.2 Red Eyes Estimation . 77
6.13.3 Gaze Estimation . 80

VisionLabs B.V. 3 / 136

6.13.4 Glasses Estimation . 82
6.13.5 Overlap Estimation . 84

6.14 Emotion estimation functionality . 86
6.14.1 Emotions Estimation . 86

6.15 Mouth Estimation Functionality . 88
6.16 Liveness check functionality . 91

6.16.1 HeadAndShouldersLiveness Estimation . 91
6.16.2 LivenessFlyingFaces Estimation . 93
6.16.3 LivenessRGBM Estimation . 95
6.16.4 Depth Liveness Estimation . 97
6.16.5 LivenessOneShotRGB Estimation . 99

6.16.5.1 Usage example . 101
6.17 Personal Protection Equipment Estimation . 103
6.18 Medical Mask Estimation Functionality . 105

6.18.1 MedicalMaskEstimator thresholds . 106
6.18.2 MedicalMask enumeration . 106
6.18.3 MedicalMaskEstimation structure . 107
6.18.4 MedicalMaskExtended enumeration . 108
6.18.5 MedicalMaskEstimationExtended structure . 108
6.18.6 Filtration parameters . 109

7 Descriptor Processing Facility 111
7.1 Overview . 111

7.1.1 Person Identification Task . 111
7.1.2 Person Reidentification Task . 111

7.2 Descriptor . 113
7.2.1 Descriptor Versions . 113

7.2.1.1 Face descriptor . 113
7.2.1.2 Human descriptor . 113

7.3 Descriptor Batch . 114
7.4 Descriptor Extraction . 115
7.5 Descriptor Matching . 116

8 System Requirements 117
8.1 Android installations . 117

9 Hardware requirements 117
9.1 Embedded installations . 117

9.1.1 CPU requirements . 117
9.2 Android for embedded . 117

VisionLabs B.V. 4 / 136

10 Migration guide 118
10.1 Overview . 118
10.2 v.5.6.0 . 118

10.2.1 Vector2 . 118
10.2.2 BlackWhiteEstimator . 118

10.3 v.5.5.0 . 119
10.3.0.1 Examples of code . 119

10.4 v.5.2.0 . 120
10.5 v.5.1.0 . 120
10.6 v.5.0.0 . 120

10.6.1 Objects creation . 120
10.6.1.1 Examples of code . 120

10.6.2 Interface of ILicense . 121
10.6.2.1 Examples of code . 121

10.6.3 Interface of HumanLandmark . 123
10.6.4 Interface of IDescriptorBatch . 123
10.6.5 Interface of Detection . 123
10.6.6 Interface of IDetector . 124
10.6.7 IFaceDetectionBatch . 125
10.6.8 Interface of IHumanDetector . 126
10.6.9 IHumanDetectionBatch . 127
10.6.10 Interface of ILivenessFlyingFaces . 127

10.7 v.3.10.1 . 128
10.7.1 Detector FaceDetV3 changes . 128
10.7.2 Detector FaceDetV1, FaceDetV2 changes . 129

11 Best practices 130
11.1 Overview . 130

11.1.1 Multithread scenario . 130
11.1.2 Thread pools . 130
11.1.3 Estimators. Creation and Inference . 130
11.1.4 Forking process . 130

12 Device-specific constraints 132
12.1 Image constraints . 132

13 Appendix A. Specifications 133
13.1 Classification performance . 133
13.2 Descriptor size . 133

VisionLabs B.V. 5 / 136

14 Appendix B. Glossary 135
14.1 Descriptor . 135
14.2 Cooperative Photoshooting and Recognition . 135
14.3 Matching . 135

15 Appendix C. FAQ 136

VisionLabs B.V. 6 / 136

Introduction

This short guide describes core concepts of the product, shows main FaceEngine features and suggests
usage scenarios.

This document is not a full-featured API referencemanual nor a step by step tutorial. For reference pages,
please see Doxygen API documentation that is shipped with FaceEngine. For complete examples, please
head to our developer portal.

What this book does, however, is this:

• It describes ideas behind resourcemanagement and gives a clue why one or another decision was
made. With this in mind, you are ready to write efficient code with FaceEngine;

• It breaks down full face analysis and recognition pipeline in parts and shows how one part affects
all theothers. This informationwill help you toadaptFaceEngine toyourneeds,which is somewhat
more productive than blindly following tutorials;

• It details things that are important and omits things that are obvious, so you get information that
matters most.

This book is split up into several chapters. There are chapters dedicated to each FaceEngine facility; there
are chapters with conceptual overviews; there are chapters with generic information. We tried to write
the book starting from low-level concepts and moving on to face detection, description and recognition
tasks solving one problem at a time. Although sometimes we just had to give references to chapters
ahead, we tried to minimize such jumps.

The opening chapter of this book is called “Core concepts”. It will tell you about memory management
techniques, object creation and destruction strategies that are widely used across the entire FaceEngine.
The following chapters catch up telling how higher level FaceEngine components are created from those
building blocks.

VisionLabs B.V. 7 / 136

1 Core Concepts

1.1 Common Interfaces and Types

1.1.1 Reference Counted Interface

Everything in FaceEngine object system starts from here. The IRefCounted interface provides methods
for reference counter access, increment, and decrement. All reference counted objects imply a custom
memorymanagementmodel. Thisway they support automateddestructionwhen referencecountdrops
to zero as well as more sophisticated strategies of partial destruction and weak referencing required for
FaceEngine internal needs. The bare minimum of such functions is exposed to a user allowing:

• to notify the object that it is required by a client via retaining a reference to it;

• to notify the object that it is no longer required by releasing a reference to it;

• to get actual reference counter value.

Reference counted objects expect some special treatment as well. Be sure never to call delete on
any pointer to object derived from IRefCounted! Doing so leads to heap corruption. Simply
calling release notifies the systemwhen the object should be destroyed and it does this properly for
you.

However, it is not recommended to interactwith the reference countingmechanismmanually asdoing so
maybeerror-prone. Instead, youare strongly advised touse smart pointers that are specially designed to
handle such objects and provided by FaceEngine. See section “Automatic reference counting” for details.

1.1.2 Automatic reference counting

For your convenience, a special smart pointer class Ref is provided. It is capable of automatic reference
counter incrementing upon its creation and automatic decrementing upon its destruction. It also does
an assertion of the inner raw pointer being non-null, thus preventing errors.

Two ways of working with Ref are possible:

1.1.2.1 Referencing - without acquiring ownership of object lifetime
ISomeObject* createSomeObject();
{
/* Here createSomeObject returns an object with initial reference count of 1

(otherwise, it would be dead). Then Ref adds another one for itself
making a total reference count of 2!

*/
Ref<ISomeObject> objref = make_ref(createSomeObject());
/* Here we use the object in any way we want expecting it to be properly

destroyed when control will leave this scope.

VisionLabs B.V. 8 / 136

*/

}
/* Here we have left the scope and Ref was automatically destroyed like any

other object created on the stack. At the same time, it decreased
reference count of its internal object by 1 making it 1 again.

*/

However, the object is not destroyed automatically! For this to happen, it should have precisely 0
references. Moreover, in this example, the raw pointer to the object is lost, so it is impossible to fix it in
any way; thus a memory leak is introduced.

1.1.2.2 Acquiring - own object lifetime
Sokeeping that inmindwe introduceaconceptof ownershipacquiring. Byacquiringanobject, youmean
that its rawpointer is not going to be used and only a valid Ref to it is required. To acquire ownership, use
a special ::acquire() function. The fixed version of the above example would look like this:

ISomeObject* createSomeObject();
{
/* Here createSomeObject returns an object with initial reference count of 1

(otherwise, it would be dead). Then we acquire it leaving a total
reference count of 1.

*/
Ref<ISomeObject> objref = acquire(createSomeObject());
/* Here we use the object in any way we want.
*/
}

/* Here we have left the scope and Ref was automatically destroyed like any
other object created on the stack. At the same time, it decreased
reference count of its internal object by 1 making it 0. The object is
destroyed properly by the object system.

*/

Do not store or use raw pointers to the object when using the ::acquire() function, as ownership
acquiring invalidates them.

AcquiringwayofworkingwithRef is pretty like standard library shared_ptrown lifetimeof theobject
after it returned by std::make_shared().

You can statically cast object type during acquiring or referencing. To achieve this, use special versions
of the ::make_ref_as() and ::acquire_as() functions. It is your responsibility to ensure that such a cast is
possible.

VisionLabs B.V. 9 / 136

Please refer to FaceEngine Reference Manual for more details on available convenience methods and
functions.

As a side note, be informed that typedefs for Ref’s to all reference counted types are declared. All of them
match the followingnaming convention: InterfaceNamePtr. So, for example, Ref<IDetector> is equivalent
to IDetectorPtr.

1.1.3 Serializable object interface

This interface represents an object. Object’s contents may be serialized to some data stream and then
read back. Think of this as loading and saving.

To interact with the aforementioned data stream, the serializable object needs a user-provided adapter.
Suchadapter is called thearchive. Seeadetailedexplanationof it in section “Archive interface” in chapter
“Core facility”.

Serializable interfaces: IDescriptor, IDescriptorBatch.

1.1.4 Auxiliary types

1.1.4.1 Image type
Since FaceEngine is a computer vision library, it is natural for it to implement some image concept.
Therefore, an Image class exists. It is designed as a reference counted container for raw pixel color
data. Reference counting allows a single image to be shared by several objects. However, one should
understand, that each Image object is holding a reference to some data, so if the data is modified in any
way, this affects all other objects holding the same reference. To make a deep copy of an Image, one
should use the clone()method, since assignment operators just make a reference. It is also possible to
clip a part of an image into a new image bymeans of extract()method.

Pixel datamay be characterized by color channel layout, i.e., a number of color channels and their order.
The engine defines a Format structure for that. The Format determines:

• Number of color channels (e.g., RGB or grayscale);

• Order of color channel (e.g., RGB vs. BGR).

FaceEngine assumes 8 bits (i.e., 1 byte) per color channel and implements 8 BPP grayscale, 24 BPP
RGB/BGR and padded 32 BPP formats. Format conversion functions are also provided for convenience;
see the convert() function family.

The Image class supports data range mapping. It is possible to map a subset of bytes in a rectangular
area for reading or writing. The mapped pixels are represented by the SubImage structure. In contrast
to Image, SubImage is just a data view and is not reference counted. You are not supposed to store
SubImages longer that it is necessary to completedatamodification. See thedocumentationof themap()
function family for details.

VisionLabs B.V. 10 / 136

The supports IO roitines to read/write OOM, JPEG, PNG and TIFF formats via FreeImage library.

The absence of image IO is dictated by the fact that FaceEngine focuses on being lightweight and with
theminimumpossible number of external dependencies. It is not designed solely with image processing
purpose in mind. I.e., one may treat video frames as Images and process them one by one. In this case,
an external (possibly proprietary) video codec is required.

1.2 Beta Mode

Some features in LUNA SDK are available just in Beta mode. This is experimental features which may be
unstable. If you want use them, you have to activate betaMode param in config (faceengine.conf).

VisionLabs B.V. 11 / 136

2 FaceEngine Structure Overview

FaceEngine is subdivided into several facilities. Each facility is dedicated toa single function. Below there
is a list of all facilities with short descriptions of functionality they provide. Detailed informationmay be
found in corresponding chapters of this handbook.

FaceEngine facility list:

• Core facility. This facility stores shared low-level FaceEngine types and factories. This facility
is responsible for normal functioning of all other facilities by providing settings accessors and
common interfaces. The core facility also contains themain FaceEngine root object that is used to
create instances of all higher level objects;

• Face detection facility. This facility is dedicated to object detection. It contains various object
detector implementations and factories;

• Parameter estimation facility. This facility is dedicated to various image parameter estimation,
such as blurriness, transformation and so forth. It contains various estimator implementations
and factories;

• Descriptor processing facility. This facility is dedicated to descriptor extraction andmatching. The
descriptor is a set of features, describing an object, invariant to object transformation, size or other
parameters. Descriptor matching allows judging with certain probability whether two objects are
the same. This facility contains various descriptor extractors and containers as well as factories,
required to produce them.

So, each facility is a set of classes dedicated to some common for them problem domain. Facilities are
independent of each other, with several exceptions, like that all higher level facilities depend on the core
facility. Interfacility dependencies are thoroughly described in corresponding chapters of this handbook.
The actual set of facilitiesmay vary depending on particular FaceEngine distributions as facilitiesmay be
licensed and shipped separately.

This handbook describes the very complete FaceEngine distribution, assuming all facilities are available.
The facilities are listed in order of increasing complexity. Applying functions from these facilities in this
order allows creating a complete face detection, analysis, recognition and matching pipeline with a
significant degree of flexibility. The following chapters break down such pipeline in details.

VisionLabs B.V. 12 / 136

3 Core Facility

3.1 Common Interfaces

3.1.1 Face Engine Object

The Face Engine object is a root object of the entire FaceEngine. Everything begins with it, so it is
essential to create at least one instance of it. Although it is possible to have multiple instances of the
Face Engine, it is impractical to do so (as explained in section “Automatic reference counting” in chapter
“Core concepts”). To create a Face Engine instance call createFaceEngine function. Also, youmay specify
default dataPath and configPath in createFaceEngine parameters.

If you plan to use GPU acceleration, you should keep in mind CUDA runtime initialization and
shutdown. Specifically, CUDA creates global runtime object with implicit lifetime; see
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#initialization.

To prevent FaceEngine runtime and lifetimemismatch, it is recommended to avoid creating static global
instances of FaceEngine objects, as their destruction order is undetermined.

3.1.2 Settings Provider

Settings provider is a special entity that loads settings from various locations. Since settings might be
shared among several objects, it is useful to cache them tominimize disk reads and provide a dictionary-
like interface for named value lookup.

This is what the provider does. The provider object stands somewhat aside FaceEngine facility structure
and is created by a separate factory function createSettingsProvider. This function accepts configuration
file path as a parameter (see section “Configuration data” for details). By default, the engine holds a
single provider instance for all facilities. Think of it as a reference counted config file. This provider is
passed by the Face Engine object to each factory it creates. The factory, in turn, can read its configuration
data from the object and pass it further to its child objects. In typical scenarios, you should not bother
with providers as the engine does everything for you. However, when relying on custom factory creation
parameters (see thedescription in section “Faceengineobject”), youhave tocreateandsupplyaprovider
wherever it is required manually.

3.2 Helper Interfaces

3.2.1 Archive Interface

Archive interface is used to provide serialization functions with a data source. It contains methods
primarily for data reading and writing. Note, that IArchive is not derived from IRefCounted, thus does not
imply any special memory management strategies.

A few points to keep in mind when implementing your archive:

VisionLabs B.V. 13 / 136

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#initialization

• FaceEngineobjects that use IArchive for serializationpurposes do call onlywrite() (during saving) or
only read() (during loading) but never both during the same process unless otherwise is explicitly
stated;

• During savingor loadingFaceEngineobjects are free towriteor read their data in chunks; e.g., there
may be several sequential calls to write() in the scope of a single serialization request. The same
is true for read(). Basically, read() andwrite() should behave pretty much like C fread() and fwrite()
standard library functions.

Any IArchive implementation should be aware of these notes.

Since these interface methods are pretty obvious and mostly self-explanatory, we advise you to check
out FaceEngine Reference Manual for the details.

3.3 Sensor type

SensorType determines which type of camera sensor is used to perform estimation. Currently two types
of SensorType are available: Visible, NIR. The user can indicate the required type of sensor when
creating an object by passing the appropriate parameter.

3.4 Data Paths

3.4.1 Model Data

VariousFaceEnginemodulesmay requiredata files tooperate. The files containvariousalgorithmmodels
and constants used at runtime. All the files are gathered together into a single data directory. The data
directory location is assumed to reside in:

• /opt/visionlabs/data on Linux
• ./data on Windows

One may override the data directory location by means of setDataDirectory()method which is available
in IFaceEngine. Current data location may be retrieved via getDataDirectory()method.

3.4.2 Configuration Data

Theconfiguration file is called faceengine.conf andstored in /datadirectorybydefault. ConfigurationGuide.pdf
with parameter description and default values is located at /doc package folder.

At runtime, the configuration file data is managed by a special object that implements ISettingsProvider
interface (seesection“Settingsprovider”). Theprovider is instantiatedbymeansof createSettingsProvider()
function that accepts configuration file location as a parameter or uses aforementioned defaults if not
specified.

VisionLabs B.V. 14 / 136

Onemay supply a different configuration to any factory object bymeans of setSettingsProvider()method,
which is available in each factory object interface, including IFaceEngine. Currently, bound settings
provider may be retrieved via getSettingsProvider()method.

VisionLabs B.V. 15 / 136

4 Detection facility

4.1 Overview

Object detection facility is responsible for quick and coarsedetection tasks, like finding a face in an image.

4.2 Detection structure

The detection structure represents an images-space bounding rectangle of the detected object aswell as
the detection score.

Detection score is a measure of confidence in the particular object classification result andmay be used
to pick the most “confident” face of many.

Detection score is the measure of classification confidence and not the source image quality. While the
score is related to quality (low-quality data generally results in a lower score), it is not a valid metric to
estimate the visual quality of an image.

Special estimators exist to fulfill this task (see section “Image Quality Estimation” in chapter “Parameter
estimation facility” for details).

4.3 Face Detection

Object detection is performed by the IDetector object. The function of interest is detect(). It requires an
image to detect on and an area of interest (to virtually crop the image and look for faces only in the given
location).

Also, face detector implements detectAsync()which allows you to asynchronously detect faces and their
parameters onmultiple images.

Note: Method detectAsync() is experimental, and it’s interface may be changed in the future. Note:
Method detectAsync() is not marked as noexcept andmay throw an exception.

4.3.1 Image coordinate system

The origin of the coordinate system for each processed image is located in the upper left corner.

VisionLabs B.V. 16 / 136

Figure 1: Source image coordinate system

4.3.2 Face detection

When a face is detected, a rectangular area with the face is defined. The area is represented using
coordinates in the image coordinate system.

4.3.3 Redetect method

Face detector implements redetect()method which is intended for face detection optimization on video
frame sequences. Instead of doing full-blown detection on each frame, one may detect() new faces at a
lower frequency (say, each5th frame) and just confirm them inbetweenwith redetect(). This dramatically
improves performance at the cost of detection recall. Note that redetect()updates face landmarks aswell.

Also, face detector implements redetectAsync() which allows you to asynchronously redetect faces on
multiple images based on the detection results for the previous frames.

Note: Method redetectAsync() is experimental, and it’s interface may be changed in the future. Note:
Method redetectAsync() is not marked as noexcept andmay throw an exception.

Detector works faster with larger value of minFaceSize.

4.3.4 Orientation Estimation

Name: OrientationEstimator

Algorithm description:

This estimator aims to detect an orientation of the input image. The next outputs are supported:

• The target image is normal oriented ;

VisionLabs B.V. 17 / 136

• The target image is turned to the left by 90 deg;
• The target image is flipped upside-down;
• The target image is turned to the right by 90 deg.

Implementation description:

The estimator (see IOrientationEstimator in IOrientationEstimator.h):

• Implements the estimate() function that accepts source image in R8G8B8 format and returns the
estimation result;

• Implements the estimate() function that accepts fsdk::Span of the source images in R8G8B8
format and fsdk::Span of the fsdk::OrientationType enums to return results of estimation.

TheOrientationType enumeration contains all possible results of the Orientation estimation:

enum OrientationType : uint32_t {
OT_NORMAL = 0, //!< Normal orientation of image
OT_LEFT = 1, //!< Image is turned left by 90 deg
OT_UPSIDE_DOWN = 2, //!< Image is flipped upsidedown
OT_RIGHT = 3 //!< Image is turned right by 90 deg

};

API structure name:

IOrientationEstimator

Plan files:

• orientation_cpu.plan
• orientation_cpu-avx2.plan
• orientation_gpu.plan### Detector variants

Supported detector variants:

• FaceDetV1
• FaceDetV2
• FaceDetV3

There are two basic detector families. The first of them includes two detector variants: FaceDetV1 and
FaceDetV2. The second family currently includes only one detector variant - FaceDetV3. FaceDetV3 is
the latest and most precise detector. For this type of detector can be passed sensor type. In terms of
performance FaceDetV3 is similar to FaceDetV1 detector.

User codemay specify necessary detector type while creating IDetector object using parameter.

FaceDetV1andFaceDetV2performancedependsonnumberof faceson imageand imagecomplexity.
FaceDetV3 performance depends only on the target image resolution.

VisionLabs B.V. 18 / 136

FaceDetV3 works faster with batched redetect.

FaceDetV3 supports asynchronous methods for detection and redetection. FaceDetV1 and
FaceDetV2 will return not implemented error.

4.3.5 FaceDetV1 and FaceDetV2 Configuration

FaceDetV1 detector is more precise and FaceDetV2 works two times faster (See appendix A chapter
“Appendix A. Specifications”).

FaceDetV1 and FaceDetV2 detector’s performance depend on number of faces in image. FaceDetV3
doesn’t depend on it, so it may be slower then FaceDetV1 on images with one face andmuchmore faster
on images with many faces.

4.3.6 FaceDetV3 Configurating

FaceDetV3 detects faces from minFaceSize to minFaceSize * 32. You can change theminimum size of
the faces that will be searched in the photo from the faceengine.conf configuration.

For example:

config->setValue("FaceDetV3::Settings", "minFaceSize", 20);

The logic of the detector is very understandable. The smaller the face size we need to find themore time
we need.

We recommend to use suchmeanings for minFaceSize: 20, 40 and 90. The size 90 pix is recommended
for recognition. If youwant to find faces with custom size value youwill need to point with size with: 95%
* value. For example we want to find faces with size of 50 pix, it means that in config we should set:

50 * 0.95 ~ 47 pix.

FaceDetV3may provide accurate 5 landmarks only for faceswith size greater then 40x40, for smaller
faces it provides less accurate landmarks.

If you have few faces on target images and target face sizes after resize will less then 40x40, it’s
recommended to require 68 landmarks.

If you have many faces on target image (greater then 7) it will be faster increase minFaceSize to have
big enough faces for accurate landmarks estimation.

All last changes in Face Detection logic are described in chapter “Migration guide”.

VisionLabs B.V. 19 / 136

4.3.7 Face Alignment

4.3.7.1 Five landmarks
Face alignment is the process of special key points (called “landmarks”) detection on a face. FaceEngine
does landmark detection at the same time as the face detection since some of the landmarks are by-
products of that detection.

At the very minimum, just 5 landmarks are required: two for eyes, one for a nose tip and two for mouth
corners. Using these coordinates, onemay warp the source photo image (see Chapter “Image warping”)
for use with all other FaceEngine algorithms.

All detector may provide 5 landmarks for each detection without additional computations.

Typical use cases for 5 landmarks:

• Image warping for use with other algorithms:

– Quality and attribute estimators;
– Descriptor extraction.

4.3.7.2 Sixty-eight landmarks
More advanced 68-points face alignment is also implemented. Use this when you need precise
information about face and its parts. The detected points look like in the image below.

The 68 landmarks require additional computation time, so don’t use it if you don’t need precise
information about a face. If you use 68 landmarks , 5 landmarks will be reassigned to more precise
subset of 68 landmarks.

VisionLabs B.V. 20 / 136

Figure 2: 68-point face alignment

The typical error for landmark estimation on a warped image (see Chapter “Image warping”) is in the
table below.

Table 1: “Average point estimation error per landmark”

Point
Error
(pixels) Point

Error
(pixels) Point

Error
(pixels) Point

Error
(pixels)

1 ±3,88 18 ±3,77 35 ±1,62 52 ±1,65

2 ±3,53 19 ±2,83 36 ±1,90 53 ±2,01

3 ±3,88 20 ±2,70 37 ±1,78 54 ±2,00

4 ±4,30 21 ±3,06 38 ±1,69 55 ±1,93

5 ±4,67 22 ±3,92 39 ±1,63 56 ±2,18

VisionLabs B.V. 21 / 136

Point
Error
(pixels) Point

Error
(pixels) Point

Error
(pixels) Point

Error
(pixels)

6 ±4,87 23 ±3,46 40 ±1,52 57 ±2,17

7 ±4,67 24 ±2,59 41 ±1,54 58 ±1,99

8 ±4,01 25 ±2,53 42 ±1,60 59 ±2,32

9 ±3,46 26 ±2,95 43 ±1,55 60 ±2,33

10 ±3,87 27 ±3,84 44 ±1,60 61 ±2,06

11 ±4,56 28 ±1,88 45 ±1,74 62 ±1,97

12 ±4,94 29 ±1,75 46 ±1,72 63 ±1,56

13 ±4,55 30 ±1,92 47 ±1,68 64 ±1,86

14 ±4,45 31 ±2,20 48 ±1,65 65 ±1,94

15 ±4,13 32 ±1,97 49 ±1,99 66 ±2,00

16 ±3,68 33 ±1,70 50 ±1,99 67 ±1,70

17 ±4,09 34 ±1,73 51 ±1,95 68 ±2,12

Simple 5-point landmarks roughly correspond to:

• Average of positions 37, 40 for a left eye;
• Average of positions 43, 46 for a right eye;
• Number 31 for a nose tip;
• Numbers 49 and 55 for mouth corners.

The landmarks for both cases are output by the face detector via Landmarks5 and Landmarks68
structures. Note, that performance-wise 5-point alignment result comes free with a face detection,
whereas 68-point result does not. So you should generally request the lowest number of points for your
task.

Typical use cases for 68 landmarks:

• Segmentation;
• Head pose estimation.

4.4 Face Landmarks Detector

Every kind of detector provides an interface to find face landmarks. If you have a face detection
without landmarks we provide additional interface to request them. The detection of landmarks is
performed by the IFaceLandmarksDetector object. The functions of interest are detectLandmarks5() and
detectLandmarks68. They need images and detections.

VisionLabs B.V. 22 / 136

4.5 Human Detection

This functionality enables you to detect human bodies in the image.

During thedetectionprocesswereceive specialpoints (called“landmarks”orexactly “HumanLandmarks17”)
for the body parts visible in the image. These landmarks represent the keypoints of a human body (see
the Human keypoints section).

Human body detection is performed by the IHumanDetector object. The function of interest is detect(). It
requires an image to detect on.

4.5.1 Image coordinate system

The origin of the coordinate system for each processed image is located in the upper left corner.

Figure 3: Source image coordinate system

4.5.2 Human body detection

When a human body is detected, a rectangular area with the body is defined. The area is represented
using coordinates in the image coordinate system.

4.5.3 Constraints

Human body detection has the following constraints:

• Human body detector works correctly only with adult humans in an image;
• The detector may detect a body of size from 100 px to 640 px (in an image with a long side of 640
px). You may change the input image size in the config (see ./doc/ConfigurationGuide.pdf). The
image will be resized to specified size by the larger side while maintaining the aspect ratio.

VisionLabs B.V. 23 / 136

4.5.4 Camera position requirements

In general, you should locate the camera for human detection according to the image below.

Figure 4: Camera position for human detection

Follow these recommendations to correctly detect human body and keypoints:

• A person’s body should face the camera;

• Keep angle of view as close to horizontal as possible;

• There should be about 60% of the person’s body in the frame (upper body);

VisionLabs B.V. 24 / 136

• There must not be any objects that overlap the person’s body in the frame;

• The camera should be located at about 165 cm from the floor, which corresponds to the average
height of a human.

The examples of wrong camera positions are shown in the image below.

Figure 5:Wrong camera positions

VisionLabs B.V. 25 / 136

4.5.5 Human body redetection

Like any other detector in Face Engine SDK, human detector also implements redetection model. The
user canmake full detectiononly in a first frameand then redetect the samehuman in thenext “n” frames
thereby boosting performance of the whole image processing loop.

User can use redetectOne() method if only a single human detection is required, for more complex use
cases one should use redetect()which can redetect humans frommultiple images.

Detector give an opportunity to detect human body keypoints in an image.

VisionLabs B.V. 26 / 136

4.5.6 Human Keypoints

The image below shows the keypoints detected for a human body.

Figure 6: 17-points of human body

Point Body Part Point Body Part

0 Nose 9 LeftWrist

1 Left Eye 10 Right Wrist

VisionLabs B.V. 27 / 136

Point Body Part Point Body Part

2 Right Eye 11 Left Hip

3 Left Ear 12 Right Hip

4 Right Ear 13 Left Knee

5 Left Shoulder 14 Right Knee

6 Right Shoulder 15 Left Ankle

7 Left Elbow 16 Right Ankle

8 Right Elbow

Cases that increase the probability of error:

• Non-standard poses (head below the shoulders, vertical twine, lying head to the camera, etc.);
• Camera position from above at a large angle;
• Sometimes estimator predicts invisible points with high score, especially for points of elbows,
wrists, ears.

4.5.7 Detection

To detect Human Keypoints call detect() using fsdk::HumanDetectionType::DCT_BOX | fsdk::
HumanDetectionType::DCT_POINTS argument.

Default is fsdk::HumanDetectionType::DCT_BOX.

4.5.8 Main Results of Each Detection

Themain result of each detection is an array. Each array element consists of a point (fsdk:: Point2f) and a
score. If the score value is less than the threshold, then the value of “x” and “y” coordinates will be equal
to 0.

See ConfigurationGuide.pdf (“HumanDetector settings” section) for more information about
thresholds and configuration parameters.

4.6 HumanFace Detection. Face to body association

This functionality enables you to detect the bodies and faces of people and perform an association
between them, determining whether the detected face and body belong to the same person.

VisionLabs B.V. 28 / 136

This detector contains the implementation of both Human and Face(FaceDetV3) detectors. This means
that all the requirements, constraints and recommendations for quality improvement imposed for these
detectors will be relevant for the HumanFace detector.

Detector operation algorithm:

• human detection
• face detection
• determination of an association for each detection

Figure 7: HumanFace detection

4.6.1 HumanFace redetection

To perform redetection, you need to separately redetect body and face.

4.6.2 Main results

There are two output structures:

• HumanFaceBatch
• HumanFaceAssociations

TheHumanFaceBatch contains three arrays - face detections, human detections and associations:

struct IHumanFaceBatch : public IRefCounted {
virtual Span<const Detection> getHumanDetections(size_t index = 0)

const noexcept = 0;
virtual Span<const Detection> getFaceDetections(size_t index = 0)

const noexcept = 0;

VisionLabs B.V. 29 / 136

virtual Span<const HumanFaceAssociation> getAssociations(size_t
index = 0) const noexcept = 0;

};

TheHumanFaceAssociation structure contains results of the association:

struct HumanFaceAssociation {
uint32_t humanId;
uint32_t faceId;
float score;

};

There are two groups of fields:

1. The first group contains body and face detection indexes:

uint32_t humanId;
uint32_t faceId;

2. The second group contains association score:

float score;

The score is defined in [0,1] range.

Associations and detections whose scores are lower than the thresholdwill be rejected and not returned
in the results.

SeeConfigurationGuide.pdf (“HumanFace settings” section) formore information about thresholds
and configuration parameters.

4.6.3 minFaceSize

This detector could detect faces with size 20 px and more (minFaceSize parameter) and humans with
size 100 px and more. In case if such small faces and humans are not required, user could change the
minFaceSize parameter in the config.

Before processing, the images will be resized by minFaceSize/20 times. For example, if the value is
minFaceSize=50, then the image will be additionally resized by minFaceSize=50/20=2.5 times.

Detector works faster with larger value of minFaceSize.

VisionLabs B.V. 30 / 136

5 ImageWarping

Warping is theprocess of face imagenormalization. It requires landmarks and facedetection (see chapter
“Detection facility”) to operate. The purpose of the process is to:

• compensate image plane rotation (roll angle);
• center the image using eye positions;
• properly crop the image.

This way all warped images look the same and one can tell that, e.g., left eye is always in a box, defined
by the certain coordinates. This way certain transform invariance is achieved for input data so various
algorithms can perform better.

The warper (see IWarper in IWarper.h):

• Implements thewarp() function that accepts spanof sourcefsdk::Image in R8B8G8 format, span
of fsdk::Transformation and span of output fsdk::Image structures;

• Implements thewarpAsync() function that accepts span of source fsdk::Image in R8B8G8 format
and span of fsdk::Transformation.

Note: MethodwarpAsync() is experimental, and it’s interfacemaybechanged in the future. Note: Method
warpAsync() is not marked as noexcept andmay throw an exception.

Figure 8: Face warping

Be aware that imagewarping is not thread-safe, so you have to create awarper object per worker thread.

VisionLabs B.V. 31 / 136

6 Parameter Estimation Facility

6.1 Overview

The estimation facility is the only multi-purpose facility in FaceEngine. It is designed as a collection of
tools thathelp toestimate various imagesordepictedobjectproperties. Thesepropertiesmaybeused to
increase the precision of algorithms implementedby other FaceEngine facilities or to accomplish custom
user tasks.

6.2 Use cases

6.2.1 ISO estimation

LUNASDKprovidesalgorithms for imagecheckaccording to the requirementsof the ISO/IEC 19794-5:2011
standard and compatible standards.

The requirements can be found on the official website: https://www.iso.org/obp/ui/#iso:std:iso-iec:
19794:-5:en.

The following algorithms are provided:

• Head rotation angles (pitch, yaw, and roll angles). According to section “7.2.2 Pose” in the standard,
the angles shouldbe +/- 5 degrees from frontal in pitch and yaw, less than +/- 8 degrees from frontal
in roll. See additional information about the algorithm in section “Head Pose”.

• Gaze. See section “7.2.3 Expression” point “e” of the standard. See additional information about
the algorithm in section “Gaze Estimation”.

• Mouth state (opened, closed, occluded) and additional properties for smile (regular smile, smile
with teeths exposed) See section “7.2.3 Expression” points “a”, “b”, and “c” of the standard. See
additional information about the algorithm in section “Mouth Estimation”.

• Quality of the image:

– Contrast and saturation (insufficient or too large exposure). See sections “7.2.7 Subject and
scene lighting” and “7.3.2 Contrast and saturation” of the standard.

– Blurring. See section “7.3.3 Focus and depth of field” of the standard.
– Specularity. See section “7.2.8 Hot spots and specular reflections” and “7.2.12 Lighting
artefacts” of the standard.

– Uniformityof illumination. See sections “7.2.7Subject andscene lighting”and“7.2.12Lighting
artefacts” of the standard.

See additional information about the algorithm in section “Image Quality Estimation”.

• Glasses state (no glasses, glasses, sunglasses). See section “7.2.9 Eye glasses” of the standard. See
additional information about the algorithm in section “Glasses Estimation”.

VisionLabs B.V. 32 / 136

https://www.iso.org/obp/ui/#iso:std:iso-iec:19794:-5:en
https://www.iso.org/obp/ui/#iso:std:iso-iec:19794:-5:en

• Eyes state (for each eye: opened, closed, occluded). See sections “7.2.3 Expression” point “a”,
“7.2.11 Visibility of pupils and irises” and “7.2.13 Eye patches” of the standard. See additional
information about the algorithm in section “Eyes Estimation”.

• Natural light estimation. See section “7.3.4 Unnatural colour” of the standard. See additional
information about the algorithm in section “Natural Light Estimation”.

• Eybrows state: neutral, raised, squinting, frowning. See section “7.2.3 Expression” points “d”, “f”,
and “g” of the standard. See additional information about the algorithm in section “Eyebrows
estimation”.

• Position of a person’s shoulders in the original image: the shoulders are parallel to the camera or
not. See section “7.2.5 Shoulders” of the standard. See additional information about the algorithm
in section “Portrait Style Estimation”.

• Headwear. Checks if there is a headwear on a person or not. Several types of headwear can be
estimated. See section “B.2.7 Head coverings” of the standard. See additional information about
the algorithm in section “Headwear Estimation”.

• Red eyes estimation. Checks if there is a red eyes effect. See section “7.3.4 Unnatural colour” of
the standard. See additional information about the algorithm in section “Red Eyes Estimation”.

• Radial distortion estimation. See section “7.3.6 Radial distortion of the camera lens” of the
standard. See additional information about the algorithm in section “Fish Eye Estimation”.

• Image type estimation: color, grayscale, infrared. See section “7.4.4 Use of near infra-red cameras”
of the standard. See additional information about the algorithm in section “Grayscale, color or
infrared Estimation”.

• Background estimation: background uniformity and if a background is too light or too dark. See
section “B.2.9 Backgrounds” of the standard. See additional information about the algorithm in
section “Background Estimation”.

VisionLabs B.V. 33 / 136

6.3 Best shot selection functionality

6.3.1 BestShotQuality Estimation

Name: BestShotQualityEstimator

Algorithm description:

The BestShotQuality estimator is designed to evaluate image quality to choose the best image before
descriptor extraction. The BestShotQuality estimator consists of two components - AGS (garbage score)
and Head Pose.

AGS aims to determine the source image score for further descriptor extraction andmatching.

Estimation output is a float score which is normalized in range [0..1]. The closer score to 1, the better
matching result is received for the image.

When you have several images of a person, it is better to save the image with the highest AGS score.

Recommended threshold for AGS score is equal to 0.2. But it can be changed depending on the
purpose of use. Consult VisionLabs about the recommended threshold value for this parameter.

Head Pose determines person head rotation angles in 3D space, namely pitch, yaw and roll.

Figure 9: Head pose

Since 3D head translation is hard to determine reliably without camera-specific calibration, only 3D
rotation component is estimated.

Head pose estimation characteristics:

• Units (degrees);
• Notation (Euler angles);
• Precision (see table below).

VisionLabs B.V. 34 / 136

Implementation description:

The estimator (see IBestShotQualityEstimator in IEstimator.h):

• Implements the estimate() function that needs fsdk::Image in R8G8B8 format, fsdk::
Detection structure of corresponding source image (see section “Detection structure” in chapter
“Face detection facility”), fsdk::IBestShotQualityEstimator::EstimationRequest
structureandfsdk::IBestShotQualityEstimator::EstimationResult to storeestimation
result;

• Implements the estimate() function that needs the span of fsdk::Image in R8G8B8 format, the
span of fsdk::Detection structures of corresponding source images (see section “Detection
structure” in chapter “Face detection facility”), fsdk::IBestShotQualityEstimator::
EstimationRequest structure and span of fsdk::IBestShotQualityEstimator::
EstimationResult to store estimation results.

• Implements the estimateAsync() function that needs fsdk::Image in R8G8B8 format, fsdk::
Detection structure of corresponding source image (see section “Detection structure” in chapter
“Face detection facility”), fsdk::IBestShotQualityEstimator::EstimationRequest
structure;

Note: Method estimateAsync() is experimental, and it’s interface may be changed in the future. Note:
Method estimateAsync() is not marked as noexcept andmay throw an exception.

Before using this estimator, user is free to decide whether to estimate or not some listed attributes. For
this purpose, estimate()method takes one of the estimation requests:

• fsdk::IBestShotQualityEstimator::EstimationRequest::estimateAGS to make only
AGS estimation;

• fsdk::IBestShotQualityEstimator::EstimationRequest::estimateHeadPose to
make only Head Pose estimation;

• fsdk::IBestShotQualityEstimator::EstimationRequest::estimateAll to make both
AGS and Head Pose estimations;

The EstimationResult structure contains results of the estimation:

struct EstimationResult {
Optional<HeadPoseEstimation> headPose; //!< HeadPose estimation if

was requested, empty otherwise
Optional<float> ags; //!< AGS estimation if was

requested, empty otherwise
};

Head Pose accuracy:

VisionLabs B.V. 35 / 136

Prediction precision decreases as a rotation angle increases. We present typical average errors for
different angle ranges in the table below.

Table 3: “Head pose prediction precision”

Range -45°…+45° < -45° or > +45°

Average prediction error (per axis) Yaw ±2.7° ±4.6°

Average prediction error (per axis) Pitch ±3.0° ±4.8°

Average prediction error (per axis) Roll ±3.0° ±4.6°

Zero position corresponds to a face placed orthogonally to camera direction, with the axis of symmetry
parallel to the vertical camera axis.

API structure name:

IBestShotQualityEstimator

Plan files:

• ags_angle_estimation_flwr_cpu.plan
• ags_angle_estimation_flwr_cpu-avx2.plan
• ags_angle_estimation_flwr_gpu.plan

VisionLabs B.V. 36 / 136

6.3.2 Image Quality Estimation

Name: QualityEstimator

Algorithm description:

The estimator is trained to work with warped images (see chapter “Image warping” for details).

This estimator is designed to determine the image quality. You can estimate the image according to the
following criteria:

• The image is blurred;
• The image is underexposed (i.e., too dark);
• The image is overexposed (i.e., too light);
• The face in the image is illuminated unevenly (there is a great difference between light and dark
regions);

• Image contains flares on face (too specular).

Examples are presented in the images below. Good quality images are shown on the right.

Figure 10: Blurred image (left), not blurred image (right)

VisionLabs B.V. 37 / 136

Figure 11: Dark image (left), good quality image (right)

Figure 12: Light image (left), good quality image (right)

VisionLabs B.V. 38 / 136

Figure 13: Image with uneven illumination (left), image with even illumination (right)

Figure 14: Image with specularity - image contains flares on face (left), good quality image (right)

Implementation description:

The general rule of thumb for quality estimation:

1. Detect a face, see if detection confidence is high enough. If not, reject the detection;
2. Produce a warped face image (see chapter “Descriptor processing facility”) using a face detection

and its landmarks;

VisionLabs B.V. 39 / 136

3. Estimate visual quality using the estimator, finally reject low-quality images.

While the scheme above might seem a bit complicated, it is the most efficient performance-wise, since
possible rejections on each step reduce workload for the next step.

At the moment estimator exposes two interface functions to predict image quality:

• virtual Result estimate(const Image&warp, Quality& quality);
• virtual Result estimate(const Image&warp, SubjectiveQuality& quality);

Each one of this functions use its own CNN internally and return slightly different quality criteria.

The first CNN is trained specifically on pre-warped human face images and will produce lower score
factors if one of the following conditions are satisfied:

• Image is blurred;
• Image is under-exposured (i.e., too dark);
• Image is over-exposured (i.e., too light);
• Image color variation is low (i.e., image is monochrome or close to monochrome).

Each one of this score factors is defined in [0..1] range, where higher value corresponds to better image
quality and vice versa.

The second interface function output will produce lower factor if:

• The image is blurred;
• The image is underexposed (i.e., too dark);
• The image is overexposed (i.e., too light);
• The face in the image is illuminated unevenly (there is a great difference between light and dark
regions);

• Image contains flares on face (too specular).

The estimator determines the quality of the image based on each of the aforementioned parameters. For
each parameter, the estimator function returns two values: the quality factor and the resulting verdict.

As with the first estimator function the second one will also return the quality factors in the range [0..1],
where 0 corresponds to low image quality and 1 to high image quality. E. g., the estimator returns low
quality factor for the Blur parameter, if the image is too blurry.

The resulting verdict is a quality output based on the estimated parameter. E. g., if the image is too blurry,
the estimator returns “isBlurred = true”.

The threshold (see below) can be specified for each of the estimated parameters. The resulting verdict
and the quality factor are linked through this threshold. If the received quality factor is lower than the
threshold, the image quality is low and the estimator returns “true”. E. g., if the image blur quality factor
is higher than the threshold, the resulting verdict is “false”.

If the estimated value for any of the parameters is lower than the corresponding threshold, the image is
considered of bad quality. If resulting verdicts for all the parameters are set to “False” the quality of the

VisionLabs B.V. 40 / 136

image is considered good.

The quality factor is a value in the range [0..1] where 0 corresponds to low quality and 1 to high quality.

Illumination uniformity corresponds to the face illumination in the image. The lower the difference
between light and dark zones of the face, the higher the estimated value. When the illumination is
evenly distributed throughout the face, the value is close to “1”.

Specularity is a face possibility to reflect light. The higher the estimated value, the lower the
specularity and the better the image quality. If the estimated value is low, there are bright glares
on the face.

The Quality structure contains results of the estimation made by first CNN. Each estimation is given in
normalized [0, 1] range:

struct Quality {
float light; //!< image overlighting degree. 1 - ok, 0 -

overlighted.
float dark; //!< image darkness degree. 1 - ok, 0 - too dark.
float gray; //!< image grayness degree 1 - ok, 0 - too gray.
float blur; //!< image blur degree. 1 - ok, 0 - too blured.
inline float getQuality() const noexcept; //!< complex estimation

of quality. 0 - low quality, 1 - high quality.
};

The SubjectiveQuality structure contains results of the estimation made by second CNN. Each
estimation is given in normalized [0, 1] range:

struct SubjectiveQuality {
float blur; //!< image blur degree. 1 - ok, 0 - too blured.
float light; //!< image brightness degree. 1 - ok, 0 - too

bright;
float darkness; //!< image darkness degree. 1 - ok, 0 - too dark

;
float illumination; //!< image illumination uniformity degree. 1 -

ok, 0 - is too illuminated;
float specularity; //!< image specularity degree. 1 - ok, 0 - is

not specular;
bool isBlurred; //!< image is blurred flag;
bool isHighlighted; //!< image is overlighted flag;
bool isDark; //!< image is too dark flag;
bool isIlluminated; //!< image is too illuminated flag;
bool isNotSpecular; //!< image is not specular flag;

VisionLabs B.V. 41 / 136

inline bool isGood() const noexcept; //!< if all boolean flags
are false returns true - high quality, else false - low quality.

};

Recommended thresholds:

Tablebelowcontain thresholds fromfaceengineconfiguration file (faceengine.conf) inQualityEstimator
::Settings section. By default, these threshold values are set to optimal.

Table 4: “Image quality estimator recommended thresholds”

Threshold Recommended value

blurThreshold 0.61

darknessThreshold 0.50

lightThreshold 0.57

illuminationThreshold 0.1

specularityThreshold 0.1

The most important parameters for face recognition are “blurThreshold”, “darknessThreshold” and
“lightThreshold”, so you should select them carefully.

You can select images of better visual quality by setting higher values of the “illuminationThreshold” and
“specularityThreshold”. Face recognition is not greatly affected by uneven illumination or glares.

Configurations:

See the “Quality estimator settings” section in the “ConfigurationGuide.pdf” document.

API structure name:

IQualityEstimator

Plan files:

• model_subjective_quality_v2_cpu.plan
• model_subjective_quality_v2_cpu-avx2.plan
• model_subjective_quality_v2_gpu.plan

VisionLabs B.V. 42 / 136

6.4 Attributes estimation functionality

6.4.1 Face Attribute Estimation

Name: AttributeEstimator

Algorithm description:

The estimator is trained to work with warped images (see chapter “Image warping” for details).

The Attribute estimator determines face attributes. Currently, the following attributes are available:

• Age: determines person’s age;
• Gender: determines person’s gender;

The Attribute estimator returns Ethnicity estimation structure. Each estimation is given in
normalized [0, 1] range.

The Ethnicity estimation structure looks like the struct below:

struct EthnicityEstimation {
float africanAmerican;
float indian;
float asian;
float caucasian;

enum Ethnicities {
AfricanAmerican = 0,
Indian,
Asian,
Caucasian,
Count

};

/**
* @brief Returns ethnicity with greatest score.
* @see EthnicityEstimation::Ethnicities for more info.
* */

inline Ethnicities getPredominantEthnicity() const;

/**
* @brief Returns score of required ethnicity.
* @param [in] ethnicity ethnicity.
* @see EthnicityEstimation::Ethnicities for more info.
* */

inline float getEthnicityScore(Ethnicities ethnicity) const;
};

VisionLabs B.V. 43 / 136

Implementation description:

Before using attribute estimator, user is free todecidewhether to estimate or not some specific attributes
listed above through IAttributeEstimator::EstimationRequest structure, which later get passed in main
estimate()method. Estimator overrides IAttributeEstimator::AttributeEstimationResult output structure,
which consists of optional fields describing results of user requested attributes.

Recommended thresholds:

Tablebelowcontain thresholds fromfaceengineconfiguration file (faceengine.conf) inAttributeEstimator
::Settings section. By default, these threshold values are set to optimal.

Table 5: “Attribute estimator recommended thresholds”

Threshold Recommended value

genderThreshold 0.5

adultThreshold 0.2

Accuracy:

Age:

• For cooperative (see “Appendix B. Glossary”) conditions: average error depends onperson age, see
table below for additional details. Estimation accuracy is 2.3.

Gender:

• Estimation accuracy in cooperative mode is 99.81%with the threshold 0.5;
• Estimation accuracy in non-cooperative mode is 92.5%.

Table 6: “Average age estimation error per age group for cooperative conditions”

Age (years) Average error (years)

0-3 ±3.3

4-7 ±2.97

8-12 ±3.06

13-17 ±4.05

17-20 ±3.89

20-25 ±1.89

25-30 ±1.88

VisionLabs B.V. 44 / 136

Age (years) Average error (years)

30-35 ±2.42

35-40 ±2.65

40-45 ±2.78

45-50 ±2.88

50-55 ±2.85

55-60 ±2.86

60-65 ±3.24

65-70 ±3.85

70-75 ±4.38

75-80 ±6.79

In earlier releases of Luna SDK Attribute estimator worked poorly in non-cooperative mode (only
56% gender estimation accuracy), and did not estimate child’s age. Having solved these problems
average estimation error per age group got a bit higher due to extended network functionality.

Configurations:

See the “AttributeEstimator settings” section in the “ConfigurationGuide.pdf” document.

API structure name:

IAttributeEstimator

Plan files:

• attributes_estimation_v5_cpu.plan
• attributes_estimation_v5_cpu-avx2.plan
• attributes_estimation_v5_gpu.plan

VisionLabs B.V. 45 / 136

6.4.2 Child Estimation

Name: ChildEstimator

Algorithm description:

This estimator tells whether the person is child or not. Child is a personwho younger than 18 years old. It
returns a structurewith 2 fields. One is the score in the range from0.0 (is adult) to 1.0 (maximum, is child),
the second is a boolean answer. Boolean answer depends on the threshold in config (faceengine.conf).
If the value is more than the threshold, the answer is true (person is child), else - false (person is adult).

Implementation description:

The estimator (see IChildEstimator in IChildEstimator.h):

• Implements the estimate() function acceptswarped source image (see chapter “Image warping”
for details). Warped image is received from the warper (see IWarper::warp());

• Estimates whether the person is child or not on input warped image;

• Outputs ChildEstimation structure. Structure consists of score of and boolean answer.

The ChildEstimation structure contains results of the estimation:

struct ChildEstimation {
float childScore = 0.0f; //!< Numerical value in range [0, 1].

Show the person is child or not.
bool isChild = false //!< Person is child (true) or not (

false).
};

Recommended thresholds:

Table below contain threshold from faceengine configuration file (faceengine.conf) in ChildEstimator
::Settings section. By default, this threshold value is set to optimal.

Table 7: “Child estimator recommended threshold”

Threshold Recommended value

ChildThreshold 0.8508

Configurations:

See the “ChildEstimator settings” section in the “ConfigurationGuide.pdf” document.

API structure name:

VisionLabs B.V. 46 / 136

IChildEstimator

Plan files:

• childnet_estimation_flwr_cpu.plan
• childnet_estimation_flwr_cpu-avx2.plan
• childnet_estimation_flwr_gpu.plan

VisionLabs B.V. 47 / 136

6.4.3 Credibility Check Estimation

Name: CredibilityCheckEstimator

Algorithm description:

This estimator estimates reliability of a person.

Implementation description:

The estimator (see ICredibilityCheckEstimator in ICredibilityCheckEstimator.h):

• Implements the estimate() function that accepts warped image in R8B8G8 format and fsdk::
CredibilityCheckEstimation structure.

• Implements the estimate() function that accepts span of warped images in R8B8G8 format and
span of fsdk::CredibilityCheckEstimation structures.

The CredibilityCheckEstimation structure contains results of the estimation:

struct CredibilityCheckEstimation {
float value; //!< estimation in [0,1] range

.
//!< The closer the score to

1,
//!< the more likely that

person is reliable.

CredibilityStatus credibilityStatus; //!< estimation result
//!< (@see CredibilityStatus

enum).
};

Enumeration of possible credibility statuses:

enum class CredibilityStatus : uint8_t {
Reliable = 1, //!< person is reliable
NonReliable = 2 //!< person is not reliable

};

Recommended thresholds:

Tablebelowcontain thresholds fromfaceengineconfiguration file (faceengine.conf) inCredibilityEstimator
::Settings section. By default, this threshold value is set to optimal.

VisionLabs B.V. 48 / 136

Table 8: “Credibility check estimator recommended threshold”

Threshold Recommended value

reliableThreshold 0.5

Filtration parameters:

The estimator is trained to work with face images that meet the following requirements:

Table 9: “Requirements for fsdk::HeadPoseEstimation”

Attribute Acceptable angle range(degrees)

pitch [-20…20]

yaw [-20…20]

roll [-20…20]

Table 10: “Requirements for fsdk::SubjectiveQuality”

Attribute Minimum value

blur 0.61

light 0.57

Table 11: “Requirements for fsdk::AttributeEstimationResult”

Attribute Minimum value

age 18

VisionLabs B.V. 49 / 136

Table 12: “Requirements for fsdk::OverlapEstimation”

Attribute State

overlapped false

Table 13: “Requirements for fsdk::Detection”

Attribute Minimum value

detection size 100

Detection size is detection width.

const fsdk::Detection detection = ... // somehow get fsdk::Detection object
const int detectionSize = detection.getRect().width;

Configurations:

See the “Credibility Estimator settings” section in the “ConfigurationGuide.pdf” document.

API structure name:

ICredibilityCheckEstimator

Plan files:

• credibility_check_cpu.plan
• credibility_check_cpu-avx2.plan
• credibility_check_gpu.plan

VisionLabs B.V. 50 / 136

6.5 Facial Hair Estimation

Name: FacialHairEstimator

Algorithm description:

This estimator aims to detect a facial hair type on the face in the source image. It can return the next
results:

• There is no hair on the face (see FacialHair::NoHair field in the FacialHair enum);
• There is stubble on the face (see FacialHair::Stubble field in the FacialHair enum);
• There is mustache on the face (see FacialHair::Mustache field in the FacialHair enum);
• There is beard on the face (see FacialHair::Beard field in the FacialHair enum).

Implementation description:

The estimator (see IFacialHairEstimator in IFacialHairEstimator.h):

• Implements the estimate() function that accepts source warped image in R8G8B8 format and
FacialHairEstimation structure to return results of estimation;

• Implements the estimate() function that accepts fsdk::Span of the source warped images
in R8G8B8 format and fsdk::Span of the FacialHairEstimation structures to return results of
estimation.

The FacialHair enumeration contains all possible results of the FacialHair estimation:

enum class FacialHair {
NoHair = 0, //!< no hair on the face
Stubble, //!< stubble on the face
Mustache, //!< mustache on the face
Beard //!< beard on the face

};

The FacialHairEstimation structure contains results of the estimation:

struct FacialHairEstimation {
FacialHair result; //!< estimation result (@see FacialHair

enum)
// scores
float noHairScore; //!< no hair on the face score
float stubbleScore; //!< stubble on the face score
float mustacheScore; //!< mustache on the face score
float beardScore; //!< beard on the face score

};

There are two groups of the fields:

VisionLabs B.V. 51 / 136

1. The first group contains only the result enum:

FacialHair result; //!< estimation result (@see FacialHair
enum)

Result enum field FacialHairEstimation contain the target results of the estimation.

2. The second group contains scores:

float noHairScore; //!< no hair on the face score
float stubbleScore; //!< stubble on the face score
float mustacheScore; //!< mustache on the face score
float beardScore; //!< beard on the face score

The scores group contains the estimation scores for each possible result of the estimation.

All scores are defined in [0,1] range. Sum of scores always equals 1.

Filtration parameters:

The estimator is trained to work with face images that meet the following requirements:

Table 14: “Requirements for fsdk::HeadPoseEstimation”

Attribute Acceptable angle range(degrees)

pitch [-40…40]

yaw [-40…40]

roll [-40…40]

Table 15: “Requirements for fsdk::MedicalMaskEstimation”

Attribute State

result fsdk::MedicalMask::NoMask

VisionLabs B.V. 52 / 136

Table 16: “Requirements for fsdk::Detection”

Attribute Minimum value

detection size 40

Detection size is detection width.

const fsdk::Detection detection = ... // somehow get fsdk::Detection object
const int detectionSize = detection.getRect().width;

API structure name:

IFacialHairEstimator

Plan files:

• face_hair_cpu.plan
• face_hair_cpu-avx2.plan
• face_hair_gpu.plan

VisionLabs B.V. 53 / 136

6.6 Natural Light Estimation

Name: NaturalLightEstimator

Algorithm description:

This estimator aims to detect a natural light on the source face image. It can return the next results:

• Light is not natural on the face image (see LightStatus::NonNatural field in the LightStatus
enum);

• Light is natural on the face image (see LightStatus::Natural field in the LightStatus enum).

Implementation description:

The estimator (see INaturalLightEstimator in INaturalLightEstimator.h):

• Implements the estimate() function that accepts source warped image in R8G8B8 format and
NaturalLightEstimation structure to return results of estimation;

• Implements the estimate() function that accepts fsdk::Span of the source warped images in
R8G8B8 format and fsdk::Span of the NaturalLightEstimation structures to return results of
estimation.

The LightStatus enumeration contains all possible results of the NaturalLight estimation:

enum class LightStatus : uint8_t {
NonNatural = 0, //!< light is not natural
Natural = 1 //!< light is natural

};

The NaturalLightEstimation structure contains results of the estimation:

struct NaturalLightEstimation {
LightStatus status; //!< estimation result (@see

NaturalLight enum).
float score; //!< Numerical value in range [0,

1].
};

There are two groups of the fields:

1. The first group contains only the result enum:

LightStatus status; //!< estimation result (@see
LightStatus enum).

Result enum field NaturalLightEstimation contain the target results of the estimation.

VisionLabs B.V. 54 / 136

2. The second group contains scores:

float score; //!< Numerical value in range [0,
1].

The scores group contains the estimation scores for each possible result of the estimation.

All scores are defined in [0,1] range. Sum of scores always equals 1.

Recommended thresholds:

Tablebelowcontain thresholds fromfaceengineconfiguration file (faceengine.conf) inNaturalLightEstimator
::Settings section. By default, this threshold value is set to optimal.

Table 17: “Natural light estimator recommended threshold”

Threshold Recommended value

naturalLightThreshold 0.5

Filtration parameters:

The estimator is trained to work with face images that meet the following requirements:

Table 18: “Requirements for fsdk::MedicalMaskEstimation”

Attribute State

result fsdk::MedicalMask::NoMask

Table 19: “Requirements for fsdk::SubjectiveQuality”

Attribute Minimum value

blur 0.5

Also fsdk::GlassesEstimationmust not be equal to fsdk::GlassesEstimation::SunGlasses.

Configurations:

See the “Natural Light Estimator settings” section in the “ConfigurationGuide.pdf” document.

VisionLabs B.V. 55 / 136

API structure name:

INaturalLightEstimator

Plan files:

• natural_light_cpu.plan
• natural_light_cpu-avx2.plan
• natural_light_gpu.plan

VisionLabs B.V. 56 / 136

6.7 Fish Eye Estimation

Name: FishEyeEstimator

Algorithm description:

This estimator aims to detect a fish eye effect on the source face image. It can return the next fish eye
effect status results:

• There is no fisheyeeffecton the face image (seeFishEye::NoFishEyeEffect field in theFishEye
enum);

• There is fish eye effect on the face image (see FishEye::FishEyeEffect field in the FishEye
enum).

Implementation description:

The estimator (see IFishEyeEstimator in IFishEyeEstimator.h):

• Implements the estimate() function that accepts source image in R8G8B8 format, face detection
and FishEyeEstimation structure to return results of estimation;

• Implements the estimate() function that accepts fsdk::Span of the source images in R8G8B8
format, fsdk::Span of the face detections and fsdk::Span of the FishEyeEstimation structures
to return results of estimation.

The FishEye enumeration contains all possible results of the FishEye estimation:

enum class FishEye {
NoFishEyeEffect = 0, //!< no fish eye effect
FishEyeEffect = 1 //!< with fish eye effect

};

The FishEyeEstimation structure contains results of the estimation:

struct FishEyeEstimation {
FishEye result; //!< estimation result (@see FishEye enum)
float score; //!< fish eye effect score

};

There are two groups of the fields:

1. The first group contains only the result enum:

FishEye result; //!< estimation result (@see FishEye enum)

Result enum field FishEyeEstimation contain the target results of the estimation.

VisionLabs B.V. 57 / 136

2. The second group contains scores:

float score; //!< fish eye effect score

The scores group contains the estimation score.

Recommended thresholds:

Tablebelowcontain threshold fromfaceengineconfiguration file (faceengine.conf) inFishEyeEstimator
::Settings section. By default, this threshold value is set to optimal.

Table 20: “Fish Eye estimator recommended threshold”

Threshold Recommended value

fishEyeThreshold 0.5

Recommended scenarios of algorithm usage:

Data domain: Cooperative mode only. It is means:

• High image quality;
• Frontal face looking directly at the camera.

Filtration parameters:

The estimator is trained to work with face images that meet the following requirements:

Table 21: “Requirements for fsdk::HeadPoseEstimation”

Attribute Acceptable angle range(degrees)

pitch [-20…20]

yaw [-25…25]

roll [-10…10]

Table 22: “Requirements for fsdk::Detection”

Attribute Minimum value

detection size 80

VisionLabs B.V. 58 / 136

Detection size is detection width.

const fsdk::Detection detection = ... // somehow get fsdk::Detection object
const int detectionSize = detection.getRect().width;

Configurations:

See the “Fish Eye Estimator settings” section in the “ConfigurationGuide.pdf” document.

API structure name:

IFishEyeEstimator

Plan files:

• fisheye_v1_cpu.plan
• fisheye_v1_cpu-avx2.plan
• fisheye_v1_gpu.plan

VisionLabs B.V. 59 / 136

6.8 Eyebrows Estimation

Name: EyeBrowEstimator

Algorithm description:

This estimator is trained to estimate eyebrow expressions. The EyeBrowEstimator returning four scores
for each possible eyebrow expression. Which are - neutral, raised, squinting, frowning. Possible
scores are in the range [0, 1].

If score closer to1, itmeans that detected expressionon image ismore likely to real expression and closer
to 0 otherwise.

Alongwith the output score value estimator also returns an enumvalue (EyeBrowState). The index of the
maximum score determines the EyeBrow state.

Implementation description:

The estimator (see IEyeBrowEstimator in IEyeBrowEstimator.h):

• Implements the estimate() function acceptswarped source image. Warped image is received from
thewarper (seeIWarper::warp()); Outputestimation isa structurefsdk::EyeBrowEstimation
.

• Implements the estimate() function that needs the span of warped source images and span
of structure fsdk::EyeBrowEstimation. Output estimation is a span of structure fsdk::
EyeBrowEstimation.

The EyeBrowEstimation structure contains results of the estimation:

struct EyeBrowEstimation {
/**
* @brief EyeBrow estimator output enum.
* This enum contains all possible estimation results.

**/
enum class EyeBrowState {

Neutral = 0,
Raised,
Squinting,
Frowning

};

float neutralScore; //!< 0(not neutral)..1(neutral).
float raisedScore; //!< 0(not raised)..1(raised).
float squintingScore; //!< 0(not squinting)..1(squinting).
float frowningScore; //!< 0(not frowning)..1(frowning).
EyeBrowState eyeBrowState; //!< EyeBrow state

VisionLabs B.V. 60 / 136

};

Filtration parameters:

Table 23: “Requirements for fsdk::EyeBrowEstimation”

Attribute Acceptable values

headPose.pitch [-20…20]

headPose.yaw [-20…20]

headPose.roll [-20…20]

Table 24: “Requirements for fsdk::Detection”

Attribute Minimum value

detection size 80

Detection size is detection width.

const fsdk::Detection detection = ... // somehow get fsdk::Detection object
const int detectionSize = detection.getRect().width;

API structure name:

IEyeBrowEstimator

Plan files:

• eyebrow_estimation_v1_cpu.plan
• eyebrow_estimation_v1_cpu-avx2.plan
• eyebrow_estimation_v1_gpu.plan

VisionLabs B.V. 61 / 136

6.9 Portrait Style Estimation

Name: PortraitStyleEstimator

Algorithm description:

This estimator is designed to estimate the position of a person’s shoulders in the original image. It can
return the following results:

• The shoulders are not parallel to the camera (see the PortraitStyleStatus::NonPortrait
field in the PortraitStyleStatus enum);

• Shoulders are parallel to the camera (see the PortraitStyleStatus::Portrait field in the
PortraitStyleStatus enum);

• Shoulders are hidden (see the PortraitStyleStatus::HiddenShoulders field in the
PortraitStyleStatus enum);

Implementation description:

The Estimator (see IPortraitStyleEstimator in IPortraitStyleEstimator.h):

• Implementsestimate() function thatacceptsR8G8B8 source image, detectionandPortraitStyleEstimation
structure to return estimation results;

• Implements an estimate() function that accepts fsdk::Span of R8G8B8 source images, fsdk::
Span of detections, and fsdk::Span of PortraitStyleEstimation structures to return estimation
results.

The PortraitStyleStatus enumeration contains all possible results of the PortraitStyle estimation:

enum class PortraitStyleStatus : uint8_t {
NonPortrait = 0, //!< NonPortrait
Portrait = 1, //!< Portrait
HiddenShoulders = 2 //!< HiddenShoulders

};

The PortraitStyleEstimation structure contains results of the estimation:

struct PortraitStyleEstimation {
PortraitStyleStatus status; //!< estimation result (@see

PortraitStyleStatus enum).
float nonPortraitScore; //!< numerical value in range

[0, 1]
float portraitScore; //!< numerical value in range

[0, 1]
float hiddenShouldersScore; //!< numerical value in range

[0, 1]

VisionLabs B.V. 62 / 136

};

There are two groups of the fields:

1. The first group contains the enum:

PortraitStyleStatus status; //!< estimation result (@see
PortraitStyleStatus enum).

Result enum field PortraitStyleStatus contain the target results of the estimation.

2. The second group contains score:

float nonPortraitScore; //!< numerical value in range
[0, 1]

float portraitScore; //!< numerical value in range
[0, 1]

float hiddenShouldersScore; //!< numerical value in range
[0, 1]

The scores are defined in [0,1] range.

Recommended thresholds:

Tablebelowcontain threshold fromfaceengineconfiguration file (faceengine.conf) inPortraitStyleEstimator
::Settings section. By default, this threshold value is set to optimal.

Table 25: “Portrait Style estimator recommended threshold”

Threshold Recommended value

notPortraitStyleThreshold 0.25

portraitStyleThreshold 0.5

hiddenShouldersThreshold 0.25

Filtration parameters:

The estimator is trained to work with face images that meet the following requirements:

Type of preferable detector is FaceDetV3.

VisionLabs B.V. 63 / 136

Table 26: “Requirements for Detector”

Attribute Min face size

result 40

Table 27: “Requirements for fsdk::HeadPoseEstimation”

Attribute Maximum value

yaw 20.0

pitch 20.0

roll 20.0

Configurations:

See the “Portrait Style Estimator settings” section in the “ConfigurationGuide.pdf” document.

API structure name:

IPortraitStyleEstimator

Plan files:

• portrait_style_v2_cpu.plan
• portrait_style_v2_cpu-avx2.plan
• portrait_style_v2_gpu.plan

VisionLabs B.V. 64 / 136

6.10 Headwear Estimation

Name: HeadWearEstimator

Algorithm description:

This estimator aims to detect a headwear status and headwear type on the face in the source image. It
can return the next headwear status results:

• There is headwear (see HeadWearState::Yes field in the HeadWearState enum);
• There is no headwear (see HeadWearState::No field in the HeadWearState enum);

And this headwear type results:

• There is no headwear on the head (see HeadWearType::NoHeadWear field in the HeadWearType
enum);

• There is baseball cap on the head (see HeadWearType::BaseballCap field in theHeadWearType
enum);

• There is beanie on the head (see HeadWearType::Beanie field in the HeadWearType enum);
• There is peaked cap on the head (see HeadWearType::PeakedCap field in the HeadWearType
enum);

• There is shawl on the head (see HeadWearType::Shawl field in the HeadWearType enum);
• There is hat with ear flaps on the head (see HeadWearType::HatWithEarFlaps field in the
HeadWearType enum);

• There is helmet on the head (see HeadWearType::Helmet field in the HeadWearType enum);
• There is hood on the head (see HeadWearType::Hood field in the HeadWearType enum);
• There is hat on the head (see HeadWearType::Hat field in the HeadWearType enum);
• There is something other on the head (see HeadWearType::Other field in the HeadWearType
enum);

Implementation description:

The estimator (see IHeadWearEstimator in IHeadWearEstimator.h):

• Implements the estimate() function that accepts warped image in R8G8B8 format and
HeadWearEstimation structure to return results of estimation;

• Implements the estimate() function that accepts fsdk::Span of the source warped images
in R8G8B8 format and fsdk::Span of the HeadWearEstimation structures to return results of
estimation.

TheHeadWearState enumeration contains all possible results of the Headwear state estimation:

enum class HeadWearState {
Yes = 0, //< there is headwear
No, //< there is no headwear
Count

VisionLabs B.V. 65 / 136

};

TheHeadWearType enumeration contains all possible results of the Headwear type estimation:

enum class HeadWearType : uint8_t {
NoHeadWear = 0, //< there is no headwear on the head
BaseballCap, //< there is baseball cap on the head
Beanie, //< there is beanie on the head
PeakedCap, //< there is peaked cap on the head
Shawl, //< there is shawl on the head
HatWithEarFlaps, //< there is hat with ear flaps on the head
Helmet, //< there is helmet on the head
Hood, //< there is hood on the head
Hat, //< there is hat on the head
Other, //< something other is on the head
Count

};

TheHeadWearStateEstimation structure contains results of the Headwear state estimation:

struct HeadWearStateEstimation {
HeadWearState result; //!< estimation result (@see HeadWearState

enum)
float scores[static_cast<int>(HeadWearState::Count)]; //!<

estimation scores

/**
* @brief Returns score of required headwear state.
* @param [in] state headwear state.
* @see HeadWearState for more info.
* */

inline float getScore(HeadWearState state) const;
};

There are two groups of the fields:

1. The first group contains only the result enum:

HeadWearState result; //!< estimation result (@see HeadWearState
enum)

2. The second group contains scores:

VisionLabs B.V. 66 / 136

float scores[static_cast<int>(HeadWearState::Count)]; //!<
estimation scores

TheHeadWearTypeEstimation structure contains results of the Headwear type estimation:

struct HeadWearTypeEstimation {
HeadWearType result; //!< estimation result (@see HeadWearType enum)
float scores[static_cast<int>(HeadWearType::Count)]; //!< estimation

scores

/**
* @brief Returns score of required headwear type.
* @param [in] type headwear type.
* @see HeadWearType for more info.
* */

inline float getScore(HeadWearType type) const;
};

There are two groups of the fields:

1. The first group contains only the result enum:

HeadWearType result; //!< estimation result (@see HeadWearType enum)

2. The second group contains scores:

float scores[static_cast<int>(HeadWearType::Count)]; //!< estimation
scores

TheHeadWearEstimation structure contains results of both Headwear state and type estimations:

struct HeadWearEstimation {
HeadWearStateEstimation state; //!< headwear state estimation

//!< (@see HeadWearStateEstimation)
HeadWearTypeEstimation type; //!< headwear type estimation

//!< (@see HeadWearTypeEstimation)
};

The scores group contains the estimation scores for each possible result of the estimation. All scores are
defined in [0,1] range. Sum of scores always equals 1.

Filtration parameters:

VisionLabs B.V. 67 / 136

Table 28: “Requirements for fsdk::Detection”

Attribute Minimum value

detection size 80

Note. Detection size is detection width.

const fsdk::Detection detection = ... // somehow get fsdk::Detection object
const int detectionSize = detection.getRect().width;

API structure name:

IHeadWearEstimator

Plan files:

• head_wear_v1_cpu.plan
• head_wear_v1_cpu-avx2.plan
• head_wear_v1_gpu.plan

VisionLabs B.V. 68 / 136

6.11 Background Estimation

Name: BackgroundEstimator

Algorithm description:

This estimator is designed to estimate the background in the original image. It can return the following
results:

• Thebackground isnon-solid (see theBackgroundStatus::NonSolid field in theBackgroundStatus
enum);

• The background is solid (see the BackgroundStatus::Solid field in the BackgroundStatus
enum);

Implementation description:

The estimator (see IBackgroundEstimator in IBackgroundEstimator.h):

• Implements an estimate() function that accepts R8G8B8 source image, detection and
BackgroundEstimation structure to return estimation results;

• Implements an estimate() function that accepts fsdk::Span of R8G8B8 source images, fsdk::
Span of detections, and fsdk::Span of BackgroundEstimation structures to return estimation
results.

The BackgroundStatus enumeration contains all possible results of the Background estimation:

enum class BackgroundStatus : uint8_t {
NonSolid = 0, //!< NonSolid
Solid = 1 //!< Solid

};

The BackgroundEstimation structure contains results of the estimation:

struct BackgroundEstimation {
BackgroundStatus status; //!< estimation result (@see

BackgroundStatus enum).
float backgroundScore; //!< numerical value in range [0, 1],

where 1 - is uniform background, 0 - is non uniform.
float backgroundColorScore; //!< numerical value in range [0, 1],

where 1 - is light background, 0 - is too dark.
};

There are two groups of the fields:

1. The first group contains the enum:

VisionLabs B.V. 69 / 136

BackgroundStatus status; //!< estimation result (@see
BackgroundStatus enum).

Result enum field BackgroundStatus contain the target results of the estimation.

2. The second group contains scores:

float backgroundScore; //!< numerical value in range [0, 1],
where 1 - is solid background, 0 - is non solid.

float backgroundColorScore; //!< numerical value in range [0, 1],
where 1 - is light background, 0 - is too dark.

The scores are defined in [0,1] range. If two scores are above the threshold, then the background is solid,
otherwise the background is not solid.

Recommended thresholds:

Tablebelowcontain thresholds fromfaceengineconfiguration file (faceengine.conf) inBackgroundEstimator
::Settings section. By default, these threshold values are set to optimal.

Table 29: “Background estimator recommended thresholds”

Threshold Recommended value

backgroundThreshold 0.5

backgroundColorThreshold 0.5

Filtration parameters:

The estimator is trained to work with face images that meet the following requirements: The face in a
frame should be large in relation to frame sizes. The face should occupy about half of the frame area.

max(frameWidth, frameHeight) / max(faceWidth, faceHeight) <= 2.0

The type of preferable detector is FaceDetV3.

Table 30: “Requirements for Detector”

Attribute Min face size

result 40

VisionLabs B.V. 70 / 136

Table 31: “Requirements for fsdk::HeadPoseEstimation”

Attribute Maximum value

yaw 20.0

pitch 20.0

roll 20.0

Configurations:

See the “Background Estimator settings” section in the “ConfigurationGuide.pdf” document.

API structure name:

IBackgroundEstimator

Plan files:

• background_v2_cpu.plan
• background_v2_cpu-avx2.plan
• background_v2_gpu.plan

VisionLabs B.V. 71 / 136

6.12 Grayscale, color or infrared Estimation

Name: BlackWhiteEstimator

Algorithm description:

BlackWhite estimator has two interfaces.

The “By full frame” interface detects if an input image is grayscale or color. It is indifferent to image
content and dimensions; you can pass both face crops (including warped images) and full frames.

The “Bywarped frame” interface can be used only with warped images (see chapter “Imagewarping” for
details). Checks if an image is color, grayscale or infrared.

Implementation description:

The “By full frame” interface of estimator (see ImageColorEstimation in IBlackWhiteEstimator.h):

• Implements estimate() function that accepts source image andoutputs a boolean, indicating if the
image is grayscale (true) or not (false).

The “By warped frame” interface of estimator (see IBlackWhiteEstimator in IBlackWhiteEstimator.h):

• Implements the estimate() function that acceptswarped source image.

• Outputs ImageColorEstimation structures.

struct ImageColorEstimation {

float colorScore; //!< 0(grayscale)..1(color);
float infraredScore; //!< 0(infrared)..1(not infrared);

/**
* @brief Enumeration of possible image color types.
* */

enum class ImageColorType : uint8_t {
Color = 0, //!< image is color.
Grayscale, //!< Image is grayscale.
Infrared, //!< Image is infrared.

};

ImageColorType colorType;
};

ImageColorEstimation::ImageColorType presents color image type as enumwith possible values:
Color, Grayscale, Infrared.

VisionLabs B.V. 72 / 136

- For color image score `colorScore` will be close to 1.0 and the second one
`infraredScore` - to 0.0;

- for infrared image score `colorScore` will be close to 0.0 and the second
one `infraredScore` - to 1.0;

- for grayscale images both of scores will be near 0.0.

Both interfaces use different principles of color type estimation.

BlackWhite estimator is trained to work with real warped photo of faces. We do not guarantee
correctness when the people in the photo are fake (not real, such as the photo in the photo).

Recommended thresholds:

Tablebelowcontain threshold fromfaceengineconfiguration file (faceengine.conf) inBlackWhiteEstimator
::Settings section. By default, these threshold values are set to optimal.

Table 32: “Black and white estimator recommended thresholds”

Threshold Recommended value

colorThreshold 0.5

irThreshold 0.5

Configurations:

See the “BlackWhite Estimator settings” section in the “ConfigurationGuide.pdf” document.

API structure name:

IBlackWhiteEstimator

Plan files:

• black_white_and_ir_v1_cpu.plan
• black_white_and_ir_v1_cpu-avx2.plan
• black_white_and_ir_v1_gpu.plan

VisionLabs B.V. 73 / 136

6.13 Face features extraction functionality

6.13.1 Eyes Estimation

Name: EyeEstimator

Algorithm description:

The estimator is trained to work with warped images (see chapter “Image warping” for details).

For this type of estimator can be defined sensor type.

This estimator aims to determine:

• Eye state: Open, Closed, Occluded;
• Precise eye iris location as an array of landmarks;
• Precise eyelid location as an array of landmarks.

You can only passwarped imagewith detected face to the estimator interface. Better image quality leads
to better results.

Eye state classifier supports three categories: “Open”, “Closed”, “Occluded”. Poor quality images or ones
that depict obscured eyes (think eyewear, hair, gestures) fall into the “Occluded” category. It is always a
good idea to check eye state before using the segmentation result.

The precise location allows iris and eyelid segmentation. The estimator is capable of outputting iris and
eyelid shapes as an array of points together forming an ellipsis. You should only use segmentation results
if the state of that eye is “Open”.

Implementation description:

The estimator:

• Implements the estimate() function that accepts warped source image and warped landmarks,
either of type Landmarks5 or Landmarks68. The warped image and landmarks are received from
the warper (see IWarper::warp());

• Classifies eyes state and detects its iris and eyelid landmarks;

• Outputs EyesEstimation structures.

Orientation terms “left” and “right” refer to the way you see the image as it is shown on the screen.
It means that left eye is not necessarily left from the person’s point of view, but is on the left side
of the screen. Consequently, right eye is the one on the right side of the screen. More formally, the
label “left” refers to subject’s left eye (and similarly for the right eye), such that xright < xleft.

EyesEstimation::EyeAttributes presents eye state as enum EyeState with possible values: Open,
Closed, Occluded.

Iris landmarks are presented with a template structure Landmarks that is specialized for 32 points.

VisionLabs B.V. 74 / 136

Eyelid landmarks are presented with a template structure Landmarks that is specialized for 6 points.

The EyesEstimation structure contains results of the estimation:

struct EyesEstimation {
/**
* @brief Eyes attribute structure.
* */

struct EyeAttributes {
/**
* @brief Enumeration of possible eye states.
* */
enum class State : uint8_t {

Closed, //!< Eye is closed.
Open, //!< Eye is open.
Occluded //!< Eye is blocked by something not transparent

, or landmark passed to estimator doesn't point to an eye
.

};

static constexpr uint64_t irisLandmarksCount = 32; //!< Iris
landmarks amount.

static constexpr uint64_t eyelidLandmarksCount = 6; //!< Eyelid
landmarks amount.

/// @brief alias for @see Landmarks template structure with
irisLandmarksCount as param.

using IrisLandmarks = Landmarks<irisLandmarksCount>;

/// @brief alias for @see Landmarks template structure with
eyelidLandmarksCount as param

using EyelidLandmarks = Landmarks<eyelidLandmarksCount>;

State state; //!< State of an eye.

IrisLandmarks iris; //!< Iris landmarks.
EyelidLandmarks eyelid; //!< Eyelid landmarks

};

EyeAttributes leftEye; //!< Left eye attributes
EyeAttributes rightEye; //!< Right eye attributes

};

API structure name:

VisionLabs B.V. 75 / 136

IEyeEstimator

Plan files:

• eyes_estimation_flwr8_cpu.plan
• eyes_estimation_ir_cpu.plan
• eye_status_estimation_flwr_cpu.plan
• eyes_estimation_flwr8_cpu-avx2.plan
• eyes_estimation_ir_cpu-avx2.plan
• eyes_estimation_ir_gpu.plan
• eyes_estimation_flwr8_gpu.plan
• eye_status_estimation_flwr_cpu.plan
• eye_status_estimation_flwr_cpu-avx2.plan
• eye_status_estimation_flwr_gpu.plan

VisionLabs B.V. 76 / 136

6.13.2 Red Eyes Estimation

Name: RedEyeEstimator

Algorithm description:

The estimator is trained to work with warped images (see chapter “Image warping” for details) and
warped landmarks.

Red Eye estimator evaluates whether a person’s eyes are red in a photo or not.

You can pass only warped images with detected faces to the estimator interface. Better image quality
leads to better results.

Implementation description:

The estimator (see IRedEyeEstimator in IEstimator.h):

• Implements the estimate() function that accepts warped source image in R8G8B8 format and
warped Landmarks5. The warped image and landmarks are received from the warper (see
IWarper::warp());.

• Implements the estimate() function that accepts fsdk::Span of the source warped images in
R8G8B8 format and fsdk::Span of warped Landmarks.

• Outputs RedEyeEstimation structure.

RedEyeEstimation structure consists of attributes for each eye. Eye attributes consists of a score of and
status. Scores is normalized float value in a range of [0..1] where 1 is red eye and 0 is not.

The RedEyeEstimation structure contains results of the estimation:

struct RedEyeEstimation {
/**
* @brief Eyes attribute structure.
* */

struct RedEyeAttributes {
RedEyeStatus status; //!< Status of an eye.
float score; //!< Score, numerical value in range

[0,1].
};

RedEyeAttributes leftEye; //!< Left eye attributes
RedEyeAttributes rightEye; //!< Right eye attributes

};

There are two groups of the fields in RedEyeAttributes:

1. The first field is a status:

VisionLabs B.V. 77 / 136

RedEyeStatus status; //!< Status of an eye.

2. The second field is a score, which defined in [0,1] range:

float score; //!< Score, numerical value in range [0, 1].

Enumeration of possible red eye statuses.

enum class RedEyeStatus : uint8_t {
NonRed, //!< Eye is not red.
Red, //!< Eye is red.

};

Recommended thresholds:

Tablebelowcontain threshold fromfaceengineconfiguration file (faceengine.conf) inRedEyeEstimator
::Settings section. By default, this threshold value is set to optimal.

Table 33: “Red eye estimator recommended threshold”

Threshold Recommended value

redEyeThreshold 0.5

Filtration parameters:

The estimator is trained to work with face images that meet the following requirements:

Table 34: “Requirements for fsdk::NaturalLight”

Attribute Minimum value

score 0.5

Table 35: “Requirements for fsdk::SubjectiveQuality”

Attribute Minimum value

blur 0.61

VisionLabs B.V. 78 / 136

Attribute Minimum value

light 0.57

darkness 0.5

illumination 0.1

specularity 0.1

Also fsdk::GlassesEstimationmust not be equal to fsdk::GlassesEstimation::SunGlasses.

Configurations:

See the “RedEyeEstimator settings” section in the “ConfigurationGuide.pdf” document.

API structure name:

IRedEyeEstimator

Plan files:

• red_eye_v1_cpu.plan
• red_eye_v1_cpu-avx2.plan
• red_eye_v1_gpu.plan

VisionLabs B.V. 79 / 136

6.13.3 Gaze Estimation

Name: GazeEstimator

Algorithm description:

This estimator is designed to determine gaze direction relatively to head pose estimation. Since 3D head
translation is hard todetermine reliablywithout camera-specific calibration, only 3D rotation component
is estimated.

For this type of estimator can be defined sensor type.

Estimation characteristics:

• Units (degrees);
• Notation (Euler angles);
• Accuracy (see table below).

Roll angle is not estimated, prediction accuracy decreases as a rotation angle increases. We present
typical average errors for different angle ranges in the table below.

Implementation description:

The GazeEstimation structure contains results of the estimation. Each angle is measured in degrees
and in [-180, 180] range:

struct GazeEstimation {
float yaw; //!< Eye yaw angle.
float pitch; //!< Eye pitch angle.

};

Metrics:

Table below contains gaze prediction accuracy values.

Table 36: “Gaze prediction accuracy”

Range -25°…+25° -25°… -45 ° or 25 °… +45°

Average prediction error (per axis) Yaw ±2.7° ±4.6°

Average prediction error (per axis) Pitch ±3.0° ±4.8°

Zero position corresponds to a gaze direction orthogonally to face plane, with the axis of symmetry
parallel to the vertical camera axis.

API structure name:

VisionLabs B.V. 80 / 136

IGazeEstimator

Plan files:

• gaze_v2_cpu.plan
• gaze_v2_cpu-avx2.plan
• gaze_v2_gpu.plan
• gaze_ir_v2_cpu.plan
• gaze_ir_v2_cpu-avx2.plan
• gaze_ir_v2_gpu.plan

VisionLabs B.V. 81 / 136

6.13.4 Glasses Estimation

Name: GlassesEstimator

Algorithm description:

Glasses estimator is designed to determine whether a person is currently wearing any glasses or not.
There are 3 types of states estimator is currently able to estimate:

• NoGlasses state determines whether a person is wearing any glasses at all;
• EyeGlasses state determines whether a person is wearing eyeglasses;
• SunGlasses state determines whether a person is wearing sunglasses.

Note. Source input image must be warped in order for estimator to work properly (see chapter
“Image warping” for details). Quality of estimation depends on threshold values located in faceengine
configuration file (see below).

Implementation description:

Enumeration of possible glasses estimation statuses:

enum class GlassesEstimation: uint8_t{
NoGlasses, //!< Person is not wearing glasses
EyeGlasses, //!< Person is wearing eyeglasses
SunGlasses, //!< Person is wearing sunglasses
EstimationError //!< failed to estimate

};

Recommended thresholds:

Tablebelowcontain thresholds fromfaceengineconfiguration file (faceengine.conf) inGlassesEstimator
::Settings section. By default, these threshold values are set to optimal.

Table 37: “Glasses estimator recommended thresholds”

Threshold Recommended value

noGlassesThreshold 0.986

eyeGlassesThreshold 0.57

sunGlassesThreshold 0.506

Configurations:

See the “GlassesEstimator settings” section in the “ConfigurationGuide.pdf” document.

VisionLabs B.V. 82 / 136

Metrics:

Table below contain true positive rates corresponding to selected false positive rates.

Table 38: “Glasses estimator TPR/FPR rates”

State TPR FPR

NoGlasses 0.997 0.00234

EyeGlasses 0.9768 0.000783

SunGlasses 0.9712 0.000383

API structure name:

IGlassesEstimator

Plan files:

• glasses_estimation_flwr_cpu.plan
• glasses_estimation_flwr_cpu-avx2.plan
• glasses_estimation_flwr_gpu.plan

VisionLabs B.V. 83 / 136

6.13.5 Overlap Estimation

Name: OverlapEstimator

Algorithm description:

This estimator tells whether the face is overlapped by any object. It returns a structure with value of
overlapping and Boolean answer. It returns a structure with 2 fields. One is the value of overlapping
in the range [0..1] where 0 is not overlapped and 1.0 is overlapped, the second is a Boolean answer. A
Boolean answer depends on the threshold listed below. If the value is greater than the threshold, the
answer returns true, else false.

Implementation description:

The estimator (see IOverlapEstimator in IOverlapEstimator.h):

• Implements the estimate() function that accepts source image in R8G8B8 format and fsdk::
Detection structure of corresponding source image (see section “Detection structure”);

• Estimates whether the face is overlapped by any object on input image;

• Outputs structure with value of overlapping and Boolean answer.

TheOverlapEstimation structure contains results of the estimation:

struct OverlapEstimation {
float overlapValue; //!< Numerical value of face overlapping in

range [0, 1].
bool overlapped; //!< Overlapped face (true) or not (false).

};

Recommended thresholds:

Tablebelowcontain threshold fromfaceengineconfiguration file (faceengine.conf) inOverlapEstimator
::Settings section. By default, this threshold value is set to optimal.

Table 39: “Overlap estimator recommended threshold”

Threshold Recommended value

overlapThreshold 0.01

Configurations:

See the “OverlapEstimator settings” section in the “ConfigurationGuide.pdf” document.

API structure name:

VisionLabs B.V. 84 / 136

IOverlapEstimator

Plan files:

• overlap_estimation_flwr_cpu.plan
• overlap_estimation_flwr_cpu-avx2.plan
• overlap_estimation_flwr_gpu.plan

VisionLabs B.V. 85 / 136

6.14 Emotion estimation functionality

6.14.1 Emotions Estimation

Name: EmotionsEstimator

Algorithm description:

The estimator is trained to work with warped images (see chapter “Image warping” for details).

This estimator aims to determinewhether a face depicted on an image expresses the following emotions:

• Anger
• Disgust
• Fear
• Happiness
• Surprise
• Sadness
• Neutrality

You can pass only warped images with detected faces to the estimator interface. Better image quality
leads to better results.

Implementation description:

The estimator (see IEmotionsEstimator in IEmotionsEstimator.h):

• Implements the estimate() function that acceptswarped source image. Warped image is received
from the warper (see IWarper::warp());

• Estimates emotions expressed by the person on a given image;

• Outputs EmotionsEstimation structure with aforementioned data.

EmotionsEstimation presents emotions as normalized float values in the range of [0..1] where 0 is lack of
a specific emotion and 1 is the maximum intensity of an emotion.

The EmotionsEstimation structure contains results of the estimation:

struct EmotionsEstimation {
float anger; //!< 0(not angry)..1(angry);
float disgust; //!< 0(not disgusted)..1(disgusted);
float fear; //!< 0(no fear)..1(fear);
float happiness;//!< 0(not happy)..1(happy);
float sadness; //!< 0(not sad)..1(sad);
float surprise; //!< 0(not surprised)..1(surprised);
float neutral; //!< 0(not neutral)..1(neutral).

enum Emotions {

VisionLabs B.V. 86 / 136

Anger = 0,
Disgust,
Fear,
Happiness,
Sadness,
Surprise,
Neutral,
Count

};

/**
* @brief Returns emotion with greatest score
* */

inline Emotions getPredominantEmotion() const;

/**
* @brief Returns score of required emotion
* @param [in] emotion emotion
* @see Emotions for details.
* */

inline float getEmotionScore(Emotions emotion) const;
};

API structure name:

IEmotionsEstimator

Plan files:

• emotion_recognition_v2_cpu.plan
• emotion_recognition_v2_cpu-avx2.plan
• emotion_recognition_v2_gpu.plan

VisionLabs B.V. 87 / 136

6.15 Mouth Estimation Functionality

Name: MouthEstimator

Algorithm description:

This estimator is designed to predict person’s mouth state.

Implementation description:

Mouth Estimation

It returns the following bool flags:

bool isOpened; //!< Mouth is opened flag
bool isSmiling; //!< Person is smiling flag
bool isOccluded; //!< Mouth is occluded flag

Each of these flags indicate specific mouth state that was predicted.

The combinedmouth state is assumed if multiple flags are set to true. For example there aremany cases
where person is smiling and its mouth is wide open.

Mouth estimator provides score probabilities for mouth states in case user need more detailed
information:

float opened; //!< mouth opened score
float smile; //!< person is smiling score
float occluded; //!< mouth is occluded score

Mouth Estimation Extended

This estimation is extended version of regular Mouth Estimation (see above). In addition, It returns the
following fields:

SmileTypeScores smileTypeScores; //!< Smile types scores
SmileType smileType; //!< Contains smile type if person "isSmiling"

If flag isSmiling is true, you can get more detailed information of smile using smileType variable.
smileType can hold following states:

enum class SmileType {
None, //!< No smile
SmileLips, //!< regular smile, without teeths exposed
SmileOpen //!< smile with teeths exposed

};

VisionLabs B.V. 88 / 136

If isSmiling is false, the smileType assigned to None. Otherwise, the field will be assigned with
SmileLips (person is smiling with closed mouth) or SmileOpen (person is smiling with open mouth,
with teeth’s exposed).

Extended mouth estimation provides score probabilities for smile type in case user need more detailed
information:

struct SmileTypeScores {
float smileLips; //!< person is smiling with lips score
float smileOpen; //!< person is smiling with open mouth score

};

smileType variable is set based on according scores hold by smileTypeScores variable - set based on
maximum score from smileLips and smileOpen or to None if person not smiling at all.

if (estimation.isSmiling)
estimation.smileType = estimation.smileTypeScores.smileLips >

estimation.smileTypeScores.smileOpen ?
fsdk::SmileType::SmileLips : fsdk::SmileType::SmileOpen;

else
estimation.smileType = fsdk::SmileType::None;

When you use Mouth Estimation Extended, the underlying computation are exactly the same as
if you use regular Mouth Estimation. The regular Mouth Estimation was retained for backward
compatibility.

These estimators are trained toworkwithwarped images (see Chapter “Imagewarping” for details).

Recommended thresholds:

Tablebelowcontain thresholds fromfaceengineconfiguration file (faceengine.conf) inMouthEstimator
::Settings section. By default, these threshold values are set to optimal.

Table 40: “Mouth estimator recommended thresholds”

Threshold Recommended value

occlusionThreshold 0.3

smileThreshold 0.55

openThreshold 0.64

VisionLabs B.V. 89 / 136

Configurations:

See the “Mouth Estimator settings” section in the “ConfigurationGuide.pdf” document.

API structure name:

IMouthEstimator

Plan files:

• mouth_estimation_v4_cpu.plan
• mouth_estimation_v4_cpu-avx2.plan
• mouth_estimation_v4_gpu.plan

VisionLabs B.V. 90 / 136

6.16 Liveness check functionality

6.16.1 HeadAndShouldersLiveness Estimation

Name: HeadAndShouldersLivenessEstimator

Algorithm description:

This estimator tellswhether theperson’s face is real or fake (photo, printed image) and confirmspresence
of a person’s body in the frame. Face should be in the center of the frame and the distance between the
face and the frameborders should be three times greater than space that face takes up in the frame. Both
person’s face and chest have to be in the frame. Camera should be placed at the waist level and directed
from bottom to top. The estimator check for borders of a mobile device to detect fraud. So there should
not be any rectangular areas within the frame (windows, pictures, etc.).

Implementation description:

The estimator (see IHeadAndShouldersLiveness in IHeadAndShouldersLiveness.h):

• Implements the estimateHeadLiveness() function that accepts source image in R8G8B8 format and
fsdk::Detection structure of corresponding source image (see section “Detection structure” in
chapter “Detection facility”).

• Estimates whether it is a real person or not. Outputs float normalized score in range [0..1], 1 - is real
person, 0 - is fake.

• Implements the estimateShouldersLiveness() function that accepts source image in R8G8B8
format and fsdk::Detection structure of corresponding source image (see section “Detection
structure” in chapter “Face detection facility”). Estimates whether real person or not. Outputs
float score normalized in range [0..1], 1 - is real person, 0 - is fake.

Recommended thresholds:

Tablebelowcontain thresholds fromfaceengineconfiguration file (faceengine.conf) inHeadAndShouldersLivenessEstimator
::Settings section. By default, these threshold values are set to optimal.

Table 41: “HeadAndShouldersLiveness estimator recommended thresholds”

Threshold Recommended value

headWidthKoeff 1.0

headHeightKoeff 1.0

shouldersWidthKoeff 0.75

shouldersHeightKoeff 3.0

VisionLabs B.V. 91 / 136

Configurations:

See the “HeadAndShouldersLivenessEstimator settings” section in the “ConfigurationGuide.pdf”
document.

API structure name:

IHeadAndShouldersLivenessEstimator

Plan files:

• hs_shoulders_liveness_estimation_flwr_cpu.plan
• hs_head_liveness_estimation_flwr_cpu.plan
• hs_shoulders_liveness_estimation_flwr_cpu-avx2.plan
• hs_head_liveness_estimation_flwr_cpu-avx2.plan
• hs_shoulders_liveness_estimation_flwr_gpu.plan
• hs_head_liveness_estimation_flwr_gpu.plan

VisionLabs B.V. 92 / 136

6.16.2 LivenessFlyingFaces Estimation

Name: LivenessFlyingFacesEstimator

Algorithm description:

This estimator tells whether the person’s face is real or fake (photo, printed image).

Implementation description:

The estimator (see ILivenessFlyingFacesEstimator in ILivenessFlyingFacesEstimator.h):

• Implements the estimate() function that needs fsdk::Image with valid image in R8G8B8 format
and fsdk::Detection of corresponding source image (see section “Detection structure” in
chapter “Face detection facility”).

• Implements the estimate() function that needs the spanoffsdk::Imagewith valid source images
in R8G8B8 formats and span of fsdk::Detection of corresponding source images (see section
“Detection structure” in chapter “Face detection facility”).

Those methods estimate whether different persons are real or not. Corresponding estimation output
with float scores which are normalized in range [0..1], where 1 - is real person, 0 - is fake.

The estimator is trained to work in combination with fsdk::ILivenessRGBMEstimator.

The LivenessFlyingFacesEstimation structure contains results of the estimation:

struct LivenessFlyingFacesEstimation {
float score; //!< Numerical value in range [0, 1].
bool isReal; //!< Is real face (true) or not (false).

};

Recommended thresholds:

Tablebelowcontain thresholds fromfaceengineconfiguration file (faceengine.conf) inLivenessFlyingFacesEstimator::Settings
section. By default, these threshold values are set to optimal.

Table 42: “Mouth estimator recommended thresholds”

Threshold Recommended value

realThreshold 0.98

aggregationCoeff 0.5

Filtration parameters:

The estimator is trained to work with face images that meet the following requirements:

VisionLabs B.V. 93 / 136

Table 43: “Requirements for fsdk::BestShotQualityEstimator::EstimationResult”

Attribute Acceptable values

headPose.pitch [-30…30]

headPose.yaw [-30…30]

headPose.roll [-40…40]

ags [0.5…1.0]

Table 44: “Requirements for fsdk::Detection”

Attribute Minimum value

detection size 80

Detection size is detection width.

const fsdk::Detection detection = ... // somehow get fsdk::Detection object
const int detectionSize = detection.getRect().width;

Configurations:

See the “LivenessFlyingFaces Estimator settings” section in the “ConfigurationGuide.pdf” document.

API structure name:

ILivenessFlyingFacesEstimator

Plan files:

• flying_faces_liveness_v2_cpu.plan
• flying_faces_liveness_v2_cpu-avx2.plan
• flying_faces_liveness_v2_gpu.plan

VisionLabs B.V. 94 / 136

6.16.3 LivenessRGBM Estimation

Name: LivenessRGBMEstimator

Algorithm description:

This estimator tells whether the person’s face is real or fake (photo, printed image).

Implementation description:

The estimator (see ILivenessRGBMEstimator in ILivenessRGBMEstimator.h):

• Implements the estimate() function that needs fsdk::Face with valid image in R8G8B8 format,
detection structure of corresponding source image (see section “Detection structure” in chapter
“Face detection facility”) and fsdk::Image with accumulated background. This method
estimates whether a real person or not. Output estimation structure contains the float score and
boolean result. The float score normalized in range [0..1], where 1 - is real person, 0 - is fake. The
boolean result has value true for real person and false otherwise.

• Implements theupdate() function thatneeds thefsdk::Imagewith current frame, numberof that
image and previously accumulated background. The accumulated backgroundwill be overwritten
by this call.

The LivenessRGBMEstimation structure contains results of the estimation:

struct LivenessRGBMEstimation {
float score = 0.0f; //!< Estimation score
bool isReal = false;//!< Where person is real or not

};

Recommended thresholds:

Tablebelowcontain thresholds fromfaceengineconfiguration file (faceengine.conf) inLivenessRGBMEstimator
::Settings section. By default, these threshold values are set to optimal.

Table 45: “LivenessRGBM estimator recommended thresholds”

Threshold Recommended value

backgroundCount 100

threshold 0.8

coeff1 0.222

coeff2 0.222

VisionLabs B.V. 95 / 136

Configurations:

See the “LivenessRGBM Estimator settings” section in the “ConfigurationGuide.pdf” document.

API structure name:

ILivenessRGBMEstimator

Plan files:

• rgbm_liveness_cpu.plan
• rgbm_liveness_cpu-avx2.plan
• rgbm_liveness_gpu.plan

VisionLabs B.V. 96 / 136

6.16.4 Depth Liveness Estimation

Name: LivenessDepthEstimator

Algorithm description:

This estimator tells whether the person’s face is real or fake (photo, printed image).

Implementation description:

The estimator (see ILivenessDepthEstimator in ILivenessDepthEstimator.h):

• Implements the estimate() function that accepts source warped image (see chapter “Image
warping” for details) in R16 format and fsdk::DepthEstimation structure. This method
estimates whether or not depth map corresponds to the real person. Corresponding estimation
output with float score which is normalized in range [0..1], where 1 - is real person, 0 - is fake.

The DepthEstimation structure contains results of the estimation:

struct DepthEstimation {
float score; //!< confidence score in [0,1] range. The closer the

score to 1, the more likely that person is alive.
bool isReal; //!< boolean flag that indicates whether a person is

real.
};

Recommended thresholds:

Tablebelowcontain thresholds fromfaceengineconfiguration file (faceengine.conf) inDepthEstimator
::Settings section. By default, these threshold values are set to optimal.

Table 46: “Depth estimator recommended thresholds”

Threshold Recommended value

maxDepthThreshold 3000

minDepthThreshold 100

zeroDepthThreshold 0.66

confidenceThreshold 0.89

Filtration parameters:

The estimator is trained to work with face images that meet the following requirements:

VisionLabs B.V. 97 / 136

Table 47: “Requirements for fsdk::HeadPoseEstimation”

Attribute Acceptable angle range(degrees)

pitch [-15…15]

yaw [-15…15]

roll [-10…10]

Table 48: “Requirements for fsdk::Quality”

Attribute Minimum value

blur 0.94

light 0.90

dark 0.93

Table 49: “Requirements for fsdk::EyesEstimation”

Attribute State

leftEye Open

rightEye Open

Also, the minimum distance between the face bounding box and the frame borders should be greater
than 20 pixels.

Configurations:

See the “Depth Estimator settings” section in the “ConfigurationGuide.pdf” document.

API structure name:

ILivenessDepthEstimator

Plan files:

• depth_estimation_v2_1_cpu.plan
• depth_estimation_v2_1_cpu-avx2.plan
• depth_estimation_v2_1_gpu.plan

VisionLabs B.V. 98 / 136

6.16.5 LivenessOneShotRGB Estimation

Name: LivenessOneShotRGBEstimator

Algorithm description:

This estimator shows whether the person’s face is real or fake (photo, printed image).

The requirements for the processed image and the face in the image are listed above.

This estimator supports images taken on mobile devices or webcams (PC or laptop). Image resolution
minimum requirements:

• Mobile devices - 720 × 960 px
• Webcam (PC or laptop) - 1280 x 720 px

There should be only one face in the image. An error occurs when there are two or more faces in the
image.

Theminimum face detection size must be 200 pixels.

Yaw, pitch, and roll angles should be nomore than 25 degrees in either direction.

The minimum indent between the face and the image borders should be 10 pixels.

Implementation description:

The estimator (see ILivenessOneShotRGBEstimator in ILivenessOneShotRGBEstimator.h):

• Implements the estimate() function that needs fsdk::Image and fsdk::Face with valid
image in R8G8B8 format and detection structure of corresponding source image (see section
“Detection structure” in chapter “Face detection facility”). Output estimation is a structure
fsdk::LivenessOneShotRGBEstimation.

• Implements the estimate() function that needs the span of fsdk::Image and span of fsdk::
Face with valid image in R8G8B8 format and detection structure of corresponding source image
(see section “Detection structure” in chapter “Face detection facility”). The first output estimation
is a span of structure fsdk::LivenessOneShotRGBEstimation. The second output value
(structure fsdk::LivenessOneShotRGBEstimation) is the result of aggregation based on span
of estimations announced above. Pay attention the second output value (aggregation) is optional,
i.e. default argument, which is nullptr.

The LivenessOneShotRGBEstimation structure contains results of the estimation:

struct LivenessOneShotRGBEstimation {
enum class State {

Alive = 0, //!< The person on image is real
Fake, //!< The person on image is fake (photo, printed image)
Unknown //!< The liveness status of person on image is Unknown

VisionLabs B.V. 99 / 136

};

float score; //!< Estimation score
State state; //!< Liveness status
float qualityScore; //!< Liveness quality score

};

Estimation score is normalized in range [0..1], where 1 - is real person, 0 - is fake.

Liveness quality score is an image quality estimation for the liveness recognition.

This parameter is used for filtering if it is possible to make bestshot when checking for liveness.

The reference score is 0,5.

The value of State depends on score and qualityThreshold. The value qualityThreshold
can be given as an argument of method estimate (see ILivenessOneShotRGBEstimator), and in
configuration file faceengine.conf (see ConfigurationGuide LivenessOneShotRGBEstimator).

Recommended thresholds:

Tablebelowcontain thresholds fromfaceengineconfiguration file (faceengine.conf) in theLivenessOneShotRGBEstimator
::Settings section. By default, these threshold values are set to optimal.

Table 50: “LivenessOneShotRGB estimator recommended thresholds”

Threshold Recommended value

realThreshold 0.5

qualityThreshold 0.5

calibrationCoeff 0.87

Configurations:

See the “LivenessOneShotRGBEstimator settings” section in the “ConfigurationGuide.pdf” document.

API structure name:

ILivenessOneShotRGBEstimator

Plan files:

• oneshot_rgb_liveness_v4_model_1_cpu.plan
• oneshot_rgb_liveness_v4_model_2_cpu.plan
• oneshot_rgb_liveness_v4_model_3_cpu.plan
• oneshot_rgb_liveness_v4_model_4_cpu.plan

VisionLabs B.V. 100 / 136

• oneshot_rgb_liveness_v4_model_5_cpu.plan
• oneshot_rgb_liveness_v4_model_6_cpu.plan
• oneshot_rgb_liveness_v4_model_7_cpu.plan
• oneshot_rgb_liveness_v4_model_8_cpu.plan
• oneshot_rgb_liveness_v4_model_9_cpu.plan
• oneshot_rgb_liveness_v4_model_1_cpu-avx2.plan
• oneshot_rgb_liveness_v4_model_2_cpu-avx2.plan
• oneshot_rgb_liveness_v4_model_3_cpu-avx2.plan
• oneshot_rgb_liveness_v4_model_4_cpu-avx2.plan
• oneshot_rgb_liveness_v4_model_5_cpu-avx2.plan
• oneshot_rgb_liveness_v4_model_6_cpu-avx2.plan
• oneshot_rgb_liveness_v4_model_7_cpu-avx2.plan
• oneshot_rgb_liveness_v4_model_8_cpu-avx2.plan
• oneshot_rgb_liveness_v4_model_9_cpu-avx2.plan
• oneshot_rgb_liveness_v4_model_1_gpu.plan
• oneshot_rgb_liveness_v4_model_2_gpu.plan
• oneshot_rgb_liveness_v4_model_3_gpu.plan
• oneshot_rgb_liveness_v4_model_4_gpu.plan
• oneshot_rgb_liveness_v4_model_5_gpu.plan
• oneshot_rgb_liveness_v4_model_6_gpu.plan
• oneshot_rgb_liveness_v4_model_7_gpu.plan
• oneshot_rgb_liveness_v4_model_8_gpu.plan
• oneshot_rgb_liveness_v4_model_9_gpu.plan

6.16.5.1 Usage example
The face in the image and the image itself should meet the estimator requirements.

You can find additional information in example (examples/example_estimation/main.cpp) or in
the code below.

// Minimum detection size in pixels.
constexpr int minDetSize = 200;

// Step back from the borders.
constexpr int borderDistance = 10;

if (std::min(detectionRect.width, detectionRect.height) < minDetSize) {
std::cerr << "Bounding Box width and/or height is less than `minDetSize`

- " << minDetSize << std::endl;
return false;

}

VisionLabs B.V. 101 / 136

if ((detectionRect.x + detectionRect.width) > (image.getWidth() -
borderDistance) || detectionRect.x < borderDistance) {
std::cerr << "Bounding Box width is out of border distance - " <<

borderDistance << std::endl;
return false;

}

if ((detectionRect.y + detectionRect.height) > (image.getHeight() -
borderDistance) || detectionRect.y < borderDistance) {
std::cerr << "Bounding Box height is out of border distance - " <<

borderDistance << std::endl;
return false;

}

// Yaw, pitch and roll.
constexpr int principalAxes = 25;

if (std::abs(headPose.pitch) > principalAxes ||
std::abs(headPose.yaw) > principalAxes ||
std::abs(headPose.roll) > principalAxes) {

std::cerr << "Can't estimate LivenessOneShotRGBEstimation. " <<
"Yaw, pith or roll absolute value is larger than expected value: "

<< principalAxes << "." <<
"\nPitch angle estimation: " << headPose.pitch <<
"\nYaw angle estimation: " << headPose.yaw <<
"\nRoll angle estimation: " << headPose.roll << std::endl;

return false;
}

WerecommendusingDetector type 3 (fsdk::ObjectDetectorClassType::FACE_DET_V3
).

VisionLabs B.V. 102 / 136

6.17 Personal Protection Equipment Estimation

Name: PPEEstimator

Algorithm description:

The Personal Protection Equipment (a.k.a PPE) estimator predicts wether a person is wearing one or
multiple types of protection equipment such as: - Helmet; - Hood; - Vest; - Gloves.

For each one of this attributes estimator returns 3 prediction scores which indicate the possibility of
personwearing thatattribute, notwearing it andan“unknown”scorewhichwill be thehighestof themall
if the estimator wasn’t able to tell wether person on the image wears/doesn’t wear a particular attribute.

Implementation description:

The Personal Protection Equipment Estimation structure for each attribute looks as follows:

struct OnePPEEstimation {
float positive = 0.0f;
float negative = 0.0f;
float unknown = 0.0f;

enum class PPEState : uint8_t {
Positive, //!< person is wearing specific personal equipment;
Negative, //!< person isn't wearing specific personal equipment;
Unknown, //!< it's hard to tell wether person wears specific

personal equipment.
Count //!< state count

};

/**
* @brief returns predominant personal equipment state
* */

inline PPEState getPredominantState();
};

All three prediction scores sum up to 1.

Estimator takes as input an image and a human bounding box of a person for which attributes shall
be predicted. For more information about human detector see “Human Detection” section.

API structure name:

IPPEEstimator

Plan files:

• ppe_estimation_v1_cpu.plan

VisionLabs B.V. 103 / 136

• ppe_estimation_v1_cpu-avx2.plan
• ppe_estimation_v1_gpu.plan

VisionLabs B.V. 104 / 136

6.18 Medical Mask Estimation Functionality

Name: MedicalMaskEstimator

This estimator aims to detect a medical mask on the face in the source image. For the interface with
MedicalMaskEstimation it can return the next results:

• A medical mask is on the face (see MedicalMask::Mask field in the MedicalMask enum);
• There is no medical mask on the face (see MedicalMask::NoMask field in the MedicalMask enum);
• The face is occluded with something (see MedicalMask::OccludedFace field in the MedicalMask
enum);

For the interface with MedicalMaskEstimationExtended it can return the next results:

• A medical mask is on the face (see MedicalMaskExtended::Mask field in the MedicalMaskExtended
enum);

• There is no medical mask on the face (see MedicalMaskExtended::NoMask field in the
MedicalMaskExtended enum);

• A medical mask is not on the right place (see MedicalMaskExtended::MaskNotInPlace field in the
MedicalMaskExtended enum);

• The face is occluded with something (see MedicalMaskExtended::OccludedFace field in the
MedicalMaskExtended enum);

The estimator (see IMedicalMaskEstimator in IEstimator.h):

• Implements the estimate() function that accepts source warped image in R8G8B8 format and
medical mask estimation structure to return results of estimation;

• Implements the estimate() function that accepts source image in R8G8B8 format, face detection to
estimate andmedical mask estimation structure to return results of estimation;

• Implements theestimate() function thataccepts fsdk::Spanof the sourcewarped images inR8G8B8
format and fsdk::Span of the medical mask estimation structures to return results of estimation;

• Implements the estimate() function that accepts fsdk::Spanof the source images inR8G8B8 format,
fsdk::Span of face detections and fsdk::Span of the medical mask estimation structures to return
results of the estimation.

Every method can be used with MedicalMaskEstimation and MedicalMaskEstimationExtended.

The estimator was implemented for two use-cases:

1. When the user already has warped images. For example, when the medical mask estimation is
performed right before (or after) the face recognition;

2. When the user has face detections only.

Note: Calling the estimate() method with warped image and the estimate() method with image and
detection for the same image and the same face could lead to different results.

VisionLabs B.V. 105 / 136

6.18.1 MedicalMaskEstimator thresholds

The estimator returns several scores, one for each possible result. The final result is based on that scores
and thresholds. If some score is above the corresponding threshold, that result is estimated as final. If
none of the scores exceed the matching threshold, the maximum value will be taken. If some of the
scores exceed their thresholds, the results will take precedence in the following order for the case with
MedicalMaskEstimation:

Mask, NoMask, OccludedFace

and for the case with MedicalMaskEstimationExtended:

Mask, NoMask, MaskNotInPlace, OccludedFace

The default values for all thresholds are taken from the configuration file. See Configuration guide for
details.

6.18.2 MedicalMask enumeration

The MedicalMask enumeration contains all possible results of the MedicalMask estimation:

enum class MedicalMask {
Mask = 0, //!< medical mask is on the face
NoMask, //!< no medical mask on the face
OccludedFace //!< face is occluded by something

};

enum class DetailedMaskType {
CorrectMask = 0, //!< correct mask on the face (mouth

and nose are covered correctly)
MouthCoveredWithMask, //!< mask covers only a mouth
ClearFace, //!< clear face - no mask on the face
ClearFaceWithMaskUnderChin, //!< clear face with a mask around of

a chin, mask does not cover anything in the face region (from
mouth to eyes)

PartlyCoveredFace, //!< face is covered with not a
medical mask or a full mask

FullMask, //!< face is covered with a full mask
(such as balaclava, sky mask, etc.)

Count
};

VisionLabs B.V. 106 / 136

• Maskis according to CorrectMask or MouthCoveredWithMask;
• NoMaskis according to ClearFace or ClearFaceWithMaskUnderChin;
• OccludedFace is according to PartlyCoveredFace or FullMask.

Note - NoMaskmeans absence of medical mask or any occlusion in the face region (frommouth to eyes).
Note - DetailedMaskType is not supported for NPU-based platforms.

6.18.3 MedicalMaskEstimation structure

The MedicalMaskEstimation structure contains results of the estimation:

struct MedicalMaskEstimation {
MedicalMask result; //!< estimation result (@see

MedicalMask enum)
DetailedMaskType maskType; //!< detailed type (@see

DetailedMaskType enum)

// scores
float maskScore; //!< medical mask is on the face score
float noMaskScore; //!< no medical mask on the face score
float occludedFaceScore; //!< face is occluded by something score

float scores[static_cast<int>(DetailedMaskType::Count)]{}; //!<
detailed estimation scores

inline float getScore(DetailedMaskType type) const;
};

There are two groups of the fields:

1. The first group contains the result:

MedicalMask result;

Result enum field MedicalMaskEstimation contains the target results of the estimation. Also you can see
the more detailed type in MedicalMaskEstimation.

DetailedMaskType maskType; //!< detailed type

2. The second group contains scores:

float maskScore; //!< medical mask is on the face score

VisionLabs B.V. 107 / 136

float noMaskScore; //!< no medical mask on the face score
float occludedFaceScore; //!< face is occluded by something score

The score group contains the estimation scores for each possible result of the estimation. All scores are
defined in [0,1] range. They can be useful for users who want to change the default thresholds for this
estimator. If the default thresholds are used, the groupwith scores could be just ignored in the user code.
More detailed scores for every type of a detailed type of face covering are

float scores[static_cast<int>(DetailedMaskType::Count)]{}; //!< detailed
estimation scores

• maskScore is the sum of scores for CorrectMask, MouthCoveredWithMask;
• NoMask is the sum of scores for ClearFace and ClearFaceWithMaskUnderChin;
• occludedFaceScore is the sum of scores for PartlyCoveredFace and FullMask fields.

Note - DetailedMaskType, scores, getScore are not supported for NPU-based platforms. It means a
user cannot use this fields andmethods in code.

6.18.4 MedicalMaskExtended enumeration

The MedicalMask enumeration contains all possible results of the MedicalMask estimation:

enum class MedicalMaskExtended {
Mask = 0, //!< medical mask is on the face
NoMask, //!< no medical mask on the face
MaskNotInPlace, //!< mask is not on the right place
OccludedFace //!< face is occluded by something

};

6.18.5 MedicalMaskEstimationExtended structure

The MedicalMaskEstimationExtended structure contains results of the estimation:

struct MedicalMaskEstimationExtended {
MedicalMaskExtended result; //!< estimation result (@see

MedicalMaskExtended enum)
// scores
float maskScore; //!< medical mask is on the face score
float noMaskScore; //!< no medical mask on the face score
float maskNotInPlace; //!< mask is not on the right place
float occludedFaceScore; //!< face is occluded by something score

VisionLabs B.V. 108 / 136

};

There are two groups of the fields:

1. The first group contains only the result enum:

MedicalMaskExtended result;

Result enum field MedicalMaskEstimationExtended contains the target results of the estimation.

2. The second group contains scores:

float maskScore; //!< medical mask is on the face score
float noMaskScore; //!< no medical mask on the face score
float maskNotInPlace; //!< mask is not on the right place
float occludedFaceScore; //!< face is occluded by something score

The score group contains the estimation scores for each possible result of the estimation. All scores are
defined in [0,1] range.

6.18.6 Filtration parameters

The estimator is trained to work with face images that meet the following requirements:

Table 51: “Requirements for fsdk::MedicalMaskEstimator::EstimationResult”

Attribute Acceptable values

headPose.pitch [-40…40]

headPose.yaw [-40…40]

headPose.roll [-40…40]

ags [0.5…1.0]

Configurations:

See the “Medical mask estimator settings” section in the “ConfigurationGuide.pdf” document.

API structure name:

IMedicalMaskEstimator

Plan files:

• mask_clf_v3_cpu.plan

VisionLabs B.V. 109 / 136

• mask_clf_v3_cpu-avx2.plan
• mask_clf_v3_gpu.plan

VisionLabs B.V. 110 / 136

7 Descriptor Processing Facility

7.1 Overview

The section describes descriptors and all the processes and objects corresponding to them.

Descriptor itself is a set of object parameters that are specially encoded. Descriptors are typically more
or less invariant to various affine object transformations and slight color variations. This property allows
efficient use of such sets to identify, lookup, and compare real-world objects images.

To receive a descriptor you should perform a special operation called descriptor extraction.

The general case of descriptors usage iswhen you compare twodescriptors and find their similarity score.
Thus you can identify persons by comparing their descriptors with your descriptors database.

All descriptor comparison operations are called matching. The result of the two descriptors matching
is a distance between components of the corresponding sets that are mentioned above. Thus, from a
magnitude of this distance, we can tell if two objects are presumably the same.

There are two different tasks solved using descriptors: person identification and person reidentification.

7.1.1 Person Identification Task

Facial recognition is the task ofmaking an identification of a face in a photo or video image against a pre-
existing database of faces. It begins with detection - distinguishing human faces from other objects in
the image - and thenworks on the identification of those detected faces. To solve this problem, we use a
face descriptor, which extracted from an image face of a person. A person’s face is invariable throughout
his life.

In a case of the face descriptor, the extraction is performed from object image areas around some
previously discovered facial landmarks, so the quality of the descriptor highly depends on them and the
image it was obtained from.

The process of face recognition consists of 4 main stages:

• face detection in an image;
• warping of face detection – compensation of affine angles and centering of a face;
• descriptor extraction;
• comparing of extracted descriptors (matching).

Additionally you can extract face features (gender, age, emotions, etc) or image attributes (light,
dark, blur, specularity, illumination, etc.).

7.1.2 Person Reidentification Task

Note! This functionality is experimental.

VisionLabs B.V. 111 / 136

The person reidentification enables you to detect a person who appears on different cameras. For
example, it is used when you need to track a human, who appears on different supermarket cameras.
Reidentification can be used for:

• building of human traffic warmmaps;
• analysing of visitors movement across cameras network;
• tracking of visitors across cameras network;
• search for a person across the cameras network in case when face was not captured (e.g. across
CCTV cameras in the city);

• etc.

For reidentification purposes, we use so-called human descriptors. The extraction of the human
descriptor is performed using the detected area with a person’s body on an image or video frame. The
descriptor is a unique data set formed based on a person’s appearance. Descriptors extracted for the
same person in different clothes will be significantly different.

The face descriptor and the human descriptor are almost the same from the technical point of view,
but they solve fundamentally different tasks.

The process of reidentifications consists of the following stages:

• human detection in an image;
• warping of human detection – centering and cropping of the human body;
• descriptor extraction;
• comparing of extracted descriptors (matching).

The human descriptor does not support the descriptor score at all. The returned value of the
descriptor score is always equal to 1.0.

The human descriptor is based on to the following criteria:

• clothes (type and color);
• shoes;
• accessories;
• hairstyle;
• body type;
• anthropometric parameters of the body.

Note. The human reidentification algorithm is trained to work with input data that meets the following
requirements:

• input images should be in R8G8B8 format (will work worse in night mode);
• the smaller side of input crop should be greater than 60 px;
• inside of same crop, one person should occupymore than 80% (sometimes several persons fit into
the same frame).

VisionLabs B.V. 112 / 136

7.2 Descriptor

Descriptor object stores a compact set of packed properties aswell as some helper parameters that were
used to extract these properties from the source image. Together these parameters determine descriptor
compatibility. Not all descriptors are compatible with each other. It is impossible to batch and match
incompatible descriptors, so you should pay attention towhat settings do you usewhen extracting them.
Refer to section “Descriptor extraction” for more information on descriptor extraction.

7.2.1 Descriptor Versions

Face descriptor algorithm evolves with time, so newer FaceEngine versions contain improvedmodels of
the algorithm.

Descriptors of different versions are incompatible! Thismeans that you cannotmatch descriptors
with different versions. This does not apply to base and mobilenet versions of the same model:
they are compatible.

See chapter “Appendix A. Specifications” for details about performance and precision of different
descriptor versions.

Descriptor version 59 is the best one by precision. And it works well Personal protective equipment on
face like medical mask.

Descriptor versionmay be specified in the configuration file (see section “Configuration data” in chapter
“Core facility”).

7.2.1.1 Face descriptor
Currently next versions are available: 54, 56, 57, 58, 59, 60. Descriptors have backend and mobilenet
implementations. Versions 57, 58, 59, 60 supports only backend implementation. Backend versions
more precise, but mobilenet faster and have smaller model files (See Appendix A). See Appendix A.1 and
A.2 for details about performance and precision of different descriptor versions.

7.2.1.2 Human descriptor
Versions of human descriptors are available: 102, 103, 104, 105, 106, 107

To create a human descriptor, human batch, human descriptor extractor, human descriptormatcher you
must pass the human descriptor version

• DV_MIN_HUMAN_DESCRIPTOR_VERSION = 102 or
• HDV_TRACKER_HUMAN_DESCRIPTOR_VERSION= 102, //!<humandescriptor for trackingofpeople
on one camera, light and fast version

• HDV_PRECISE_HUMAN_DESCRIPTOR_VERSION = 103, //!< precise human descriptor, heavy and
slow

VisionLabs B.V. 113 / 136

• HDV_REGULAR_HUMAN_DESCRIPTOR_VERSION = 104, //!< regular human descriptor, use it by
default for multi-cameras tracking

• HDV_TRACKER_V2 = 105, //!< human descriptor for tracking of people, light and fast version.
• HDV_PRECISE_V2 = 106, //!< precise human descriptor, heavy and slow.
• HDV_REGULAR_V2 = 107, //!< regular human descriptor.

7.3 Descriptor Batch

Whenmatching significant amounts of descriptors, it is desired that they reside continuously inmemory
for performance reasons (think cache-friendly data locality and coherence). This is where descriptor
batches come into play. While descriptors are optimized for faster creation and destruction, batches are
optimized for long life and better descriptor data representation for the hardware.

A batch is created by the factory like any other object. Aside from type, a size of the batch should be
specified. Size is a memory reservation this batch makes for its data. It is impossible to add more data
than specified by this reservation.

Next, the batch must be populated with data. You have the following options:

• add an existing descriptor to the batch;
• load batch contents from an archive.

The following notes should be kept in mind:

• Whenadding anexistingdescriptor, its data is copied into thebatch. Thismeans that thedescriptor
object may be safely released.

• When adding the first descriptor to an empty batch, initial memory allocation occurs. Before that
moment the batch does not allocate. At the samemoment, internal descriptor helper parameters
are copied into the batch (if there are any). This effectively determines compatibility possibilities
of the batch. When the batch is initialized, it does not accept incompatible descriptors.

After initialization, a batch may bematched pretty much the same way as a simple descriptor.

Like any other data storage object, a descriptor batch implements the ::clear()method. An effect of this
method is the batch translation to a non-initialized state except memory deallocation. In other words,
batch capacity stays the same, and nomemory is reallocated. However, an actual number of descriptors
in the batch and their parameters are reset. This allows re-populating the batch.

Memory deallocation takes place when a batch is released.

Care should be taken when serializing and deserializing batches. When a batch is created, it is assigned
with a fixed-sizememory buffer. The size of the buffer is embedded into the batch BLOBwhen it is saved.
So, when allocating a batch object for reading the BLOB into, make sure its size is at least the same as
it was for the batch saved to the BLOB (even if it was not full at the moment). Otherwise, loading fails.
Naturally, it is okay to deserialize a smaller batch into a larger another batch this way.

VisionLabs B.V. 114 / 136

7.4 Descriptor Extraction

Descriptor extractor is the entity responsible for descriptor extraction. Like any other object, it is created
by the factory. To extract a descriptor, aside from the source image, you need:

• a face detection area inside the image (see chapter “Detection facility”)
• a pre-allocated descriptor (see section “Descriptor”)
• a pre-computed landmarks (see chapter “Image warping”)

A descriptor extractor object is responsible for this activity. It is represented by the straightforward
IDescriptorExtractor interface with only one method extract(). Note, that the descriptor object must be
created prior to calling extract() by calling an appropriate factory method.

Landmarks are used as a set of coordinates of object points of interest, that in turn determine source
image areas, the descriptor is extracted from. This allows extracting only data that matters most for
a particular type of object. For example, for a human face we would want to know at least definitive
properties of eyes, nose, andmouth to be able to compare it to another face. Thus, we should first invoke
a feature extractor to locate where eyes, nose, andmouth are and put these coordinates into landmarks.
Then the descriptor extractor takes those coordinates and builds a descriptor around them.

Descriptor extraction is one of themost computation-heavy operations. For this reason, threadingmight
be considered. Be aware that descriptor extraction is not thread-safe, so you have to create an extractor
object per a worker thread.

It should be noted, that the face detection area and the landmarks are required only for image warping,
the preparation stage for descriptor extraction (see section “Image warping”). If the source image
is already warped, it is possible to skip these parameters. For that purpose, the IDescriptorExtractor
interface provides a special extractFromWarpedImage()method.

Descriptor extraction implementation supports execution on GPUs.

The IDescriptorExtractor interface provides extractFromWarpedImageBatch() method which allows
you to extract batch of descriptors from the image array in one call. This method achieve higher
utilization of GPU and better performance (see the “GPU mode performance” table in appendix A
chapter “Specifications”).

Also IDescriptorExtractor returns descriptor score for each extracted descriptor. Descriptor score is
normalized value in range [0,1], where 1 - face in the warp, 0 - no face in the warp. This value allows you
filter descriptors extracted from false positive detections.

The IDescriptorExtractor interface provides extractFromWarpedImageBatchAsync()methodwhich allows
you to extract batch of descriptors from the image array asynchronously in one call. Thismethod achieve
higher utilization of GPU and better performance (see the “GPUmode performance” table in appendix A
chapter “Specifications”).

Note: Method extractFromWarpedImageBatchAsync() is experimental, and it’s interfacemay be changed
in the future. Note: Method extractFromWarpedImageBatchAsync() is not marked as noexcept and may

VisionLabs B.V. 115 / 136

throw an exception.

7.5 Descriptor Matching

It is possible to match a pair (or more) previously extracted descriptors to find out their similarity. With
this information, it is possible to implement face search and other analysis applications.

Figure 15:Matching

By means ofmatch function defined by the IDescriptorMatcher interface it is possible to match a pair of
descriptors with each other or a single descriptor with a descriptor batch (see section “Descriptor batch”
for details on batches).

A simple rule to help you decide which storage to opt for:

• when searching among less than a hundred descriptors use separate IDescriptor objects;
• when searching among bigger number of descriptors use a batch.

When working with big data, a common practice is to organize descriptors in several batches keeping a
batch per worker thread for processing.

Be aware that descriptormatching is not thread-safe, so youhave to create amatcher object per aworker
thread.

VisionLabs B.V. 116 / 136

8 System Requirements

8.1 Android installations

FaceEngine requires:

• Android version 4.4.4 or newer.

For development:

• Android SDK 21;
• Android NDK 21 {Pkg.Revision = 21.0.6113669}.

Android development dependencies listed above can be downloaded directly from SDK manager
in Android Studio IDE or via SDK manager command line tool. For more information, please visit
https://developer.android.com/studio/command-line/sdkmanager.

9 Hardware requirements

9.1 Embedded installations

9.1.1 CPU requirements

Supported CPU architectures:

• ARMv7-A;
• ARMv8-A (ARM64).

9.2 Android for embedded

One more step to online activation process, in addition to information about LUNA SDK licensing,
described in VisionLabs LUNA SDK Licensing, paragraph License activation.

Besides the common steps for online-activation, described in document VisionLabs LUNA SDK
Licensing, for Android for embedded systems, execute a native licensed binary for Android for
embeddedwith root permissions at least once.

VisionLabs B.V. 117 / 136

https://developer.android.com/studio/command-line/sdkmanager

10 Migration guide

10.1 Overview

Here you can find information about important changes in the next releases of LUNA SDK.

10.2 v.5.6.0

10.2.1 Vector2

Since v.5.6.0, the member array in fsdk::Vector2 has been removed. You should use the x andy
members instead of the removed array one.

Example of code (before version 5.6.0):

fsdk::Vector2<int> vector2;
vector2.x = 10;
vector2.y = 20;
// or
vector2.array[0] = 10;
vector2.array[1] = 20;

Example of code (from version 5.6.0):

fsdk::Vector2<int> vector2;
vector2.x = 10;
vector2.y = 20;

10.2.2 BlackWhiteEstimator

Since v.5.6.0 method estimate of IBlackWhiteEstimator by full image has been deprecated (See
IBlackWhiteEstimator.h). Use estimate by warped image instead.

Example of code (before version 5.6.0):

bool isGray = false;
Result<FSDKError> res = BlackWhiteEstimator->estimate(fullImage, isGray)

;

Example of code (from version 5.6.0):

VisionLabs B.V. 118 / 136

fsdk::ImageColorEstimation estimation;
Result<FSDKError> res = BlackWhiteEstimator->estimate(warp, estimation);

10.3 v.5.5.0

From v.5.5.0 the default value of numThreads (runtime.conf) was replaced by -1. Which means that
will be taken the maximum number of available threads. This number of threads is equal to according
number of available processor cores.

Example of setting (before version 5.5.0):

<param name="numThreads" type="Value::Int1" x="4" />

Example of setting (from version 5.5.0):

<param name="numThreads" type="Value::Int1" x="-1" />

From v.5.5.0 the method loadFromFile(const char* path) (See ILicense.h) is deprecated. The
use is allowed, but can be useless. Please use the method loadFromFile(const char* path,
const fsdk::ISettingsProvider* settings) instead.

10.3.0.1 Examples of code
Example of code (before version 5.5.0):

const bool isLicenseFileLoadedSuccessfully = license->loadFromFile(path)
.isOk());

Example of code (from version 5.5.0):

auto resSettings = fsdk::createSettingsProvider("License Config Path");
if (!resSettings.isOk()) {

return -1;
}

fsdk::ISettingsProviderPtr settings = resSettings.getValue();

// Create new license from file
const bool isLicenseFileLoadedSuccessfully = license->loadFromFile(path,

settings).isOk());

VisionLabs B.V. 119 / 136

10.4 v.5.2.0

From v.5.2.0 the 101 version of human descriptor is not supported, it was changed by 104. Currently,
three versions are available: 102 (tracker), 103 (precise), 104 (regular). It means that all instances (such
as IDescriptorExtractor, IDescriptorMatcher and etc.) cannot be created with the version 101.

10.5 v.5.1.0

From version v.5.1.0 IHeadPoseEstimatorPtr and IAGSEstimatorPtr are deprecated. Use
IBestShotQualityEstimatorPtr instead.

Note. AGSscore thresholdsaredifferent forIAGSEstimatorPtrandIBestShotQualityEstimatorPtr
. Readmore on the BestShotQuality estimation page.

10.6 v.5.0.0

10.6.1 Objects creation

The fsdk::acquire(...) method for the pointer acquiring for IFaceEngine objects is not allowed
for usage starting from version 5.0.0. In addition, the types of values returned from the createmethods
of IFaceEnginewere changed.

Most of the create methods now return the following structure - fsdk::ResultValue<fsdk::
FSDKError, ObjectClassPtr> Thus it is easy to check the correctness of the result (using one of
the following methods result.isOk() or result.isError()) and get an error (using the result
.getError() method). The result.what() method can be used to get the text description of the
error.

10.6.1.1 Examples of code
Example of code (before version 5.0.0):

fsdk::IAttributeEstimatorPtr estimator = fsdk::acquire(faceEngine->
createAttributeEstimator());

if (estimator.isNull()) {
std::cout << "Object pointer is nullptr" << std::endl;
... // process error

}

Example of code (from version 5.0.0):

fsdk::ResultValue<fsdk::FSDKError, fsdk::IAttributeEstimatorPtr>
resEstimator = faceEngine->createAttributeEstimator();

VisionLabs B.V. 120 / 136

if (resEstimator.isError()) {
std::cout << "Error: " << resEstimator.what() << std::endl;
... // process error

}

fsdk::IAttributeEstimatorPtr estimator = resEstimator.getValue();

10.6.2 Interface of ILicense

From version v.5.0.0 we changed the interface of ILicense. Now all methods of this class return
fsdk::Result<fsdk::FSDKError>, fsdk::ResultValue<fsdk::FSDKError, bool> or fsdk::
ResultValue<fsdk::FSDKError, uint32_t> instead of bool.

10.6.2.1 Examples of code
Example of code (before version 5.0.0):

const bool res = license->isActivated();
if (!res) {

/* error case code */
}

Example of code (from version 5.0.0):

const fsdk::ResultValue<fsdk::FSDKError, bool> result = license->
isActivated();

if (result.isError()) {
/* error case code */

}

const bool value = result.getValue();
if (!value) {

/* false case code */
}

Fromversionv.5.0.0wechanged theargumentsofmethodsgetExpirationDateandcheckFeatureId
in class ILicense. Now the input arguments of getExpirationDate and checkFeatureId is
fsdk::LicenseFeature instead of uint32_t. And the second argument of getExpirationDate
was removed. The return value of getExpirationDate is fsdk::ResultValue<fsdk::FSDKError
, uint32_t>.

Example of code (before version 5.0.0):

VisionLabs B.V. 121 / 136

long long expDate = 0;
const bool result =

license->getExpirationDate(static_cast<uint32_t>(fsdk::
LicenseFeature::Detection), expDate);

if (result == false) {
/* error case code */

}

Example of code (from version 5.0.0):

const fsdk::ResultValue<fsdk::FSDKError, uint32_t> result =
license->getExpirationDate(fsdk::LicenseFeature::Detection);

if (result.isError()) {
/* error case code */

}

const uint32_t expDate = result.getValue();

Example of code (before version 5.0.0):

const bool res = license->checkFeatureId(static_cast<uint32_t>(fsdk::
LicenseFeature::Detection));

if (!res) {
/* error case code */

}

Example of code (from version 5.0.0):

const fsdk::ResultValue<fsdk::FSDKError, bool> result = license->
checkFeatureId(fsdk::LicenseFeature::Detection);

if (result.isError()) {
/* error case code */

}

const bool value = result.getValue();
if (!value) {

/* false case code */
}

VisionLabs B.V. 122 / 136

10.6.3 Interface of HumanLandmark

From version v.5.0.0 we changed the interface of HumanLandmark. Now member point doesn’t store
zero coordinates in the case when it is not visible. For this purposes we added member visiblewhich
stores true if point is visible.

Example of code (before version 5.0.0):

if (humanLandmark.point.x == 0 && humanLandmark.point.y == 0) {
// point is not visible case code

}
else {

// point is visible case code
}

Example of code (from version 5.0.0):

if (humanLandmark.visible == false) {
// point is not visible case code

}
else {

// point is visible case code
}

10.6.4 Interface of IDescriptorBatch

From version v.5.0.0 we renamed method IDescriptorBatch::getDescriptorSize() to
IDescriptorBatch::getDescriptorLength().

Example of code (before version 5.0.0):

uint32_t descriptorLength = descriptorBatch->getDescriptorSize();

Example of code (from version 5.0.0):

uint32_t descriptorLength = descriptorBatch->getDescriptorLength();

10.6.5 Interface of Detection

From version v.5.0.0 we changed the interface of the Detection structure. Now all members of this
structure are private and could be available through the public methods.

VisionLabs B.V. 123 / 136

Example of code (before version 5.0.0):

fsdk::Detection detection = ...; // Somehow initialized detection object
fsdk::Rect rect = detection.rect; // Get the detection rect
float score = detection.score; // Get the detection score

Example of code (from version 5.0.0):

fsdk::Detection detection = ...; // Somehow initialized detection object
fsdk::Rect rect = detection.getRect(); // Get the detection rect
float score = detection.getScore(); // Get the detection score

10.6.6 Interface of IDetector

From version v.5.0.0 we changed the interface of IDetector structure. Now method detect returns
ResultValue<FSDKError, Ref<IFaceDetectionBatch>> instead of ResultValue<FSDKError,
Ref<IResultBatch<Face>>>.

Example of code (before version 5.0.0):

fsdk::ResultValue<fsdk::FSDKError, fsdk::Ref<fsdk::IResultBatch<fsdk::Face
>>> detectorResult = faceDetector->detect(

fsdk::Span<const fsdk::Image>(&image, 1),
fsdk::Span<const fsdk::Rect>(&imageRect, 1),
detectionsCount,
fsdk::DT_ALL);

Example of code (from version 5.0.0):

fsdk::ResultValue<fsdk::FSDKError, fsdk::Ref<fsdk::IFaceDetectionBatch>>
detectorResult = faceDetector->detect(

fsdk::Span<const fsdk::Image>(&image, 1),
fsdk::Span<const fsdk::Rect>(&imageRect, 1),
detectionsCount,
fsdk::DT_ALL);

Also we changed input and output parameters of the method redetectOne. Now it takes Image and
Detection instead of Face. And returns ResultValue<FSDKError, Face> instead of ResultValue
<FSDKError, bool>.

Example of code (before version 5.0.0):

VisionLabs B.V. 124 / 136

fsdk::ResultValue<fsdk::FSDKError, bool> redetectResult = faceDetector->
redetectOne(face);

Example of code (from version 5.0.0):

fsdk::ResultValue<fsdk::FSDKError, fsdk::Face> redetectResult = faceDetector
->redetectOne(image, detection);

10.6.7 IFaceDetectionBatch

We added IFaceDetectionBatch structure to replace IResultBatch<Face>.

Example of code (before version 5.0.0):

fsdk::Ref<IResultBatch<Face>> resultBatch = ...; // Somehow get the
IResultBatch<Face>

for (std::size_t i = 0; i < resultBatch->getSize(); ++i) {
fsdk::Span<fsdk::Face> faces = resultBatch->getResults(i);
for (auto& face : faces) {

const fsdk::Rect& rect = face.detection.rect;
const float score = face.detection.score;
const fsdk::Landmarks5& lm5 = face.landmarks5.value();
const fsdk::Landmarks68& lm68 = face.landmarks68.value();
// Some code which uses received objects

}
}

Example of code (from version 5.0.0):

fsdk::Ref<fsdk::IFaceDetectionBatch> faceDetectionBatch = ...; // Somehow
get the IFaceDetectionBatch

for (std::size_t i = 0; i < faceDetectionBatch->getSize(); ++i) {
fsdk::Span<const fsdk::Detection> detections = faceDetectionBatch->

getDetections(i);
fsdk::Span<const fsdk::Landmarks5> landmarks5 = faceDetectionBatch->

getLandmarks5(i);
fsdk::Span<const fsdk::Landmarks68> landmarks68 = faceDetectionBatch->

getLandmarks68(i);
for (std::size_t j = 0; j < detections.size(); ++j) {

const fsdk::Rect& rect = detections[j].getRect();
const float score = detections[j].getScore();
const fsdk::Landmarks5& lm5 = landmarks5[j];

VisionLabs B.V. 125 / 136

const fsdk::Landmarks68& lm68 = landmarks68[j];
// Some code which uses received objects

}
}

10.6.8 Interface of IHumanDetector

From version v.5.0.0 we changed the interface of IHumanDetector structure. Now method detect
returns ResultValue<FSDKError, Ref<IHumanDetectionBatch>> instead of ResultValue<
FSDKError, Ref<IResultBatch<Human>>>.

Example of code (before version 5.0.0):

fsdk::ResultValue<fsdk::FSDKError, fsdk::Ref<fsdk::IResultBatch<fsdk::Human
>>> detectResult = humanDetector->detect(

fsdk::Span<const fsdk::Image>(&image, 1),
fsdk::Span<const fsdk::Rect>(&imageRect, 1),
detectionsCount,
fsdk::DCT_ALL);

Example of code (from version 5.0.0):

fsdk::ResultValue<fsdk::FSDKError, fsdk::Ref<fsdk::IHumanDetectionBatch>>
detectResult = humanDetector->detect(

fsdk::Span<const fsdk::Image>(&image, 1),
fsdk::Span<const fsdk::Rect>(&imageRect, 1),
detectionsCount,
fsdk::HDT_ALL);

Also we changed input and output parameters of the method redetectOne. Now it takes Image
and Detection instead of Human. And returns ResultValue<FSDKError, Human> instead of
ResultValue<FSDKError, bool>.

Example of code (before version 5.0.0):

fsdk::ResultValue<fsdk::FSDKError, bool> redetectResult = humanDetector->
redetectOne(human);

Example of code (from version 5.0.0):

fsdk::ResultValue<fsdk::FSDKError, fsdk::Human> redetectResult =
humanDetector->redetectOne(image, detection);

VisionLabs B.V. 126 / 136

10.6.9 IHumanDetectionBatch

We added IHumanDetectionBatch structure to replace IResultBatch<Human>.

Example of code (before version 5.0.0):

fsdk::Ref<IResultBatch<Human>> resultBatch = ...; // Somehow get the
IResultBatch<Human>

for (std::size_t i = 0; i < resultBatch->getSize(); ++i) {
fsdk::Span<fsdk::Human> humans = resultBatch->getResults(i);
for (auto& human : humans) {

const fsdk::Rect& rect = human.detection.rect;
const float score = human.detection.score;
const fsdk::Landmarks17& lm17 = face.landmarks5.value();
// Some code which uses received objects

}
}

Example of code (from version 5.0.0):

const fsdk::Ref<fsdk::IHumanDetectionBatch> humanDetectionBatch = ...; //
Somehow get the IHumanDetectionBatch

for (std::size_t i = 0; i < humanDetectionBatch->getSize(); ++i) {
fsdk::Span<const fsdk::Detection> detections = humanDetectionBatch->

getDetections(i);
fsdk::Span<const fsdk::HumanLandmarks17> landmarks = humanDetectionBatch

->getLandmarks17(i);
for (std::size_t j = 0; j < detections.size(); ++j) {

const fsdk::Rect rect = detections[j].getRect();
const float score = detections[j].getScore();
const fsdk::HumanLandmarks17 lm17 = landmarks[j];
// Some code which uses received objects

}
}

10.6.10 Interface of ILivenessFlyingFaces

From version v.5.0.0 we changed the interface of ILivenessFlyingFaces structure. Now both
methods estimate take Image and Detection instead of Face.

Example of code (before version 5.0.0):

fsdk::LivenessFlyingFacesEstimation flyingFacesEstimation;

VisionLabs B.V. 127 / 136

Result<fsdk::FSDKError> flyingFacesResult = livenessFlyingFacesEstimator->
estimate(face, flyingFacesEstimation);

Example of code (from version 5.0.0):

fsdk::LivenessFlyingFacesEstimation flyingFacesEstimation;
Result<fsdk::FSDKError> flyingFacesResult = livenessFlyingFacesEstimator->

estimate(
image,
detection,
flyingFacesEstimation);

Example of code (before version 5.0.0):

Result<fsdk::FSDKError> flyingFacesResult = livenessFlyingFacesEstimator->
estimate(

fsdk::Span<const fsdk::Face>(&face, 1),
fsdk::Span<fsdk::LivenessFlyingFacesEstimation>(&estimation, 1));

Example of code (from version 5.0.0):

fsdk::LivenessFlyingFacesEstimation flyingFacesEstimation;
Result<fsdk::FSDKError> flyingFacesResult = livenessFlyingFacesEstimator->

estimate(
fsdk::Span<const fsdk::Image>(&image, 1),
fsdk::Span<const fsdk::Detection>(&detection, 1),
fsdk::Span<fsdk::LivenessFlyingFacesEstimation>(&

flyingFacesEstimation, 1));

10.7 v.3.10.1

10.7.1 Detector FaceDetV3 changes

From version 3.10.1 we changed the logic for image resizing in FaceDetV3 detector. Now you can
change the minimum and maximum sizes of the faces that will be searched in the photo from the
faceengine.conf configuration. To get new parameter which will be identical to old setting you need
to set minFaceSize:

The old recommended imageSize=640 will be identical to newmeaning of setting minFaceSize=20

config->setValue("FaceDetV3::Settings", "minFaceSize", 20);

VisionLabs B.V. 128 / 136

and imageSize=320 will be identical to newmeaning of setting minFaceSize=40

config->setValue("FaceDetV3::Settings", "minFaceSize", 40);

10.7.2 Detector FaceDetV1, FaceDetV2 changes

Fromversion3.10.1we changed thenameof parameterminSize tominFaceSize infaceengine.conf
for FaceDetV1, FaceDetV2 detector types. The logic and default value for image resizing left unchanged.

VisionLabs B.V. 129 / 136

11 Best practices

11.1 Overview

The following chapter provides a set of recommendations that user should follow in order to get optimal
performance when running Luna SDK algorithms on their target device. Over time this list will be
populated with more recommendations and performance tips.

11.1.1 Multithread scenario

Creation and destroying Luna SDK algorithms from the different threads is prohibited due to internal
implementation restrictions. All objects of the FaceEngine class and all objects of algorithms (for
example, detectors, estimators, extractors and others) must be created and destroied by the same
thread. A typical scenario is as follows: Thread 1 (may be a main thread) creates the FaceEngine object
and all needed algorithms (for example, IDetector). Threads 2..N (maybe several) uses that objects for
any purpose. Thread 1 destroys the FaceEngine object and all algorithms after all work is complete.

11.1.2 Thread pools

When running Luna SDK algorithms in a multithreaded environment it is highly recommended to use
thread pools for user-created threads. For each thread Luna SDK caches some amount of thread local
objects under the hood in order to make its algorithms run faster next time the same thread is used at
the cost of higher memory footprint. For this reason, it is recommended to reuse threads from a pool
in order to avoid caching new internal objects and to reduce penalty of creating/destroying new user
threads.

11.1.3 Estimators. Creation and Inference

Create face engine objects once and reuse them when you need to make a new estimate to reduce
RAM usage and increase performance. The reason is that recreating of estimators leads to reopen the
corresponding plan file every time. These plan files are cached separately for every load and will be
removed only when they are flushed from the cache or after calling the destructor of FaceEngine root
object.

11.1.4 Forking process

UNIX-like operating systems implement a mechanism to duplicate a process. It creates a new child
process and copies its parents’ memory space into the child’s. This is typically done programmatically
by calling the fork() system function in the parent process. Care should be taken when forking a process
running the SDK. Always fork before the first instance of IFaceEngine is created! This is because the
SDK internally maintains a pool of worker threads, which is created lazily at the time the very first

VisionLabs B.V. 130 / 136

IFaceEngine object is born and destroyed right after the last IFaceEngine object is released. When using
GPU or NPU devices, their runtime is initialized and shut down in the same manner. The hazard comes
from the fact that while fork() copies process memory, it only creates just one thread - the main thread
(refer to man pages for details: https://man7.org/linux/man-pages/man2/fork.2.html). As a result, if
at least one IFaceEngine object is alive at the time the process is being forked, the child processes will
inherit the knowledge of the object, and therefore, the implicit thread pool (and device runtime, when
appropriate). But there will be no worker threads actually running (in both, the inherited pool and the
runtime, when appropriate) and attempting to call certain SDK functions will cause a deadlock.

VisionLabs B.V. 131 / 136

12 Device-specific constraints

12.1 Image constraints

Whenmemory is allocated for Imagepixel data storage, the following constraints are enforceddepending
on the requestedmemory residence:

• Image::MemoryResidence::CPU: base address alignment is 32 bytes;
• Image::MemoryResidence::GPU: base address alignment is 128 bytes;
• Image::MemoryResidence::NPU: base address alignment is 128 bytes;
• Image::MemoryResidence::NPU_DPP: base address alignment is 128 bytes.

Also, in case of Image::MemoryResidence::NPU_DPP image width must be multiple of 16 and image
height must be multiple of 2.

When Image is initialized as a wrapper for a user-provided memory block, whose residence is said to
be Image::MemoryResidence::NPU or Image::MemoryResidence::NPU_DPP, the above requirements are
checked upon the initialization.

Image class implements limited functionality for device-side data. Only the following operations are
supported:

• construction (both with Image-owned memory and as a wrapper for a user-defined memory) and
assignment (including deep copy);

• destruction;

• set() family of functions (functionally the same as construction/assignment);

• convert() function, but only in transfermode; Thismeans that both source and destination formats
mustmatch, onlymemory residencymay differ. This function supports only synchronousmemory
transfers in the following directions:

– host <-> GPU
– GPU <-> GPU
– host <-> NPU
– NPU <-> NPU.

Full range of functionality (including format conversions) is currently only available for Images with host
memory data residence.

The following operations are NOT supported:

• compressed format encoding/decoding;
• format/color space conversion;
• subimage views (i.e. map() function);
• padding and cropping (i.e. extract() function);
• manipulation (e.g. getPixel(), setPixel(), etc.).

VisionLabs B.V. 132 / 136

13 Appendix A. Specifications

13.1 Classification performance

Classification performance was measured on a two datasets:

• Cooperative dataset (containing 20K images from various sources obtained at several banks);
• Non cooperative dataset (containing 20K).

The two tables below contain true positive rates corresponding to select false positive rates.

Table 52: “Classification performance@ low FPR on cooperative dataset”

FPR

TPR
CNN
54

TPR
CNN
56

TPR
CNN
57

TPR
CNN
58

TPR
CNN
59

TPR
CNN
54m

TPR
CNN
56m

TPR CNN
59m

TPR
CNN 60

10-7 0.9765 0.9907 0.9906 0.9910 0.9911 0.9699 0.9652 0.9876 0.9917

10-6 0.9849 0.9914 0.9915 0.9916 0.9915 0.9829 0.9814 0.9904 0.9917

10-5 0.9892 0.9916 0.9917 0.9918 0.9919 0.9887 0.9886 0.9915 0.9919

10-4 0.9909 0.9917 0.9918 0.9919 0.9921 0.9910 0.9910 0.9919 0.9921

Table 53: “Classification performance@ low FPR on non cooperative dataset”

FPR

TPR
CNN
54

TPR
CNN
56

TPR
CNN
57

TPR
CNN
58

TPR
CNN
59

TPR
CNN
54m

TPR
CNN
56m

TPR
CNN
59m

TPR
CNN 60

10-7 0.9638 0.9698 0.9723 0.9767 0.9832 0.8813 0.8844 0.9377 0.9893

10-6 0.9773 0.9809 0.9817 0.9839 0.9880 0.9233 0.9229 0.9629 0.9914

10-5 0.9852 0.9871 0.9873 0.9880 0.9908 0.9538 0.9561 0.9794 0.9914

10-4 0.9896 0.9902 0.9905 0.9909 0.9924 0.9752 0.9757 0.9880 0.9925

13.2 Descriptor size

The table below shows size of serialized descriptors to estimate memory requirements.

VisionLabs B.V. 133 / 136

Table 54: “Descriptor size”

Descriptor version Data size (bytes) Metadata size (bytes) Total size

CNN 54 512 8 520

Metadata includes signature and version information that may be omitted during serialization if the
NoSignature flag is specified.

When estimating individual descriptor size inmemory or serialization storage requirements with default
options, consider using values from the “Total size” column.

When estimating memory requirements for descriptor batches, use values from the “Data size” column
instead, since a descriptor batch does not duplicate metadata per descriptor and thus is more memory-
efficient.

These numbers are for approximate computation only, since they do not include overhead like
memory alignment for accelerated SIMD processing and the like.

VisionLabs B.V. 134 / 136

14 Appendix B. Glossary

Table 55: Glossary

Term Description

Host memory Computer system RAM

Device memory On-board RAM of GPU or NPU card

Memory transfer Operation that copies memory from host to device or vice-versa

14.1 Descriptor

A set of features meant to describe a real-world object (e.g., a person’s face). Computed by means of
computer vision algorithms, such features are typicallymatched to eachother todetermine the similarity
of represented objects.

14.2 Cooperative Photoshooting and Recognition

A procedure of taking person face photograph characterized by person awareness of the matter and
his/her will to assist.

Typical highlights:

• Close to frontal head pose;
• Neutral facial expression;
• No occlusions (i.e., hair, hats, non-transparent eyewear, hands, other objects obscuring the face);
• No extreme lighting conditions (i.e., reasonable illuminance, no direct sunlight);
• Steady and well-tuned optics (i.e., no motion blur, depth of field, digital post-processing except
noise cancellation).

Cooperative photoshooting is opposite to the so-called “in the wild” photoshooting, which is also called
non-cooperative shooting (or recognition).

14.3 Matching

The process of descriptors comparison. Matching is usually implemented as a distance function applied
to the feature sets anddistances comparison later on. The smaller thedistance, the closer aredescriptors,
hence, the more similar are the objects.

For convenience, helper functions exist to convert distance to a normalized similarity score, where 100%
means completely identical, and 0%means completely different.

VisionLabs B.V. 135 / 136

15 Appendix C. FAQ

Q: This document contains high-level descriptions and no code examples nor reference. Where can
one find them?

A: The complete type and function reference are provided as an interactive web-based documentation;
see the doc/fsdk/index.html inside the LUNA SDK package. The examples are located in the /examples
folder and “ExamplesGuide.pdf” is located in /doc folder of LUNA SDK package.

Q: Does FaceEngine support multicore / multiprocessor systems?

A: Yes, all internal algorithm implementations are multithreaded by design and take advantage of multi-
core systems. The number of threads may be controlled via the configuration file; see configuration
manual “ConfigurationGuide.pdf” or comments in the configuration file for details.

Q: What is the state of GPU support?

A: As of version 2.7 the GPU support is implemented for face detection and descriptor extraction
algorithms. Starting from version 2.9 GPU implementations are considered stable.

Q: What speedupmay be expected from GPUs?

A: Typically GPUs allow accelerating algorithms by the factor of 2-4 times depending onmicroprocessor
architecture and input data.

Q: Are there any official bindings/wrappers for other languages (C#, Java)?

A: No, such bindings are not provided. FaceEngine officially implements C++ API only, bindings to other
languages should be created by users themselves. There are tools to automate this process, like, e.g.,
SWIG.

Q: Does FaceEngine support DBMS systems?

A: No, FaceEngine implements just computer vision algorithms. Users should implement DBMS
communication themselves using serialization methods described in section “Serializable object
interface” of chapter “Core concepts” and section “Archive interface” of chapter “Core facility”.

Q: What image formats does FaceEngine support?

A: FaceEngine does not implement image format encoding functions. If such functions are required, one
should use a third-party library, e.g., FreeImage.

FaceEngine functions typically expect image data in the form of uncompressed unencoded pixel data
(RGB color 24 bits per pixel or grayscale 8 bits per pixel).

FaceEngine implements convenience functions like RGB -> grayscale and RGB<-> BGR color conversions.
The rationale of this design is explained in section “Image type” of chapter “Core concepts”.

VisionLabs B.V. 136 / 136

	Introduction
	Core Concepts
	Common Interfaces and Types
	Reference Counted Interface
	Automatic reference counting
	Referencing - without acquiring ownership of object lifetime
	Acquiring - own object lifetime

	Serializable object interface
	Auxiliary types
	Image type

	Beta Mode

	FaceEngine Structure Overview
	Core Facility
	Common Interfaces
	Face Engine Object
	Settings Provider

	Helper Interfaces
	Archive Interface

	Sensor type
	Data Paths
	Model Data
	Configuration Data

	Detection facility
	Overview
	Detection structure
	Face Detection
	Image coordinate system
	Face detection
	Redetect method
	Orientation Estimation
	FaceDetV1 and FaceDetV2 Configuration
	FaceDetV3 Configurating
	Face Alignment
	Five landmarks
	Sixty-eight landmarks

	Face Landmarks Detector
	Human Detection
	Image coordinate system
	Human body detection
	Constraints
	Camera position requirements
	Human body redetection
	Human Keypoints
	Detection
	Main Results of Each Detection

	HumanFace Detection. Face to body association
	HumanFace redetection
	Main results
	minFaceSize

	Image Warping
	Parameter Estimation Facility
	Overview
	Use cases
	ISO estimation

	Best shot selection functionality
	BestShotQuality Estimation
	Image Quality Estimation

	Attributes estimation functionality
	Face Attribute Estimation
	Child Estimation
	Credibility Check Estimation

	Facial Hair Estimation
	Natural Light Estimation
	Fish Eye Estimation
	Eyebrows Estimation
	Portrait Style Estimation
	Headwear Estimation
	Background Estimation
	Grayscale, color or infrared Estimation
	Face features extraction functionality
	Eyes Estimation
	Red Eyes Estimation
	Gaze Estimation
	Glasses Estimation
	Overlap Estimation

	Emotion estimation functionality
	Emotions Estimation

	Mouth Estimation Functionality
	Liveness check functionality
	HeadAndShouldersLiveness Estimation
	LivenessFlyingFaces Estimation
	LivenessRGBM Estimation
	Depth Liveness Estimation
	LivenessOneShotRGB Estimation
	Usage example

	Personal Protection Equipment Estimation
	Medical Mask Estimation Functionality
	MedicalMaskEstimator thresholds
	MedicalMask enumeration
	MedicalMaskEstimation structure
	MedicalMaskExtended enumeration
	MedicalMaskEstimationExtended structure
	Filtration parameters

	Descriptor Processing Facility
	Overview
	Person Identification Task
	Person Reidentification Task

	Descriptor
	Descriptor Versions
	Face descriptor
	Human descriptor

	Descriptor Batch
	Descriptor Extraction
	Descriptor Matching

	System Requirements
	Android installations

	Hardware requirements
	Embedded installations
	CPU requirements

	Android for embedded

	Migration guide
	Overview
	v.5.6.0
	Vector2
	BlackWhiteEstimator

	v.5.5.0
	Examples of code

	v.5.2.0
	v.5.1.0
	v.5.0.0
	Objects creation
	Examples of code

	Interface of ILicense
	Examples of code

	Interface of HumanLandmark
	Interface of IDescriptorBatch
	Interface of Detection
	Interface of IDetector
	IFaceDetectionBatch
	Interface of IHumanDetector
	IHumanDetectionBatch
	Interface of ILivenessFlyingFaces

	v.3.10.1
	Detector FaceDetV3 changes
	Detector FaceDetV1, FaceDetV2 changes

	Best practices
	Overview
	Multithread scenario
	Thread pools
	Estimators. Creation and Inference
	Forking process

	Device-specific constraints
	Image constraints

	Appendix A. Specifications
	Classification performance
	Descriptor size

	Appendix B. Glossary
	Descriptor
	Cooperative Photoshooting and Recognition
	Matching

	Appendix C. FAQ

