
VisionLabs FaceEngine Handbook
written for LUNA SDKMobile Android version 5.25.0

Contents

Introduction 5

1 Core Concepts 6
1.1 SDK workflow . 6

1.1.1 Object lifetime . 6
1.1.2 Threading . 7
1.1.3 Detailed constraints . 8

1.2 Common Interfaces and Types . 9
1.2.1 Reference Counted Interface . 9
1.2.2 Automatic reference counting . 10

1.2.2.1 Referencing - without acquiring ownership of object lifetime 10
1.2.2.2 Acquiring - own object lifetime . 11

1.2.3 Serializable object interface . 11
1.2.4 Auxiliary types . 12

1.2.4.1 Image type . 12
1.3 Beta Mode . 12

2 FaceEngine Structure Overview 13

3 Core Facility 14
3.1 Common Interfaces . 14

3.1.1 Face Engine Object . 14
3.1.2 Settings Provider . 14

3.2 Helper interfaces . 14
3.2.1 Archive interface . 14

3.3 Data Paths . 15
3.3.1 Model Data . 15
3.3.2 Configuration Data . 15

4 Detection facility 16
4.1 Overview . 16
4.2 Detection structure . 16
4.3 Face Detection . 16

4.3.1 Image coordinate system . 16
4.3.2 Face detection . 17
4.3.3 Redetect method . 17
4.3.4 Face Alignment . 17

4.3.4.1 Five landmarks . 17

VisionLabs B.V. 2 / 78

5 ImageWarping 18

6 Parameter Estimation Facility 20
6.1 Overview . 20
6.2 Best shot selection functionality . 20

6.2.1 BestShotQuality Estimation . 20
6.2.2 Image Quality Estimation . 23

6.3 Face features extraction functionality . 30
6.3.1 Eyes Estimation . 30

6.4 Head Pose Estimation . 33
6.5 Approximate Garbage Score Estimation (AGS) . 35

6.5.1 Glasses Estimation . 36
6.6 Liveness check functionality . 37

6.6.1 LivenessOneShotRGB Estimation . 37
6.6.2 Depth and RGB OneShotLiveness estimation . 41
6.6.3 Depth liveness estimation (DepthLivenessEstimator) 44

6.7 Medical Mask Estimation Functionality . 47
6.7.1 MedicalMaskEstimator thresholds . 48
6.7.2 MedicalMask enumeration . 48
6.7.3 MedicalMaskEstimation structure . 49
6.7.4 MedicalMaskExtended enumeration . 50
6.7.5 MedicalMaskEstimationExtended structure . 50
6.7.6 Filtration parameters . 51

6.8 Mouth Estimation Functionality . 53
6.9 Face Occlusion Estimation Functionality . 56

7 Descriptor processing facility 59
7.1 Overview . 59

7.1.1 Person Identification Task . 59
7.2 Descriptor . 59

7.2.1 Descriptor Versions . 60
7.2.2 Descriptor Batch . 60
7.2.3 Descriptor Extraction . 61
7.2.4 Descriptor Matching . 62

8 System Requirements 64
8.1 Android installations . 64

9 Hardware requirements 65
9.1 Mobile installations . 65

9.1.1 CPU requirements . 66

VisionLabs B.V. 3 / 78

9.1.2 Memory requirements . 66
9.1.3 Number of threads onmobile devices . 66

10 Best practices 66
10.1 Thread pools . 67
10.2 Estimator creation and inference . 67
10.3 Forking process . 67
10.4 Liveness estimator combination . 67

10.4.1 Changing the threshold . 68
10.4.2 Aggregating the scores . 68
10.4.3 Recommended thresholds . 68
10.4.4 Possible LivenessOneShotRGBEstimator model combinations 68

11 Device-specific constraints 69
11.1 Image constraints . 69

12 Collecting information for Technical Support 70
12.1 Contact Technical Support . 70
12.2 Specific error . 70
12.3 Non-specific error . 71
12.4 Unexpected Result . 71

13 Appendix A. Specifications 73
13.1 Runtime performance for mobile environment . 73

13.1.1 Android . 73
13.1.1.1 Samsung Galaxy A52s SM-A528B, arm64. Matcher performance 73
13.1.1.2 Samsung Galaxy A52s SM-A528B, arm64. Extractor performance 73
13.1.1.3 Samsung Galaxy A52s SM-A528B, arm64. Detector performance 74
13.1.1.4 Samsung Galaxy A52s SM-A528B, arm64. Estimations performance . . . 74

13.2 Descriptor size . 76
13.3 Feature matrix . 77

14 Appendix B. Glossary 78
14.1 Descriptor . 78
14.2 Cooperative Photoshooting and Recognition . 78
14.3 Matching . 78

VisionLabs B.V. 4 / 78

Introduction

This short guide describes core concepts of the product, shows main FaceEngine features and suggests
usage scenarios.

This document is not a full-featured API referencemanual nor a step by step tutorial. For reference pages,
please see Doxygen API documentation that is shipped with FaceEngine. For complete examples, please
head to our developer portal.

What this book does, however, is this:

• It describes ideas behind resourcemanagement and gives a clue why one or another decision was
made. With this in mind, you are ready to write efficient code with FaceEngine;

• It breaks down full face analysis and recognition pipeline in parts and shows how one part affects
all theothers. This informationwill help you toadaptFaceEngine toyourneeds,which is somewhat
more productive than blindly following tutorials;

• It details things that are important and omits things that are obvious, so you get information that
matters most.

This book is split up into several chapters. There are chapters dedicated to each FaceEngine facility; there
are chapters with conceptual overviews; there are chapters with generic information. We tried to write
the book starting from low-level concepts and moving on to face detection, description and recognition
tasks solving one problem at a time. Although sometimes we just had to give references to chapters
ahead, we tried to minimize such jumps.

The opening chapter of this book is called “Core concepts”. It will tell you about memory management
techniques, object creation and destruction strategies that are widely used across the entire FaceEngine.
The following chapters catch up telling how higher level FaceEngine components are created from those
building blocks.

VisionLabs B.V. 5 / 78

1 Core Concepts

1.1 SDKworkflow

1.1.1 Object lifetime

Most of the SDK features are exposed via interfaces (C++ virtual classes) whose implementations
must be obtained by calling factory functions. Some of the factories are C-functions, such as
createFaceEngine(...). The latter one produces a root object IFaceEngine, which in turn
exposes many other factories of the IFaceEngine::createXYZ(...) form. A typical workflow
consists of obtaining IFaceEngine, then calling its factories and using the produced child objects.

You do not destroy SDK objects directly, but instead deal with fsdk::Ref<T>, reference-counted smart
pointers (see section “Automatic reference counting”) to SDK interfaces. You only need to release all
shared references, at which point fsdk::Ref<T> destroys the underlying object.

In terms of lifetime, IFaceEngine should outlast all its child objects.

Holding fsdk::Ref<T> objects in global variables is error-prone. If the variables are in different
translation units, their construction order is undefined, which means the destruction order is out of
control, too. Viable approaches include gathering all fsdk::Ref<T> objects in a single class or using
an explicit stack to store them, as well as storing all fsdk::Ref<T> as local variables on the call stack
in simple projects. In the case when it is necessary to store fsdk::Ref<T> objects as global or static

VisionLabs B.V. 6 / 78

variables, the correct order of releases should be guaranteed explicitly before the program ends:

//warning: a correct, but not a good example due to these global variables
fsdk::IFaceEnginePtr faceEngine = fsdk::createFaceEngine("./data");
fsdk::IDetectorPtr detector = faceEngine->createDetector();
fsdk::IBestShotQualityEstimator bestShotQualityEstimator = faceEngine->

createBestShotQualityEstimator();

int main() {
// application code here

bestShotQualityEstimator.reset();
detector.reset();
faceEngine.reset();
return 0;

}

1.1.2 Threading

The part of the SDK that instantiates and destroys objects is not thread-safe. The SDK requires
using one thread (let’s call it init-thread) for calling all factory functions, as well as releasing
the references to the produced objects. The SDK internally uses thread-local objects attached to
init-thread, which makes init-thread special: as long as the SDK is alive, init-thread
must be alive too. Therefore, there is a requirement that init-thread must outlast IFaceEngine.

VisionLabs B.V. 7 / 78

Once SDK objects (such as detectors and estimators, but not IFaceEngine) have been created, they are
thread-safe and can be used concurrently and on arbitrary threads. Before using an object concurrently
onmany threads, consider using asynchronous APIs of the SDK instead. For example, IDetector along
with a synchronous detect(...) function also provides asynchronous detectAsync(...).

It is required that an object cannot be destroyedwhile it has at least one incomplete call, synchronous or
asynchronous, on any thread.

1.1.3 Detailed constraints

Here is a more detailed list of lifetime and threading constraints:

• There should be at most one IFaceEngine object per process simultaneously. You can create
a new IFaceEngine object after destroying the previous one, just avoid holding multiple
IFaceEngine objects at the same time.

• There should be at most one ITrackEngine object per process simultaneously. You can create
a new ITrackEngine object after destroying the previous one, just avoid holding multiple
ITrackEngine objects at the same time.

• All factory functions should be called on init-thread (the thread that calls createFaceEngine
()). This also implies that factory code is not thread-safe and all factory calls should be serialized
in time. Factory functions include:

VisionLabs B.V. 8 / 78

– C-style functions of the form createXYZ(...) such as createFaceEngine(...),
createTrackEngine(...)

– member functions such as IFaceEngine::createXYZ(...), ITrackEngine::
createXYZ(...)

• activateLicense(...) is not thread-safe. There should be at most one invocation of
activateLicense(...) per process simultaneously.

• init-thread should live no shorter than IFaceEngine.

• IFaceEngine should live no shorter than ITrackEngine.

• IFaceEngine should live no shorter than its child objects (algorithms/estimators/detectors). I.e.,
IFaceEngine should be the last destroyed SDK object.

• IFaceEngine should be destroyed on init-thread.

• Algorithms/estimators/detectors should be destroyed on init-thread.

• Algorithms/estimators/detectors can be destroyed when there are no pending or unfinished
invocations of member functions of those objects, synchronous or asynchronous, on any threads.

• Track Engine requirements: all Track Engine streams should be stopped, then destroyed, then
ITrackEngine itself should be stopped, then destroyed.

• ITrackEngine and all its streams should be destroyed on init-thread.

The only part of the SDK that allows multithreading is using member functions of already instantiated
algorithms/estimators/detectors, such as IDetector:detect(...) and IAttributeEstimator::
estimate(...). The member functions can be called on arbitrary threads and in parallel. Before
resorting to this multithreaded scenario, please consider using asynchronous versions that accompany
many synchronous functions of the SDK.

1.2 Common Interfaces and Types

1.2.1 Reference Counted Interface

Everything in FaceEngine object system starts from here. The IRefCounted interface provides methods
for reference counter access, increment, and decrement. All reference counted objects imply a custom
memorymanagementmodel. Thisway they support automateddestructionwhen referencecountdrops
to zero as well as more sophisticated strategies of partial destruction and weak referencing required for
FaceEngine internal needs. The bare minimum of such functions is exposed to a user allowing:

• To notify the object that it is required by a client via retaining a reference to it.
• To notify the object that it is no longer required by releasing a reference to it.
• To get actual reference counter value.

VisionLabs B.V. 9 / 78

Reference counted objects expect some special treatment as well. Be sure never to call delete on
any pointer to object derived from IRefCounted! Doing so leads to heap corruption. Simply
calling release notifies the systemwhen the object should be destroyed and it does this properly for
you.

However, we do not recommend that you interact with the reference counting mechanism manually as
doing so may be error-prone. Instead, we recommend that you use smart pointers that are specially
designed to handle such objects and provided by FaceEngine. See section “Automatic reference
counting” for details.

1.2.2 Automatic reference counting

For your convenience, a special smart pointer class Ref is provided. It is capable of automatic reference
counter incrementing upon its creation and automatic decrementing upon its destruction. It also does
an assertion of the inner raw pointer being non-null, thus preventing errors.

Two ways of working with Ref are possible:

1.2.2.1 Referencing - without acquiring ownership of object lifetime
ISomeObject* createSomeObject();
{
/* Here createSomeObject returns an object with initial reference count of 1

(otherwise, it would be dead). Then Ref adds another one for itself
making a total reference count of 2!

*/
Ref<ISomeObject> objref = make_ref(createSomeObject());
/* Here we use the object in any way we want expecting it to be properly

destroyed when control will leave this scope.
*/

}
/* Here we have left the scope and Ref was automatically destroyed like any

other object created on the stack. At the same time, it decreased
reference count of its internal object by 1 making it 1 again.

*/

However, the object is not destroyed automatically! For this to happen, it should have precisely 0
references. Moreover, in this example, the raw pointer to the object is lost, so it is impossible to fix it in
any way; thus a memory leak is introduced.

VisionLabs B.V. 10 / 78

1.2.2.2 Acquiring - own object lifetime
Sokeeping that inmindwe introduceaconceptof ownershipacquiring. Byacquiringanobject, youmean
that its rawpointer is not going to be used and only a valid Ref to it is required. To acquire ownership, use
a special ::acquire() function. The fixed version of the above example would look like this:

ISomeObject* createSomeObject();
{
/* Here createSomeObject returns an object with initial reference count of 1

(otherwise, it would be dead). Then we acquire it leaving a total
reference count of 1.

*/
Ref<ISomeObject> objref = acquire(createSomeObject());
/* Here we use the object in any way we want.
*/
}

/* Here we have left the scope and Ref was automatically destroyed like any
other object created on the stack. At the same time, it decreased
reference count of its internal object by 1 making it 0. The object is
destroyed properly by the object system.

*/

Do not store or use raw pointers to the object when using the ::acquire() function, as ownership
acquiring invalidates them.

AcquiringwayofworkingwithRef is pretty like standard library shared_ptrown lifetimeof theobject
after it returned by std::make_shared().

You can statically cast object type during acquiring or referencing. To achieve this, use special versions
of the ::make_ref_as() and ::acquire_as() functions. It is your responsibility to ensure that such a cast is
possible.

Please refer to FaceEngine Reference Manual for more details on available convenience methods and
functions.

As a side note, be informed that typedefs for Ref’s to all reference counted types are declared. All of them
match the followingnaming convention: InterfaceNamePtr. So, for example, Ref<IDetector> is equivalent
to IDetectorPtr.

1.2.3 Serializable object interface

This interface represents an object. Object’s contents may be serialized to some data stream and then
read back. Think of this as loading and saving.

VisionLabs B.V. 11 / 78

To interact with the aforementioned data stream, the serializable object needs a user-provided adapter.
Suchadapter is called thearchive. Seeadetailedexplanationof it in section “Archive interface” in chapter
“Core facility”.

Serializable interfaces: IDescriptor, IDescriptorBatch.

1.2.4 Auxiliary types

1.2.4.1 Image type
Since FaceEngine is a computer vision library, it is natural for it to implement some image concept.
Therefore, an Image class exists. It is designed as a reference counted container for raw pixel color
data. Reference counting allows a single image to be shared by several objects. However, one should
understand, that each Image object is holding a reference to some data, so if the data is modified in any
way, this affects all other objects holding the same reference. To make a deep copy of an Image, one
should use the clone()method, since assignment operators just make a reference. It is also possible to
clip a part of an image into a new image bymeans of extract()method.

Pixel datamay be characterized by color channel layout, i.e., a number of color channels and their order.
The engine defines a Format structure for that. The Format determines:

• Number of color channels (e.g., RGB or grayscale);

• Order of color channel (e.g., RGB vs. BGR).

FaceEngine assumes 8 bits (i.e., 1 byte) per color channel and implements 8 BPP grayscale, 24 BPP
RGB/BGR and padded 32 BPP formats. Format conversion functions are also provided for convenience;
see the convert() function family.

The Image class supports data range mapping. It is possible to map a subset of bytes in a rectangular
area for reading or writing. The mapped pixels are represented by the SubImage structure. In contrast
to Image, SubImage is just a data view and is not reference counted. You are not supposed to store
SubImages longer that it is necessary to completedatamodification. See thedocumentationof themap()
function family for details.

The supports IO roitines to read/write OOM, JPEG, PNG and TIFF formats via FreeImage library.

The absence of image IO is dictated by the fact that FaceEngine focuses on being lightweight and with
theminimumpossible number of external dependencies. It is not designed solely with image processing
purpose in mind. I.e., one may treat video frames as Images and process them one by one. In this case,
an external (possibly proprietary) video codec is required.

1.3 Beta Mode

Some features in LUNA SDK are available just in Beta mode. This is experimental features which may be
unstable. If you want use them, you have to activate betaMode param in config (faceengine.conf).

VisionLabs B.V. 12 / 78

2 FaceEngine Structure Overview

FaceEngine is subdivided into several facilities. Each facility is dedicated toa single function. Below there
is a list of all facilities with short descriptions of functionality they provide. Detailed informationmay be
found in corresponding chapters of this handbook.

FaceEngine facility list:

• Core facility. This facility stores shared low-level FaceEngine types and factories. This facility
is responsible for normal functioning of all other facilities by providing settings accessors and
common interfaces. The core facility also contains themain FaceEngine root object that is used to
create instances of all higher level objects;

• Face detection facility. This facility is dedicated to object detection. It contains various object
detector implementations and factories;

• Parameter estimation facility. This facility is dedicated to various image parameter estimation,
such as blurriness, transformation and so forth. It contains various estimator implementations
and factories;

• Descriptor processing facility. This facility is dedicated to descriptor extraction andmatching. The
descriptor is a set of features, describing an object, invariant to object transformation, size or other
parameters. Descriptor matching allows judging with certain probability whether two objects are
the same. This facility contains various descriptor extractors and containers as well as factories,
required to produce them.

So, each facility is a set of classes dedicated to some common for them problem domain. Facilities are
independent of each other, with several exceptions, like that all higher level facilities depend on the core
facility. Interfacility dependencies are thoroughly described in corresponding chapters of this handbook.
The actual set of facilitiesmay vary depending on particular FaceEngine distributions as facilitiesmay be
licensed and shipped separately.

This handbook describes the very complete FaceEngine distribution, assuming all facilities are available.
The facilities are listed in order of increasing complexity. Applying functions from these facilities in this
order allows creating a complete face detection, analysis, recognition and matching pipeline with a
significant degree of flexibility. The following chapters break down such pipeline in details.

VisionLabs B.V. 13 / 78

3 Core Facility

3.1 Common Interfaces

3.1.1 Face Engine Object

TheFaceEngineobject is a rootobject of theentire FaceEngine. Everythingbeginswith it, so it is essential
to create an instance of it. To create a Face Engine instance call createFaceEngine function. Also, youmay
specify default dataPath and configPath in createFaceEngine parameters.

3.1.2 Settings Provider

Settings provider is a special entity that loads settings from various locations. Since settings might be
shared among several objects, it is useful to cache them tominimize disk reads and provide a dictionary-
like interface for named value lookup.

This is what the provider does. The provider object stands somewhat aside FaceEngine facility structure
and is created by a separate factory function createSettingsProvider. This function accepts configuration
file path as a parameter (see section “Configuration data” for details). By default, the engine holds a
single provider instance for all facilities. Think of it as a reference counted config file. This provider is
passed by the Face Engine object to each factory it creates. The factory, in turn, can read its configuration
data from the object and pass it further to its child objects. In typical scenarios, you should not bother
with providers as the engine does everything for you. However, when relying on custom factory creation
parameters (see thedescription in section “Faceengineobject”), youhave tocreateandsupplyaprovider
wherever it is required manually.

3.2 Helper interfaces

3.2.1 Archive interface

Archive interface is used to provide serialization functions with a data source. It contains methods
primarily for data reading and writing. Note, that IArchive is not derived from IRefCounted, thus does not
imply any special memory management strategies.

A few points to keep in mind when implementing your archive:

• FaceEngineobjects that use IArchive for serializationpurposes do call onlywrite() (during saving) or
only read() (during loading) but never both during the same process unless otherwise is explicitly
stated;

• During savingor loadingFaceEngineobjects are free towriteor read their data in chunks; e.g., there
may be several sequential calls to write() in the scope of a single serialization request. The same
is true for read(). Basically, read() andwrite() should behave pretty much like C fread() and fwrite()
standard library functions.

VisionLabs B.V. 14 / 78

Any IArchive implementation should be aware of these notes.

Since these interface methods are pretty obvious and mostly self-explanatory, we advise you to check
out FaceEngine Reference Manual for the details.

3.3 Data Paths

3.3.1 Model Data

VariousFaceEnginemodulesmay requiredata files tooperate. The files containvariousalgorithmmodels
and constants used at runtime. All the files are gathered together into a single data directory.

One may override the data directory location by means of setDataDirectory()method which is available
in IFaceEngine. Current data location may be retrieved via getDataDirectory()method.

3.3.2 Configuration Data

Theconfiguration file is called faceengine.conf andstored in /datadirectorybydefault. ConfigurationGuide.pdf
with parameter description and default values is located at /doc package folder.

At runtime, the configuration file data is managed by a special object that implements ISettingsProvider
interface (seesection“Settingsprovider”). Theprovider is instantiatedbymeansof createSettingsProvider()
function that accepts configuration file location as a parameter or uses aforementioned defaults if not
specified.

Onemay supply a different configuration to any factory object bymeans of setSettingsProvider()method,
which is available in each factory object interface, including IFaceEngine. Currently, bound settings
provider may be retrieved via getSettingsProvider()method.

VisionLabs B.V. 15 / 78

4 Detection facility

4.1 Overview

Object detection facility is responsible for quick and coarsedetection tasks, like finding a face in an image.

4.2 Detection structure

The detection structure represents an images-space bounding rectangle of the detected object aswell as
the detection score.

Detection score is a measure of confidence in the particular object classification result andmay be used
to pick the most “confident” face of many.

Detection score is the measure of classification confidence and not the source image quality. While the
score is related to quality (low-quality data generally results in a lower score), it is not a valid metric to
estimate the visual quality of an image.

4.3 Face Detection

Object detection is performed by the IDetector object. The function of interest is detect(). It requires an
image to detect on and an area of interest (to virtually crop the image and look for faces only in the given
location).

Also, face detector implements detectAsync()which allows you to asynchronously detect faces and their
parameters onmultiple images.

Note: Method detectAsync() is experimental, and it’s interface may be changed in the future.

Note: Method detectAsync() is not marked as noexcept andmay throw an exception.

4.3.1 Image coordinate system

The origin of the coordinate system for each processed image is located in the upper left corner.

VisionLabs B.V. 16 / 78

Figure 1: Source image coordinate system

4.3.2 Face detection

When a face is detected, a rectangular area with the face is defined. The area is represented using
coordinates in the image coordinate system.

4.3.3 Redetect method

Face detector implements redetect()method which is intended for face detection optimization on video
frame sequences. Instead of doing full-blown detection on each frame, one may detect() new faces at a
lower frequency (say, each5th frame) and just confirm them inbetweenwith redetect(). This dramatically
improves performance at the cost of detection recall. Note that redetect()updates face landmarks aswell.

Also, face detector implements redetectAsync() which allows you to asynchronously redetect faces on
multiple images based on the detection results for the previous frames.

Note: Method redetectAsync() is experimental, and it’s interface may be changed in the future.

Note: Method redetectAsync() is not marked as noexcept andmay throw an exception.

Detector works faster with larger value of minFaceSize.

4.3.4 Face Alignment

4.3.4.1 Five landmarks
Face alignment is the process of special key points (called “landmarks”) detection on a face. FaceEngine
does landmark detection at the same time as the face detection since some of the landmarks are by-
products of that detection.

VisionLabs B.V. 17 / 78

At the very minimum, just 5 landmarks are required: two for eyes, one for a nose tip and two for mouth
corners. Using these coordinates, onemay warp the source photo image (see Chapter “Image warping”)
for use with all other FaceEngine algorithms.

All detector may provide 5 landmarks for each detection without additional computations.

Typical use cases for 5 landmarks:

• Image warping for use with other algorithms:

– Quality and attribute estimators;
– Descriptor extraction.

5 ImageWarping

Warping is theprocess of face imagenormalization. It requires landmarks and facedetection (see chapter
“Detection facility”) to operate. The purpose of the process is to:

• compensate image plane rotation (roll angle);
• center the image using eye positions;
• properly crop the image.

This way all warped images look the same and one can tell that, e.g., left eye is always in a box, defined
by the certain coordinates. This way certain transform invariance is achieved for input data so various
algorithms can perform better.

The warper (see IWarper in IWarper.h):

• Implements thewarp() function that accepts spanof sourcefsdk::Image in R8B8G8 format, span
of fsdk::Transformation and span of output fsdk::Image structures;

• Implements thewarpAsync() function that accepts span of source fsdk::Image in R8B8G8 format
and span of fsdk::Transformation.

Note: MethodwarpAsync() is experimental, and it’s interfacemaybechanged in the future. Note: Method
warpAsync() is not marked as noexcept andmay throw an exception.

VisionLabs B.V. 18 / 78

Figure 2: Face warping

Be aware that imagewarping is not thread-safe, so you have to create awarper object per worker thread.

VisionLabs B.V. 19 / 78

6 Parameter Estimation Facility

6.1 Overview

The estimation facility is the only multi-purpose facility in FaceEngine. It is designed as a collection of
tools thathelp toestimate various imagesordepictedobjectproperties. Thesepropertiesmaybeused to
increase the precision of algorithms implementedby other FaceEngine facilities or to accomplish custom
user tasks.

6.2 Best shot selection functionality

6.2.1 BestShotQuality Estimation

Name: BestShotQualityEstimator

Algorithm description:

The BestShotQuality estimator is designed to evaluate image quality to choose the best image before
descriptor extraction. The BestShotQuality estimator consists of two components - AGS (garbage score)
and Head Pose.

AGS aims to determine the source image score for further descriptor extraction andmatching.

Estimation output is a float score which is normalized in range [0..1]. The closer score to 1, the better
matching result is received for the image.

When you have several images of a person, it is better to save the image with the highest AGS score.

Recommended threshold for AGS score is equal to 0.2. But it can be changed depending on the
purpose of use. Consult VisionLabs about the recommended threshold value for this parameter.

Head Pose determines person head rotation angles in 3D space, namely pitch, yaw and roll.

Figure 3: Head pose

VisionLabs B.V. 20 / 78

Since 3D head translation is hard to determine reliably without camera-specific calibration, only 3D
rotation component is estimated.

Head pose estimation characteristics:

• Units (degrees);
• Notation (Euler angles);
• Precision (see table below).

Implementation description:

The estimator (see IBestShotQualityEstimator in IEstimator.h):

• Implements the estimate() function that needs fsdk::Image in R8G8B8 format, fsdk::
Detection structure of corresponding source image (see section “Detection structure” in chapter
“Face detection facility”), fsdk::IBestShotQualityEstimator::EstimationRequest
structureandfsdk::IBestShotQualityEstimator::EstimationResult to storeestimation
result;

• Implements the estimate() function that needs the span of fsdk::Image in R8G8B8 format, the
span of fsdk::Detection structures of corresponding source images (see section “Detection
structure” in chapter “Face detection facility”), fsdk::IBestShotQualityEstimator::
EstimationRequest structure and span of fsdk::IBestShotQualityEstimator::
EstimationResult to store estimation results.

• Implements the estimateAsync() function that needs fsdk::Image in R8G8B8 format, fsdk::
Detection structure of corresponding source image (see section “Detection structure” in chapter
“Face detection facility”), fsdk::IBestShotQualityEstimator::EstimationRequest
structure;

Note: Method estimateAsync() is experimental, and it’s interface may be changed in the future. Note:
Method estimateAsync() is not marked as noexcept andmay throw an exception.

Before using this estimator, user is free to decide whether to estimate or not some listed attributes. For
this purpose, estimate()method takes one of the estimation requests:

• fsdk::IBestShotQualityEstimator::EstimationRequest::estimateAGS to make only
AGS estimation;

• fsdk::IBestShotQualityEstimator::EstimationRequest::estimateHeadPose to
make only Head Pose estimation;

• fsdk::IBestShotQualityEstimator::EstimationRequest::estimateAll to make both
AGS and Head Pose estimations;

The EstimationResult structure contains results of the estimation:

struct EstimationResult {

VisionLabs B.V. 21 / 78

Optional<HeadPoseEstimation> headPose; //!< HeadPose estimation if
was requested, empty otherwise

Optional<float> ags; //!< AGS estimation if was
requested, empty otherwise

};

Head Pose accuracy:

Prediction precision decreases as a rotation angle increases. We present typical average errors for
different angle ranges in the table below.

Table 1: “Head pose prediction precision”

Range -45°…+45° < -45° or > +45°

Average prediction error (per axis) Yaw ±2.7° ±4.6°

Average prediction error (per axis) Pitch ±3.0° ±4.8°

Average prediction error (per axis) Roll ±3.0° ±4.6°

Zero position corresponds to a face placed orthogonally to camera direction, with the axis of symmetry
parallel to the vertical camera axis.

API structure name:

IBestShotQualityEstimator

Plan files:

For more information see Approximate Garbage Score Estimation (AGS) and Head Pose
Estimation

VisionLabs B.V. 22 / 78

6.2.2 Image Quality Estimation

Name: QualityEstimator

Algorithm description:

The estimator is trained to work with warped images (see chapter “Image warping” for details).

This estimator is designed to determine the image quality. You can estimate the image according to the
following criteria:

• The image is blurred;
• The image is underexposed (i.e., too dark);
• The image is overexposed (i.e., too light);
• The face in the image is illuminated unevenly (there is a great difference between light and dark
regions);

• Image contains flares on face (too specular).

Examples are presented in the images below. Good quality images are shown on the right.

Figure 4: Blurred image (left), not blurred image (right)

VisionLabs B.V. 23 / 78

Figure 5: Dark image (left), good quality image (right)

Figure 6: Light image (left), good quality image (right)

VisionLabs B.V. 24 / 78

Figure 7: Image with uneven illumination (left), image with even illumination (right)

Figure 8: Image with specularity - image contains flares on face (left), good quality image (right)

Implementation description:

The general rule of thumb for quality estimation:

1. Detect a face, see if detection confidence is high enough. If not, reject the detection.
2. Produce a warped face image (see chapter “Descriptor processing facility”) using a face detection

and its landmarks.

VisionLabs B.V. 25 / 78

3. Estimate visual quality using the estimator, finally reject low-quality images.

While the scheme above might seem a bit complicated, it is the most efficient performance-wise, since
possible rejections on each step reduce workload for the next step.

At the moment estimator exposes two interface functions to predict image quality:

• virtual Result estimate(const Image&warp, Quality& quality);
• virtual Result estimate(const Image&warp, SubjectiveQuality& quality);

Each one of this functions use its own CNN internally and return slightly different quality criteria.

The first CNN is trained specifically on pre-warped human face images and will produce lower score
factors if one of the following conditions are satisfied:

• Image is blurred;
• Image is under-exposured (i.e., too dark);
• Image is over-exposured (i.e., too light);
• Image color variation is low (i.e., image is monochrome or close to monochrome).

Each one of this score factors is defined in [0..1] range, where higher value corresponds to better image
quality and vice versa.

The second interface function output will produce lower factor if:

• The image is blurred;
• The image is underexposed (i.e., too dark);
• The image is overexposed (i.e., too light);
• The face in the image is illuminated unevenly (there is a great difference between light and dark
regions);

• Image contains flares on face (too specular).

The estimator determines the quality of the image based on each of the aforementioned parameters. For
each parameter, the estimator function returns two values: the quality factor and the resulting verdict.

As with the first estimator function the second one will also return the quality factors in the range [0..1],
where 0 corresponds to low image quality and 1 to high image quality. E. g., the estimator returns low
quality factor for the Blur parameter, if the image is too blurry.

The resulting verdict is a quality output based on the estimated parameter. E. g., if the image is too blurry,
the estimator returns “isBlurred = true”.

The threshold (see below) can be specified for each of the estimated parameters. The resulting verdict
and the quality factor are linked through this threshold. If the received quality factor is lower than the
threshold, the image quality is low and the estimator returns “true”. E. g., if the image blur quality factor
is higher than the threshold, the resulting verdict is “false”.

If the estimated value for any of the parameters is lower than the corresponding threshold, the image is
considered of bad quality. If resulting verdicts for all the parameters are set to “False” the quality of the

VisionLabs B.V. 26 / 78

image is considered good.

The quality factor is a value in the range [0..1] where 0 corresponds to low quality and 1 to high quality.

Illumination uniformity corresponds to the face illumination in the image. The lower the difference
between light and dark zones of the face, the higher the estimated value. When the illumination is
evenly distributed throughout the face, the value is close to “1”.

Specularity is a face possibility to reflect light. The higher the estimated value, the lower the
specularity and the better the image quality. If the estimated value is low, there are bright glares
on the face.

The Quality structure contains results of the estimation made by first CNN. Each estimation is given in
normalized [0, 1] range:

struct Quality {
float light; //!< image overlighting degree. 1 - ok, 0 -

overlighted.
float dark; //!< image darkness degree. 1 - ok, 0 - too dark.
float gray; //!< image grayness degree 1 - ok, 0 - too gray.
float blur; //!< image blur degree. 1 - ok, 0 - too blured.
inline float getQuality() const noexcept; //!< complex estimation

of quality. 0 - low quality, 1 - high quality.
};

The SubjectiveQuality structure contains results of the estimation made by second CNN. Each
estimation is given in normalized [0, 1] range:

struct SubjectiveQuality {
float blur; //!< image blur degree. 1 - ok, 0 - too blured.
float light; //!< image brightness degree. 1 - ok, 0 - too

bright;
float darkness; //!< image darkness degree. 1 - ok, 0 - too dark

;
float illumination; //!< image illumination uniformity degree. 1 -

ok, 0 - is too illuminated;
float specularity; //!< image specularity degree. 1 - ok, 0 - is

not specular;
bool isBlurred; //!< image is blurred flag;
bool isHighlighted; //!< image is overlighted flag;
bool isDark; //!< image is too dark flag;
bool isIlluminated; //!< image is too illuminated flag;
bool isNotSpecular; //!< image is not specular flag;

VisionLabs B.V. 27 / 78

inline bool isGood() const noexcept; //!< if all boolean flags
are false returns true - high quality, else false - low quality.

};

Recommended thresholds:

Tablebelowcontains thresholds fromfaceengineconfiguration file (faceengine.conf) inQualityEstimator
::Settings section. By default, these threshold values are set to optimal.

Table 2: “Image quality estimator recommended thresholds”

Threshold Recommended value

blurThreshold 0.61

darknessThreshold 0.50

lightThreshold 0.57

illuminationThreshold 0.1

specularityThreshold 0.1

The most important parameters for face recognition are “blurThreshold”, “darknessThreshold” and
“lightThreshold”, so you should select them carefully.

You can select images of better visual quality by setting higher values of the “illuminationThreshold” and
“specularityThreshold”. Face recognition is not greatly affected by uneven illumination or glares.

Configurations:

See the “Quality estimator settings” section in the “ConfigurationGuide.pdf” document.

API structure name:

IQualityEstimator

Plan files:

• model_subjective_quality_<version>_cpu.plan
• model_subjective_quality_<version>_cpu-avx2.plan
• model_subjective_quality_<version>_gpu.plan

Note: usePlanV1 toggles the Quality estimation, usePlanV2 toggles the SubjectiveQuality
estimation. These parameters can enable or disable the corresponding functionality via the

faceengine.conf configuration file.

VisionLabs B.V. 28 / 78

<section name="QualityEstimator::Settings">
...

<param name="usePlanV1" type="Value::Int1" x="1" />
<param name="usePlanV2" type="Value::Int1" x="1" />

</section>

Note that you cannot disable both the parameters at the same time. In case you do this, you will receive
the fsdk::FSDKError::InvalidConfig error code and the following logs:

[27.06.2024 12:38:59] [Error] QualityEstimator::Settings Failed to create
QualityEstimator! The both parameters: "usePlanV1" and "usePlanV2" in
section "QualityEstimator::Settings" are disabled at the same time.

VisionLabs B.V. 29 / 78

6.3 Face features extraction functionality

6.3.1 Eyes Estimation

Name: EyeEstimator

Algorithm description:

The estimator is trained to work with warped images (see chapter “Image warping” for details).

This estimator aims to determine:

• Eye state: Open, Closed, Occluded;
• Precise eye iris location as an array of landmarks;
• Precise eyelid location as an array of landmarks.

You can only passwarped imagewith detected face to the estimator interface. Better image quality leads
to better results.

Eye state classifier supports three categories: “Open”, “Closed”, “Occluded”. Poor quality images or ones
that depict obscured eyes (think eyewear, hair, gestures) fall into the “Occluded” category. It is always a
good idea to check eye state before using the segmentation result.

The precise location allows iris and eyelid segmentation. The estimator is capable of outputting iris and
eyelid shapes as an array of points together forming an ellipsis. You should only use segmentation results
if the state of that eye is “Open”.

Implementation description:

The estimator:

• Implements the estimate() function that accepts warped source image and warped landmarks,
either of type Landmarks5 or Landmarks68. The warped image and landmarks are received from
the warper (see IWarper::warp());

• Classifies eyes state and detects its iris and eyelid landmarks;

• Outputs EyesEstimation structures.

Orientation terms “left” and “right” refer to the way you see the image as it is shown on the screen.
It means that left eye is not necessarily left from the person’s point of view, but is on the left side
of the screen. Consequently, right eye is the one on the right side of the screen. More formally, the
label “left” refers to subject’s left eye (and similarly for the right eye), such that xright < xleft.

EyesEstimation::EyeAttributes presents eye state as enum EyeState with possible values: Open,
Closed, Occluded.

Iris landmarks are presented with a template structure Landmarks that is specialized for 32 points.

Eyelid landmarks are presented with a template structure Landmarks that is specialized for 6 points.

VisionLabs B.V. 30 / 78

The EyesEstimation structure contains results of the estimation:

struct EyesEstimation {
/**
* @brief Eyes attribute structure.
* */

struct EyeAttributes {
/**
* @brief Enumeration of possible eye states.
* */
enum class State : uint8_t {

Closed, //!< Eye is closed.
Open, //!< Eye is open.
Occluded //!< Eye is blocked by something not transparent

, or landmark passed to estimator doesn't point to an eye
.

};

static constexpr uint64_t irisLandmarksCount = 32; //!< Iris
landmarks amount.

static constexpr uint64_t eyelidLandmarksCount = 6; //!< Eyelid
landmarks amount.

/// @brief alias for @see Landmarks template structure with
irisLandmarksCount as param.

using IrisLandmarks = Landmarks<irisLandmarksCount>;

/// @brief alias for @see Landmarks template structure with
eyelidLandmarksCount as param

using EyelidLandmarks = Landmarks<eyelidLandmarksCount>;

State state; //!< State of an eye.

IrisLandmarks iris; //!< Iris landmarks.
EyelidLandmarks eyelid; //!< Eyelid landmarks

};

EyeAttributes leftEye; //!< Left eye attributes
EyeAttributes rightEye; //!< Right eye attributes

};

API structure name:

IEyeEstimator

VisionLabs B.V. 31 / 78

Plan files:

• eyes_estimation_flwr8_cpu.plan
• eyes_estimation_ir_cpu.plan
• eyes_estimation_flwr8_cpu-avx2.plan
• eyes_estimation_ir_cpu-avx2.plan
• eyes_estimation_ir_gpu.plan
• eyes_estimation_flwr8_gpu.plan
• eye_status_estimation_cpu.plan
• eye_status_estimation_cpu-avx2.plan
• eye_status_estimation_gpu.plan

VisionLabs B.V. 32 / 78

6.4 Head Pose Estimation

This estimator is designed to determine a camera-space head pose. Since the 3D head translation is hard
to reliably determinewithout a camera-specific calibration, only the 3D rotation component is estimated.

There are two head pose estimation methods available:

• Estimate by 68 face-aligned landmarks. You can get it from the Detector facility, see Chapter “Face
detection facility” for details.

• Estimate by the original input image in the RGB format.

An estimation by the image is more precise. If you have already extracted 68 landmarks for another
facilities, you can save time and use the fast estimator from 68 landmarks.

By default, all methods are available to use in the faceengine.conf configuration file in section
“HeadPoseEstimator”. You can disable these methods to decrease RAM usage and initialization time.

Estimation characteristics:

• Units (degrees)
• Notation (Euler angles)
• Precision (see table 3)

Note: Prediction precision decreases as a rotation angle increases. We present typical average
errors for different angle ranges in the table 3.

Table 3: “Head pose prediction precision”

Range -45°…+45° < -45° or > +45°

Average prediction error (per axis) Yaw ±2.7° ±4.6°

Average prediction error (per axis) Pitch ±3.0° ±4.8°

Average prediction error (per axis) Roll ±3.0° ±4.6°

Zero position corresponds to a face placed orthogonally to the camera direction, with the axis of
symmetry parallel to the vertical camera axis. See figure 9 for a reference.

VisionLabs B.V. 33 / 78

Figure 9: Head pose illustration

Note: In order towork, this estimator requiresprecise 68-point facealignment results, so familiarize
with section “Face alignment” in the “Face detection facility” chapter, as well.

VisionLabs B.V. 34 / 78

6.5 Approximate Garbage Score Estimation (AGS)

This estimator aims to determine the source image score for further descriptor extraction andmatching.
The higher the score, the better matching result is received for the image.

When you have several images of a person, it is better to save the image with the highest AGS score.

Contact VisionLabs for the recommended threshold value for this parameter.

The estimator (see IAGSEstimator in IEstimator.h):

• Implements theestimate() function that accepts the source image in theR8G8B8 format and the
fsdk::Detection structure of corresponding source image. For details, see section “Detection
structure” in chapter “Face detection facility”.

• Estimates garbage score of the input image.
• Outputs a garbage score value.

VisionLabs B.V. 35 / 78

6.5.1 Glasses Estimation

Name: GlassesEstimator

Algorithm description:

Glasses estimator is designed to determine whether a person is currently wearing any glasses or not.
There are 3 types of states the estimator is currently able to estimate:

• NoGlasses - Determines whether a person is wearing any glasses at all.
• EyeGlasses - Determines whether a person is wearing eyeglasses.
• SunGlasses - Determines whether a person is wearing sunglasses.

Note: The source input image must be warped for the estimator to work properly (see chapter “Image
warping” for details). Estimation quality depends on threshold values located in the faceengine.conf
configuration file.

Implementation description:

Enumeration of possible glasses estimation statuses:

enum class GlassesEstimation: uint8_t{
NoGlasses, //!< Person is not wearing glasses
EyeGlasses, //!< Person is wearing eyeglasses
SunGlasses, //!< Person is wearing sunglasses
EstimationError //!< failed to estimate

};

Recommended thresholds:

The table below contains thresholds specified in GlassesEstimator::Settings section of the
FaceEngine configuration file (faceengine.conf). By default, these threshold values are set to optimal.

Table 4: “Glasses estimator recommended thresholds”

Threshold Recommended value

noGlassesThreshold 1

eyeGlassesThreshold 1

sunGlassesThreshold 1

Configurations:

See the “GlassesEstimator settings” section in the “ConfigurationGuide.pdf” document.

Metrics:

VisionLabs B.V. 36 / 78

The table below contains true positive rates corresponding to the selected false positive rates.

Table 5: “Glasses estimator TPR/FPR rates”

State TPR FPR

NoGlasses 0.997 0.00234

EyeGlasses 0.9768 0.000783

SunGlasses 0.9712 0.000383

API structure name:

IGlassesEstimator

Plan files:

• glasses_estimation_v2_cpu.plan
• glasses_estimation_v2_cpu-avx2.plan
• glasses_estimation_v2_gpu.plan

6.6 Liveness check functionality

6.6.1 LivenessOneShotRGB Estimation

Name: LivenessOneShotRGBEstimator

Algorithm description:

This estimator shows whether the person’s face is real or fake by the following types of attacks:

• Printed Photo Attack. One or several photos of another person are used.
• Video Replay Attack. A video of another person is used.
• Printed Mask Attack. An imposter cuts out a face from a photo and covers his face with it.
• 3D Mask Attack. An imposer puts on a 3Dmask depicting the face of another person.

The requirements for the processed image and the face in the image are listed below.

Parameters Requirements

Minimum resolution for
mobile devices

720x960 pixels

Maximum resolution for
mobile devices

1080x1920 pixels

VisionLabs B.V. 37 / 78

Parameters Requirements

Minimum resolution for
webcams

1280x720 pixels

Maximum resolution for
webcams

1920x1080 pixels

Compression No

Image warping No

Image cropping No

Effects overlay No

Mask No

Number of faces in the
frame

1

Face detection bounding
box width

More than 200 pixels

Frame edges offset More than 10 pixels

Head pose -20 to +20 degrees for head pitch, yaw, and roll

Image quality The face in the frame should not be overexposed, underexposed, or
blurred.

See image quality thresholds in the “Image Quality Estimation” section.

Implementation description:

The estimator (see ILivenessOneShotRGBEstimator in ILivenessOneShotRGBEstimator.h):

• Implements the estimate() function that needs fsdk::Image, fsdk::Detection and fsdk
::Landmarks5 objects (see section “Detection structure” in chapter “Face detection facility”).
Output estimation is a structure fsdk::LivenessOneShotRGBEstimation.

• Implements the estimate() function that needs the span of fsdk::Image, span of fsdk::
Detection and span of fsdk::Landmarks5 (see section “Detection structure” in chapter “Face
detection facility”).
The first output estimation is a span of structure fsdk::LivenessOneShotRGBEstimation.
The second output value (structure fsdk::LivenessOneShotRGBEstimation) is the result of
aggregation based on span of estimations announced above. Pay attention the second output
value (aggregation) is optional, i.e. default argument, which is nullptr.

The LivenessOneShotRGBEstimation structure contains results of the estimation:

VisionLabs B.V. 38 / 78

struct LivenessOneShotRGBEstimation {
enum class State {

Alive = 0, //!< The person on image is real
Fake, //!< The person on image is fake (photo, printed image)
Unknown //!< The liveness status of person on image is Unknown

};

float score; //!< Estimation score
State state; //!< Liveness status
float qualityScore; //!< Liveness quality score

};

Estimation score is normalized in range [0..1], where 1 - is real person, 0 - is fake.

Liveness quality score is an image quality estimation for the liveness recognition.

This parameter is used for filtering if it is possible to make bestshot when checking for liveness.

The reference score is 0,5.

The value of State depends on score and qualityThreshold. The value qualityThreshold
can be given as an argument of method estimate (see ILivenessOneShotRGBEstimator), and in
configuration file faceengine.conf (see ConfigurationGuide LivenessOneShotRGBEstimator).

Recommended thresholds:

Table below contains thresholds from faceengine configuration file (faceengine.conf)
in the LivenessOneShotRGBEstimator::Settings section. By default, these threshold values are
set to optimal.

Table 7: “LivenessOneShotRGB estimator recommended thresholds”

Threshold Recommended value

realThreshold 0.5

qualityThreshold 0.5

calibrationCoeff 0.89

calibrationCoeff 0.991

Configurations:

See the “LivenessOneShotRGBEstimator settings” section in the “ConfigurationGuide.pdf” document.

API structure name:

VisionLabs B.V. 39 / 78

ILivenessOneShotRGBEstimator

Plan files:

• oneshot_rgb_liveness_v8_model_3_cpu.plan
• oneshot_rgb_liveness_v8_model_4_cpu.plan
• oneshot_rgb_liveness_v8_model_3_arm.plan
• oneshot_rgb_liveness_v8_model_4_arm.plan

VisionLabs B.V. 40 / 78

6.6.2 Depth and RGB OneShotLiveness estimation

Name: LivenessDepthRGBEstimator

Algorithm description:

This estimator shows whether the person’s face is real or fake (photo, printed image). You can use this
estimator in payment terminals (POS) and self-service cash registers (KCO)with two cameras - Depth and
RGB.

The estimation is performed on the device with an Orbbec camera. The camera can be either built in a
POS or KCOdevice or connected to it. This allows to perform the estimation at a higher speed andmakes
itmore secure as data is not sent to the backend. Using the algorithmwithOrbbec cameras lets youwork
with deep data. It increases system reliability and accuracy, as 3D data lets you assess facial shapes and
detect fake masks more accurately.

The estimator is trained to work with warped images. For details, see chapter “Image warping”.

Supported devices

The estimator works only on the following devices:

• VLS LUNA CAMERA 3D
• VLS LUNA CAMERA 3D Embedded

Different models of Orbbec cameras have different spacing between sensors. If you need to use another
Orbbec Depth+RGB camera, you can change the calibration coefficients to match the device. Please,
contact VisionLabs for details.

Image requirements

This estimator works based on two images:

• RGB image from the RGB camera
• Depth image (or depth map) from the depth camera

Input images must meet the following requirements:

Parameter Requirements

Resolution 640 × 480 pixels

Compression No

Image cropping No

Image rotation No

Effects overlay No

Number of faces in the frame 1

VisionLabs B.V. 41 / 78

Parameter Requirements

Face detection bounding box size 200 pixels

Frame edges offset 10 pixels

Head pose -20 to +20 degrees for head pitch, yaw, and roll.

Image quality The face in the frame should not be
overexposed, underexposed, or blurred. For
details, see section “Image Quality Estimation”.

Implementation description:

The estimator implements the following:

• The estimate() function that needs the depth frame as the first fsdk::Image object, the RGB
frame as the second fsdk::Image object, fsdk::Detection and fsdk::Landmarks5 objects
(see section “Detection structure” in chapter “Face detection facility”). The estimation output is
the fsdk::DepthRGBEstimation srtucture.

• The estimate() function that needs the first span of depth frames as the fsdk::Image objects,
the second span of RGB frames as the fsdk::Image objects, a span of fsdk::Detection, and
a span of fsdk::Landmarks5 (see section “Detection structure” in chapter “Face detection
facility”).
The estimation output is a span of the fsdk::DepthRGBEstimation structure. The second
output value is the fsdk::DepthRGBEstimationstructure.

DepthRGBEstimation

The DepthRGBEstimation structure contains results of the estimation:

struct DepthRGBEstimation {
//!< confidence score in [0,1] range.
//!< The closer the score to 1, the more likely that person is alive.
float score;
//!< boolean flag that indicates whether a person is real.
bool isReal;

};

The estimation score is normalized in range [0..1], where 1 - is real person, 0 - is a fake.

ThevalueofisRealdependsonscoreandconfidenceThreshold. Thevalueof theconfidenceThreshold
canbechanged inconfiguration file faceengine.conf (seeConfigurationGuideLivenessDepthRGBEstimator
).

API structure name:

VisionLabs B.V. 42 / 78

ILivenessDepthRGBEstimator

See ILivenessDepthRGBEstimator in ILivenessDepthRGBEstimator.h.

Plan files:

• depth_rgb_v2_model_1_cpu.plan
• depth_rgb_v2_model_1_gpu.plan
• depth_rgb_v2_model_2_cpu.plan
• depth_rgb_v2_model_2_gpu.plan
• depth_rgb_v2_model_1_cpu-avx2.plan
• depth_rgb_v2_model_2_cpu-avx2.plan

VisionLabs B.V. 43 / 78

6.6.3 Depth liveness estimation (DepthLivenessEstimator)

Name: DepthLivenessEstimator

Algorithm description:

Given a face depth warp, the estimator tells whether the face is real or fake (photo, printed image).

The estimator aims to unify different use cases of depth liveness estimation, while increasing the
estimation accuracy compared to existing depth estimators.

The estimator can be used in payment terminals (POS) and self-service cash registers (KCO) with two
cameras - Depth and RGB.

The estimator is trained to work with warped depth images of faces. For details, see chapter “Image
warping”.

The estimator can be used together with LivenessDepthRGBEstimator or as standalone. When
DepthLivenessEstimator is used in conjunction with LivenessDepthRGBEstimator, the latter takes care
of necessary preprocessing of RGB and depth frames, producing depth warps of faces required by
DepthLivenessEstimator. When DepthLivenessEstimator is used as standalone, it is your responsibility
to prepare a warped depth image of a face for estimation, including handling such issues as:

1. detecting faces on RGB frames, quality checking of RGB frames and detections
2. [possibly required] mapping between a) RGB frames used for face detection and b) depth frames
3. obtaining depth warps of faces from depth frames

Supported devices

On itsown, theestimator requires just aproperlyprepareddepthwarpof a face, anddoesn’t constrain the
list of possible devices. However, if LivenessDepthRGBEstimator is involved, it has its own constraints.

Image requirements

The estimator works based on depth warps of faces. The warps must be 250x250 pixels, in the fsdk::
Format::R16 format. If you prepare depth warps yourself, there are some basic quality requirements
for RGB frames:

Parameter Requirements

Resolution 640 × 480 pixels

Compression No

Image cropping No

Image rotation No

Effects overlay No

Number of faces in the frame 1

VisionLabs B.V. 44 / 78

Parameter Requirements

Face detection bounding box size 200 pixels

Frame edges offset 10 pixels

Head pose -15 to +15 degrees for head pitch, yaw, and roll.

Image quality The face in the frame should not be
overexposed, underexposed, or blurred. For
details, see section “Image Quality Estimation”.

Implementation description:

The estimator (see IDepthLivenessEstimator.h) implements the following:

• The estimate() function that needs the depth warp as the first fsdk::Image object. The
estimation output is the returned fsdk::DepthLivenessEstimation structure.

• The estimate() function that needs a span of depth warps (fsdk::Image objects) as the first
parameter, and a span of fsdk::DepthLivenessEstimation as the second parameter. The
estimation output is saved in the second parameter.

DepthLivenessEstimation

The DepthLivenessEstimation structure contains results of the estimation:

struct DepthLivenessEstimation {
//!< confidence score in [0,1] range.
//!< The closer the score to 1, the more likely that person is alive.
float score;
//!< boolean flag that indicates whether a person is real.
bool isReal;

};

The estimation score is normalized in the range [0..1], where 1 - is real person, 0 - is a fake.

ThevalueofisRealdependsonscoreandconfidenceThreshold. Thevalueof theconfidenceThreshold
canbechanged inconfiguration file faceengine.conf (seeConfigurationGuideDepthLivenessEstimator
).

API structure name:

IDepthLivenessEstimator

See IDepthLivenessEstimator in IDepthLivenessEstimator.h.

Examples:

VisionLabs B.V. 45 / 78

• C++ example: example_depth_liveness
• Python example: example_depth_liveness.py

Plan files:

• depth_liveness_v2_arm.plan
• depth_liveness_v2_cpu.plan
• depth_liveness_v2_cpu-avx2.plan
• depth_liveness_v2_gpu.plan

VisionLabs B.V. 46 / 78

6.7 Medical Mask Estimation Functionality

Name: MedicalMaskEstimator

This estimator aims to detect a medical mask on the face in the source image. For the interface with
MedicalMaskEstimation it can return the next results:

• A medical mask is on the face (see MedicalMask::Mask field in the MedicalMask enum);
• There is no medical mask on the face (see MedicalMask::NoMask field in the MedicalMask enum);
• The face is occluded with something (see MedicalMask::OccludedFace field in the MedicalMask
enum);

For the interface with MedicalMaskEstimationExtended it can return the next results:

• A medical mask is on the face (see MedicalMaskExtended::Mask field in the MedicalMaskExtended
enum);

• There is no medical mask on the face (see MedicalMaskExtended::NoMask field in the
MedicalMaskExtended enum);

• A medical mask is not on the right place (see MedicalMaskExtended::MaskNotInPlace field in the
MedicalMaskExtended enum);

• The face is occluded with something (see MedicalMaskExtended::OccludedFace field in the
MedicalMaskExtended enum);

The estimator (see IMedicalMaskEstimator in IEstimator.h):

• Implements the estimate() function that accepts source warped image in R8G8B8 format and
medical mask estimation structure to return results of estimation;

• Implements the estimate() function that accepts source image in R8G8B8 format, face detection to
estimate andmedical mask estimation structure to return results of estimation;

• Implements theestimate() function thataccepts fsdk::Spanof the sourcewarped images inR8G8B8
format and fsdk::Span of the medical mask estimation structures to return results of estimation;

• Implements the estimate() function that accepts fsdk::Spanof the source images inR8G8B8 format,
fsdk::Span of face detections and fsdk::Span of the medical mask estimation structures to return
results of the estimation.

Every method can be used with MedicalMaskEstimation and MedicalMaskEstimationExtended.

The estimator was implemented for two use-cases:

1. When the user already has warped images. For example, when the medical mask estimation is
performed right before (or after) the face recognition.

2. When the user has face detections only.

Note: Calling the estimate() method with warped image and the estimate() method with image and
detection for the same image and the same face could lead to different results.

VisionLabs B.V. 47 / 78

6.7.1 MedicalMaskEstimator thresholds

The estimator returns several scores, one for each possible result. The final result is based on that scores
and thresholds. If some score is above the corresponding threshold, that result is estimated as final. If
none of the scores exceed the matching threshold, the maximum value will be taken. If some of the
scores exceed their thresholds, the results will take precedence in the following order for the case with
MedicalMaskEstimation:

Mask, NoMask, OccludedFace

and for the case with MedicalMaskEstimationExtended:

Mask, NoMask, MaskNotInPlace, OccludedFace

The default values for all thresholds are taken from the configuration file. See Configuration guide for
details.

6.7.2 MedicalMask enumeration

The MedicalMask enumeration contains all possible results of the MedicalMask estimation:

enum class MedicalMask {
Mask = 0, //!< medical mask is on the face
NoMask, //!< no medical mask on the face
OccludedFace //!< face is occluded by something

};

enum class DetailedMaskType {
CorrectMask = 0, //!< correct mask on the face (mouth

and nose are covered correctly)
MouthCoveredWithMask, //!< mask covers only a mouth
ClearFace, //!< clear face - no mask on the face
ClearFaceWithMaskUnderChin, //!< clear face with a mask around of

a chin, mask does not cover anything in the face region (from
mouth to eyes)

PartlyCoveredFace, //!< face is covered with not a
medical mask or a full mask

FullMask, //!< face is covered with a full mask
(such as balaclava, sky mask, etc.)

Count
};

VisionLabs B.V. 48 / 78

• Maskis according to CorrectMask or MouthCoveredWithMask;
• NoMaskis according to ClearFace or ClearFaceWithMaskUnderChin;
• OccludedFace is according to PartlyCoveredFace or FullMask.

Note - NoMaskmeans absence of medical mask or any occlusion in the face region (frommouth to eyes).
Note - DetailedMaskType is not supported for NPU-based platforms.

6.7.3 MedicalMaskEstimation structure

The MedicalMaskEstimation structure contains results of the estimation:

struct MedicalMaskEstimation {
MedicalMask result; //!< estimation result (@see

MedicalMask enum)
DetailedMaskType maskType; //!< detailed type (@see

DetailedMaskType enum)

// scores
float maskScore; //!< medical mask is on the face score
float noMaskScore; //!< no medical mask on the face score
float occludedFaceScore; //!< face is occluded by something score

float scores[static_cast<int>(DetailedMaskType::Count)]{}; //!<
detailed estimation scores

inline float getScore(DetailedMaskType type) const;
};

There are two groups of the fields:

1� The first group contains the result:

MedicalMask result;

Result enum field MedicalMaskEstimation contains the target results of the estimation. Also you can see
the more detailed type in MedicalMaskEstimation.

DetailedMaskType maskType; //!< detailed type

2� The second group contains scores:

float maskScore; //!< medical mask is on the face score

VisionLabs B.V. 49 / 78

float noMaskScore; //!< no medical mask on the face score
float occludedFaceScore; //!< face is occluded by something score

The score group contains the estimation scores for each possible result of the estimation. All scores are
defined in [0,1] range. They can be useful for users who want to change the default thresholds for this
estimator. If the default thresholds are used, the groupwith scores could be just ignored in the user code.
More detailed scores for every type of a detailed type of face covering are

float scores[static_cast<int>(DetailedMaskType::Count)]{}; //!< detailed
estimation scores

• maskScore is the sum of scores for CorrectMask, MouthCoveredWithMask;
• NoMask is the sum of scores for ClearFace and ClearFaceWithMaskUnderChin;
• occludedFaceScore is the sum of scores for PartlyCoveredFace and FullMask fields.

Note - DetailedMaskType, scores, getScore are not supported for NPU-based platforms. It means a
user cannot use this fields andmethods in code.

6.7.4 MedicalMaskExtended enumeration

The MedicalMask enumeration contains all possible results of the MedicalMask estimation:

enum class MedicalMaskExtended {
Mask = 0, //!< medical mask is on the face
NoMask, //!< no medical mask on the face
MaskNotInPlace, //!< mask is not on the right place
OccludedFace //!< face is occluded by something

};

6.7.5 MedicalMaskEstimationExtended structure

The MedicalMaskEstimationExtended structure contains results of the estimation:

struct MedicalMaskEstimationExtended {
MedicalMaskExtended result; //!< estimation result (@see

MedicalMaskExtended enum)
// scores
float maskScore; //!< medical mask is on the face score
float noMaskScore; //!< no medical mask on the face score
float maskNotInPlace; //!< mask is not on the right place
float occludedFaceScore; //!< face is occluded by something score

VisionLabs B.V. 50 / 78

};

There are two groups of the fields:

1� The first group contains only the result enum:

MedicalMaskExtended result;

Result enum field MedicalMaskEstimationExtended contains the target results of the estimation.

2� The second group contains scores:

float maskScore; //!< medical mask is on the face score
float noMaskScore; //!< no medical mask on the face score
float maskNotInPlace; //!< mask is not on the right place
float occludedFaceScore; //!< face is occluded by something score

The score group contains the estimation scores for each possible result of the estimation. All scores are
defined in [0,1] range.

6.7.6 Filtration parameters

The estimator is trained to work with face images that meet the following requirements:

Table 10: “Requirements for fsdk::MedicalMaskEstimator::EstimationResult”

Attribute Acceptable values

headPose.pitch [-40…40]

headPose.yaw [-40…40]

headPose.roll [-40…40]

ags [0.5…1.0]

Configurations:

See the “Medical mask estimator settings” section in the “ConfigurationGuide.pdf” document.

API structure name:

IMedicalMaskEstimator

Plan files:

• mask_clf_v3_cpu.plan

VisionLabs B.V. 51 / 78

• mask_clf_v3_cpu-avx2.plan
• mask_clf_v3_gpu.plan

VisionLabs B.V. 52 / 78

6.8 Mouth Estimation Functionality

Name: MouthEstimator

Algorithm description:

This estimator is designed to predict person’s mouth state.

Implementation description:

Mouth Estimation

It returns the following bool flags:

bool isOpened; //!< Mouth is opened flag
bool isSmiling; //!< Person is smiling flag
bool isOccluded; //!< Mouth is occluded flag

Each of these flags indicate specific mouth state that was predicted.

The combinedmouth state is assumed if multiple flags are set to true. For example there aremany cases
where person is smiling and its mouth is wide open.

Mouth estimator provides score probabilities for mouth states in case user need more detailed
information:

float opened; //!< mouth opened score
float smile; //!< person is smiling score
float occluded; //!< mouth is occluded score

Mouth Estimation Extended

This estimation is extended version of regular Mouth Estimation (see above). In addition, It returns the
following fields:

SmileTypeScores smileTypeScores; //!< Smile types scores
SmileType smileType; //!< Contains smile type if person "isSmiling"

If flag isSmiling is true, you can get more detailed information of smile using smileType variable.
smileType can hold following states:

enum class SmileType {
None, //!< No smile
SmileLips, //!< regular smile, without teeths exposed
SmileOpen //!< smile with teeths exposed

};

VisionLabs B.V. 53 / 78

If isSmiling is false, the smileType assigned to None. Otherwise, the field will be assigned with
SmileLips (person is smiling with closed mouth) or SmileOpen (person is smiling with open mouth,
with teeth’s exposed).

Extended mouth estimation provides score probabilities for smile type in case user need more detailed
information:

struct SmileTypeScores {
float smileLips; //!< person is smiling with lips score
float smileOpen; //!< person is smiling with open mouth score

};

smileType variable is set based on according scores hold by smileTypeScores variable - set based on
maximum score from smileLips and smileOpen or to None if person not smiling at all.

if (estimation.isSmiling)
estimation.smileType = estimation.smileTypeScores.smileLips >

estimation.smileTypeScores.smileOpen ?
fsdk::SmileType::SmileLips : fsdk::SmileType::SmileOpen;

else
estimation.smileType = fsdk::SmileType::None;

When you use Mouth Estimation Extended, the underlying computation are exactly the same as
if you use regular Mouth Estimation. The regular Mouth Estimation was retained for backward
compatibility.

These estimators are trained toworkwithwarped images (see Chapter “Imagewarping” for details).

Recommended thresholds:

The table below contains thresholds specified in the MouthEstimator::Settings section of the
FaceEngine configuration file (faceengine.conf). By default, these threshold values are set to optimal.

Table 11: “Mouth estimator recommended thresholds”

Threshold Recommended value

occlusionThreshold 0.5

smileThreshold 0.5

openThreshold 0.5

VisionLabs B.V. 54 / 78

Filtration parameters:

The estimator is trained to work with face images that meet the following requirements:

• Requirements for Detector:

Attribute Minimum value

detection size 80

Detection size is detection width.

const fsdk::Detection detection = ... // somehow get fsdk::Detection object
const int detectionSize = detection.getRect().width;

• Requirements for fsdk::MouthEstimator:

Attribute Acceptable values

headPose.pitch [-20…20]

headPose.yaw [-25…25]

headPose.roll [-10…10]

Configurations:

See the “Mouth Estimator settings” section in the “ConfigurationGuide.pdf” document.

API structure name:

IMouthEstimator

Plan files:

• mouth_estimation_v4_arm.plan
• mouth_estimation_v4_cpu.plan
• mouth_estimation_v4_cpu-avx2.plan
• mouth_estimation_v4_gpu.plan

VisionLabs B.V. 55 / 78

6.9 Face Occlusion Estimation Functionality

Name: FaceOcclusionEstimator

Algorithm description:

This estimator is designed to predict occlusions in different parts of the face, such as the forehead, eyes,
nose, mouth, and lower face. It also provides an overall occlusion score.

Implementation description:

Face Occlusion Estimation

The estimator returns the following occlusion states:

/**
* @brief FaceOcclusionType enum.
* This enum contains all possible facial occlusion types.
* */
enum class FaceOcclusionType : uint8_t {

Forehead = 0, //!< Forehead
LeftEye, //!< Left eye
RightEye, //!< Right eye
Nose, //!< Nose
Mouth, //!< Mouth
LowerFace, //!< Lower part of the face (chin, mouth, etc.)
Count //!< Total number of occlusion types

};

/**
* @brief FaceOcclusionState enum.
* This enum contains all possible facial occlusion states.
* */
enum class FaceOcclusionState : uint8_t {

NotOccluded = 0, //!< Face is not occluded
Occluded, //!< Face is occluded
Count //!< Total number of states

};

FaceOcclusionState states[static_cast<uint8_t>(FaceOcclusionType::Count)];
//!< Occlusion states for each face region

float typeScores[static_cast<uint8_t>(FaceOcclusionType::Count)]; //!<
Probability scores for occlusion types

FaceOcclusionState overallOcclusionState; //!< Overall occlusion state
float overallOcclusionScore; //!< Overall occlusion score
float hairOcclusionScore; //!< Hair occlusion score

VisionLabs B.V. 56 / 78

To get the occlusion score for a specific facial zone, you can use the following method:

float getScore(FaceOcclusionType type) const {
return typeScores[static_cast<uint8_t>(type)];

}

To get the occlusion state for a specific facial zone, use the following:

FaceOcclusionState getState(FaceOcclusionType type) const {
return states[static_cast<uint8_t>(type)];

}

This estimator is trained to work with warped images and Landmarks5 (see Chapter “Image
warping” for details).

Recommended thresholds:

The table below contains thresholds specified in the FaceOcclusion::Settings section of the FaceEngine
configuration file (faceengine.conf). These values are optimal by default.

Threshold Recommended value

normalHairCoeff 0.15

overallOcclusionThreshold 0.07

foreheadThreshold 0.2

eyeThreshold 0.15

noseThreshold 0.2

mouthThreshold 0.15

lowerFaceThreshold 0.2

Configurations

See the “Face Occlusion Estimator settings” section in the “ConfigurationGuide.pdf” document.

Filtration parameters:

VisionLabs B.V. 57 / 78

Name Threshold

Face Size >80px

Yaw, Pitch, Roll ±20

Blur (Subjective Quality) >0.61

API structure name:

IFaceOcclusionEstimator

Plan files:

• face_occlusion_v1_arm.plan
• face_occlusion_v1_cpu.plan
• face_occlusion_v1_cpu-avx2.plan
• face_occlusion_v1_gpu.plan

VisionLabs B.V. 58 / 78

7 Descriptor processing facility

7.1 Overview

The section describes descriptors and all the processes and objects corresponding to them.

Decriptors and extraction facility is available only in the Complete edition only!

Descriptor itself is a set of object parameters that are specially encoded. Descriptors are typically more
or less invariant to various affine object transformations and slight color variations. This property allows
efficient use of such sets to identify, lookup, and compare real-world objects images.

To receive a descriptor you should perform a special operation called descriptor extraction.

The general case of descriptors usage iswhen you compare twodescriptors and find their similarity score.
Thus you can identify persons by comparing their descriptors with your descriptors database.

All descriptor comparison operations are called matching. The result of the two descriptors matching
is a distance between components of the corresponding sets that are mentioned above. Thus, from a
magnitude of this distance, we can tell if two objects are presumably the same.

7.1.1 Person Identification Task

Facial recognition is the task ofmaking an identification of a face in a photo or video image against a pre-
existing database of faces. It begins with detection - distinguishing human faces from other objects in
the image - and thenworks on the identification of those detected faces. To solve this problem, we use a
face descriptor, which extracted from an image face of a person. A person’s face is invariable throughout
his life.

In a case of the face descriptor, the extraction is performed from object image areas around some
previously discovered facial landmarks, so the quality of the descriptor highly depends on them and the
image it was obtained from.

The process of face recognition consists of 4 main stages:

• face detection in an image;
• warping of face detection – compensation of affine angles and centering of a face;
• descriptor extraction;
• comparing of extracted descriptors (matching).

7.2 Descriptor

Descriptor object stores a compact set of packed properties aswell as some helper parameters that were
used to extract these properties from the source image. Together these parameters determine descriptor
compatibility. Not all descriptors are compatible with each other. It is impossible to batch and match

VisionLabs B.V. 59 / 78

incompatible descriptors, so you should pay attention towhat settings do you usewhen extracting them.
Refer to section “Descriptor extraction” for more information on descriptor extraction.

7.2.1 Descriptor Versions

Face descriptor algorithm evolves with time, so newer FaceEngine versions contain improvedmodels of
the algorithm.

Descriptors of different versions are incompatible! Thismeans that you cannotmatch descriptors
with different versions. This does not apply to base and mobilenet versions of the same model:
they are compatible.

See chapter “Appendix A. Specifications” for details about performance and precision of different
descriptor versions.

Descriptor version 62 is the best one by precision. And it works well with the personal protective
equipment on face like medical mask.

Descriptor versionmay be specified in the configuration file (see section “Configuration data” in chapter
“Core facility”).

7.2.2 Descriptor Batch

Whenmatching significant amounts of descriptors, it is desired that they reside continuously inmemory
for performance reasons (think cache-friendly data locality and coherence). This is where descriptor
batches come into play. While descriptors are optimized for faster creation and destruction, batches are
optimized for long life and better descriptor data representation for the hardware.

A batch is created by the factory like any other object. Aside from type, a size of the batch should be
specified. Size is a memory reservation this batch makes for its data. It is impossible to add more data
than specified by this reservation.

Next, the batch must be populated with data. You have the following options:

• add an existing descriptor to the batch;
• load batch contents from an archive.

The following notes should be kept in mind:

• Whenadding anexistingdescriptor, its data is copied into thebatch. Thismeans that thedescriptor
object may be safely released.

• When adding the first descriptor to an empty batch, initial memory allocation occurs. Before that
moment the batch does not allocate. At the samemoment, internal descriptor helper parameters
are copied into the batch (if there are any). This effectively determines compatibility possibilities
of the batch. When the batch is initialized, it does not accept incompatible descriptors.

VisionLabs B.V. 60 / 78

After initialization, a batch may bematched pretty much the same way as a simple descriptor.

Like any other data storage object, a descriptor batch implements the ::clear()method. An effect of this
method is the batch translation to a non-initialized state except memory deallocation. In other words,
batch capacity stays the same, and nomemory is reallocated. However, an actual number of descriptors
in the batch and their parameters are reset. This allows re-populating the batch.

Memory deallocation takes place when a batch is released.

Care should be taken when serializing and deserializing batches. When a batch is created, it is assigned
with a fixed-sizememory buffer. The size of the buffer is embedded into the batch BLOBwhen it is saved.
So, when allocating a batch object for reading the BLOB into, make sure its size is at least the same as
it was for the batch saved to the BLOB (even if it was not full at the moment). Otherwise, loading fails.
Naturally, it is okay to deserialize a smaller batch into a larger another batch this way.

7.2.3 Descriptor Extraction

Descriptor extractor is the entity responsible for descriptor extraction. Like any other object, it is created
by the factory. To extract a descriptor, aside from the source image, you need:

• a face detection area inside the image (see chapter “Detection facility”)
• a pre-allocated descriptor (see section “Descriptor”)
• a pre-computed landmarks (see chapter “Image warping”)

A descriptor extractor object is responsible for this activity. It is represented by the straightforward
IDescriptorExtractor interface with only one method extract(). Note, that the descriptor object must be
created prior to calling extract() by calling an appropriate factory method.

Landmarks are used as a set of coordinates of object points of interest, that in turn determine source
image areas, the descriptor is extracted from. This allows extracting only data that matters most for
a particular type of object. For example, for a human face we would want to know at least definitive
properties of eyes, nose, andmouth to be able to compare it to another face. Thus, we should first invoke
a feature extractor to locate where eyes, nose, andmouth are and put these coordinates into landmarks.
Then the descriptor extractor takes those coordinates and builds a descriptor around them.

Descriptor extraction is one of themost computation-heavy operations. For this reason, threadingmight
be considered. Be aware that descriptor extraction is not thread-safe, so you have to create an extractor
object per a worker thread.

It should be noted, that the face detection area and the landmarks are required only for image warping,
the preparation stage for descriptor extraction (see chapter “Image warping”). If the source image
is already warped, it is possible to skip these parameters. For that purpose, the IDescriptorExtractor
interface provides a special extractFromWarpedImage()method.

Descriptor extraction implementation supports execution on GPUs.

VisionLabs B.V. 61 / 78

The IDescriptorExtractor interface provides extractFromWarpedImageBatch() method which allows
you to extract batch of descriptors from the image array in one call. This method achieve higher
utilization of GPU and better performance (see the “GPU mode performance” table in appendix A
chapter “Specifications”).

Also IDescriptorExtractor returns descriptor score for each extracted descriptor. Descriptor score is
normalized value in range [0,1], where 1 - face in the warp, 0 - no face in the warp. This value allows you
filter descriptors extracted from false positive detections.

The IDescriptorExtractor interface provides extractFromWarpedImageBatchAsync()methodwhich allows
you to extract batch of descriptors from the image array asynchronously in one call. Thismethod achieve
higher utilization of GPU and better performance (see the “GPUmode performance” table in appendix A
chapter “Specifications”).

Note: Method extractFromWarpedImageBatchAsync() is experimental, and it’s interfacemay be changed
in the future.

Note: Method extractFromWarpedImageBatchAsync() is not marked as noexcept and may throw an
exception.

7.2.4 Descriptor Matching

It is possible to match a pair (or more) previously extracted descriptors to find out their similarity. With
this information, it is possible to implement face search and other analysis applications.

VisionLabs B.V. 62 / 78

Figure 10:Matching

By means ofmatch function defined by the IDescriptorMatcher interface it is possible to match a pair of
descriptors with each other or a single descriptor with a descriptor batch (see section “Descriptor batch”
for details on batches).

A simple rule to help you decide which storage to opt for:

• when searching among less than a hundred descriptors use separate IDescriptor objects;
• when searching among bigger number of descriptors use a batch.

When working with big data, a common practice is to organize descriptors in several batches keeping a
batch per worker thread for processing.

Be aware that descriptormatching is not thread-safe, so youhave to create amatcher object per aworker
thread.

VisionLabs B.V. 63 / 78

8 System Requirements

8.1 Android installations

FaceEngine requires:

• Android version 4.4.4 or newer

For development:

• Android Studio version 3.6
• Android Gradle Plugin version 3.2.1
• Gradle version 4.6
• Java 8

x86

• Android NDK = android-16
• Android SDK = 16
• Android STL = c++_shared
• Compiler = Clang 12.0.5

x86_64

• Android NDK = android-21
• Android API = 21
• Android STL = c++_shared
• Compiler = Clang 12.0.5

armeabi-v7a

• Android NDK = android-16
• Android API = 16
• Android STL = c++_shared
• Compiler = Clang 12.0.5

arm64-v8a

• Android NDK = android-21
• Android API = 21
• Android STL = c++_shared
• Compiler = Clang 12.0.5

Android development dependencies listed above can be downloaded directly from SDK manager
in Android Studio IDE or via SDK manager command line tool. For more information, please visit
https://developer.android.com/studio/command-line/sdkmanager.

VisionLabs B.V. 64 / 78

https://developer.android.com/studio/command-line/sdkmanager

9 Hardware requirements

9.1 Mobile installations

Table 16:Models provided in distribution package and supported devices.

Neural network CPU ARM

FaceDet_v2_<detector_type>first<device>.plan yes yes

FaceDet_v2_<detector_type>second<device>.plan yes yes

FaceDet_v2_<detector_type>third<device>.plan yes yes

headpose_v3_<device>.plan yes yes

ags_v3_<device>.plan yes yes

eyes_estimation_flwr8_<device>.plan yes yes

eye_status_estimation_<device>.plan yes yes

mask_clf_v3_<device>.plan yes yes

mouth_estimation_v4_<device>.plan yes yes

face_occlusion_v1_<device>.plan yes yes

model_subjective_quality_v1_<device>.plan yes yes

model_subjective_quality_v2_<device>.plan yes yes

glasses_estimation_v2_<device>.plan yes yes

cnn62m_<device>.plan yes yes

oneshot_rgb_liveness_v8_model_<model_id>_<device>.plan yes yes

oneshot_rgb_liveness_v8_model_<model_id>_<device>.plan yes yes

depth_rgb_<version><model_id><device>.plan yes yes

depth_liveness_v2_<device>.plan yes yes

vlTracker_detection_<device>.plan yes yes

vlTracker_template_<device>.plan yes yes

vlTracker_update_<device>.plan yes yes

cnn62m_<device>.plan is provided in complete Android FaceEngine SDK edition only.

VisionLabs B.V. 65 / 78

9.1.1 CPU requirements

Supported CPU architectures:

• x86;
• x86_64;
• armeabi-v7a;
• arm64-v8a.

Per-abi libraries are provided for Android.

9.1.2 Memory requirements

RAM requirements are given for common for mobile platform verification pipeline.

Storage is amount of space specific version of installation takes on device. For Android app Gradle build
system strips symbols from all the dynamic libraries when building a release .apk. As the result .so files in
your final app archive will occupy (up to 30-60%, depending on platform) less storage space compared
to ones found in the distribution.

Table 17: “Memory requirements”

Requirements for Android

RAM 400 MB

Storage Full 350 MB

Storage Frontend 300 MB

9.1.3 Number of threads onmobile devices

The description of according settings you can find in “Configuration Guide - Runtime settings”. The
setting <param name="numThreads"type="Value::Int1"x="-1"/> means that will be taken
the maximum number of available threads. This number of threads is equal to according number of
available processor cores. We strongly recommend you to follow this recommendation; otherwise,
performance can be significantly reduced.

10 Best practices

This section provides a set of recommendations and performance tips that you should follow to get
optimal performance when running the LUNA SDK algorithms on your target device.

VisionLabs B.V. 66 / 78

10.1 Thread pools

We recommend that you use thread pools for user-created threads when running LUNA SDK algorithms
in amultithreaded environment. For each thread, LUNASDK caches someamount of thread local objects
under the hood in order to make its algorithms run faster next time the same thread is used at the cost
of higher memory footprint. For this reason, we recommend that you reuse threads from a pool to avoid
caching new internal objects and to reduce penalty of creating or destroying new user threads.

10.2 Estimator creation and inference

Create face engine objects once and reuse them when you need to make a new estimate to reduce
RAM usage and increase performance. The reason is that recreating of estimators leads to reopen the
corresponding plan file every time. These plan files are cached separately for every load and will be
removed only when they are flushed from the cache or after calling the destructor of FaceEngine root
object.

10.3 Forking process

UNIX-like operating systems implement a mechanism to duplicate a process. It creates a new
child process and copies its parents’ memory space into the child’s one. This is typically done
programmatically by calling the fork() system function in the parent process.

Care should be taken when forking a process running the SDK.

Important: Always fork before the first instance of IFaceEngine is created!
This is because the SDK internally maintains a pool of worker threads, which is created lazily at the
time the very first IFaceEngine object is born and destroyed right after the last IFaceEngine
object is released. When using GPU or NPU devices, their runtime is initialized and shut down in the
samemanner.

Thehazard comes from the fact thatwhilefork() copies processmemory, it only creates just one thread
- the main thread. For details, see https://man7.org/linux/man-pages/man2/fork.2.html.

As a result, if at least one IFaceEngine object is alive at the time the process is being forked, the child
processes will inherit the knowledge of the object, and therefore, the implicit thread pool (and device
runtime, when appropriate). But there will be no worker threads actually running (in both, the inherited
pool and the runtime, when appropriate) and attempting to call certain SDK functions will cause a
deadlock.

10.4 Liveness estimator combination

Depending on your device and its camera, you can enhance the accuracy of themodel by simultaneously
using a combination of two universal liveness estimators. For example, youmight use:

VisionLabs B.V. 67 / 78

https://man7.org/linux/man-pages/man2/fork.2.html

• LivenessDepthRGBEstimator and NIRLivenessEstimator
• LivenessDepthEstimator and LivenessOneShotRGBEstimator

To implement this, you need to aggregate the rates from each liveness estimator and adjust the
thresholds in the faceengine.conf configuration file.

10.4.1 Changing the threshold

All models are calibrated so that the base threshold is 0.5 for any model of any modality.

If you need greater protection against hacking, then the threshold can be raised, and if the convenience
of real users is more important, then lowered. We recommend that you configure specific values for
changing the threshold in deviation from the basic one on a client basis.

10.4.2 Aggregating the scores

Any of two liveness modalities can be aggregated with each other. To do this, you need to multiply the
speeds of the corresponding networks. The threshold in this case is also multiplied and becomes equal
to 0.25.

10.4.3 Recommended thresholds

The recommended threshold is an optimal balance between TPR and FPR.

10.4.4 Possible LivenessOneShotRGBEstimator model combinations

You can use the LivenessOneShotRGBEstimator models in the following combinations:

• Use these models in the backend as an analogue of server LivenessOneShotRGBEstimator.
– oneshot_rgb_liveness_v8_model_1_cpu-avx2.plan
– oneshot_rgb_liveness_v8_model_2_cpu-avx2.plan
– oneshot_rgb_liveness_v8_model_3_cpu-avx2.plan
– oneshot_rgb_liveness_v8_model_4_cpu-avx2.plan

• Use these models on smartphones as an analogue of LivenessOneShotRGBEstimator.
– oneshot_rgb_liveness_v8_model_3_cpu-avx2.plan
– oneshot_rgb_liveness_v8_model_4_cpu-avx2.plan

• Use the belowmodel on devices with Orbbec cameras, such as payment terminals (POS) and self-
service cash registers (KCO):

– oneshot_rgb_liveness_v8_model_4_cpu-avx2.plan

VisionLabs B.V. 68 / 78

11 Device-specific constraints

11.1 Image constraints

Whenmemory is allocated for Imagepixel data storage, the following constraints are enforceddepending
on the requestedmemory residence:

• Image::MemoryResidence::CPU: base address alignment is 32 bytes;
• Image::MemoryResidence::GPU: base address alignment is 128 bytes;
• Image::MemoryResidence::NPU: base address alignment is 128 bytes;
• Image::MemoryResidence::NPU_DPP: base address alignment is 128 bytes.

Also, in case of Image::MemoryResidence::NPU_DPP image width must be multiple of 16 and image
height must be multiple of 2.

When Image is initialized as a wrapper for a user-provided memory block, whose residence is said to
be Image::MemoryResidence::NPU or Image::MemoryResidence::NPU_DPP, the above requirements are
checked upon the initialization.

Image class implements limited functionality for device-side data. Only the following operations are
supported:

• construction (both with Image-owned memory and as a wrapper for a user-defined memory) and
assignment (including deep copy);

• destruction;

• set() family of functions (functionally the same as construction/assignment);

• convert() function, but only in transfermode; Thismeans that both source and destination formats
mustmatch, onlymemory residencymay differ. This function supports only synchronousmemory
transfers in the following directions:

– host <-> GPU
– GPU <-> GPU
– host <-> NPU
– NPU <-> NPU.

Full range of functionality (including format conversions) is currently only available for Images with host
memory data residence.

The following operations are NOT supported:

• compressed format encoding/decoding;
• format/color space conversion;
• subimage views (i.e. map() function);
• padding and cropping (i.e. extract() function);
• manipulation (e.g. getPixel(), setPixel(), etc.).

VisionLabs B.V. 69 / 78

12 Collecting information for Technical Support

To efficiently resolve a problemwith LUNA SDK, collect all necessary information based on the error type
and provide it to VisionLabs Technical Support. Possible error types include:

• Specific error
• Non-specific error
• Unexpected result

12.1 Contact Technical Support

You can contact our Technical Support in either of the following ways:

• Via email: support@visionlabs.ai
• Via Service Portal: https://jira.visionlabs.ru/servicedesk/customer/portal/2

12.2 Specific error

These errors usually occur when LUNA SDK is used incorrectly. Examples include:

• An estimator or detector does not work, resulting in an error when creating or using it.
• An error occurs when launching on a GPU device.
• A license error is received.

In such cases, study the full launch logs and understand what was launched and where.

To get detailed logging in LUNA SDK, follow these steps:

1� In the luna-sdk/data/runtime.conf configuration file, set the verboseLogging parameter to 4.

<param name="verboseLogging" type="Value::Int1" x="4" />

2� In the luna-sdk/data/faceengine.conf configuration file, set the verboseLogging parameter to 4.

<param name="verboseLogging" type="Value::Int1" x="4" />

3� In the luna-sdk/data/trackengine.conf configuration file, set the severity parameter to 0.

<param name="severity" type="Value::Int1" x="0" />

If you knowwhichmodule the error occurs in, provide only that module’s log by changing the value only
in the relevant configuration file. If unsure, collect all logs.

VisionLabs B.V. 70 / 78

https://jira.visionlabs.ru/servicedesk/customer/portal/2

12.3 Non-specific error

Examples of non-specific errors include:

• An application crashes at an uncertain time.
• An application freezes unexpectedly.
• There is a memory leak.

In such cases, you need to understand in detail the application operation scenario, including what is
called and in what sequence.

Provide the following information:

• The exact version of LUNA SDK (e.g., v.5.22.2, build for CentOS 8).
• Information about the environment where the application runs (e.g., Docker container, launch via
Python bindings).

• Full launch logs.
• Additional information like crash dumps, reports from third-party utilities, and system logs.
• Code reproducing the problem, if any.

12.4 Unexpected Result

Unexpected results may occur due to:

• Incorrect use of LUNA SDK
• Algorithm errors
• Launching in unexpected conditions

Examples include:

• A face is present in a photo or video, but the detector doesn’t see it.
• A person is smiling, but the emotion estimator indicates sadness.

Reasons for unexpected results vary, such as:

• Incorrect use of LUNA SDK, for example, a wrong threshold in a configuration file.
• Incorrect input data, such as a poor-quality video or heavily compressed frames.
• Occasional algorithm errors.
• New data for the algorithm.

To understand and address the issue, provide:

• Full launch logs.
• All configuration files used during the launch:

– luna-sdk/data/runtime.conf
– luna-sdk/data/faceengine.conf
– luna-sdk/data/trackengine.conf

VisionLabs B.V. 71 / 78

• An estimate of how often the unexpected result occurs, for example, every frame or once in a
thousand frames.

• Examples of data that produce unexpected results.

VisionLabs B.V. 72 / 78

13 Appendix A. Specifications

13.1 Runtime performance for mobile environment

Facedetectionperformancedepends on input imageparameters such as resolution andbit depth aswell
as the size of the detected face. The Android platform uses mobilenet by default.

Input data characteristics:

• Image resolution: 640x480px;
• Image format: 24 BPP RGB;

13.1.1 Android

Performance measurements for the ARM of the Samsung Galaxy A52s SM-A528B are presented in the
tables below. Themeasured values are averages of at least 100 experiments. Mobilenet is usedbydefault.
The number of threads set to automeans that the maximum number of available threads will be used.
For this mode, set the numThreads parameter in runtime.conf to -1. This number of threads equals the
number of available processor cores. We strongly recommend that you follow this advice. Otherwise,
performancemay be significantly reduced. For setting descriptions, see “Configuration Guide - Runtime
settings”.

13.1.1.1 Samsung Galaxy A52s SM-A528B, arm64. Matcher performance
The table below shows the performance of Matcher on Samsung Galaxy A52s SM-A528B.

Type Model CPU threads Batch Size Average (matches/sec)

Matcher 59 1 1 1.25M

Matcher 60 1 1 1.67M

13.1.1.2 Samsung Galaxy A52s SM-A528B, arm64. Extractor performance
The table below shows the performance of Extractor on Galaxy A52s SM-A528B.

Type CPU threads Batch Size Average (ms) RAMMemory (Mb)

59 1 1 60.17 57.0

59 auto 1 31.06 58.0

59 auto 4 25.49 67.0

59 auto 8 23.38 96.0

VisionLabs B.V. 73 / 78

Type CPU threads Batch Size Average (ms) RAMMemory (Mb)

60 1 1 54.39 53.0

60 auto 1 27.76 54.0

60 auto 4 22.61 55.0

60 auto 8 20.88 75.0

13.1.1.3 Samsung Galaxy A52s SM-A528B, arm64. Detector performance
The table below shows the performance of Detector on Samsung Galaxy A52s SM-A528B.

Measurement Threads Average (ms)

Detector (FaceDetV2) 1 10.0 / 36.8 / 38.9

(Easy/complex/6 faces) auto 8.95 / 27.5 / 35.4

Redetect 1 2.08 / 2.1 / 6.19

(Easy/complex/6 faces) auto 1.62 / 1.59 / 2.1

13.1.1.4 Samsung Galaxy A52s SM-A528B, arm64. Estimations performance
The tablebelowshows theperformanceofEstimationsonSamsungGalaxyA52sSM-A528B for estimators
that have a batch interface.

Type
CPU

threads Batch Size
Average
(ms)

RAMMemory
(Mb)

HeadPose 1 1 0.54 44.0

HeadPose auto 1 1.15 43.0

HeadPose auto 4 0.63 61.0

HeadPose auto 8 0.4 85.0

Warper 1 1 2.54 38.0

Warper auto 1 3.02 38.0

Warper auto 4 2.9 41.0

Warper auto 8 1.24 43.0

Eyes (useStatusPlan=0) 1 1 2.54 42.0

Eyes (useStatusPlan=0) auto 1 1.59 42.0

VisionLabs B.V. 74 / 78

Type
CPU

threads Batch Size
Average
(ms)

RAMMemory
(Mb)

Eyes (useStatusPlan=0) auto 4 1.15 41.0

Eyes (useStatusPlan=0) auto 8 1.23 42.0

Eyes (useStatusPlan=1) 1 1 2.57 42.0

Eyes (useStatusPlan=1) auto 1 1.08 41.0

Eyes (useStatusPlan=1) auto 4 1.21 41.0

Eyes (useStatusPlan=1) auto 8 1.4 42.0

AGS 1 1 0.56 44.0

AGS auto 1 1.13 43.0

AGS auto 4 0.36 61.0

AGS auto 8 0.31 85.0

BestShotQuality 1 1 1.46 46.0

BestShotQuality auto 1 1.45 45.0

BestShotQuality auto 4 0.82 63.0

BestShotQuality auto 8 0.5 87.0

MedicalMask 1 1 16.83 64.0

MedicalMask auto 1 11.47 64.0

MedicalMask auto 4 8.25 81.0

MedicalMask auto 8 7.01 105.0

Quality 1 1 2.88 39.0

Quality auto 1 3.29 39.0

Quality auto 4 3.46 39.0

Quality auto 8 3.13 39.0

Glasses 1 1 3.16 40.0

Glasses auto 1 4.15 40.0

Glasses auto 4 3.29 40.0

Glasses auto 8 3.76 40.0

LivenessOneShotRGBEstimator 1 1 211.37 82.0

LivenessOneShotRGBEstimator auto 1 89.38 96.0

VisionLabs B.V. 75 / 78

Type
CPU

threads Batch Size
Average
(ms)

RAMMemory
(Mb)

LivenessOneShotRGBEstimator auto 4 84.54 212.0

LivenessOneShotRGBEstimator auto 8 85.35 371.0

DepthLivenessEstimator 1 1 6.37 21.0

DepthLivenessEstimator auto 1 9.38 21.0

DepthLivenessEstimator auto 4 7.46 27.0

DepthLivenessEstimator auto 8 5.53 35.0

Mouth 1 1 21.42 48.0

Mouth auto 1 13.06 48.0

Mouth auto 4 9.89 54.0

Mouth auto 8 9.26 68.0

FaceOcclusion 1 1 21.24 40.0

FaceOcclusion auto 1 13.66 40.0

FaceOcclusion auto 4 11.97 71.0

FaceOcclusion auto 8 12.07 108.0

13.2 Descriptor size

The table below shows size of serialized descriptors to estimate memory requirements.

Table 22: “Descriptor size”

Descriptor version Data size (bytes) Metadata size (bytes) Total size

CNN 59 (60) 512 8 520

Metadata includes signature and version information that may be omitted during serialization if the
NoSignature flag is specified.

When estimating individual descriptor size inmemory or serialization storage requirements with default
options, consider using values from the “Total size” column.

When estimating memory requirements for descriptor batches, use values from the “Data size” column
instead, since a descriptor batch does not duplicate metadata per descriptor and thus is more memory-
efficient.

VisionLabs B.V. 76 / 78

These numbers are for approximate computation only, since they do not include overhead like
memory alignment for accelerated SIMD processing and the like.

13.3 Featurematrix

Mobile versions come only in the complete edition.

The table below shows FaceEngine features supported by the complete edition for mobile platforms.

Table 23: “Feature matrix”

Facility Module Complete

Core Yes

Face detection & alignment Face detector Yes

Parameter estimation BestShotQuality estimation Yes

Color estimation Yes

Eye estimation Yes

Head pose estimation Yes

AGS estimation Yes

LivenessOneShotRGB estimation Yes

Medical Mask estimation Yes

Quality estimation Yes

Mouth estimation Yes

Glasses estimation Yes

Face descriptors Descriptor extraction Yes

Descriptor matching Yes

Descriptor batching Yes

Descriptor search acceleration Yes

See file “doc/FeatureMapMobile.htm” for more details.

VisionLabs B.V. 77 / 78

14 Appendix B. Glossary

Table 24: Glossary

Term Description

Host memory Computer system RAM

Device memory On-board RAM of GPU or NPU card

Memory transfer Operation that copies memory from host to device or vice-versa

14.1 Descriptor

A set of features meant to describe a real-world object (e.g., a person’s face). Computed by means of
computer vision algorithms, such features are typicallymatched to eachother todetermine the similarity
of represented objects.

14.2 Cooperative Photoshooting and Recognition

A procedure of taking person face photograph characterized by person awareness of the matter and
his/her will to assist.

Typical highlights:

• Close to frontal head pose;
• Neutral facial expression;
• No occlusions (i.e., hair, hats, non-transparent eyewear, hands, other objects obscuring the face);
• No extreme lighting conditions (i.e., reasonable illuminance, no direct sunlight);
• Steady and well-tuned optics (i.e., no motion blur, depth of field, digital post-processing except
noise cancellation).

Cooperative photoshooting is opposite to the so-called “in the wild” photoshooting, which is also called
non-cooperative shooting (or recognition).

14.3 Matching

The process of descriptors comparison. Matching is usually implemented as a distance function applied
to the feature sets anddistances comparison later on. The smaller thedistance, the closer aredescriptors,
hence, the more similar are the objects.

For convenience, helper functions exist to convert distance to a normalized similarity score, where 100%
means completely identical, and 0%means completely different.

VisionLabs B.V. 78 / 78

	Introduction
	Core Concepts
	SDK workflow
	Object lifetime
	Threading
	Detailed constraints

	Common Interfaces and Types
	Reference Counted Interface
	Automatic reference counting
	Referencing - without acquiring ownership of object lifetime
	Acquiring - own object lifetime

	Serializable object interface
	Auxiliary types
	Image type

	Beta Mode

	FaceEngine Structure Overview
	Core Facility
	Common Interfaces
	Face Engine Object
	Settings Provider

	Helper interfaces
	Archive interface

	Data Paths
	Model Data
	Configuration Data

	Detection facility
	Overview
	Detection structure
	Face Detection
	Image coordinate system
	Face detection
	Redetect method
	Face Alignment
	Five landmarks

	Image Warping
	Parameter Estimation Facility
	Overview
	Best shot selection functionality
	BestShotQuality Estimation
	Image Quality Estimation

	Face features extraction functionality
	Eyes Estimation

	Head Pose Estimation
	Approximate Garbage Score Estimation (AGS)
	Glasses Estimation

	Liveness check functionality
	LivenessOneShotRGB Estimation
	Depth and RGB OneShotLiveness estimation
	Depth liveness estimation (DepthLivenessEstimator)

	Medical Mask Estimation Functionality
	MedicalMaskEstimator thresholds
	MedicalMask enumeration
	MedicalMaskEstimation structure
	MedicalMaskExtended enumeration
	MedicalMaskEstimationExtended structure
	Filtration parameters

	Mouth Estimation Functionality
	Face Occlusion Estimation Functionality

	Descriptor processing facility
	Overview
	Person Identification Task

	Descriptor
	Descriptor Versions
	Descriptor Batch
	Descriptor Extraction
	Descriptor Matching

	System Requirements
	Android installations

	Hardware requirements
	Mobile installations
	CPU requirements
	Memory requirements
	Number of threads on mobile devices

	Best practices
	Thread pools
	Estimator creation and inference
	Forking process
	Liveness estimator combination
	Changing the threshold
	Aggregating the scores
	Recommended thresholds
	Possible LivenessOneShotRGBEstimator model combinations

	Device-specific constraints
	Image constraints

	Collecting information for Technical Support
	Contact Technical Support
	Specific error
	Non-specific error
	Unexpected Result

	Appendix A. Specifications
	Runtime performance for mobile environment
	Android
	Samsung Galaxy A52s SM-A528B, arm64. Matcher performance
	Samsung Galaxy A52s SM-A528B, arm64. Extractor performance
	Samsung Galaxy A52s SM-A528B, arm64. Detector performance
	Samsung Galaxy A52s SM-A528B, arm64. Estimations performance

	Descriptor size
	Feature matrix

	Appendix B. Glossary
	Descriptor
	Cooperative Photoshooting and Recognition
	Matching

