VisionLabs

MACHINES CAN SEE

VisionLabs FaceEngine Handbook

written for LUNA SDK Mobile Aurora version 5.23.1

Contents

Introduction 5
1 Core Concepts 6
11 SDKworkflow o o e e e e 6
111 Objectlifetime 6

11.2 Threading e e e e e 7

11.3 Detailedconstraints e 8

1.2 Commoninterfacesand Types 0 i e e e e 9
1.21 Reference CountedInterface 9

1.2.2 Automaticreferencecounting 10

1.2.21 Referencing - without acquiring ownership of object lifetime 10

1.2.2.2 Acquiring - own object lifetime oo oo 1

1.2.3 Serializable objectinterface 1

1.2.4 Auxiliary types o e e e e e 12

1.2.4.1 Imagetype e 12

1.3 BetaMode. e e e 12

2 FaceEngine Structure Overview 13
3 Core Facility 14
31 Commoninterfaces. e e e e 14
310 FaceEngineObject L 14

3.1.2 SettingsProvider L e e e e e e 14

3.2 Helperinterfaces e e 14
3.21 Archiveinterface e e 14

3.3 DataPaths e e e e 15
3301 ModelData e e e e e e 15

3322 ConfigurationData e 15

4 Detection facility 16
41 OVEIVIEW . . o it e e e e e e e e e e e e e e e 16
4.2 Detectionstructure L e e e e e 16
4.3 FaceDetection e e e e e 16
431 Imagecoordinatesystem 16

4.3.2 Facedetection e e 17

433 Redetectmethod e 17

434 FaceAlignment. 17

4.3.40 Fivelandmarks o 17

VisionLabs B.V.

2/58

5 Image Warping

6 Parameter Estimation Facility

6.1 Overview e e
6.2 Bestshotselectionfunctionality
6.21 EyesEstimation
6.2.2 BestShotQuality Estimation
6.3 Head PoseEstimation,
6.4 Approximate Garbage Score Estimation (AGS)
6.4.1 LivenessOneShotRGB Estimation
6.5 Mouth Estimation Functionality
6.6 Face Occlusion Estimation Functionality

7 Descriptor processing facility

T1 0Verview e e e e e e e
710 PersonldentificationTask
T2 Descriptor. . . . o o e e e e e
7.21 DescriptorVersions e
7.2.2 DescriptorBatch
7.2.3 Descriptor Extraction,
7.2.4 DescriptorMatching

8 System Requirements

8.1 Aurorainstallations.

9 Hardware requirements

9.1 Mobileinstallations e
911 CPUrequirements
9.1.2 Memoryrequirements
9.1.3 Number of threads on mobiledevices

10 Best practices

101 Threadpools e
10.2 Estimatorcreationandinference
10.3 FOrking process o v v v v i i e e e e e e
10.4 Liveness estimatorcombination
10.4.1 Changingthethreshold
10.4.2 Aggregatingthescores.
10.4.3 Recommended thresholds

10.4.4 Possible LivenessOneShotRGBEstimator model combinations

VisionLabs B.V.

3/58

11 Device-specific constraints 49

1101 Imageconstraints o L e e e 49

12 Collecting information for Technical Support 50
12.1 Contact Technical Support e 50
12.2 Specificerror e e e e e e e e 50
12.3 Non-specificerror e e 51
12.4 Unexpected Result e e 51

13 Appendix A. Specifications 53
13.1 Runtime performance for mobile environment 53
1300 AUrora . . . L e 53

13.1.1.1 Aurora environment. Matcher performance 53

13.1.1.2 Aurora environment. Extractor performance 53

13.1.1.3 Aurora environment. Detector performance 54

13.1.1.4 Aurora environment. Estimations performance with batch interface . . 54

13.1.1.5 Aurora environment. Estimations performance without batch interface . 55

13.2 Descriptorsize o o e e e e e e e e e e e e 56
13.3 Featurematrix e e e e 56

14 Appendix B. Glossary 58
141 DesCriptor . . . o . o o e e e e e e e e e 58
14.2 Cooperative Photoshooting and Recognition 58
14.3 Matching 58

VisionLabs B.V.

4/58

Introduction

This short guide describes core concepts of the product, shows main FaceEngine features and suggests
usage scenarios.

This document is not a full-featured API reference manual nor a step by step tutorial. For reference pages,
please see Doxygen APl documentation that is shipped with FaceEngine. For complete examples, please
head to our developer portal.

What this book does, however, is this:

+ It describes ideas behind resource management and gives a clue why one or another decision was
made. With this in mind, you are ready to write efficient code with FaceEngine;

+ It breaks down full face analysis and recognition pipeline in parts and shows how one part affects
allthe others. Thisinformation will help you to adapt FaceEngine to your needs, which is somewhat
more productive than blindly following tutorials;

« It details things that are important and omits things that are obvious, so you get information that
matters most.

This book is split up into several chapters. There are chapters dedicated to each FaceEngine facility; there
are chapters with conceptual overviews; there are chapters with generic information. We tried to write
the book starting from low-level concepts and moving on to face detection, description and recognition
tasks solving one problem at a time. Although sometimes we just had to give references to chapters
ahead, we tried to minimize such jumps.

The opening chapter of this book is called “Core concepts”. It will tell you about memory management
techniques, object creation and destruction strategies that are widely used across the entire FaceEngine.
The following chapters catch up telling how higher level FaceEngine components are created from those
building blocks.

VisionLabs B.V. 5/58

1 Core Concepts

1.1 SDK workflow
1.1.1 Object lifetime

Most of the SDK features are exposed via interfaces (C++ virtual classes) whose implementations
must be obtained by calling factory functions. Some of the factories are C-functions, such as
createFaceEngine(...). The latter one produces a root object IFaceEngine, which in turn
exposes many other factories of the IFaceEngine::createxyz(...) form. A typical workflow
consists of obtaining IFaceEngine, then calling its factories and using the produced child objects.

LUNA SDK |IFaceEngine IDetector IMedicalMaskEstimator

User
E createFaceEngine(...)

instantiate IFaceEngine implementation

o -
return IFaceEngine to client code
rrrrrr o
IFaceEngine::createDetector(...)
L4
instantiate |Detector implementation
return IDetector to client code j
IFaceEngine::createMedicalMaskEstimator(...)
7

instantiate IMedicalMaskEstimator implementation

>
return IMedicalMaskEstimator to client code ﬁ

use |Detector

use IMedicalMaskEstimator

release IMedicalMaskEstimator

release IDetector

release IFaceEngine

>

LUNA SDK |IFaceEngine IDetector IMedicalMaskEstimator

User

You do not destroy SDK objects directly, but instead deal with fsdk: : Ref<T>, reference-counted smart
pointers (see section “Automatic reference counting”) to SDK interfaces. You only need to release all
shared references, at which point fsdk: :Ref<T> destroys the underlying object.

In terms of lifetime, IFaceEngine should outlast all its child objects.

Holding fsdk::Ref<T> objects in global variables is error-prone. If the variables are in different
translation units, their construction order is undefined, which means the destruction order is out of
control, too. Viable approaches include gathering all fsdk: :Ref<T> objects in a single class or using
an explicit stack to store them, as well as storing all fsdk: :Ref<T> as local variables on the call stack
in simple projects. In the case when it is necessary to store fsdk: :Ref<T> objects as global or static

VisionLabs B.V. 6/58

variables, the correct order of releases should be guaranteed explicitly before the program ends:

fsdk: :IFaceEnginePtr faceEngine = fsdk::createFaceEngine("./data");

fsdk: :IDetectorPtr detector = faceEngine->createDetector();

fsdk::IBestShotQualityEstimator bestShotQualityEstimator = faceEngine->
createBestShotQualityEstimator();

int main() {

bestShotQualityEstimator.reset();
detector.reset();
faceEngine.reset();

return 0;

1.1.2 Threading

The part of the SDK that instantiates and destroys objects is not thread-safe. The SDK requires
using one thread (let’s call it init-thread) for calling all factory functions, as well as releasing
the references to the produced objects. The SDK internally uses thread-local objects attached to
init-thread, which makes init-thread special: as long as the SDK is alive, init-thread
must be alive too. Therefore, there is a requirement that init-thread must outlast IFaceEngine.

VisionLabs B.V. 7/58

init-thread LUNA SDK |FaceEngine IDetector IMedicalMaskEstimator

l createFaceEngine(...)

instantiate IFaceEngine implementation
(24

return IFaceEngine to client code

IFaceEngine::createDetector(...)

instantiate IDetector implementation

©
return IDetector to client code

IFaceEngine::createMedicalMaskEstimator(...)

instantiate IMedicalMaskEstimator implementation

(e >
return IMedicalMaskEstimator to client code l

release IMedicalMaskEstimator

release |Detector

releasg| IFaceEngine

do any remainining work

init-thread LUNA SDK |IFaceEngine IDetector IMedicalMaskEstimator

Once SDK objects (such as detectors and estimators, but not IFaceEngine) have been created, they are
thread-safe and can be used concurrently and on arbitrary threads. Before using an object concurrently
on many threads, consider using asynchronous APIs of the SDK instead. For example, IDetector along
with a synchronous detect (.. .) function also provides asynchronous detectAsync(...).

Itis required that an object cannot be destroyed while it has at least one incomplete call, synchronous or
asynchronous, on any thread.

1.1.3 Detailed constraints

Here is a more detailed list of lifetime and threading constraints:

« There should be at most one IFaceEngine object per process simultaneously. You can create
a new IFaceEngine object after destroying the previous one, just avoid holding multiple
IFaceEngine objects at the same time.

« There should be at most one ITrackEngine object per process simultaneously. You can create
a new ITrackEngine object after destroying the previous one, just avoid holding multiple
ITrackEngine objects at the same time.

+ All factory functions should be called on init-thread (the thread that calls createFaceEngine
()). This also implies that factory code is not thread-safe and all factory calls should be serialized
in time. Factory functions include:

VisionLabs B.V. 8/58

- C-style functions of the form createXxYzZ(...) such as createFaceEngine(...),
createTrackEngine(...)

- member functions such as IFaceEngine::createXYZ(...), ITrackEngine::
createXYZ(...)

+ activatelLicense(...) is not thread-safe. There should be at most one invocation of
activatelicense(...) per processsimultaneously.

« init-thread should live no shorter than IFaceEngine.
+ IFaceEngine should live no shorter than ITrackEngine.

« IFaceEngine should live no shorter than its child objects (algorithms/estimators/detectors). l.e.,
IFaceEngine should be the last destroyed SDK object.

« IFaceEngine should be destroyed on init-thread.
+ Algorithms/estimators/detectors should be destroyed on init-thread.

+ Algorithms/estimators/detectors can be destroyed when there are no pending or unfinished
invocations of member functions of those objects, synchronous or asynchronous, on any threads.

+ Track Engine requirements: all Track Engine streams should be stopped, then destroyed, then
ITrackEngineitself should be stopped, then destroyed.

+ ITrackEngine and all its streams should be destroyed on init-thread.

The only part of the SDK that allows multithreading is using member functions of already instantiated
algorithms/estimators/detectors, such as IDetector:detect(...) and IAttributeEstimator::
estimate(...). The member functions can be called on arbitrary threads and in parallel. Before
resorting to this multithreaded scenario, please consider using asynchronous versions that accompany
many synchronous functions of the SDK.

1.2 Common Interfaces and Types
1.2.1 Reference Counted Interface

Everything in FaceEngine object system starts from here. The IRefCounted interface provides methods
for reference counter access, increment, and decrement. All reference counted objects imply a custom
memory management model. This way they support automated destruction when reference count drops
to zero as well as more sophisticated strategies of partial destruction and weak referencing required for
FaceEngine internal needs. The bare minimum of such functions is exposed to a user allowing:

+ To notify the object that it is required by a client via retaining a reference to it.
+ To notify the object that it is no longer required by releasing a reference to it.
« To get actual reference counter value.

VisionLabs B.V. 9/58

Reference counted objects expect some special treatment as well. Be sure never to call delete on
any pointer to object derived from IRefCounted! Doing so leads to heap corruption. Simply
calling release notifies the system when the object should be destroyed and it does this properly for

you.

However, we do not recommend that you interact with the reference counting mechanism manually as
doing so may be error-prone. Instead, we recommend that you use smart pointers that are specially
designed to handle such objects and provided by FaceEngine. See section “Automatic reference
counting” for details.

1.2.2 Automatic reference counting

For your convenience, a special smart pointer class Ref is provided. It is capable of automatic reference
counter incrementing upon its creation and automatic decrementing upon its destruction. It also does
an assertion of the inner raw pointer being non-null, thus preventing errors.

Two ways of working with Ref are possible:

1.2.2.1 Referencing - without acquiring ownership of object lifetime
ISomeObjectx createSomeObject();
{

/* Here createSomeObject returns an object with initial reference count of 1
(otherwise, it would be dead). Then Ref adds another one for itself
making a total reference count of 2!
*/
Ref<ISomeObject> objref = make_ref(createSomeObject());
/* Here we use the object in any way we want expecting it to be properly
destroyed when control will leave this scope.

*/

}

/* Here we have left the scope and Ref was automatically destroyed like any
other object created on the stack. At the same time, it decreased
reference count of its 1dinternal object by 1 making it 1 again.

*/

However, the object is not destroyed automatically! For this to happen, it should have precisely 0
references. Moreover, in this example, the raw pointer to the object is lost, so it is impossible to fix it in
any way; thus a memory leak is introduced.

VisionLabs B.V. 10/58

1.2.2.2 Acquiring - own object lifetime

So keepingthatin mind we introduce a concept of ownership acquiring. By acquiring an object, you mean
thatits raw pointeris not going to be used and only a valid Ref to it is required. To acquire ownership, use
a special ::acquire() function. The fixed version of the above example would look like this:

ISomeObjectx createSomeObject();
{

/* Here createSomeObject returns an object with initial reference count of 1
(otherwise, it would be dead). Then we acquire it leaving a total
reference count of 1.
*/
Ref<ISomeObject> objref = acquire(createSomeObject());
/* Here we use the object in any way we want.

*/
}

/* Here we have left the scope and Ref was automatically destroyed like any
other object created on the stack. At the same time, it decreased
reference count of 1its internal object by 1 making it 0. The object 1s
destroyed properly by the object system.

*/

Do not store or use raw pointers to the object when using the ::acquire() function, as ownership
acquiring invalidates them.

Acquiring way of working with Refis pretty like standard library shared_ptr own lifetime of the object
after it returned by std::make_shared().

You can statically cast object type during acquiring or referencing. To achieve this, use special versions
of the ::make_ref_as() and ::acquire_as() functions. It is your responsibility to ensure that such a cast is
possible.

Please refer to FaceEngine Reference Manual for more details on available convenience methods and
functions.

As a side note, be informed that typedefs for Ref’s to all reference counted types are declared. All of them
match the following naming convention: InterfaceNamePtr. So, for example, Ref</Detector>is equivalent
to IDetectorPtr.

1.2.3 Serializable object interface

This interface represents an object. Object’s contents may be serialized to some data stream and then
read back. Think of this as loading and saving.

VisionLabs B.V. 11/58

To interact with the aforementioned data stream, the serializable object needs a user-provided adapter.
Such adapteris called the archive. See a detailed explanation of it in section “Archive interface” in chapter
“Core facility”.

Serializable interfaces: IDescriptor, IDescriptorBatch.

1.2.4 Auxiliary types

1.2.4.1 Image type

Since FaceEngine is a computer vision library, it is natural for it to implement some image concept.
Therefore, an Image class exists. It is designed as a reference counted container for raw pixel color
data. Reference counting allows a single image to be shared by several objects. However, one should
understand, that each Image object is holding a reference to some data, so if the data is modified in any
way, this affects all other objects holding the same reference. To make a deep copy of an Image, one
should use the clone() method, since assignment operators just make a reference. It is also possible to
clip a part of an image into a new image by means of extract() method.

Pixel data may be characterized by color channel layout, i.e., a number of color channels and their order.
The engine defines a Format structure for that. The Format determines:

+ Number of color channels (e.g., RGB or grayscale);
« Order of color channel (e.g., RGB vs. BGR).

FaceEngine assumes 8 bits (i.e., 1 byte) per color channel and implements 8 BPP grayscale, 24 BPP
RGB/BGR and padded 32 BPP formats. Format conversion functions are also provided for convenience;
see the convert() function family.

The Image class supports data range mapping. It is possible to map a subset of bytes in a rectangular
area for reading or writing. The mapped pixels are represented by the Subimage structure. In contrast
to Image, Sublmage is just a data view and is not reference counted. You are not supposed to store
Sublmages longer that itis necessary to complete data modification. See the documentation of the map()
function family for details.

The supports 10 roitines to read/write OOM, JPEG, PNG and TIFF formats via Freelmage library.

The absence of image 10 is dictated by the fact that FaceEngine focuses on being lightweight and with
the minimum possible number of external dependencies. It is not designed solely with image processing
purpose in mind. l.e., one may treat video frames as Images and process them one by one. In this case,
an external (possibly proprietary) video codec is required.

1.3 Beta Mode

Some features in LUNA SDK are available just in Beta mode. This is experimental features which may be
unstable. If you want use them, you have to activate betaMode param in config (faceengine.conf).

VisionLabs B.V. 12/58

2 FaceEngine Structure Overview

FaceEngineis subdivided into several facilities. Each facility is dedicated to a single function. Below there
is a list of all facilities with short descriptions of functionality they provide. Detailed information may be
found in corresponding chapters of this handbook.

FaceEngine facility list:

« Core facility. This facility stores shared low-level FaceEngine types and factories. This facility
is responsible for normal functioning of all other facilities by providing settings accessors and
common interfaces. The core facility also contains the main FaceEngine root object that is used to
create instances of all higher level objects;

» Face detection facility. This facility is dedicated to object detection. It contains various object
detector implementations and factories;

« Parameter estimation facility. This facility is dedicated to various image parameter estimation,
such as blurriness, transformation and so forth. It contains various estimator implementations
and factories;

« Descriptor processing facility. This facility is dedicated to descriptor extraction and matching. The
descriptor is a set of features, describing an object, invariant to object transformation, size or other
parameters. Descriptor matching allows judging with certain probability whether two objects are
the same. This facility contains various descriptor extractors and containers as well as factories,
required to produce them.

So, each facility is a set of classes dedicated to some common for them problem domain. Facilities are
independent of each other, with several exceptions, like that all higher level facilities depend on the core
facility. Interfacility dependencies are thoroughly described in corresponding chapters of this handbook.
The actual set of facilities may vary depending on particular FaceEngine distributions as facilities may be
licensed and shipped separately.

This handbook describes the very complete FaceEngine distribution, assuming all facilities are available.
The facilities are listed in order of increasing complexity. Applying functions from these facilities in this
order allows creating a complete face detection, analysis, recognition and matching pipeline with a
significant degree of flexibility. The following chapters break down such pipeline in details.

VisionLabs B.V. 13 /58

3 Core Facility

3.1 Common Interfaces
3.1.1 Face Engine Object

The Face Engine objectis a root object of the entire FaceEngine. Everything begins with it, so itis essential
to create an instance of it. To create a Face Engine instance call createFaceEngine function. Also, you may
specify default dataPath and configPath in createFaceEngine parameters.

3.1.2 Settings Provider

Settings provider is a special entity that loads settings from various locations. Since settings might be
shared among several objects, it is useful to cache them to minimize disk reads and provide a dictionary-
like interface for named value lookup.

This is what the provider does. The provider object stands somewhat aside FaceEngine facility structure
and is created by a separate factory function createSettingsProvider. This function accepts configuration
file path as a parameter (see section “Configuration data” for details). By default, the engine holds a
single provider instance for all facilities. Think of it as a reference counted config file. This provider is
passed by the Face Engine object to each factory it creates. The factory, in turn, can read its configuration
data from the object and pass it further to its child objects. In typical scenarios, you should not bother
with providers as the engine does everything for you. However, when relying on custom factory creation
parameters (see the descriptionin section “Face engine object”), you have to create and supply a provider
wherever it is required manually.

3.2 Helper interfaces
3.2.1 Archive interface

Archive interface is used to provide serialization functions with a data source. It contains methods
primarily for data reading and writing. Note, that /Archive is not derived from IRefCounted, thus does not
imply any special memory management strategies.

A few points to keep in mind when implementing your archive:

+ FaceEngine objects that use IArchive for serialization purposes do call only write() (during saving) or
only read() (during loading) but never both during the same process unless otherwise is explicitly
stated;

+ Duringsavingorloading FaceEngine objects are free to write or read their data in chunks; e.g., there
may be several sequential calls to write() in the scope of a single serialization request. The same
is true for read(). Basically, read() and write() should behave pretty much like C fread() and fwrite()
standard library functions.

VisionLabs B.V. 14 /58

Any IArchive implementation should be aware of these notes.

Since these interface methods are pretty obvious and mostly self-explanatory, we advise you to check
out FaceEngine Reference Manual for the details.

3.3 Data Paths
3.3.1 Model Data

Various FaceEngine modules may require data files to operate. The files contain various algorithm models
and constants used at runtime. All the files are gathered together into a single data directory.

One may override the data directory location by means of setDataDirectory() method which is available
in IFaceEngine. Current data location may be retrieved via getDataDirectory() method.

3.3.2 Configuration Data

The configuration file is called faceengine.conf and stored in /data directory by default. ConfigurationGuide.pdf
with parameter description and default values is located at /doc package folder.

At runtime, the configuration file data is managed by a special object that implements /SettingsProvider
interface (seesection “Settings provider”). The providerisinstantiated by means of createSettingsProvider()
function that accepts configuration file location as a parameter or uses aforementioned defaults if not
specified.

One may supply a different configuration to any factory object by means of setSettingsProvider() method,
which is available in each factory object interface, including IFaceEngine. Currently, bound settings
provider may be retrieved via getSettingsProvider() method.

VisionLabs B.V. 15/58

4 Detection facility

4,1 Overview

Object detection facility is responsible for quick and coarse detection tasks, like finding a facein animage.

4.2 Detection structure

The detection structure represents an images-space bounding rectangle of the detected object as well as
the detection score.

Detection score is a measure of confidence in the particular object classification result and may be used
to pick the most “confident” face of many.

Detection score is the measure of classification confidence and not the source image quality. While the
score is related to quality (low-quality data generally results in a lower score), it is not a valid metric to
estimate the visual quality of an image.

4.3 Face Detection

Object detection is performed by the IDetector object. The function of interest is detect(). It requires an
image to detect on and an area of interest (to virtually crop the image and look for faces only in the given
location).

Also, face detector implements detectAsync() which allows you to asynchronously detect faces and their
parameters on multiple images.

Note: Method detectAsync() is experimental, and it’s interface may be changed in the future.

Note: Method detectAsync() is not marked as noexcept and may throw an exception.

4.3.1 Image coordinate system

The origin of the coordinate system for each processed image is located in the upper left corner.

VisionLabs B.V. 16 /58

(0,0) X

Y (image)

Figure 1: Source image coordinate system

4.3.2 Face detection

When a face is detected, a rectangular area with the face is defined. The area is represented using
coordinates in the image coordinate system.

4.3.3 Redetect method

Face detector implements redetect() method which is intended for face detection optimization on video
frame sequences. Instead of doing full-blown detection on each frame, one may detect() new faces at a
lower frequency (say, each 5th frame) and just confirm them in between with redetect(). This dramatically
improves performance at the cost of detection recall. Note that redetect() updates face landmarks as well.

Also, face detector implements redetectAsync() which allows you to asynchronously redetect faces on
multiple images based on the detection results for the previous frames.

Note: Method redetectAsync() is experimental, and it’s interface may be changed in the future.
Note: Method redetectAsync() is not marked as noexcept and may throw an exception.

Detector works faster with larger value of minFaceS1ize.

4.3.4 Face Alignment

4.3.4.1 Five landmarks

Face alignment is the process of special key points (called “landmarks”) detection on a face. FaceEngine
does landmark detection at the same time as the face detection since some of the landmarks are by-
products of that detection.

VisionLabs B.V. 17 /58

At the very minimum, just 5 landmarks are required: two for eyes, one for a nose tip and two for mouth
corners. Using these coordinates, one may warp the source photo image (see Chapter “Image warping”)
for use with all other FaceEngine algorithms.

All detector may provide 5 landmarks for each detection without additional computations.
Typical use cases for 5 landmarks:
+ Image warping for use with other algorithms:

- Quality and attribute estimators;
- Descriptor extraction.

5 Image Warping

Warpingis the process of face image normalization. It requires landmarks and face detection (see chapter
“Detection facility”) to operate. The purpose of the process is to:

« compensate image plane rotation (roll angle);
+ center the image using eye positions;
+ properly crop the image.

This way all warped images look the same and one can tell that, e.g., left eye is always in a box, defined
by the certain coordinates. This way certain transform invariance is achieved for input data so various
algorithms can perform better.

The warper (see IWarper in IWarper.h):

« Implements the warp() function that accepts span of source fsdk: : Image in R8B8G8 format, span
of fsdk: :Transformation and span of output fsdk: : Image structures;

« Implements the warpAsync() function that accepts span of source fsdk: : Image in R8B8G8 format
and span of fsdk: : Transformation.

Note: Method warpAsync() is experimental, and it’sinterface may be changed in the future. Note: Method
warpAsync() is not marked as noexcept and may throw an exception.

VisionLabs B.V. 18 /58

Figure 2: Face warping

Be aware that image warping is not thread-safe, so you have to create a warper object per worker thread.

VisionLabs B.V. 19/58

6 Parameter Estimation Facility

6.1 Overview

The estimation facility is the only multi-purpose facility in FaceEngine. It is designed as a collection of
tools that help to estimate variousimages or depicted object properties. These properties may be used to
increase the precision of algorithms implemented by other FaceEngine facilities or to accomplish custom
user tasks.

6.2 Best shot selection functionality
6.2.1 Eyes Estimation

Name: EyeEstimator
Algorithm description:

The estimator is trained to work with warped images (see chapter “Image warping” for details).

This estimator aims to determine:

+ Eye state: Open, Closed, Occluded;
« Precise eye iris location as an array of landmarks;
« Precise eyelid location as an array of landmarks.

You can only pass warped image with detected face to the estimator interface. Betterimage quality leads
to better results.

Eye state classifier supports three categories: “Open”, “Closed”, “Occluded”. Poor quality images or ones
that depict obscured eyes (think eyewear, hair, gestures) fall into the “Occluded” category. Itis always a
good idea to check eye state before using the segmentation result.

The precise location allows iris and eyelid segmentation. The estimator is capable of outputting iris and
eyelid shapes as an array of points together forming an ellipsis. You should only use segmentation results
if the state of that eye is “Open”.

Implementation description:
The estimator:

« Implements the estimate() function that accepts warped source image and warped landmarks,
either of type Landmarks5 or Landmarks68. The warped image and landmarks are received from
the warper (see IWarper: :warp());

« Classifies eyes state and detects its iris and eyelid landmarks;

« Outputs EyesEstimation structures.

VisionLabs B.V. 20/58

Orientation terms “left” and “right” refer to the way you see the image as it is shown on the screen.
It means that left eye is not necessarily left from the person’s point of view, but is on the left side
of the screen. Consequently, right eye is the one on the right side of the screen. More formally, the
label “left” refers to subject’s left eye (and similarly for the right eye), such that xright < xleft.

EyesEstimation: :EyeAttributes presents eye state as enum EyeState with possible values: Open,
Closed, Occluded.

Iris landmarks are presented with a template structure Landmarks that is specialized for 32 points.
Eyelid landmarks are presented with a template structure Landmarks that is specialized for 6 points.

The EyesEstimation structure contains results of the estimation:

struct EyesEstimation {
/ xx
* @brief Eyes attribute structure.
* %/
struct EyeAttributes {
[*x*
* @brief Enumeration of possible eye states.
* %/
enum class State : uint8_t {
Closed, //!< Eye is closed.
Open, //'< Eye is open.
Occluded //!< Eye is blocked by something not transparent
, or landmark passed to estimator doesn't point to an eye

s

static constexpr uint64_t irisLandmarksCount = 32; //!< Iris
landmarks amount.

static constexpr uint64_t eyelidLandmarksCount = 6; //!< Eyelid
landmarks amount.

/// @brief alias for @see Landmarks template structure with
irisLandmarksCount as param.

using IrisLandmarks = Landmarks<irisLandmarksCount>;

/// @brief alias for @see Landmarks template structure with

eyelidLandmarksCount as param
using EyelidLandmarks = Landmarks<eyelidLandmarksCount>;

State state; //!< State of an eye.

VisionLabs B.V. 21/58

IrisLandmarks dris; //!< Iris landmarks.
EyelidLandmarks eyelid; //!< Eyelid landmarks
13

EyeAttributes leftEye; //!< Left eye attributes
EyeAttributes rightEye; //!< Right eye attributes
+s

API structure name:
IEyeEstimator
Plan files:

«+ eyes_estimation_flwr8_cpu.plan

+ eyes_estimation_ir_cpu.plan

+ eye_status_estimation_flwr_cpu.plan

« eyes_estimation_flwr8_cpu-avx2.plan

+ eyes_estimation_ir_cpu-avx2.plan

+ eyes_estimation_ir_gpu.plan

+ eyes_estimation_flwr8_gpu.plan
 eye_status_estimation_flwr_cpu.plan

+ eye_status_estimation_flwr_cpu-avx2.plan
+ eye_status_estimation_flwr_gpu.plan

6.2.2 BestShotQuality Estimation

Name: BestShotQualityEstimator
Algorithm description:

The BestShotQuality estimator is designed to evaluate image quality to choose the best image before
descriptor extraction. The BestShotQuality estimator consists of two components - AGS (garbage score)
and Head Pose.

AGS aims to determine the source image score for further descriptor extraction and matching.

Estimation output is a float score which is normalized in range [0..1]. The closer score to 1, the better
matching result is received for the image.

When you have several images of a person, it is better to save the image with the highest AGS score.

Recommended threshold for AGS score is equal to 0.2. But it can be changed depending on the
purpose of use. Consult VisionLabs about the recommended threshold value for this parameter.

Head Pose determines person head rotation angles in 3D space, namely pitch, yaw and roll.

VisionLabs B.V. 22 /58

Figure 3: Head pose

Since 3D head translation is hard to determine reliably without camera-specific calibration, only 3D
rotation component is estimated.

Head pose estimation characteristics:

« Units (degrees);
+ Notation (Euler angles);
+ Precision (see table below).

Implementation description:
The estimator (see IBestShotQualityEstimator in IEstimator.h):

« Implements the estimate() function that needs fsdk::Image in R8G8B8 format, fsdk::
Detection structure of corresponding source image (see section “Detection structure” in chapter
“Face detection facility”), fsdk::IBestShotQualityEstimator::EstimationRequest

structureand fsdk: : IBestShotQualityEstimator: :EstimationResultto storeestimation
result;

« Implements the estimate() function that needs the span of fsdk: : Image in R8G8B8 format, the
span of fsdk: :Detection structures of corresponding source images (see section “Detection
structure” in chapter “Face detection facility”), fsdk::IBestShotQualityEstimator::

EstimationRequest structure and span of fsdk::IBestShotQualityEstimator::
EstimationResult to store estimation results.

+ Implements the estimateAsync() function that needs fsdk: :Image in R8G8B8 format, fsdk::
Detection structure of corresponding source image (see section “Detection structure” in chapter

“Face detection facility”), fsdk::IBestShotQualityEstimator::EstimationRequest
structure;

VisionLabs B.V. 23/58

Note: Method estimateAsync() is experimental, and it’s interface may be changed in the future. Note:
Method estimateAsync() is not marked as noexcept and may throw an exception.

Before using this estimator, user is free to decide whether to estimate or not some listed attributes. For
this purpose, estimate() method takes one of the estimation requests:

« fsdk::IBestShotQualityEstimator::EstimationRequest: :estimateAGS to make only
AGS estimation;

o fsdk::IBestShotQualityEstimator::EstimationRequest::estimateHeadPose to
make only Head Pose estimation;

o fsdk::IBestShotQualityEstimator::EstimationRequest::estimateAll to make both
AGS and Head Pose estimations;

The EstimationResult structure contains results of the estimation:

struct EstimationResult {
Optional<HeadPoseEstimation> headPose;

Optional<float> ags;
}s

Head Pose accuracy:

Prediction precision decreases as a rotation angle increases. We present typical average errors for
different angle ranges in the table below.

Table 1: “Head pose prediction precision”

Range -45°,..+45° <-45° or > +45°
Average prediction error (per axis) Yaw +2.7° 14.6°
Average prediction error (per axis) Pitch +3.0° +4.8°
Average prediction error (per axis) Roll +3.0° +4.6°

Zero position corresponds to a face placed orthogonally to camera direction, with the axis of symmetry
parallel to the vertical camera axis.

API structure name:
IBestShotQualityEstimator

Plan files:

VisionLabs B.V. 24 /58

For more information see Approximate Garbage Score Estimation (AGS) and Head Pose

Estimation

VisionLabs B.V. 25/58

6.3 Head Pose Estimation

This estimator is designed to determine a camera-space head pose. Since the 3D head translation is hard
to reliably determine without a camera-specific calibration, only the 3D rotation component is estimated.

There are two head pose estimation methods available:

« Estimate by 68 face-aligned landmarks. You can get it from the Detector facility, see Chapter “Face
detection facility” for details.
+ Estimate by the original input image in the RGB format.

An estimation by the image is more precise. If you have already extracted 68 landmarks for another
facilities, you can save time and use the fast estimator from 68 landmarks.

By default, all methods are available to use in the faceengine.conf configuration file in section
“HeadPoseEstimator”. You can disable these methods to decrease RAM usage and initialization time.

Estimation characteristics:

+ Units (degrees)
+ Notation (Euler angles)
« Precision (see table 2)

Note: Prediction precision decreases as a rotation angle increases. We present typical average
errors for different angle ranges in the table 2.

Table 2: “Head pose prediction precision”

Range -45°,..+45° <-45° or > +45°
Average prediction error (per axis) Yaw +2.7° +4.6°
Average prediction error (per axis) Pitch +3.0° +4.8°
Average prediction error (per axis) Roll +3.0° +4.6°

Zero position corresponds to a face placed orthogonally to the camera direction, with the axis of
symmetry parallel to the vertical camera axis. See figure 4 for a reference.

VisionLabs B.V. 26 /58

rall T3+

pitch

ol RRH

waw

Figure 4: Head pose illustration

Note: In order to work, this estimator requires precise 68-point face alignment results, so familiarize
with section “Face alignment” in the “Face detection facility” chapter, as well.

VisionLabs B.V. 27 /58

6.4 Approximate Garbage Score Estimation (AGS)

This estimator aims to determine the source image score for further descriptor extraction and matching.
The higher the score, the better matching result is received for the image.

When you have several images of a person, it is better to save the image with the highest AGS score.

Contact VisionLabs for the recommended threshold value for this parameter.

The estimator (see IAGSEstimator in IEstimator.h):

« Implementsthe estimate () function that acceptsthe sourceimageinthe R8G8B8 formatand the
fsdk: :Detection structure of corresponding source image. For details, see section “Detection
structure” in chapter “Face detection facility”.

+ Estimates garbage score of the input image.

« Outputs a garbage score value.

VisionLabs B.V. 28 /58

6.4.1 LivenessOneShotRGB Estimation

Name: LivenessOneShotRGBEstimator
Algorithm description:
This estimator shows whether the person’s face is real or fake by the following types of attacks:

« Printed Photo Attack. One or several photos of another person are used.

« Video Replay Attack. A video of another person is used.

+ Printed Mask Attack. An imposter cuts out a face from a photo and covers his face with it.
+ 3D Mask Attack. An imposer puts on a 3D mask depicting the face of another person.

The requirements for the processed image and the face in the image are listed below.

6.5 Mouth Estimation Functionality

Name: MouthEstimator

Algorithm description:

This estimator is designed to predict person’s mouth state.
Implementation description:

Mouth Estimation

It returns the following bool flags:

bool -isOpened; //!< Mouth 1is opened flag
bool -isSmiling; //!< Person is smiling flag
bool isOccluded; //!< Mouth is occluded flag

Each of these flags indicate specific mouth state that was predicted.

The combined mouth state is assumed if multiple flags are set to true. For example there are many cases
where person is smiling and its mouth is wide open.

Mouth estimator provides score probabilities for mouth states in case user need more detailed

information:
float opened; //!'< mouth opened score
float smile; //!< person is smiling score

float occluded; //!< mouth is occluded score

Mouth Estimation Extended

This estimation is extended version of regular Mouth Estimation (see above). In addition, It returns the
following fields:

VisionLabs B.V. 29/58

SmileTypeScores smileTypeScores; //!< Smile types scores
SmileType smileType; //!< Contains smile type if person "isSmiling"

If flag isSmiling is true, you can get more detailed information of smile using smileType variable.
smileType can hold following states:

enum class SmileType {
None, //!< No smile
SmilelLips, //!< regular smile, without teeths exposed
SmileOpen //!< smile with teeths exposed

+s

If isSmiling is false, the smileType assigned to None. Otherwise, the field will be assigned with
SmileLips (person is smiling with closed mouth) or SmileOpen (person is smiling with open mouth,
with teeth’s exposed).

Extended mouth estimation provides score probabilities for smile type in case user need more detailed
information:

struct SmileTypeScores {
float smileLips; //!< person is smiling with lips score
float smileOpen; //!< person is smiling with open mouth score

}s

smileType variable is set based on according scores hold by smileTypeScores variable - set based on
maximum score from smileLips and smileOpen or to None if person not smiling at all.

if (estimation.isSmiling)
estimation.smileType = estimation.smileTypeScores.smilelLips >
estimation.smileTypeScores.smileOpen ?
fsdk::SmileType::SmilelLips : fsdk::SmileType: :SmileOpen;
else
estimation.smileType = fsdk::SmileType: :None;

When you use Mouth Estimation Extended, the underlying computation are exactly the same as
if you use regular Mouth Estimation. The regular Mouth Estimation was retained for backward
compatibility.

These estimators are trained to work with warped images (see Chapter “Image warping” for details).

Recommended thresholds:

VisionLabs B.V. 30/58

The table below contains thresholds specified in the MouthEstimator::Settings section of the
FaceEngine configuration file (faceengine.conf). By default, these threshold values are set to optimal.

Table 3: “Mouth estimator recommended thresholds”

Threshold Recommended value

occlusionThreshold 0.5
smileThreshold 0.5
openThreshold 0.5

Filtration parameters:
The estimator is trained to work with face images that meet the following requirements:

+ Requirements for Detector:

Attribute Minimum value

detection size 80

Detection size is detection width.

const fsdk::Detection detection = ... // somehow get fsdk::Detection object
const int detectionSize = detection.getRect().width;

« Requirements for fsdk: :MouthEstimator:

Attribute Acceptable values

headPose.pitch [-20...20]
headPose.yaw [-25...25]
headPose.roll [-10...10]

Configurations:
See the “Mouth Estimator settings” section in the “ConfigurationGuide.pdf” document.
API structure name:

IMouthEstimator

VisionLabs B.V. 31/58

Plan files:

« mouth_estimation_v4_arm.plan
« mouth_estimation_v4_cpu.plan
« mouth_estimation_v4_cpu-avx2.plan
« mouth_estimation_v4_gpu.plan

VisionLabs B.V. 32/58

6.6 Face Occlusion Estimation Functionality

Name: FaceOcclusionEstimator
Algorithm description:

This estimator is designed to predict occlusions in different parts of the face, such as the forehead, eyes,
nose, mouth, and lower face. It also provides an overall occlusion score.

Implementation description:
Face Occlusion Estimation

The estimator returns the following occlusion states:

[*x %
* @brief FaceOcclusionType enum.
* This enum contains all possible facial occlusion types.
* %/
enum class FaceOcclusionType : uint8_t {
Forehead = 0, //!< Forehead

LeftEye, //'< Left eye
RightEye, //!'< Right eye
Nose, //'< Nose
Mouth, // 1< Mouth
LowerFace, //'< Lower part of the face (chin, mouth, etc.)
Count //!'< Total number of occlusion types
s
[*x*

* @brief FaceOcclusionState enum.
* This enum contains all possible facial occlusion states.
* %/
enum class FaceOcclusionState : uint8_t {
NotOccluded = 0, //!< Face 1is not occluded
Occluded, //!< Face is occluded
Count //'< Total number of states

15

FaceOcclusionState states[static_cast<uint8_t>(FaceOcclusionType::Count)];
//!< Occlusion states for each face region

float typeScores[static_cast<uint8_t>(FaceOcclusionType::Count)]; //!<
Probability scores for occlusion types

FaceOcclusionState overallOcclusionState; //!< Overall occlusion state

float overallOcclusionScore; //'< Overall occlusion score

float hairOcclusionScore; //!'< Hair occlusion score

VisionLabs B.V. 33/58

To get the occlusion score for a specific facial zone, you can use the following method:

float getScore(FaceOcclusionType type) const {
return typeScores[static_cast<uint8_t>(type)];

To get the occlusion state for a specific facial zone, use the following:

FaceOcclusionState getState(FaceOcclusionType type) const {
return states[static_cast<uint8_t>(type)];

This estimator is trained to work with warped images and Landmarks5 (see Chapter “Image

warping” for details).

Recommended thresholds:

The table below contains thresholds specified in the FaceOcclusion::Settings section of the FaceEngine
configuration file (faceengine.conf). These values are optimal by default.

Threshold Recommended value

normalHairCoeff 0.15

overallOcclusionThreshold 0.07

foreheadThreshold 0.2
eyeThreshold 0.15
noseThreshold 0.2
mouthThreshold 0.15
lowerFaceThreshold 0.2

Configurations
See the “Face Occlusion Estimator settings” section in the “ConfigurationGuide.pdf” document.

Filtration parameters:

VisionLabs B.V. 34/58

Name Threshold

Face Size >80px
Yaw, Pitch, Roll +20
Blur (Subjective Quality) >0.61

API structure name:
IFaceOcclusionEstimator
Plan files:

« face_occlusion_vi_arm.plan
« face_occlusion_v1_cpu.plan
« face_occlusion_v1_cpu-avx2.plan
« face_occlusion_v1_gpu.plan

VisionLabs B.V. 35/58

Parameters Requirements

Minimum resolution for 720x960 pixels
mobile devices

Maximum resolution for 1080x1920 pixels
mobile devices

Minimum resolution for 1280x720 pixels
webcams

Maximum resolution for 1920x1080 pixels
webcams

Compression No

Image warping No

Image cropping No

Effects overlay No

Mask No

Number of faces in the 1

frame

Face detection bounding More than 200 pixels

box width

Frame edges offset More than 10 pixels

Head pose -20 to +20 degrees for head pitch, yaw, and roll

Image quality The face in the frame should not be overexposed, underexposed, or

blurred.

See image quality thresholds in the “Image Quality Estimation” section.
Implementation description:
The estimator (see ILivenessOneShotRGBEstimator in ILivenessOneShotRGBEstimator.h):

« Implements the estimate() function that needs fsdk::Image, fsdk::Detection and fsdk
: :Landmarks5 objects (see section “Detection structure” in chapter “Face detection facility”).
Output estimation is a structure fsdk: : LivenessOneShotRGBEstimation.

« Implements the estimate() function that needs the span of fsdk::Image, span of fsdk::
Detection and span of fsdk: : Landmarks5 (see section “Detection structure” in chapter “Face
detection facility”).

The first output estimation is a span of structure fsdk: :LivenessOneShotRGBEstimation.

VisionLabs B.V. 36/58

The second output value (structure fsdk: : LivenessOneShotRGBEstimation) is the result of
aggregation based on span of estimations announced above. Pay attention the second output
value (aggregation) is optional, i.e. default argument, whichis nullptr.

The LivenessOneShotRGBEstimation structure contains results of the estimation:

struct LivenessOneShotRGBEstimation {
enum class State {
Alive = 0, //'< The person on image is real

Fake, //'< The person on image is fake (photo, printed -image)
Unknown //!'< The T1liveness status of person on image is Unknown
15
float score; //'< Estimation score
State state; //!'< Liveness status

float qualityScore; //!< Liveness quality score
s
Estimation score is normalized in range [0..1], where 1-is real person, 0 - is fake.
Liveness quality score is an image quality estimation for the liveness recognition.
This parameter is used for filtering if it is possible to make bestshot when checking for liveness.
The reference score is 0,5.

The value of State depends on score and qualityThreshold. The value qualityThreshold
can be given as an argument of method estimate (see ILivenessOneShotRGBEstimator), and in
configuration file faceengine.conf (see ConfigurationGuide LivenessOneShotRGBEstimator).

Recommended thresholds:

Table below contains thresholds from faceengine configuration file (faceengine.conf)
in the LivenessOneShotRGBEstimator: :Settings section. By default, these threshold values are

set to optimal.

Table 9: “LivenessOneShotRGB estimator recommended thresholds”

Threshold Recommended value

realThreshold 0.5
qualityThreshold 0.5
calibrationCoeff ~ 0.89
calibrationCoeff ~ 0.991

VisionLabs B.V. 37/58

Configurations:

See the “LivenessOneShotRGBEstimator settings” section in the “ConfigurationGuide.pdf” document.
API structure name:

ILivenessOneShotRGBEstimator

Plan files:

oneshot_rgb_liveness_v8_model_3_cpu.plan

oneshot_rgb_liveness_v8_model_4_cpu.plan

oneshot_rgb_liveness_v8_model_3_arm.plan

oneshot_rgb_liveness_v8_model_4_arm.plan

VisionLabs B.V. 38/58

7 Descriptor processing facility

7.1 Overview
The section describes descriptors and all the processes and objects corresponding to them.

Decriptors and extraction facility is available only in the Complete edition only!

Descriptor itself is a set of object parameters that are specially encoded. Descriptors are typically more
or less invariant to various affine object transformations and slight color variations. This property allows
efficient use of such sets to identify, lookup, and compare real-world objects images.

To receive a descriptor you should perform a special operation called descriptor extraction.

The general case of descriptors usage is when you compare two descriptors and find their similarity score.
Thus you can identify persons by comparing their descriptors with your descriptors database.

All descriptor comparison operations are called matching. The result of the two descriptors matching
is a distance between components of the corresponding sets that are mentioned above. Thus, from a
magnitude of this distance, we can tell if two objects are presumably the same.

7.1.1 Person Identification Task

Facial recognition is the task of making an identification of a face in a photo or video image against a pre-
existing database of faces. It begins with detection - distinguishing human faces from other objects in
theimage - and then works on the identification of those detected faces. To solve this problem, we use a
face descriptor, which extracted from an image face of a person. A person’s face is invariable throughout
his life.

In a case of the face descriptor, the extraction is performed from object image areas around some
previously discovered facial landmarks, so the quality of the descriptor highly depends on them and the
image it was obtained from.

The process of face recognition consists of 4 main stages:

« face detection in an image;

+ warping of face detection - compensation of affine angles and centering of a face;
« descriptor extraction;

« comparing of extracted descriptors (matching).

7.2 Descriptor

Descriptor object stores a compact set of packed properties as well as some helper parameters that were
used to extract these properties from the sourceimage. Together these parameters determine descriptor
compatibility. Not all descriptors are compatible with each other. It is impossible to batch and match

VisionLabs B.V. 39/58

incompatible descriptors, so you should pay attention to what settings do you use when extracting them.
Refer to section “Descriptor extraction” for more information on descriptor extraction.

7.2.1 Descriptor Versions

Face descriptor algorithm evolves with time, so newer FaceEngine versions contain improved models of
the algorithm.

Descriptors of different versions are incompatible! This means that you cannot match descriptors
with different versions. This does not apply to base and mobilenet versions of the same model:
they are compatible.

See chapter “Appendix A. Specifications” for details about performance and precision of different
descriptor versions.

Descriptor version 62 is the best one by precision. And it works well with the personal protective
equipment on face like medical mask.

Descriptor version may be specified in the configuration file (see section “Configuration data” in chapter
“Core facility”).

7.2.2 Descriptor Batch

When matching significant amounts of descriptors, it is desired that they reside continuously in memory
for performance reasons (think cache-friendly data locality and coherence). This is where descriptor
batches come into play. While descriptors are optimized for faster creation and destruction, batches are
optimized for long life and better descriptor data representation for the hardware.

A batch is created by the factory like any other object. Aside from type, a size of the batch should be
specified. Size is a memory reservation this batch makes for its data. It is impossible to add more data
than specified by this reservation.

Next, the batch must be populated with data. You have the following options:

+ add an existing descriptor to the batch;
+ load batch contents from an archive.

The following notes should be kept in mind:

« When adding an existing descriptor, its data is copied into the batch. This means that the descriptor
object may be safely released.

« When adding the first descriptor to an empty batch, initial memory allocation occurs. Before that
moment the batch does not allocate. At the same moment, internal descriptor helper parameters
are copied into the batch (if there are any). This effectively determines compatibility possibilities
of the batch. When the batch is initialized, it does not accept incompatible descriptors.

VisionLabs B.V. 40/58

After initialization, a batch may be matched pretty much the same way as a simple descriptor.

Like any other data storage object, a descriptor batch implements the ::clear() method. An effect of this
method is the batch translation to a non-initialized state except memory deallocation. In other words,
batch capacity stays the same, and no memory is reallocated. However, an actual number of descriptors
in the batch and their parameters are reset. This allows re-populating the batch.

Memory deallocation takes place when a batch is released.

Care should be taken when serializing and deserializing batches. When a batch is created, it is assigned
with a fixed-size memory buffer. The size of the buffer is embedded into the batch BLOB when it is saved.
So, when allocating a batch object for reading the BLOB into, make sure its size is at least the same as
it was for the batch saved to the BLOB (even if it was not full at the moment). Otherwise, loading fails.
Naturally, it is okay to deserialize a smaller batch into a larger another batch this way.

7.2.3 Descriptor Extraction

Descriptor extractor is the entity responsible for descriptor extraction. Like any other object, it is created
by the factory. To extract a descriptor, aside from the source image, you need:

« aface detection area inside the image (see chapter “Detection facility”)
« apre-allocated descriptor (see section “Descriptor”)
« apre-computed landmarks (see chapter “Image warping”)

A descriptor extractor object is responsible for this activity. It is represented by the straightforward
IDescriptorExtractor interface with only one method extract(). Note, that the descriptor object must be
created prior to calling extract() by calling an appropriate factory method.

Landmarks are used as a set of coordinates of object points of interest, that in turn determine source
image areas, the descriptor is extracted from. This allows extracting only data that matters most for
a particular type of object. For example, for a human face we would want to know at least definitive
properties of eyes, nose, and mouth to be able to compare it to another face. Thus, we should firstinvoke
a feature extractor to locate where eyes, nose, and mouth are and put these coordinates into landmarks.
Then the descriptor extractor takes those coordinates and builds a descriptor around them.

Descriptor extraction is one of the most computation-heavy operations. For this reason, threading might
be considered. Be aware that descriptor extraction is not thread-safe, so you have to create an extractor
object per a worker thread.

It should be noted, that the face detection area and the landmarks are required only for image warping,
the preparation stage for descriptor extraction (see chapter “Image warping”). If the source image
is already warped, it is possible to skip these parameters. For that purpose, the IDescriptorExtractor
interface provides a special extractFromWarpedimage() method.

Descriptor extraction implementation supports execution on GPUs.

VisionLabs B.V. 41/58

The IDescriptorExtractor interface provides extractFromWarpedimageBatch() method which allows
you to extract batch of descriptors from the image array in one call. This method achieve higher
utilization of GPU and better performance (see the “GPU mode performance” table in appendix A
chapter “Specifications”).

Also IDescriptorExtractor returns descriptor score for each extracted descriptor. Descriptor score is
normalized value in range [0,1], where 1 - face in the warp, 0 - no face in the warp. This value allows you
filter descriptors extracted from false positive detections.

The IDescriptorExtractor interface provides extractFromWarpedimageBatchAsync() method which allows
you to extract batch of descriptors from the image array asynchronously in one call. This method achieve
higher utilization of GPU and better performance (see the “GPU mode performance” table in appendix A
chapter “Specifications”).

Note: Method extractFromWarpedimageBatchAsync() is experimental, and it’s interface may be changed
in the future.

Note: Method extractFromWarpedimageBatchAsync() is not marked as noexcept and may throw an
exception.

7.2.4 Descriptor Matching

It is possible to match a pair (or more) previously extracted descriptors to find out their similarity. With
this information, it is possible to implement face search and other analysis applications.

VisionLabs B.V. 42 /58

99.47%

6.77%

Figure 5: Matching

By means of match function defined by the IDescriptorMatcher interface it is possible to match a pair of
descriptors with each other or a single descriptor with a descriptor batch (see section “Descriptor batch”
for details on batches).

A simple rule to help you decide which storage to opt for:

+ when searching among less than a hundred descriptors use separate IDescriptor objects;
« when searching among bigger number of descriptors use a batch.

When working with big data, a common practice is to organize descriptors in several batches keeping a
batch per worker thread for processing.

Be aware that descriptor matching is not thread-safe, so you have to create a matcher object per a worker
thread.

VisionLabs B.V. 43 /58

8 System Requirements

8.1 Aurora installations

We support Aurora0S-4.0.1.43-base-armv7hl
Supported compiler:

« GNU 8.3.0
Other versions were not tested.

Note 1: GPU computing is not supported.

VisionLabs B.V.

44 /58

9 Hardware requirements

9.1 Mobile installations

Table 10: Models provided in distribution package and supported devices.

Neural network CPU ARM
FaceDet_v2_<detector_type>first<device>.plan yes yes
FaceDet_v2_<detector_type>second<device>.plan yes yes
FaceDet_v2_<detector_type>third<device>.plan yes yes
headpose_v3_<device>.plan yes yes
ags_v3_<device>.plan yes yes
eyes_estimation_flwr8_<device>.plan yes yes
eye_status_estimation_flwr_<device>.plan yes yes
mouth_estimation_v4_<device>.plan yes yes
face_occlusion_v1_<device>.plan yes yes
cnn59m_<device>.plan yes yes
oneshot_rgb_liveness_v8_model_<model_id>_<device>.plan yes yes
vlTracker_detection_<device>.plan yes yes
vlTracker_template_<device>.plan yes yes
vlTracker_update_<device>.plan yes yes

9.1.1 CPU requirements

Supported CPU architectures:

« armv7hl;

9.1.2 Memory requirements

RAM requirements are given for common for mobile platform verification pipeline.

VisionLabs B.V.

45/ 58

Table 11: “Memory requirements”

Requirements for Aurora

RAM 400 MB
Storage Full 350 MB
Storage Frontend 300 MB

9.1.3 Number of threads on mobile devices

The description of according settings you can find in “Configuration Guide - Runtime settings”. The
setting <param name="numThreads'"type="Value::Intl1"x="-1"/> means that will be taken the
maximum number of available threads. This number of threads is equal to according the number of
available processor cores. We strongly recommend you to follow this recommendation; otherwise,
performance can be significantly reduced.

VisionLabs B.V. 46 /58

10 Best practices

This section provides a set of recommendations and performance tips that you should follow to get
optimal performance when running the LUNA SDK algorithms on your target device.

10.1 Thread pools

We recommend that you use thread pools for user-created threads when running LUNA SDK algorithms
in a multithreaded environment. For each thread, LUNA SDK caches some amount of thread local objects
under the hood in order to make its algorithms run faster next time the same thread is used at the cost
of higher memory footprint. For this reason, we recommend that you reuse threads from a pool to avoid
caching new internal objects and to reduce penalty of creating or destroying new user threads.

10.2 Estimator creation and inference

Create face engine objects once and reuse them when you need to make a new estimate to reduce
RAM usage and increase performance. The reason is that recreating of estimators leads to reopen the
corresponding plan file every time. These plan files are cached separately for every load and will be
removed only when they are flushed from the cache or after calling the destructor of FaceEngine root
object.

10.3 Forking process

UNIX-like operating systems implement a mechanism to duplicate a process. It creates a new
child process and copies its parents’ memory space into the child’s one. This is typically done
programmatically by calling the fork () system function in the parent process.

Care should be taken when forking a process running the SDK.

Important: Always fork before the first instance of IFaceEngine is created!

This is because the SDK internally maintains a pool of worker threads, which is created lazily at the
time the very first IFaceEngine object is born and destroyed right after the last IFaceEngine
objectis released. When using GPU or NPU devices, their runtime is initialized and shut down in the

Ssame manner.

The hazard comes from the fact that while fork () copies process memory, it only creates just one thread
- the main thread. For details, see https://man7.org/linux/man-pages/man2/fork.2.html.

As a result, if at least one IFaceEngine object is alive at the time the process is being forked, the child
processes will inherit the knowledge of the object, and therefore, the implicit thread pool (and device
runtime, when appropriate). But there will be no worker threads actually running (in both, the inherited
pool and the runtime, when appropriate) and attempting to call certain SDK functions will cause a
deadlock.

VisionLabs B.V. 47 /58

https://man7.org/linux/man-pages/man2/fork.2.html

10.4 Liveness estimator combination

Depending on your device and its camera, you can simultaneously use a combination of two

universal liveness estimators to increase the accuracy of a model. For example, you can use
LivenessDepthRGBEstimator and NIRLivenessEstimator or LivenessDepthEstimator and LivenessOneShotRGBEstimat
or their models together. To do this, you need to aggregate the rates of each liveness and change the

thresholds in the faceengine.cong configuration file.

10.4.1 Changing the threshold

All models are calibrated so that the base threshold is 0.5 for any model of any modality.

If you need greater protection against hacking, then the threshold can be raised, and if the convenience
of real users is more important, then lowered. We recommend that you configure specific values for
changing the threshold in deviation from the basic one on a client basis.

10.4.2 Aggregating the scores

Any of two liveness modalities can be aggregated with each other. To do this, you need to multiply the
speeds of the corresponding networks. The threshold in this case is also multiplied and becomes equal
to 0.25.

10.4.3 Recommended thresholds

The recommended threshold is an optimal balance between TPR and FPR.

10.4.4 Possible LivenessOneShotRGBEstimator model combinations

You can use the LivenessOneShotRGBEstimator models in the following combinations:

+ Use these models in the backend as an analogue of server LivenessOneShotRGBEstimator.

oneshot_rgb_liveness_v8_model_1_cpu-avx2.plan

oneshot_rgb_liveness_v8_model_2_cpu-avx2.plan

oneshot_rgb_liveness_v8_model_3_cpu-avx2.plan

oneshot_rgb_liveness_v8_model_4_cpu-avx2.plan
+ Use these models on smartphones as an analogue of LivenessOneShotRGBEstimator.
- oneshot_rgb_liveness_v8_model_3_cpu-avx2.plan
- oneshot_rgb_liveness_v8_model_4_cpu-avx2.plan
+ Use the below model on devices with Orbbec cameras, such as payment terminals (POS) and self-
service cash registers (KCO):
- oneshot_rgb_liveness_v8_model_4_cpu-avx2.plan

VisionLabs B.V. 48 /58

11 Device-specific constraints

11.1 Image constraints

When memory is allocated for Image pixel data storage, the following constraints are enforced depending
on the requested memory residence:

+ Image::MemoryResidence::CPU: base address alignment is 32 bytes;

+ Image::MemoryResidence::GPU: base address alignment is 128 bytes;

+ Image::MemoryResidence::NPU: base address alignment is 128 bytes;

+ Image::MemoryResidence::NPU_DPP: base address alignment is 128 bytes.

Also, in case of Image::MemoryResidence::NPU_DPP image width must be multiple of 16 and image
height must be multiple of 2.

When Image is initialized as a wrapper for a user-provided memory block, whose residence is said to
be Image::MemoryResidence::NPU or Image::MemoryResidence::NPU_DPP, the above requirements are
checked upon the initialization.

Image class implements limited functionality for device-side data. Only the following operations are
supported:

« construction (both with Image-owned memory and as a wrapper for a user-defined memory) and
assignment (including deep copy);

« destruction;
« set() family of functions (functionally the same as construction/assignment);

« convert() function, but only in transfer mode; This means that both source and destination formats
must match, only memory residency may differ. This function supports only synchronous memory
transfers in the following directions:

host <-> GPU
GPU <->GPU
host <-> NPU
- NPU<->NPU.

Full range of functionality (including format conversions) is currently only available for Images with host
memory data residence.

The following operations are NOT supported:

« compressed format encoding/decoding;

format/color space conversion;
+ subimage views (i.e. map() function);

padding and cropping (i.e. extract() function);

manipulation (e.g. getPixel(), setPixel(), etc.).

VisionLabs B.V. 49 /58

12 Collecting information for Technical Support

To efficiently resolve a problem with LUNA SDK, collect all necessary information based on the error type
and provide it to VisionLabs Technical Support. Possible error types include:

« Specific error
« Non-specific error
« Unexpected result

12.1 Contact Technical Support

You can contact our Technical Support in either of the following ways:

« Via email: support@visionlabs.ai
« Via Service Portal: https://jira.visionlabs.ru/servicedesk/customer/portal/2

12.2 Specific error

These errors usually occur when LUNA SDK is used incorrectly. Examples include:

+ An estimator or detector does not work, resulting in an error when creating or using it.
« An error occurs when launching on a GPU device.
+ Alicense error is received.

In such cases, study the full launch logs and understand what was launched and where.
To get detailed logging in LUNA SDK, follow these steps:

1X In the luna-sdk/data/runtime.conf configuration file, set the verboselLogging parameter to 4.

<param name="verboselogging" type="Value::Intl" x="4" />

2[R In the luna-sdk/data/faceengine.conf configuration file, set the verboseLogging parameter to 4.

<param name="verboselogging" type="Value::Intl" x="4" />

3H In the luna-sdk/data/trackengine.conf configuration file, set the severity parameter to 0.

<param name="severity" type="Value::Intl" x="0" />

If you know which module the error occurs in, provide only that module’s log by changing the value only
in the relevant configuration file. If unsure, collect all logs.

VisionLabs B.V. 50/58

https://jira.visionlabs.ru/servicedesk/customer/portal/2

12.3 Non-specific error

Examples of non-specific errors include:

+ An application crashes at an uncertain time.
+ An application freezes unexpectedly.
« Thereis a memory leak.

In such cases, you need to understand in detail the application operation scenario, including what is
called and in what sequence.

Provide the following information:

+ The exact version of LUNA SDK (e.g., v.5.22.2, build for CentOS 8).

+ Information about the environment where the application runs (e.g., Docker container, launch via
Python bindings).

« Full launch logs.

+ Additional information like crash dumps, reports from third-party utilities, and system logs.

+ Code reproducing the problem, if any.

12.4 Unexpected Result

Unexpected results may occur due to:

+ Incorrect use of LUNA SDK
+ Algorithm errors
+ Launchingin unexpected conditions

Examples include:

+ Afaceis presentin a photo or video, but the detector doesn’t see it.
+ Apersonis smiling, but the emotion estimator indicates sadness.

Reasons for unexpected results vary, such as:

+ Incorrect use of LUNA SDK, for example, a wrong threshold in a configuration file.
« Incorrect input data, such as a poor-quality video or heavily compressed frames.
+ Occasional algorithm errors.

+ New data for the algorithm.

To understand and address the issue, provide:

« Fulllaunch logs.

+ All configuration files used during the launch:
- luna-sdk/data/runtime.conf
- luna-sdk/data/faceengine.conf
- luna-sdk/data/trackengine.conf

VisionLabs B.V. 51/58

« An estimate of how often the unexpected result occurs, for example, every frame or once in a
thousand frames.
« Examples of data that produce unexpected results.

VisionLabs B.V. 52 /58

13 Appendix A. Specifications

13.1 Runtime performance for mobile environment

Face detection performance depends on inputimage parameters such as resolution and bit depth as well
as the size of the detected face. The Aurora platform uses mobilenet by default.

Input data characteristics:

+ Image resolution: 640x480px;
+ Image format: 24 BPP RGB;

13.1.1 Aurora

The number of threads auto means that will be taken the maximum number of available threads.
For this mode use the -1 value for the numThreads parameter in the runtime.conf. This number
of threads is equal to according number of available processor cores. We strongly recommend you
to follow this recommendation; otherwise, performance can be significantly reduced. Description of
according settings you can find in “Configuration Guide - Runtime settings”.

The performance measurements are presented for device with configurations as below:

Architecture: armv7l Byte Order: Little Endian CPU(s): 4 On-line CPU(s) list: 0-3 Thread(s) per core: 1
Core(s) per socket: 4 Socket(s): 1Vendor ID: ARM Model: 5 Model name: Cortex-A7 Stepping: rOp5 CPU
max MHz: 1267.2000 CPU min MHz: 200.0000 BogoMIPS: 38.40 Flags: swp half thumb fastmult vfp edsp
neon vfpv3 tls vfpv4 idiva idivt vfpd32 evtstrm

The number of threads you can find in tables below.

13.1.1.1 Aurora environment. Matcher performance
The table below shows the performance of Matcher on the Aurora environment.

Type Model CPU threads Batch Size Average (matches/sec)

Matcher 59 1 1000 16597.5 K

13.1.1.2 Aurora environment. Extractor performance
The table below shows the performance of Extractor on the Aurora environment.

Measurement Model Threads Batch Size Average (ms)
Extractor 59 1 1 11817.6
Extractor 59 auto 1 1462.37

VisionLabs B.V. 53/58

Measurement Model Threads Batch Size Average (ms)

Extractor 59 auto 4 1518.88

Extractor 59 auto 8 2132.2

13.1.1.3 Aurora environment. Detector performance
The table below shows the performance of Detector on the Aurora environment.

Measurement Threads Average (ms)
Detector FaceDetV/?2 1 1191.31/1034.12 / 5707.42
(Easy/complex/6 faces) auto 210.81/230.13/ 834.58

13.1.1.4 Aurora environment. Estimations performance with batch interface
The table below shows the performance of Estimations on the Aurora environment for estimators that
have a batch interface.

Measurement Threads BatchSize Average (ms)
HeadPose 1 1 72.46
HeadPose auto 1 12.16
HeadPose auto 8 9.97
Eyes (RGB, useStatusPlan=0) 1 1 411.33
Eyes (RGB, useStatusPlan=0) auto 1 67.54
Eyes (RGB, useStatusPlan=0) auto 8 59.57
Eyes (RGB, useStatusPlan=1) 1 1 427.3
Eyes (RGB, useStatusPlan=1) auto 1 72.67
Eyes (RGB, useStatusPlan=1) auto 8 57.98
AGS 1 1 83.23
AGS auto 1 173.76
AGS auto 8 78.04
BestShotQuality 1 1 73.43
BestShotQuality auto 1 12.18

VisionLabs B.V. 54 /58

Measurement

BestShotQuality

MedicalMaskBatch
MedicalMaskBatch
MedicalMaskBatch
LivenessOneShotRGBEstimatorBatch
LivenessOneShotRGBEstimatorBatch
LivenessOneShotRGBEstimatorBatch
Glasses

Glasses

Glasses

Mouth

Mouth

Mouth

FaceOcclusion

FaceOcclusion

FaceOcclusion

FaceOcclusion

Threads BatchSize Average (ms)

auto
1
auto

auto

auto

auto

auto

auto

auto

auto

auto
auto

auto

8 9.72

1 2948.68
1 406.63
8 372.05
1 40971.3
1 25502.6
8 24494.2
1 443.88
1 1298.73
8 621.69
1 4751.0
1 3200.3
8 2410.8
1 3580.21
1 3824.73
4 3292.99
8 2808.52

13.1.1.5 Aurora environment. Estimations performance without batch interface

The table below shows the performance of Estimations on the Aurora environment for estimators that

do not have a batch interface.

Measurement

Warper
Warper
Quality
Quality

VisionLabs B.V.

Threads

auto

auto

Average (ms)

26.2
33.15
632.68
138.09

55/ 58

13.2 Descriptor size

The table below shows size of serialized descriptors to estimate memory requirements.

Table 17: “Descriptor size”

Descriptor version Data size (bytes) Metadata size (bytes) Total size

CNN 62 512 8 520

Metadata includes signature and version information that may be omitted during serialization if the
NoSignature flag is specified.

When estimating individual descriptor size in memory or serialization storage requirements with default
options, consider using values from the “Total size” column.

When estimating memory requirements for descriptor batches, use values from the “Data size” column
instead, since a descriptor batch does not duplicate metadata per descriptor and thus is more memory-
efficient.

These numbers are for approximate computation only, since they do not include overhead like
memory alignment for accelerated SIMD processing and the like.

13.3 Feature matrix

Mobile versions come in two editions: the frontend edition (or FE for short) and the complete edition.

The table below shows FaceEngine features supported by different editions of mobile platform.

Table 18: “Feature matrix”

Facility Module Complete Frontend
Core Yes Yes
Face detection & alighment Face detector Yes Yes
Parameter estimation BestShotQuality estimation Yes Yes
Color estimation Yes Yes
Eye estimation Yes Yes
Head pose estimation Yes Yes
AGS estimation Yes Yes
LivenessOneShotRGB estimation Yes Yes

VisionLabs B.V. 56 /58

Facility

Face descriptors

Module

Medical Mask estimation
Quality estimation
Mouth estimation
Glasses estimation
Descriptor extraction
Descriptor matching
Descriptor batching

Descriptor search acceleration

See file “doc/FeatureMapMobile.htm” for more details.

VisionLabs B.V.

Complete

Yes
Yes
Yes
Yes
Yes
Yes
Yes

Yes

Frontend

Yes
Yes
Yes
Yes
No
No
No
No

57/58

14 Appendix B. Glossary

Table 19: Glossary

Term Description

Host memory Computer system RAM
Device memory On-board RAM of GPU or NPU card

Memory transfer Operation that copies memory from host to device or vice-versa

14.1 Descriptor

A set of features meant to describe a real-world object (e.g., a person’s face). Computed by means of
computer vision algorithms, such features are typically matched to each other to determine the similarity
of represented objects.

14.2 Cooperative Photoshooting and Recognition

A procedure of taking person face photograph characterized by person awareness of the matter and
his/her will to assist.

Typical highlights:

« Close to frontal head pose;

Neutral facial expression;

No occlusions (i.e., hair, hats, non-transparent eyewear, hands, other objects obscuring the face);

No extreme lighting conditions (i.e., reasonable illuminance, no direct sunlight);

Steady and well-tuned optics (i.e., no motion blur, depth of field, digital post-processing except
noise cancellation).

Cooperative photoshooting is opposite to the so-called “in the wild” photoshooting, which is also called
non-cooperative shooting (or recognition).

14.3 Matching

The process of descriptors comparison. Matching is usually implemented as a distance function applied
to the feature sets and distances comparison later on. The smaller the distance, the closer are descriptors,
hence, the more similar are the objects.

For convenience, helper functions exist to convert distance to a normalized similarity score, where 100%
means completely identical, and 0% means completely different.

VisionLabs B.V. 58 /58

	Introduction
	Core Concepts
	SDK workflow
	Object lifetime
	Threading
	Detailed constraints

	Common Interfaces and Types
	Reference Counted Interface
	Automatic reference counting
	Referencing - without acquiring ownership of object lifetime
	Acquiring - own object lifetime

	Serializable object interface
	Auxiliary types
	Image type

	Beta Mode

	FaceEngine Structure Overview
	Core Facility
	Common Interfaces
	Face Engine Object
	Settings Provider

	Helper interfaces
	Archive interface

	Data Paths
	Model Data
	Configuration Data

	Detection facility
	Overview
	Detection structure
	Face Detection
	Image coordinate system
	Face detection
	Redetect method
	Face Alignment
	Five landmarks

	Image Warping
	Parameter Estimation Facility
	Overview
	Best shot selection functionality
	Eyes Estimation
	BestShotQuality Estimation

	Head Pose Estimation
	Approximate Garbage Score Estimation (AGS)
	LivenessOneShotRGB Estimation

	Mouth Estimation Functionality
	Face Occlusion Estimation Functionality

	Descriptor processing facility
	Overview
	Person Identification Task

	Descriptor
	Descriptor Versions
	Descriptor Batch
	Descriptor Extraction
	Descriptor Matching

	System Requirements
	Aurora installations

	Hardware requirements
	Mobile installations
	CPU requirements
	Memory requirements
	Number of threads on mobile devices

	Best practices
	Thread pools
	Estimator creation and inference
	Forking process
	Liveness estimator combination
	Changing the threshold
	Aggregating the scores
	Recommended thresholds
	Possible LivenessOneShotRGBEstimator model combinations

	Device-specific constraints
	Image constraints

	Collecting information for Technical Support
	Contact Technical Support
	Specific error
	Non-specific error
	Unexpected Result

	Appendix A. Specifications
	Runtime performance for mobile environment
	Aurora
	Aurora environment. Matcher performance
	Aurora environment. Extractor performance
	Aurora environment. Detector performance
	Aurora environment. Estimations performance with batch interface
	Aurora environment. Estimations performance without batch interface

	Descriptor size
	Feature matrix

	Appendix B. Glossary
	Descriptor
	Cooperative Photoshooting and Recognition
	Matching

