VisionLabs

MACHINES CAN SEE

VisionLabs FaceEngine Handbook

written for LUNA SDK Mobile iOS version 5.17.0

Contents

Introduction 5
1 Core Concepts 6
11 Commoninterfacesand Types 0 i e e e 6
111 Reference CountedlInterface 6

11.2 Automaticreferencecounting 6

1.1.2. Referencing - without acquiring ownership of object lifetime 6

1.1.2.2 Acquiring - own object lifetime o o000 7

11.3 Serializableobjectinterface 8

114 Auxiliary types o e e e e e e 8

1.1.4.1 Imagetype e 8

1.2 BetaMode. e e e e 9

2 FaceEngine Structure Overview 10
3 Core Facility 1
31 Commonlinterfaces. L e e e 1
310 FaceEngineObject L L 1

3.2 SettingsProvider e e e e 1

3.2 Helperinterfaces e 1
3.21 Archiveinterface e 1

3.3 DataPaths e e e e 12
330 ModelData e e e e 12

3.3.2 ConfigurationData 12

4 Detection facility 13
41 OVEIVIEW . . o it e e e e e e e e e e e e e 13
4.2 Detectionstructure L e e e e e 13
4.3 FaceDetection e e e e 13
4.3.1 Imagecoordinatesystem e e e 13

4.3.2 Facedetection e e 14

433 Redetectmethod e 14

434 FaceAlignment. 14

4.3.40 Fivelandmarks L 14

5 Image Warping 15
6 Parameter Estimation Facility 17
6.1 OVEIVIEW . . . ot e e e e e e e e e e e e e e e e e 17

VisionLabs B.V. 2/56

6.2 Bestshotselectionfunctionality

6.2.1 EyesEstimation,
6.2.2 BestShotQuality Estimation
6.2.3 LivenessOneShotRGB Estimation
6.2.4 Image Quality Estimation
6.3 Medical Mask Estimation Functionality
6.3.1 MedicalMaskEstimatorthresholds
6.3.2 MedicalMaskenumeration.
6.3.3 MedicalMaskEstimationstructure
6.3.4 MedicalMaskExtended enumeration

6.3.5 MedicalMaskEstimationExtended structure

6.3.6 Filtrationparameters

7 Descriptor processing facility

T1 0 OVeIVIEW . . o vt e e e e e e e e e e e e e e
711 PersonldentificationTask
7.2 Descriptor. e e e e
721 DescriptorVersions 0 e
7.2.2 DescriptorBatch
7.2.3 Descriptor Extraction,
7.2.4 DescriptorMatching

8 System Requirements

8.1 IOSinstallations

9 Hardware requirements

9.1 Mobileinstallations e
911 CPUrequirements
9.1.2 Memoryrequirementsl
9.1.3 Number of threads on mobiledevices

10 Best practices

101 OVEerVIEW . . . o o o e e e e e e e e e e e e
10.1.1 Creationand deletionorder
10.1.2 Multithreadscenario
10.1.3 Threadpools
10.1.4 Estimators. Creationand Inference
10.1.5 Forkingprocesst

11 Device-specific constraints

1M1 Imageconstraints. L L

VisionLabs B.V.

3/56

12 Appendix A. Specifications 49
12.1 Runtime performance for mobile environment 49
12011 10S L e e e e e e e e e e e e e 49

121,11 iPhone 7. Matcher performance 49

121.1.2 iPhone7. Extractor performance L. 49

12.1.1.3 iPhone7. Detectorperformance, . 50

12.1.1.4 iPhone 7. Estimations performance with batch interface 50

12.1.1.5 iPhone 7. Estimations performance without batch interface 51

12.1.1.6 iPhone 6. Matcher performance 51

12.1.1.7 iPhone 6. Extractorperformance 52

12.1.1.8 iPhone 6. Detector performance 52

12.1.1.9 iPhone 6. Estimations performance with batch interface 52

12.1.1.10 iPhone 6. Estimations performance without batch interface 53

12.2 Featurematrix o i i e e e e e e e e e 54

13 Appendix B. Glossary 56
13,1 DesCriptor . . . v o o e e e e e e e e e 56
13.2 Cooperative Photoshooting and Recognition 56
13.3 Matching o . e e e e e e e 56

VisionLabs B.V.

4 /56

Introduction

This short guide describes core concepts of the product, shows main FaceEngine features and suggests
usage scenarios.

This document is not a full-featured API reference manual nor a step by step tutorial. For reference pages,
please see Doxygen APl documentation that is shipped with FaceEngine. For complete examples, please
head to our developer portal.

What this book does, however, is this:

+ It describes ideas behind resource management and gives a clue why one or another decision was
made. With this in mind, you are ready to write efficient code with FaceEngine;

+ It breaks down full face analysis and recognition pipeline in parts and shows how one part affects
allthe others. Thisinformation will help you to adapt FaceEngine to your needs, which is somewhat
more productive than blindly following tutorials;

« It details things that are important and omits things that are obvious, so you get information that
matters most.

This book is split up into several chapters. There are chapters dedicated to each FaceEngine facility; there
are chapters with conceptual overviews; there are chapters with generic information. We tried to write
the book starting from low-level concepts and moving on to face detection, description and recognition
tasks solving one problem at a time. Although sometimes we just had to give references to chapters
ahead, we tried to minimize such jumps.

The opening chapter of this book is called “Core concepts”. It will tell you about memory management
techniques, object creation and destruction strategies that are widely used across the entire FaceEngine.
The following chapters catch up telling how higher level FaceEngine components are created from those
building blocks.

VisionLabs B.V. 5/56

1 Core Concepts

1.1 Common Interfaces and Types
1.1.1 Reference Counted Interface

Everything in FaceEngine object system starts from here. The IRefCounted interface provides methods
for reference counter access, increment, and decrement. All reference counted objects imply a custom
memory management model. This way they support automated destruction when reference count drops
to zero as well as more sophisticated strategies of partial destruction and weak referencing required for
FaceEngine internal needs. The bare minimum of such functions is exposed to a user allowing:

« to notify the object that it is required by a client via retaining a reference to it;
+ to notify the object that it is no longer required by releasing a reference to it;
+ to get actual reference counter value.

Reference counted objects expect some special treatment as well. Be sure never to call delete on
any pointer to object derived from IRefCounted! Doing so leads to heap corruption. Simply
calling release notifies the system when the object should be destroyed and it does this properly for

you.

However, itis not recommended to interact with the reference counting mechanism manually as doing so
may be error-prone. Instead, you are strongly advised to use smart pointers that are specially designed to
handle such objects and provided by FaceEngine. See section “Automatic reference counting” for details.

1.1.2 Automatic reference counting

For your convenience, a special smart pointer class Ref is provided. It is capable of automatic reference
counter incrementing upon its creation and automatic decrementing upon its destruction. It also does
an assertion of the inner raw pointer being non-null, thus preventing errors.

Two ways of working with Ref are possible:

1.1.2.1 Referencing - without acquiring ownership of object lifetime
ISomeObjectx createSomeObject();
{
/* Here createSomeObject returns an object with initial reference count of 1
(otherwise, it would be dead). Then Ref adds another one for itself
making a total reference count of 2!
*/
Ref<ISomeObject> objref = make_ref(createSomeObject());
/* Here we use the object in any way we want expecting it to be properly
destroyed when control will leave this scope.

VisionLabs B.V. 6/56

*/

+

/* Here we have left the scope and Ref was automatically destroyed like any
other object created on the stack. At the same time, it decreased
reference count of its 1internal object by 1 making it 1 again.

*/

However, the object is not destroyed automatically! For this to happen, it should have precisely 0
references. Moreover, in this example, the raw pointer to the object is lost, so it is impossible to fix it in
any way; thus a memory leak is introduced.

1.1.2.2 Acquiring - own object lifetime

So keepingthatin mind we introduce a concept of ownership acquiring. By acquiring an object, you mean
thatits raw pointeris not going to be used and only a valid Ref to it is required. To acquire ownership, use
a special ::acquire() function. The fixed version of the above example would look like this:

ISomeObjectx createSomeObject();
{

/* Here createSomeObject returns an object with initial reference count of 1
(otherwise, it would be dead). Then we acquire it leaving a total

reference count of 1.

*/

Ref<ISomeObject> objref = acquire(createSomeObject());

/* Here we use the object in any way we want.

*/

}

/* Here we have left the scope and Ref was automatically destroyed like any
other object created on the stack. At the same time, it decreased
reference count of its 1internal object by 1 making it 0. The object -s
destroyed properly by the object system.

*/

Do not store or use raw pointers to the object when using the ::acquire() function, as ownership
acquiring invalidates them.

Acquiring way of working with Refis pretty like standard library shared_ptrown lifetime of the object
after it returned by std::make_shared().

You can statically cast object type during acquiring or referencing. To achieve this, use special versions
of the ::make_ref_as() and ::acquire_as() functions. It is your responsibility to ensure that such a cast is
possible.

VisionLabs B.V. 7/56

Please refer to FaceEngine Reference Manual for more details on available convenience methods and
functions.

As a side note, be informed that typedefs for Ref’s to all reference counted types are declared. All of them
match the following naming convention: InterfaceNamePtr. So, for example, Ref</Detector>is equivalent
to IDetectorPtr.

1.1.3 Serializable object interface

This interface represents an object. Object’s contents may be serialized to some data stream and then
read back. Think of this as loading and saving.

To interact with the aforementioned data stream, the serializable object needs a user-provided adapter.
Such adapteris called the archive. See a detailed explanation of itin section “Archive interface” in chapter
“Core facility”.

Serializable interfaces: IDescriptor, IDescriptorBatch.

1.1.4 Auxiliary types

1.1.4.1 Image type

Since FaceEngine is a computer vision library, it is natural for it to implement some image concept.
Therefore, an Image class exists. It is designed as a reference counted container for raw pixel color
data. Reference counting allows a single image to be shared by several objects. However, one should
understand, that each Image object is holding a reference to some data, so if the data is modified in any
way, this affects all other objects holding the same reference. To make a deep copy of an Image, one
should use the clone() method, since assignment operators just make a reference. It is also possible to
clip a part of an image into a new image by means of extract() method.

Pixel data may be characterized by color channel layout, i.e., a number of color channels and their order.
The engine defines a Format structure for that. The Format determines:

« Number of color channels (e.g., RGB or grayscale);
« Order of color channel (e.g., RGB vs. BGR).

FaceEngine assumes 8 bits (i.e., 1 byte) per color channel and implements 8 BPP grayscale, 24 BPP
RGB/BGR and padded 32 BPP formats. Format conversion functions are also provided for convenience;
see the convert() function family.

The Image class supports data range mapping. It is possible to map a subset of bytes in a rectangular
area for reading or writing. The mapped pixels are represented by the Subimage structure. In contrast
to Image, Sublmage is just a data view and is not reference counted. You are not supposed to store
Sublmages longer that itis necessary to complete data modification. See the documentation of the map()
function family for details.

VisionLabs B.V. 8/56

The supports 10 roitines to read/write OOM, JPEG, PNG and TIFF formats via Freelmage library.

The absence of image 10 is dictated by the fact that FaceEngine focuses on being lightweight and with
the minimum possible number of external dependencies. Itis not designed solely with image processing
purpose in mind. l.e., one may treat video frames as Images and process them one by one. In this case,
an external (possibly proprietary) video codec is required.

1.2 Beta Mode

Some features in LUNA SDK are available just in Beta mode. This is experimental features which may be
unstable. If you want use them, you have to activate betaMode param in config (faceengine.conf).

VisionLabs B.V. 9/56

2 FaceEngine Structure Overview

FaceEngineis subdivided into several facilities. Each facility is dedicated to a single function. Below there
is a list of all facilities with short descriptions of functionality they provide. Detailed information may be
found in corresponding chapters of this handbook.

FaceEngine facility list:

« Core facility. This facility stores shared low-level FaceEngine types and factories. This facility
is responsible for normal functioning of all other facilities by providing settings accessors and
common interfaces. The core facility also contains the main FaceEngine root object that is used to
create instances of all higher level objects;

» Face detection facility. This facility is dedicated to object detection. It contains various object
detector implementations and factories;

« Parameter estimation facility. This facility is dedicated to various image parameter estimation,
such as blurriness, transformation and so forth. It contains various estimator implementations
and factories;

« Descriptor processing facility. This facility is dedicated to descriptor extraction and matching. The
descriptor is a set of features, describing an object, invariant to object transformation, size or other
parameters. Descriptor matching allows judging with certain probability whether two objects are
the same. This facility contains various descriptor extractors and containers as well as factories,
required to produce them.

So, each facility is a set of classes dedicated to some common for them problem domain. Facilities are
independent of each other, with several exceptions, like that all higher level facilities depend on the core
facility. Interfacility dependencies are thoroughly described in corresponding chapters of this handbook.
The actual set of facilities may vary depending on particular FaceEngine distributions as facilities may be
licensed and shipped separately.

This handbook describes the very complete FaceEngine distribution, assuming all facilities are available.
The facilities are listed in order of increasing complexity. Applying functions from these facilities in this
order allows creating a complete face detection, analysis, recognition and matching pipeline with a
significant degree of flexibility. The following chapters break down such pipeline in details.

VisionLabs B.V. 10/ 56

3 Core Facility

3.1 Common Interfaces
3.1.1 Face Engine Object

The Face Engine object is a root object of the entire FaceEngine. Everything begins with it, so it is
essential to create at least one instance of it. Although it is possible to have multiple instances of the
Face Engine, it is impractical to do so (as explained in section “Automatic reference counting” in chapter
“Core concepts”). To create a Face Engine instance call createFaceEngine function. Also, you may specify
default dataPath and configPath in createFaceEngine parameters.

3.1.2 Settings Provider

Settings provider is a special entity that loads settings from various locations. Since settings might be
shared among several objects, it is useful to cache them to minimize disk reads and provide a dictionary-
like interface for named value lookup.

This is what the provider does. The provider object stands somewhat aside FaceEngine facility structure
and is created by a separate factory function createSettingsProvider. This function accepts configuration
file path as a parameter (see section “Configuration data” for details). By default, the engine holds a
single provider instance for all facilities. Think of it as a reference counted config file. This provider is
passed by the Face Engine object to each factory it creates. The factory, in turn, can read its configuration
data from the object and pass it further to its child objects. In typical scenarios, you should not bother
with providers as the engine does everything for you. However, when relying on custom factory creation
parameters (see the description in section “Face engine object”), you have to create and supply a provider
wherever it is required manually.

3.2 Helper interfaces
3.2.1 Archive interface

Archive interface is used to provide serialization functions with a data source. It contains methods
primarily for data reading and writing. Note, that /Archive is not derived from IRefCounted, thus does not
imply any special memory management strategies.

A few points to keep in mind when implementing your archive:

+ FaceEngine objects that use IArchive for serialization purposes do call only write() (during saving) or
only read() (during loading) but never both during the same process unless otherwise is explicitly
stated;

«+ Duringsavingorloading FaceEngine objects are free to write or read their data in chunks; e.g., there
may be several sequential calls to write() in the scope of a single serialization request. The same

VisionLabs B.V. 11/56

is true for read(). Basically, read() and write() should behave pretty much like C fread() and fwrite()
standard library functions.

Any IArchive implementation should be aware of these notes.

Since these interface methods are pretty obvious and mostly self-explanatory, we advise you to check
out FaceEngine Reference Manual for the details.

3.3 Data Paths
3.3.1 Model Data

Various FaceEngine modules may require datafiles to operate. The files contain various algorithm models
and constants used at runtime. All the files are gathered together into a single data directory.

One may override the data directory location by means of setDataDirectory() method which is available
in IFaceEngine. Current data location may be retrieved via getDataDirectory() method.

3.3.2 Configuration Data

The configuration file is called faceengine.conf and stored in /data directory by default. ConfigurationGuide.pdf
with parameter description and default values is located at /doc package folder.

At runtime, the configuration file data is managed by a special object that implements ISettingsProvider
interface (see section “Settings provider”). The provideris instantiated by means of createSettingsProvider()
function that accepts configuration file location as a parameter or uses aforementioned defaults if not
specified.

One may supply a different configuration to any factory object by means of setSettingsProvider() method,
which is available in each factory object interface, including IFaceEngine. Currently, bound settings
provider may be retrieved via getSettingsProvider() method.

VisionLabs B.V. 12 /56

4 Detection facility

4,1 Overview

Object detection facility is responsible for quick and coarse detection tasks, like finding a facein animage.

4.2 Detection structure

The detection structure represents an images-space bounding rectangle of the detected object as well as
the detection score.

Detection score is a measure of confidence in the particular object classification result and may be used
to pick the most “confident” face of many.

Detection score is the measure of classification confidence and not the source image quality. While the
score is related to quality (low-quality data generally results in a lower score), it is not a valid metric to
estimate the visual quality of an image.

4.3 Face Detection

Object detection is performed by the IDetector object. The function of interest is detect(). It requires an
image to detect on and an area of interest (to virtually crop the image and look for faces only in the given
location).

Also, face detector implements detectAsync() which allows you to asynchronously detect faces and their
parameters on multiple images.

Note: Method detectAsync() is experimental, and it’s interface may be changed in the future.

Note: Method detectAsync() is not marked as noexcept and may throw an exception.

4.3.1 Image coordinate system

The origin of the coordinate system for each processed image is located in the upper left corner.

VisionLabs B.V. 13 /56

(0,0) X

Y (image)

Figure 1: Source image coordinate system

4.3.2 Face detection

When a face is detected, a rectangular area with the face is defined. The area is represented using
coordinates in the image coordinate system.

4.3.3 Redetect method

Face detector implements redetect() method which is intended for face detection optimization on video
frame sequences. Instead of doing full-blown detection on each frame, one may detect() new faces at a
lower frequency (say, each 5th frame) and just confirm them in between with redetect(). This dramatically
improves performance at the cost of detection recall. Note that redetect() updates face landmarks as well.

Also, face detector implements redetectAsync() which allows you to asynchronously redetect faces on
multiple images based on the detection results for the previous frames.

Note: Method redetectAsync() is experimental, and it’s interface may be changed in the future.
Note: Method redetectAsync() is not marked as noexcept and may throw an exception.

Detector works faster with larger value of minFaceS1ize.

4.3.4 Face Alignment

4.3.4.1 Five landmarks

Face alignment is the process of special key points (called “landmarks”) detection on a face. FaceEngine
does landmark detection at the same time as the face detection since some of the landmarks are by-
products of that detection.

VisionLabs B.V. 14/ 56

At the very minimum, just 5 landmarks are required: two for eyes, one for a nose tip and two for mouth
corners. Using these coordinates, one may warp the source photo image (see Chapter “Image warping”)
for use with all other FaceEngine algorithms.

All detector may provide 5 landmarks for each detection without additional computations.
Typical use cases for 5 landmarks:
+ Image warping for use with other algorithms:

- Quality and attribute estimators;
- Descriptor extraction.

5 Image Warping

Warpingis the process of face image normalization. It requires landmarks and face detection (see chapter
“Detection facility”) to operate. The purpose of the process is to:

« compensate image plane rotation (roll angle);
+ center the image using eye positions;
+ properly crop the image.

This way all warped images look the same and one can tell that, e.g., left eye is always in a box, defined
by the certain coordinates. This way certain transform invariance is achieved for input data so various
algorithms can perform better.

The warper (see IWarper in IWarper.h):

« Implements the warp() function that accepts span of source fsdk: : Image in R8B8G8 format, span
of fsdk: :Transformation and span of output fsdk: : Image structures;

« Implements the warpAsync() function that accepts span of source fsdk: : Image in R8B8G8 format
and span of fsdk: : Transformation.

Note: Method warpAsync() is experimental, and it’sinterface may be changed in the future. Note: Method
warpAsync() is not marked as noexcept and may throw an exception.

VisionLabs B.V. 15/56

Figure 2: Face warping

Be aware that image warping is not thread-safe, so you have to create a warper object per worker thread.

VisionLabs B.V. 16 /56

6 Parameter Estimation Facility

6.1 Overview

The estimation facility is the only multi-purpose facility in FaceEngine. It is designed as a collection of
tools that help to estimate variousimages or depicted object properties. These properties may be used to
increase the precision of algorithms implemented by other FaceEngine facilities or to accomplish custom
user tasks.

6.2 Best shot selection functionality
6.2.1 Eyes Estimation

Name: EyeEstimator
Algorithm description:

The estimator is trained to work with warped images (see chapter “Image warping” for details).

This estimator aims to determine:

+ Eye state: Open, Closed, Occluded;
« Precise eye iris location as an array of landmarks;
« Precise eyelid location as an array of landmarks.

You can only pass warped image with detected face to the estimator interface. Betterimage quality leads
to better results.

Eye state classifier supports three categories: “Open”, “Closed”, “Occluded”. Poor quality images or ones
that depict obscured eyes (think eyewear, hair, gestures) fall into the “Occluded” category. Itis always a
good idea to check eye state before using the segmentation result.

The precise location allows iris and eyelid segmentation. The estimator is capable of outputting iris and
eyelid shapes as an array of points together forming an ellipsis. You should only use segmentation results
if the state of that eye is “Open”.

Implementation description:
The estimator:

« Implements the estimate() function that accepts warped source image and warped landmarks,
either of type Landmarks5 or Landmarks68. The warped image and landmarks are received from
the warper (see IWarper: :warp());

« Classifies eyes state and detects its iris and eyelid landmarks;

« Outputs EyesEstimation structures.

VisionLabs B.V. 17 /56

Orientation terms “left” and “right” refer to the way you see the image as it is shown on the screen.
It means that left eye is not necessarily left from the person’s point of view, but is on the left side
of the screen. Consequently, right eye is the one on the right side of the screen. More formally, the
label “left” refers to subject’s left eye (and similarly for the right eye), such that xright < xleft.

EyesEstimation: :EyeAttributes presents eye state as enum EyeState with possible values: Open,
Closed, Occluded.

Iris landmarks are presented with a template structure Landmarks that is specialized for 32 points.
Eyelid landmarks are presented with a template structure Landmarks that is specialized for 6 points.

The EyesEstimation structure contains results of the estimation:

struct EyesEstimation {
/ xx
* @brief Eyes attribute structure.
* %/
struct EyeAttributes {
[*x*
* @brief Enumeration of possible eye states.
* %/
enum class State : uint8_t {
Closed, //!< Eye is closed.
Open, //'< Eye is open.
Occluded //!< Eye is blocked by something not transparent
, or landmark passed to estimator doesn't point to an eye

s

static constexpr uint64_t irisLandmarksCount = 32; //!< Iris
landmarks amount.

static constexpr uint64_t eyelidLandmarksCount = 6; //!< Eyelid
landmarks amount.

/// @brief alias for @see Landmarks template structure with
irisLandmarksCount as param.

using IrisLandmarks = Landmarks<irisLandmarksCount>;

/// @brief alias for @see Landmarks template structure with

eyelidLandmarksCount as param
using EyelidLandmarks = Landmarks<eyelidLandmarksCount>;

State state; //!< State of an eye.

VisionLabs B.V. 18 /56

IrisLandmarks dris; //!< Iris landmarks.
EyelidLandmarks eyelid; //!< Eyelid landmarks
13

EyeAttributes leftEye; //!< Left eye attributes
EyeAttributes rightEye; //!< Right eye attributes
+s

API structure name:
IEyeEstimator
Plan files:

«+ eyes_estimation_flwr8_cpu.plan

+ eyes_estimation_ir_cpu.plan

+ eye_status_estimation_flwr_cpu.plan

« eyes_estimation_flwr8_cpu-avx2.plan

+ eyes_estimation_ir_cpu-avx2.plan

+ eyes_estimation_ir_gpu.plan

+ eyes_estimation_flwr8_gpu.plan
 eye_status_estimation_flwr_cpu.plan

+ eye_status_estimation_flwr_cpu-avx2.plan
+ eye_status_estimation_flwr_gpu.plan

6.2.2 BestShotQuality Estimation

Name: BestShotQualityEstimator
Algorithm description:

The BestShotQuality estimator is designed to evaluate image quality to choose the best image before
descriptor extraction. The BestShotQuality estimator consists of two components - AGS (garbage score)
and Head Pose.

AGS aims to determine the source image score for further descriptor extraction and matching.

Estimation output is a float score which is normalized in range [0..1]. The closer score to 1, the better
matching result is received for the image.

When you have several images of a person, it is better to save the image with the highest AGS score.

Recommended threshold for AGS score is equal to 0.2. But it can be changed depending on the
purpose of use. Consult VisionLabs about the recommended threshold value for this parameter.

Head Pose determines person head rotation angles in 3D space, namely pitch, yaw and roll.

VisionLabs B.V. 19/56

Figure 3: Head pose

Since 3D head translation is hard to determine reliably without camera-specific calibration, only 3D
rotation component is estimated.

Head pose estimation characteristics:

« Units (degrees);
+ Notation (Euler angles);
+ Precision (see table below).

Implementation description:
The estimator (see IBestShotQualityEstimator in IEstimator.h):

« Implements the estimate() function that needs fsdk::Image in R8G8B8 format, fsdk::
Detection structure of corresponding source image (see section “Detection structure” in chapter
“Face detection facility”), fsdk::IBestShotQualityEstimator::EstimationRequest

structureand fsdk: : IBestShotQualityEstimator: :EstimationResultto storeestimation
result;

« Implements the estimate() function that needs the span of fsdk: : Image in R8G8B8 format, the
span of fsdk: :Detection structures of corresponding source images (see section “Detection
structure” in chapter “Face detection facility”), fsdk::IBestShotQualityEstimator::

EstimationRequest structure and span of fsdk::IBestShotQualityEstimator::
EstimationResult to store estimation results.

+ Implements the estimateAsync() function that needs fsdk: :Image in R8G8B8 format, fsdk::
Detection structure of corresponding source image (see section “Detection structure” in chapter

“Face detection facility”), fsdk::IBestShotQualityEstimator::EstimationRequest
structure;

VisionLabs B.V. 20/56

Note: Method estimateAsync() is experimental, and it’s interface may be changed in the future. Note:
Method estimateAsync() is not marked as noexcept and may throw an exception.

Before using this estimator, user is free to decide whether to estimate or not some listed attributes. For
this purpose, estimate() method takes one of the estimation requests:

« fsdk::IBestShotQualityEstimator::EstimationRequest: :estimateAGS to make only
AGS estimation;

o fsdk::IBestShotQualityEstimator::EstimationRequest::estimateHeadPose to
make only Head Pose estimation;

o fsdk::IBestShotQualityEstimator::EstimationRequest::estimateAll to make both
AGS and Head Pose estimations;

The EstimationResult structure contains results of the estimation:

struct EstimationResult {
Optional<HeadPoseEstimation> headPose;

Optional<float> ags;
}s

Head Pose accuracy:

Prediction precision decreases as a rotation angle increases. We present typical average errors for
different angle ranges in the table below.

Table 1: “Head pose prediction precision”

Range -45°,..+45° <-45° or > +45°
Average prediction error (per axis) Yaw +2.7° 14.6°
Average prediction error (per axis) Pitch +3.0° +4.8°
Average prediction error (per axis) Roll +3.0° +4.6°

Zero position corresponds to a face placed orthogonally to camera direction, with the axis of symmetry
parallel to the vertical camera axis.

API structure name:
IBestShotQualityEstimator
Plan files:

« ags_angle_estimation_flwr_cpu.plan

VisionLabs B.V. 21/56

« ags_angle_estimation_flwr_cpu-avx2.plan
+ ags_angle_estimation_flwr_gpu.plan

VisionLabs B.V. 22 /56

6.2.3 LivenessOneShotRGB Estimation

Name: LivenessOneShotRGBEstimator

Algorithm description:

This estimator shows whether the person’s face is real or fake by the following types of attacks:

« Printed Photo Attack. One or several photos of another person are used.
« Video Replay Attack. A video of another person is used.

+ Printed Mask Attack. An imposter cuts out a face from a photo and covers his face with it.

+ 3D Mask Attack. An imposer puts on a 3D mask depicting the face of another person.

The requirements for the processed image and the face in the image are listed below.

Parameters Requirements

Minimum resolution for 720x960 pixels
mobile devices

Maximum resolution for 1080x1920 pixels
mobile devices

Minimum resolution for 1280x720 pixels
webcams

Maximum resolution for 1920x1080 pixels
webcams

Compression No

Image warping No

Image cropping No

Effects overlay No

Mask No

Number of faces in the 1

frame

Face detection bounding More than 200 pixels

box size

Frame edges offset More than 10 pixels

Head pose -20 to +20 degrees for head pitch, yaw, and roll

Image quality The face in the frame should not be overexposed, underexposed, or

blurred.

VisionLabs B.V.

23/56

See image quality thresholds in the “Image Quality Estimation” section.
Implementation description:
The estimator (see ILivenessOneShotRGBEstimator in ILivenessOneShotRGBEstimator.h):

« Implements the estimate() function that needs fsdk::Image, fsdk::Detection and fsdk
: :Landmarks5 objects (see section “Detection structure” in chapter “Face detection facility”).
Output estimation is a structure fsdk: : LivenessOneShotRGBEstimation.

« Implements the estimate() function that needs the span of fsdk::Image, span of fsdk::

Detection and span of fsdk: : Landmarks5 (see section “Detection structure” in chapter “Face
detection facility”).
The first output estimation is a span of structure fsdk: :LivenessOneShotRGBEstimation.
The second output value (structure fsdk: : LivenessOneShotRGBEstimation) is the result of
aggregation based on span of estimations announced above. Pay attention the second output
value (aggregation) is optional, i.e. default argument, whichisnullptr.

The LivenessOneShotRGBEstimation structure contains results of the estimation:

struct LivenessOneShotRGBEstimation {
enum class State {
Alive = 0,
Fake,
Unknown

}s

float score;
State state;
float qualityScore;
s
Estimation score is normalized in range [0..1], where 1-is real person, 0 - is fake.
Liveness quality score is an image quality estimation for the liveness recognition.
This parameter is used for filtering if it is possible to make bestshot when checking for liveness.

The reference score is 0,5.

The value of State depends on score and qualityThreshold. The value qualityThreshold
can be given as an argument of method estimate (see ILivenessOneShotRGBEstimator), and in
configuration file faceengine.conf (see ConfigurationGuide LivenessOneShotRGBEstimator).

Recommended thresholds:

Table below contains thresholds from faceengine configuration file (faceengine.conf)
in the LivenessOneShotRGBEstimator: :Settings section. By default, these threshold values are

VisionLabs B.V. 24 /56

set to optimal.

Table 3: “LivenessOneShotRGB estimator recommended thresholds”

Threshold Recommended value

realThreshold 0.5
qualityThreshold 0.5
calibrationCoeff 0.67

Configurations:

See the “LivenessOneShotRGBEstimator settings” section in the “ConfigurationGuide.pdf” document.
API structure name:

ILivenessOneShotRGBEstimator

Plan files:

« 0slm_v4_model_1_cpu.plan
« oslm_v4_model_2_cpu.plan
« oslm_v4_model_1_arm.plan
+ oslm_v4_model_2_arm.plan

VisionLabs B.V. 25/56

6.2.4 Image Quality Estimation

Name: QualityEstimator
Algorithm description:

The estimator is trained to work with warped images (see chapter “Image warping” for details).

This estimator is designed to determine the image quality. You can estimate the image according to the
following criteria:

+ Theimage is blurred;

« The image is underexposed (i.e., too dark);

+ The image is overexposed (i.e., too light);

« The face in the image is illuminated unevenly (there is a great difference between light and dark
regions);

+ Image contains flares on face (too specular).

Examples are presented in the images below. Good quality images are shown on the right.

Figure 4: Blurred image (left), not blurred image (right)

VisionLabs B.V. 26 /56

Figure 5: Dark image (left), good quality image (right)

- e
b

Figure 6: Light image (left), good quality image (right)

VisionLabs B.V. 27 /56

Figure 8: Image with specularity - image contains flares on face (left), good quality image (right)

Implementation description:
The general rule of thumb for quality estimation:

1. Detect a face, see if detection confidence is high enough. If not, reject the detection;
2. Produce a warped face image (see chapter “Descriptor processing facility”) using a face detection
and its landmarks;

VisionLabs B.V. 28 /56

3. Estimate visual quality using the estimator, finally reject low-quality images.

While the scheme above might seem a bit complicated, it is the most efficient performance-wise, since
possible rejections on each step reduce workload for the next step.

At the moment estimator exposes two interface functions to predict image quality:

« virtual Result estimate(const Image& warp, Quality& quality);
« virtual Result estimate(const Image& warp, SubjectiveQuality& quality);

Each one of this functions use its own CNN internally and return slightly different quality criteria.

The first CNN is trained specifically on pre-warped human face images and will produce lower score
factors if one of the following conditions are satisfied:

+ Image is blurred;

+ Image is under-exposured (i.e., too dark);

+ Image is over-exposured (i.e., too light);

+ Image color variation is low (i.e., image is monochrome or close to monochrome).

Each one of this score factors is defined in [0..1] range, where higher value corresponds to better image
quality and vice versa.

The second interface function output will produce lower factor if:

« Theimage is blurred;

« The image is underexposed (i.e., too dark);

« The image is overexposed (i.e., too light);

« The face in the image is illuminated unevenly (there is a great difference between light and dark
regions);

+ Image contains flares on face (too specular).

The estimator determines the quality of the image based on each of the aforementioned parameters. For
each parameter, the estimator function returns two values: the quality factor and the resulting verdict.

As with the first estimator function the second one will also return the quality factors in the range [0..1],
where 0 corresponds to low image quality and 1 to high image quality. E. g., the estimator returns low
quality factor for the Blur parameter, if the image is too blurry.

The resulting verdict is a quality output based on the estimated parameter. E. g., if theimage is too blurry,
the estimator returns “isBlurred = true”.

The threshold (see below) can be specified for each of the estimated parameters. The resulting verdict
and the quality factor are linked through this threshold. If the received quality factor is lower than the
threshold, the image quality is low and the estimator returns “true”. E. g., if the image blur quality factor
is higher than the threshold, the resulting verdict is “false”.

If the estimated value for any of the parameters is lower than the corresponding threshold, the image is
considered of bad quality. If resulting verdicts for all the parameters are set to “False” the quality of the

VisionLabs B.V. 29 /56

image is considered good.

The quality factor is a value in the range [0..1] where 0 corresponds to low quality and 1to high quality.

Illumination uniformity corresponds to the face illumination in the image. The lower the difference

between light and dark zones of the face, the higher the estimated value. When the illumination is

evenly distributed throughout the face, the value is close to “1”.

Specularity is a face possibility to reflect light. The higher the estimated value, the lower the

specularity and the better the image quality. If the estimated value is low, there are bright glares

on the face.

The Quality structure contains results of the estimation made by first CNN. Each estimation is given in

normalized [0, 1] range:

struct Quality {
float light; // <

overlighted.
float dark; // <
float gray; // 1<
float blur; / /<

image

image
image
image

overlighting degree. 1 - ok, 0 -

darkness degree. 1 - ok, 0 - too dark.
grayness degree 1 - ok, 0 - too gray.
blur degree. 1 - ok, 0 - too blured.

inline float getQuality() const noexcept; //'< complex estimation
of quality. 0 - low quality, 1 - high quality.

}s

The SubjectiveQuality structure contains
estimation is given in normalized [0, 1] range:

struct SubjectiveQuality {

float blur;

float light;
bright;

float darkness;

b

/1<
AN

/]1<

results of the estimation made by second CNN. Each

image blur degree. 1 - ok, 0 - too blured.
image brightness degree. 1 - ok, 0 - too

image darkness degree. 1 - ok, 0 - too dark

float illumination; //!< dimage illumination uniformity degree. 1 -

ok, @ - is too illuminated;

float specularity;
not specular;

bool isBlurred;

bool -disHighlighted;

bool -1isDark;

bool isIlluminated;

bool -isNotSpecular;

VisionLabs B.V.

//!< image specularity degree. 1 - ok, 0 - is

[/ 1<
[/ 1<
[/ 1<
//1'<
// 1<

image
image
image
image
image

is
is
is
is
is

blurred flag;
overlighted flag;

too dark flag;

too illuminated flag;
not specular flag;

30/56

inline bool isGood() const noexcept;
};
Recommended thresholds:

Table below contains thresholds from faceengine configuration file (faceengine.conf) inQualityEstimator
: :Settings section. By default, these threshold values are set to optimal.

Table 4: “Image quality estimator recommended thresholds”

Threshold Recommended value

blurThreshold 0.61
darknessThreshold 0.50
lightThreshold 0.57
illuminationThreshold 0.1

specularityThreshold 0.1

The most important parameters for face recognition are “blurThreshold”, “darknessThreshold” and
“lightThreshold”, so you should select them carefully.

You can select images of better visual quality by setting higher values of the “illuminationThreshold” and
“specularityThreshold”. Face recognition is not greatly affected by uneven illumination or glares.

Configurations:

See the “Quality estimator settings” section in the “ConfigurationGuide.pdf” document.
API structure name:

IQualityEstimator

Plan files:

« model_subjective_quality_v2_cpu.plan
« model_subjective_quality_v2_cpu-avx2.plan
« model_subjective_quality_v2_gpu.plan

VisionLabs B.V. 31/56

6.3 Medical Mask Estimation Functionality

Name: MedicalMaskEstimator

This estimator aims to detect a medical mask on the face in the source image. For the interface with
MedicalMaskEstimation it can return the next results:

« A medical mask is on the face (see MedicalMask::Mask field in the MedicalMask enum);

« There is no medical mask on the face (see MedicalMask::NoMask field in the MedicalMask enum);

+ The face is occluded with something (see MedicalMask::OccludedFace field in the MedicalMask
enum);

For the interface with MedicalMaskEstimationExtended it can return the next results:

+ A medical mask is on the face (see MedicalMaskExtended::Mask field in the MedicalMaskExtended

enum);

There is no medical mask on the face (see MedicalMaskExtended::NoMask field in the
MedicalMaskExtended enum);
+ A medical mask is not on the right place (see MedicalMaskExtended::MaskNotInPlace field in the
MedicalMaskExtended enum);

The face is occluded with something (see MedicalMaskExtended::OccludedFace field in the
MedicalMaskExtended enum);

The estimator (see IMedicalMaskEstimator in |IEstimator.h):

« Implements the estimate() function that accepts source warped image in R8G8B8 format and
medical mask estimation structure to return results of estimation;

+ Implements the estimate() function that accepts source image in R8G8B8 format, face detection to
estimate and medical mask estimation structure to return results of estimation;

« Implementsthe estimate() function that accepts fsdk::Span of the source warped images in R8G8B8
format and fsdk::Span of the medical mask estimation structures to return results of estimation;

+ Implements the estimate() function that accepts fsdk::Span of the source images in R8G8B8 format,
fsdk::Span of face detections and fsdk::Span of the medical mask estimation structures to return
results of the estimation.

Every method can be used with MedicalMaskEstimation and MedicalMaskEstimationExtended.
The estimator was implemented for two use-cases:

1. When the user already has warped images. For example, when the medical mask estimation is
performed right before (or after) the face recognition;
2. When the user has face detections only.

Note: Calling the estimate() method with warped image and the estimate() method with image and
detection for the same image and the same face could lead to different results.

VisionLabs B.V. 32/56

6.3.1 MedicalMaskEstimator thresholds

The estimator returns several scores, one for each possible result. The final result is based on that scores
and thresholds. If some score is above the corresponding threshold, that result is estimated as final. If
none of the scores exceed the matching threshold, the maximum value will be taken. If some of the
scores exceed their thresholds, the results will take precedence in the following order for the case with
MedicalMaskEstimation:

Mask, NoMask, OccludedFace

and for the case with MedicalMaskEstimationExtended:

Mask, NoMask, MaskNotInPlace, OccludedFace

The default values for all thresholds are taken from the configuration file. See Configuration guide for
details.

6.3.2 MedicalMask enumeration

The MedicalMask enumeration contains all possible results of the MedicalMask estimation:

enum class MedicalMask {

Mask = 0, //'< medical mask is on the face
NoMask, //'< no medical mask on the face
OccludedFace //!< face is occluded by something

}s

enum class DetailedMaskType {
CorrectMask = 0, //!< correct mask on the face (mouth

and nose are covered correctly)

MouthCoveredWithMask, //!< mask covers only a mouth
ClearFace, //'< clear face - no mask on the face
ClearFaceWithMaskUndercChin, //'< clear face with a mask around of

a chin, mask does not cover anything in the face region (from
mouth to eyes)

PartlyCoveredFace, // < face is covered with not a
medical mask or a full mask
FullMask, //!< face is covered with a full mask
(such as balaclava, sky mask, etc.)
Count

}s

VisionLabs B.V. 33/56

+ Maskis according to CorrectMask or MouthCoveredWithMask;
+ NoMaskis according to ClearFace or ClearFaceWithMaskUnderChin;
+ OccludedFaceisaccording to PartlyCoveredFace or FullMask

Note - NoMask means absence of medical mask or any occlusion in the face region (from mouth to eyes).
Note - DetailedMaskType is not supported for NPU-based platforms.

6.3.3 MedicalMaskEstimation structure

The MedicalMaskEstimation structure contains results of the estimation:

struct MedicalMaskEstimation {

MedicalMask result; // < estimation result (@see
MedicalMask enum)
DetailedMaskType maskType; //!< detailed type (@see

DetailedMaskType enum)

// scores
float maskScore; //'< medical mask is on the face score
float noMaskScore; //'< no medical mask on the face score

float occludedFaceScore; //!< face 1is occluded by something score

float scores[static_cast<int>(DetailedMaskType::Count)]{}; // 1<
detailed estimation scores

inline float getScore(DetailedMaskType type) const;
+s

There are two groups of the fields:

1. The first group contains the result:

MedicalMask result;

Result enum field MedicalMaskEstimation contains the target results of the estimation. Also you can see
the more detailed type in MedicalMaskEstimation.

DetailedMaskType maskType; //'< detailed type

2. The second group contains scores:

float maskScore; //'< medical mask is on the face score

VisionLabs B.V. 34/56

float noMaskScore; //!'< no medical mask on the face score
float occludedFaceScore; //!< face 1is occluded by something score

The score group contains the estimation scores for each possible result of the estimation. All scores are
defined in [0,1] range. They can be useful for users who want to change the default thresholds for this
estimator. If the default thresholds are used, the group with scores could be justignored in the user code.
More detailed scores for every type of a detailed type of face covering are

float scores[static_cast<int>(DetailedMaskType::Count)]{}; // < detailed
estimation scores

« maskScore is the sum of scores for CorrectMask, MouthCoveredWithMask;
+ NoMask is the sum of scores for ClearFace and ClearFaceWithMaskUnderChin;
« occludedFaceScore is the sum of scores for PartlyCoveredFace and FullMask fields.

Note - DetailedMaskType, scores, getScore are not supported for NPU-based platforms. It means a
user cannot use this fields and methods in code.

6.3.4 MedicalMaskExtended enumeration

The MedicalMask enumeration contains all possible results of the MedicalMask estimation:

enum class MedicalMaskExtended {

Mask = 0, //!< medical mask is on the face
NoMask, //'< no medical mask on the face
MaskNotInPlace, //'< mask is not on the right place
OccludedFace //!< face is occluded by something

+s

6.3.5 MedicalMaskEstimationExtended structure

The MedicalMaskEstimationExtended structure contains results of the estimation:

struct MedicalMaskEstimationExtended {
MedicalMaskExtended result; // < estimation result (@see
MedicalMaskExtended enum)

// scores

float maskScore; //'< medical mask is on the face score
float noMaskScore; //!'< no medical mask on the face score
float maskNotInPlace; //'< mask is not on the right place

float occludedFaceScore; //!< face 1is occluded by something score

VisionLabs B.V. 35/56

+s
There are two groups of the fields:
1. The first group contains only the result enum:
MedicalMaskExtended result;

Result enum field MedicalMaskEstimationExtended contains the target results of the estimation.

2. The second group contains scores:

float maskScore; //'< medical mask is on the face score
float noMaskScore; //!'< no medical mask on the face score
float maskNotInPlace; //!'< mask is not on the right place

float occludedFaceScore; //!< face 1is occluded by something score

The score group contains the estimation scores for each possible result of the estimation. All scores are
defined in [0,1] range.

6.3.6 Filtration parameters

The estimator is trained to work with face images that meet the following requirements:

Table 5: “Requirements for fsdk: :MedicalMaskEstimator: :EstimationResult”

Attribute Acceptable values

headPose.pitch [-40...40]
headPose.yaw [-40...40]
headPose.roll [-40...40]
ags [0.5...1.0]

Configurations:

See the “Medical mask estimator settings” section in the “ConfigurationGuide.pdf” document.
API structure name:

IMedicalMaskEstimator

Plan files:

« mask_clf_v3_cpu.plan

VisionLabs B.V. 36/56

« mask_clf_v3_cpu-avx2.plan
« mask_clf_v3_gpu.plan ### Glasses Estimation{#glasses-estimation}

Name: GlassesEstimator
Algorithm description:

Glasses estimator is designed to determine whether a person is currently wearing any glasses or not.
There are 3 types of states estimator is currently able to estimate:

+ NoGlasses state determines whether a person is wearing any glasses at all;
« EyeGlasses state determines whether a person is wearing eyeglasses;
+ SunGlasses state determines whether a person is wearing sunglasses.

Note. Source input image must be warped in order for estimator to work properly (see chapter
“Image warping” for details). Quality of estimation depends on threshold values located in faceengine
configuration file (see below).

Implementation description:

Enumeration of possible glasses estimation statuses:

enum class GlassesEstimation: uint8_t{
NoGlasses,
EyeGlasses,
SunGlasses,
EstimationError

I8
Recommended thresholds:

Table below contains thresholds from faceengine configuration file (faceengine.conf) inGlassesEstimator
: :Settings section. By default, these threshold values are set to optimal.

Table 6: “Glasses estimator recommended thresholds”

Threshold Recommended value

noGlassesThreshold 0.986
eyeGlassesThreshold 0.57
sunGlassesThreshold 0.506

Configurations:

See the “GlassesEstimator settings” section in the “ConfigurationGuide.pdf” document.

VisionLabs B.V. 37/56

Metrics:

Table below contains true positive rates corresponding to selected false positive rates.

State TPR
NoGlasses 0.997
EyeGlasses 0.9768
SunGlasses 0.9712

API structure name:
IGlassesEstimator
Plan files:

+ glasses_estimation_flwr_cpu.plan
+ glasses_estimation_flwr_cpu-avx2.plan
+ glasses_estimation_flwr_gpu.plan

VisionLabs B.V.

Table 7: “Glasses estimator TPR/FPR rates”

FPR

0.00234
0.000783
0.000383

38/56

7 Descriptor processing facility

7.1 Overview
The section describes descriptors and all the processes and objects corresponding to them.

Decriptors and extraction facility is available only in the Complete edition only!

Descriptor itself is a set of object parameters that are specially encoded. Descriptors are typically more
or less invariant to various affine object transformations and slight color variations. This property allows
efficient use of such sets to identify, lookup, and compare real-world objects images.

To receive a descriptor you should perform a special operation called descriptor extraction.

The general case of descriptors usage is when you compare two descriptors and find their similarity score.
Thus you can identify persons by comparing their descriptors with your descriptors database.

All descriptor comparison operations are called matching. The result of the two descriptors matching
is a distance between components of the corresponding sets that are mentioned above. Thus, from a
magnitude of this distance, we can tell if two objects are presumably the same.

7.1.1 Person Identification Task

Facial recognition is the task of making an identification of a face in a photo or video image against a pre-
existing database of faces. It begins with detection - distinguishing human faces from other objects in
theimage - and then works on the identification of those detected faces. To solve this problem, we use a
face descriptor, which extracted from an image face of a person. A person’s face is invariable throughout
his life.

In a case of the face descriptor, the extraction is performed from object image areas around some
previously discovered facial landmarks, so the quality of the descriptor highly depends on them and the
image it was obtained from.

The process of face recognition consists of 4 main stages:

« face detection in an image;

+ warping of face detection - compensation of affine angles and centering of a face;
« descriptor extraction;

« comparing of extracted descriptors (matching).

7.2 Descriptor

Descriptor object stores a compact set of packed properties as well as some helper parameters that were
used to extract these properties from the sourceimage. Together these parameters determine descriptor
compatibility. Not all descriptors are compatible with each other. It is impossible to batch and match

VisionLabs B.V. 39/56

incompatible descriptors, so you should pay attention to what settings do you use when extracting them.
Refer to section “Descriptor extraction” for more information on descriptor extraction.

7.2.1 Descriptor Versions

Face descriptor algorithm evolves with time, so newer FaceEngine versions contain improved models of
the algorithm.

Descriptors of different versions are incompatible! This means that you cannot match descriptors
with different versions. This does not apply to base and mobilenet versions of the same model:
they are compatible.

See chapter “Appendix A. Specifications” for details about performance and precision of different
descriptor versions.

Descriptor version 59 is the best one by precision. And it works well with the personal protective
equipment on face like medical mask.

Descriptor version may be specified in the configuration file (see section “Configuration data” in chapter
“Core facility”).

7.2.2 Descriptor Batch

When matching significant amounts of descriptors, it is desired that they reside continuously in memory
for performance reasons (think cache-friendly data locality and coherence). This is where descriptor
batches come into play. While descriptors are optimized for faster creation and destruction, batches are
optimized for long life and better descriptor data representation for the hardware.

A batch is created by the factory like any other object. Aside from type, a size of the batch should be
specified. Size is a memory reservation this batch makes for its data. It is impossible to add more data
than specified by this reservation.

Next, the batch must be populated with data. You have the following options:

+ add an existing descriptor to the batch;
+ load batch contents from an archive.

The following notes should be kept in mind:

« When adding an existing descriptor, its data is copied into the batch. This means that the descriptor
object may be safely released.

« When adding the first descriptor to an empty batch, initial memory allocation occurs. Before that
moment the batch does not allocate. At the same moment, internal descriptor helper parameters
are copied into the batch (if there are any). This effectively determines compatibility possibilities
of the batch. When the batch is initialized, it does not accept incompatible descriptors.

VisionLabs B.V. 40/ 56

After initialization, a batch may be matched pretty much the same way as a simple descriptor.

Like any other data storage object, a descriptor batch implements the ::clear() method. An effect of this
method is the batch translation to a non-initialized state except memory deallocation. In other words,
batch capacity stays the same, and no memory is reallocated. However, an actual number of descriptors
in the batch and their parameters are reset. This allows re-populating the batch.

Memory deallocation takes place when a batch is released.

Care should be taken when serializing and deserializing batches. When a batch is created, it is assigned
with a fixed-size memory buffer. The size of the buffer is embedded into the batch BLOB when it is saved.
So, when allocating a batch object for reading the BLOB into, make sure its size is at least the same as
it was for the batch saved to the BLOB (even if it was not full at the moment). Otherwise, loading fails.
Naturally, it is okay to deserialize a smaller batch into a larger another batch this way.

7.2.3 Descriptor Extraction

Descriptor extractor is the entity responsible for descriptor extraction. Like any other object, it is created
by the factory. To extract a descriptor, aside from the source image, you need:

« aface detection area inside the image (see chapter “Detection facility”)
« apre-allocated descriptor (see section “Descriptor”)
« apre-computed landmarks (see chapter “Image warping”)

A descriptor extractor object is responsible for this activity. It is represented by the straightforward
IDescriptorExtractor interface with only one method extract(). Note, that the descriptor object must be
created prior to calling extract() by calling an appropriate factory method.

Landmarks are used as a set of coordinates of object points of interest, that in turn determine source
image areas, the descriptor is extracted from. This allows extracting only data that matters most for
a particular type of object. For example, for a human face we would want to know at least definitive
properties of eyes, nose, and mouth to be able to compare it to another face. Thus, we should firstinvoke
a feature extractor to locate where eyes, nose, and mouth are and put these coordinates into landmarks.
Then the descriptor extractor takes those coordinates and builds a descriptor around them.

Descriptor extraction is one of the most computation-heavy operations. For this reason, threading might
be considered. Be aware that descriptor extraction is not thread-safe, so you have to create an extractor
object per a worker thread.

It should be noted, that the face detection area and the landmarks are required only for image warping,
the preparation stage for descriptor extraction (see chapter “Image warping”). If the source image
is already warped, it is possible to skip these parameters. For that purpose, the IDescriptorExtractor
interface provides a special extractFromWarpedimage() method.

Descriptor extraction implementation supports execution on GPUs.

VisionLabs B.V. 41/56

The IDescriptorExtractor interface provides extractFromWarpedimageBatch() method which allows
you to extract batch of descriptors from the image array in one call. This method achieve higher
utilization of GPU and better performance (see the “GPU mode performance” table in appendix A
chapter “Specifications”).

Also IDescriptorExtractor returns descriptor score for each extracted descriptor. Descriptor score is
normalized value in range [0,1], where 1 - face in the warp, 0 - no face in the warp. This value allows you
filter descriptors extracted from false positive detections.

The IDescriptorExtractor interface provides extractFromWarpedimageBatchAsync() method which allows
you to extract batch of descriptors from the image array asynchronously in one call. This method achieve
higher utilization of GPU and better performance (see the “GPU mode performance” table in appendix A
chapter “Specifications”).

Note: Method extractFromWarpedimageBatchAsync() is experimental, and it’s interface may be changed
in the future.

Note: Method extractFromWarpedimageBatchAsync() is not marked as noexcept and may throw an
exception.

7.2.4 Descriptor Matching

It is possible to match a pair (or more) previously extracted descriptors to find out their similarity. With
this information, it is possible to implement face search and other analysis applications.

VisionLabs B.V. 42 /56

99.47%

6.77%

Figure 9: Matching

By means of match function defined by the IDescriptorMatcher interface it is possible to match a pair of
descriptors with each other or a single descriptor with a descriptor batch (see section “Descriptor batch”
for details on batches).

A simple rule to help you decide which storage to opt for:

+ when searching among less than a hundred descriptors use separate IDescriptor objects;
« when searching among bigger number of descriptors use a batch.

When working with big data, a common practice is to organize descriptors in several batches keeping a
batch per worker thread for processing.

Be aware that descriptor matching is not thread-safe, so you have to create a matcher object per a worker
thread.

VisionLabs B.V. 43 /56

8 System Requirements

8.1 10S installations
FaceEngine requires:

« i0S version 11.0.
For development:

+ XCode=11.4.

« Compiler=AppleClang 11.0.3.11030032.

9 Hardware requirements

9.1 Mobile installations

Table 8: Models provided in distribution package and supported devices.

Neural network ARM
FaceDet_v2_<detector_type>first<device>.plan yes
FaceDet_v2_<detector_type>second<device>.plan yes
FaceDet_v2_<detector_type>third<device>.plan yes
ags_angle_estimation_flwr_<device>.plan yes
headpose_v3_<device>.plan yes
ags_v3_<device>.plan yes
eyes_estimation_flwr8_<device>.plan yes
eye_status_estimation_flwr_<device>.plan yes
mask_clf_v3_<device>.plan yes
model_subjective_quality_v1_<device>.plan yes
model_subjective_quality_v2_<device>.plan yes
glasses_estimation_flwr_v2<device>.plan yes
cnn54m_<device>.plan yes
oslm_v4_model_<model_id>_<device>.plan yes

VisionLabs B.V.

44 /56

cnn54m_<device>.plan is provided in complete iOS FaceEngine SDK edition only.

9.1.1 CPU requirements

armé64 is provided within iOS frameworks.

Bitcode-enabled libraries are available for iOS.

9.1.2 Memory requirements

RAM requirements are given for common for mobile platform verification pipeline.

Storage is amount of space specific version of installation takes on device. For iOS app thinning before
deployment is assumed. As the result *.frameworks files in your final app archive will occupy (up to 30-
60%, depending on platform) less storage space compared to ones found in the distribution.

Table 9: “Memory requirements”

Requirements for i0S

RAM 400 MB
Storage Full 200 MB
Storage Frontend 170 MB

9.1.3 Number of threads on mobile devices

The description of according settings you can find in “Configuration Guide - Runtime settings”. The
setting <param name="numThreads"type="Value::Intl"x="-1"/> means that will be taken
the maximum number of available threads. This number of threads is equal to according number of
available processor cores. We strongly recommend you to follow this recommendation; otherwise,
performance can be significantly reduced.

10 Best practices

10.1 Overview

The following chapter provides a set of recommendations that user should follow in order to get optimal
performance when running Luna SDK algorithms on their target device. Over time this list will be
populated with more recommendations and performance tips.

VisionLabs B.V. 45 /56

10.1.1 Creation and deletion order

All Luna SDK objects should be destroyed in the order reversal to their creation order. This implies the
following:

« at first FaceEngine object should be created (using createFaceEngine method)

« after that all child objects, such as detectors, estimators etc, can be created

« at the end of the work all these child objects should be deleted in the first place
« and only after that the main FaceEngine object can be deleted

It is not recommended to use FaceEngine objects as globals (or static objects), because in this case their
deletion order could be undefined. In the case when such a usage is necessary, the correct deletion order
should be guaranteed via explicit deletion of all objects in the correct order, before the end of the program.
For instance:

fsdk: :IFaceEnginePtr faceEngine = fsdk::createFaceEngine("./data");

fsdk::IDetectorPtr detector = faceEngine->createDetector();

fsdk::IBestShotQualityEstimator bestShotQualityEstimator = faceEngine->
createBestShotQualityEstimator();

int main() {

detector.reset();
bestShotQualityEstimator.reset();
faceEngine.reset();

return 0;

10.1.2 Multithread scenario

Creation and destroying Luna SDK algorithms from the different threads is prohibited due to internal
implementation restrictions. All objects of the FaceEngine class and all objects of algorithms (for
example, detectors, estimators, extractors and others) must be created and destroied by the same
thread. A typical scenario is as follows: Thread 1 (may be a main thread) creates the FaceEngine object
and all needed algorithms (for example, IDetector). Threads 2..N (maybe several) uses that objects for
any purpose. Thread 1 destroys the FaceEngine object and all algorithms after all work is complete.

10.1.3 Thread pools

When running Luna SDK algorithms in a multithreaded environment it is highly recommended to use
thread pools for user-created threads. For each thread Luna SDK caches some amount of thread local

VisionLabs B.V. 46 / 56

objects under the hood in order to make its algorithms run faster next time the same thread is used at
the cost of higher memory footprint. For this reason, it is recommended to reuse threads from a pool
in order to avoid caching new internal objects and to reduce penalty of creating/destroying new user
threads.

10.1.4 Estimators. Creation and Inference

Create face engine objects once and reuse them when you need to make a new estimate to reduce
RAM usage and increase performance. The reason is that recreating of estimators leads to reopen the
corresponding plan file every time. These plan files are cached separately for every load and will be
removed only when they are flushed from the cache or after calling the destructor of FaceEngine root
object.

10.1.5 Forking process

UNIX-like operating systems implement a mechanism to duplicate a process. It creates a new child
process and copies its parents’ memory space into the child’s. This is typically done programmatically
by calling the fork() system function in the parent process. Care should be taken when forking a process
running the SDK. Always fork before the first instance of IFaceEngine is created! This is because the
SDK internally maintains a pool of worker threads, which is created lazily at the time the very first
IFaceEngine object is born and destroyed right after the last IFaceEngine object is released. When using
GPU or NPU devices, their runtime is initialized and shut down in the same manner. The hazard comes
from the fact that while fork() copies process memory, it only creates just one thread - the main thread
(refer to man pages for details: https://man7.org/linux/man-pages/man2/fork.2.html). As a result, if
at least one IFaceEngine object is alive at the time the process is being forked, the child processes will
inherit the knowledge of the object, and therefore, the implicit thread pool (and device runtime, when
appropriate). But there will be no worker threads actually running (in both, the inherited pool and the
runtime, when appropriate) and attempting to call certain SDK functions will cause a deadlock.

VisionLabs B.V. 47 /56

11 Device-specific constraints

11.1 Image constraints

When memory is allocated for Image pixel data storage, the following constraints are enforced depending
on the requested memory residence:

+ Image::MemoryResidence::CPU: base address alignment is 32 bytes;

+ Image::MemoryResidence::GPU: base address alignment is 128 bytes;

+ Image::MemoryResidence::NPU: base address alignment is 128 bytes;

+ Image::MemoryResidence::NPU_DPP: base address alignment is 128 bytes.

Also, in case of Image::MemoryResidence::NPU_DPP image width must be multiple of 16 and image
height must be multiple of 2.

When Image is initialized as a wrapper for a user-provided memory block, whose residence is said to
be Image::MemoryResidence::NPU or Image::MemoryResidence::NPU_DPP, the above requirements are
checked upon the initialization.

Image class implements limited functionality for device-side data. Only the following operations are
supported:

« construction (both with Image-owned memory and as a wrapper for a user-defined memory) and
assignment (including deep copy);

« destruction;
« set() family of functions (functionally the same as construction/assignment);

« convert() function, but only in transfer mode; This means that both source and destination formats
must match, only memory residency may differ. This function supports only synchronous memory
transfers in the following directions:

host <-> GPU
GPU <->GPU
host <-> NPU
- NPU<->NPU.

Full range of functionality (including format conversions) is currently only available for Images with host
memory data residence.

The following operations are NOT supported:

« compressed format encoding/decoding;

format/color space conversion;
+ subimage views (i.e. map() function);

padding and cropping (i.e. extract() function);

manipulation (e.g. getPixel(), setPixel(), etc.).

VisionLabs B.V. 48 /56

12 Appendix A. Specifications

12.1 Runtime performance for mobile environment

Face detection performance depends on inputimage parameters such as resolution and bit depth as well
as the size of the detected face. The iOS platform uses mobilenet by default.

Input data characteristics:

+ Image resolution: 640x480px;
+ Image format: 24 BPP RGB;

12.1.1 10S

Performance measurements are presented for ARM of iPhones 7 and 6 in tables below. Measured values
are averages of at least 100 experiments. Mobilenet is used by default. The number of threads auto
means that will be taken the maximum number of available threads. For this mode use the -1 value
for the numThreads parameter in the runtime.conf. This number of threads is equal to according
number of available processor cores. We strongly recommend you to follow this recommendation;
otherwise, performance can be significantly reduced. Description of according settings you can find in
“Configuration Guide - Runtime settings”.

12.1.1.1 iPhone 7. Matcher performance
The table below shows the performance of Matcher on the iPhone 7.

Type Model Threads Average Units RAM Memory (Mb)
Matcher 59 1 1.0M matches/sec 322
Matcher 60 1 1.0M matches/sec 322

12.1.1.2 iPhone 7. Extractor performance
The table below shows the performance of Extractor on the iPhone 7.

Type Model Threads Batch Size Average (ms) RAM Memory (Mb)
Extractor 59 1 1 112.4 128
Extractor 59 auto 1 112.0 274
Extractor 59 auto 4 113.4 298
Extractor 59 auto 8 105.9 322

VisionLabs B.V. 49 /56

Type

Extractor
Extractor
Extractor

Extractor

Model

60
60
60
60

Threads

auto
auto

auto

12.1.1.3 iPhone 7. Detector performance

Batch Size

86.9
90.1
90.4
94.6

The table below shows the performance of Detector on the iPhone 7.

Measurement

Detector (FaceDetV2)

(Easy/complex/6 faces)

Threads

auto

Average (ms)

13.0/12.0/51.0
13.0/12.0/51.0

12.1.1.4 iPhone 7. Estimations performance with batch interface

Average (ms)

RAM Memory (Mb)

128
274
298
322

RAM Memory (Mb)

92
92

The table below shows the performance of Estimations on the iPhone 7 for estimators that have a batch

interface.

Measurement

HeadPose
HeadPose
HeadPose
HeadPose
Eyes (RGB,
useStatusPlan=1)
Eyes (RGB,
useStatusPlan=1)
Eyes (RGB,
useStatusPlan=1)
Eyes (RGB,
useStatusPlan=1)

AGS
AGS

VisionLabs B.V.

Threads

auto
auto

auto

auto

auto

auto

auto

Batch Size

Average (ms)

0.9
0.9
0.8
0.8
5.0

4.9

4.8

4.8

0.9
0.8

RAM Memory (Mb)

322
322
322
322
92

92

92

92

48
61

50/56

Measurement

AGS

AGS
BestShotQuality
BestShotQuality
BestShotQuality
BestShotQuality
Medical Mask
Medical Mask
Medical Mask
Medical Mask
OneShot Liveness
OneShot Liveness
OneShot Liveness
OneShot Liveness
Glasses

Glasses

Threads

auto
auto
1
auto
auto

auto

auto
auto

auto

auto

auto

auto

auto

Batch Size

o » = o b

o » =

Average (ms)

0.8
0.8
1.0
0.9
0.9
0.9
29.4
29.4
28.1
28.1
255.0
254.0
253.0
250.0
9.53
9.61

12.1.1.5 iPhone 7. Estimations performance without batch interface

RAM Memory (Mb)

64
7
7
82
85
92

322

322

322

322

322

818

852

887

301

301

The table below shows the performance of Estimations on the iPhone 7 for estimators that do not have

a batch interface.

Measurement

Warper
Warper
Quality
Quality

Threads

auto

auto

12.1.1.6 iPhone 6. Matcher performance

Average (ms)

2.0
2.0
5.0
5.0

The table below shows the performance of Matcher on the iPhone 6.

VisionLabs B.V.

RAM Memory (Mb)

322
322
322
322

51/56

Measurement Model Threads Average Units RAM Memory (Mb)

Matcher 59 1 0.5M matches/sec 249
Matcher 60 1 0.5M matches/sec 249

12.1.1.7 iPhone 6. Extractor performance
The table below shows the performance of Extractor on the iPhone 6.

Measurement Model Threads Batch Size Average (ms) RAM Memory (Mb)
Extractor 59 1 1 229.5 m
Extractor 59 auto 1 229.8 222
Extractor 59 auto 4 230.4 239
Extractor 59 auto 8 209.8 243
Extractor 60 1 1 213.4 m
Extractor 60 auto 1 212.8 222
Extractor 60 auto 4 213.8 239
Extractor 60 auto 8 213.6 243

12.1.1.8 iPhone 6. Detector performance
The table below shows the performance of Detector on the iPhone 6.

Measurement Threads Average (ms) RAM Memory (Mb)
Detector (FaceDetV2) 1 30.0/25.0/111.0 78
(Easy/complex/6 faces) auto 28.0/25.2/111.0 78

12.1.1.9 iPhone 6. Estimations performance with batch interface
The table below shows the performance of Estimations on the iPhone 6 for estimators that have a batch
interface.

Measurement Threads Batch Size Average (ms) RAM Memory (Mb)
HeadPose 1 1 2.0 246
HeadPose auto 1 2.0 249

VisionLabs B.V. 52 /56

Measurement

HeadPose
HeadPose

Eyes (RGB,

useStatusPlan=1)

Eyes (RGB,

useStatusPlan=1)

Eyes (RGB,

useStatusPlan=1)

Eyes (RGB,

useStatusPlan=1)

AGS
AGS
AGS
AGS

BestShotQuality
BestShotQuality
BestShotQuality
BestShotQuality

MedicalMask
MedicalMask
MedicalMask
MedicalMask

OneShot Liveness

Glasses

Glasses

Threads

auto
auto

1

auto

auto

auto

auto
auto

auto

auto
auto

auto

auto

auto

auto

auto

Batch Size

o b = o b

o » =

Average (ms)

1.7
1.6
16.0

16.0

17.0

18.0

4.0
4.0
3.2
3.1
4.0
4.0
3.3
3.2
52.8
52.8
51.5
51.3
546.0
17.9
18.0

12.1.1.10 iPhone 6. Estimations performance without batch interface

RAM Memory (Mb)

249
249
78

78

78

78

34
47
51
58
58
68
7
78

249

249

255

276

276

227

227

The table below shows the performance of Estimations on the iPhone 6 for estimators that do not have

a batch interface.

VisionLabs B.V.

53/56

Measurement Threads Average (ms) RAM Memory (Mb)

Warper 1 4.4 276
Warper auto 4.3 279
Quality 1 9.0 276
Quality auto 9.0 276

The table below shows size of serialized descriptors to estimate memory requirements.

Table 20: “Descriptor size”

Descriptor version Data size (bytes) Metadata size (bytes) Total size

CNN 54 512 8 520

Metadata includes signature and version information that may be omitted during serialization if the
NoSignature flag is specified.

When estimating individual descriptor size in memory or serialization storage requirements with default
options, consider using values from the “Total size” column.

When estimating memory requirements for descriptor batches, use values from the “Data size” column
instead, since a descriptor batch does not duplicate metadata per descriptor and thus is more memory-
efficient.

These numbers are for approximate computation only, since they do not include overhead like
memory alignment for accelerated SIMD processing and the like.

12.2 Feature matrix

Mobile versions come in two editions: the frontend edition (or FE for short) and the complete edition.

The table below shows FaceEngine features supported by different editions of mobile platform.

Table 21: “Feature matrix”

Facility Module Complete Frontend
Core Yes Yes
Face detection & alighment Face detector Yes Yes

VisionLabs B.V. 54 /56

Facility

Parameter estimation

Face descriptors

Module

BestShotQuality estimation
Color estimation

Eye estimation

Head pose estimation

AGS estimation
LivenessOneShotRGB estimation
Medical Mask estimation
Quality estimation

Glasses estimation
Descriptor extraction
Descriptor matching
Descriptor batching

Descriptor search acceleration

See file “doc/FeatureMapMobile.htm” for more details.

VisionLabs B.V.

Complete

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

Yes

Frontend

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
No
No
No
No

55/ 56

13 Appendix B. Glossary

Table 22: Glossary

Term Description

Host memory Computer system RAM
Device memory On-board RAM of GPU or NPU card

Memory transfer Operation that copies memory from host to device or vice-versa

13.1 Descriptor

A set of features meant to describe a real-world object (e.g., a person’s face). Computed by means of
computer vision algorithms, such features are typically matched to each other to determine the similarity
of represented objects.

13.2 Cooperative Photoshooting and Recognition

A procedure of taking person face photograph characterized by person awareness of the matter and
his/her will to assist.

Typical highlights:

« Close to frontal head pose;

Neutral facial expression;

No occlusions (i.e., hair, hats, non-transparent eyewear, hands, other objects obscuring the face);

No extreme lighting conditions (i.e., reasonable illuminance, no direct sunlight);

Steady and well-tuned optics (i.e., no motion blur, depth of field, digital post-processing except
noise cancellation).

Cooperative photoshooting is opposite to the so-called “in the wild” photoshooting, which is also called
non-cooperative shooting (or recognition).

13.3 Matching

The process of descriptors comparison. Matching is usually implemented as a distance function applied
to the feature sets and distances comparison later on. The smaller the distance, the closer are descriptors,
hence, the more similar are the objects.

For convenience, helper functions exist to convert distance to a normalized similarity score, where 100%
means completely identical, and 0% means completely different.

VisionLabs B.V. 56 /56

	Introduction
	Core Concepts
	Common Interfaces and Types
	Reference Counted Interface
	Automatic reference counting
	Referencing - without acquiring ownership of object lifetime
	Acquiring - own object lifetime

	Serializable object interface
	Auxiliary types
	Image type

	Beta Mode

	FaceEngine Structure Overview
	Core Facility
	Common Interfaces
	Face Engine Object
	Settings Provider

	Helper interfaces
	Archive interface

	Data Paths
	Model Data
	Configuration Data

	Detection facility
	Overview
	Detection structure
	Face Detection
	Image coordinate system
	Face detection
	Redetect method
	Face Alignment
	Five landmarks

	Image Warping
	Parameter Estimation Facility
	Overview
	Best shot selection functionality
	Eyes Estimation
	BestShotQuality Estimation
	LivenessOneShotRGB Estimation
	Image Quality Estimation

	Medical Mask Estimation Functionality
	MedicalMaskEstimator thresholds
	MedicalMask enumeration
	MedicalMaskEstimation structure
	MedicalMaskExtended enumeration
	MedicalMaskEstimationExtended structure
	Filtration parameters

	Descriptor processing facility
	Overview
	Person Identification Task

	Descriptor
	Descriptor Versions
	Descriptor Batch
	Descriptor Extraction
	Descriptor Matching

	System Requirements
	IOS installations

	Hardware requirements
	Mobile installations
	CPU requirements
	Memory requirements
	Number of threads on mobile devices

	Best practices
	Overview
	Creation and deletion order
	Multithread scenario
	Thread pools
	Estimators. Creation and Inference
	Forking process

	Device-specific constraints
	Image constraints

	Appendix A. Specifications
	Runtime performance for mobile environment
	IOS
	iPhone 7. Matcher performance
	iPhone 7. Extractor performance
	iPhone 7. Detector performance
	iPhone 7. Estimations performance with batch interface
	iPhone 7. Estimations performance without batch interface
	iPhone 6. Matcher performance
	iPhone 6. Extractor performance
	iPhone 6. Detector performance
	iPhone 6. Estimations performance with batch interface
	iPhone 6. Estimations performance without batch interface

	Feature matrix

	Appendix B. Glossary
	Descriptor
	Cooperative Photoshooting and Recognition
	Matching

