
VisionLabs FaceEngine Handbook

VisionLabs B.V.

Keizersgracht 311, 1016 EE, Amsterdam, the Netherlands

+31 20 369 04 93

info@visionlabs.ai

www.visionlabs.ai

Contents

Introduction 6

Editions and Platforms 7
MacOS differences . 7
0.1 Indexing . 7

1 Core Concepts 8
1.1 Common Interfaces and Types . 8

1.1.1 Reference Counted Interface . 8
1.1.2 Automatic reference counting . 8
1.1.3 Serializable object interface . 10
1.1.4 Auxiliary types . 10

1.1.4.1 Image type . 10
1.2 Beta Mode . 11

2 FaceEngine Structure Overview 12

3 Core Facility 13
3.1 Common Interfaces . 13

3.1.1 Face Engine Object . 13
3.1.2 Settings Provider . 13

3.2 Helper Interfaces . 13
3.2.1 Archive Interface . 13

3.3 Sensor type . 14
3.4 Data Paths . 14

3.4.1 Model Data . 14
3.4.2 Configuration Data . 14

4 Detection facility 16
4.1 Overview . 16
4.2 Detection structure . 16
4.3 Face Detection . 16

4.3.1 Image coordinate system . 16
4.3.2 Face detection . 17
4.3.3 Redetect method . 17
4.3.4 Detector variants . 17
4.3.5 FaceDetV1 and FaceDetV2 Configuration . 17
4.3.6 FaceDetV3 Configurating . 18

VisionLabs B.V. 2 / 83

4.3.7 Face Alignment . 18
4.3.7.1 Five landmarks . 18
4.3.7.2 Sixty-eight landmarks . 19

4.4 Human Detection . 21
4.4.1 Image coordinate system . 21
4.4.2 Human body detection . 21
4.4.3 Constraints . 21
4.4.4 Camera position requirements . 22
4.4.5 Human body redetection . 24
4.4.6 Human Keypoints . 26
4.4.7 Detection . 27
4.4.8 Main Results of Each Detection . 27

5 ImageWarping 28

6 Parameter Estimation Facility 29
6.1 Overview . 29
6.2 Best shot selection functionality . 29

6.2.1 BestShotQuality Estimation . 29
6.2.1.1 AGS . 29
6.2.1.2 Head Pose . 30

6.2.2 Image quality estimation . 32
6.3 Attributes estimation functionality . 36

6.3.1 Face Attribute Estimation . 36
6.3.2 Child Estimation . 39
6.3.3 Credibility Check Estimation . 40

6.4 Facial Hair Estimation . 42
6.4.1 FacialHair enumeration . 42
6.4.2 FacialHairEstimation structure . 42
6.4.3 Color/Monochrome Estimation . 45

6.5 Face features extraction functionality . 45
6.5.1 Eyes Estimation . 45
6.5.2 Gaze Estimation . 46
6.5.3 Glasses Estimation . 47
6.5.4 Overlap Estimation . 48

6.6 Emotion estimation functionality . 48
6.6.1 Emotions Estimation . 48
6.6.2 Mouth Estimation . 49

6.7 Liveness check functionality . 49
6.7.1 HeadAndShouldersLiveness Estimation . 49

VisionLabs B.V. 3 / 83

6.7.2 LivenessFlyingFaces Estimation . 50
6.7.3 LivenessRGBM Estimation . 51
6.7.4 Depth Liveness Estimation . 52

6.8 Separately licensed features . 53
6.8.1 LivenessOneShotRGBEstimator . 53

6.8.1.1 LivenessOneShotRGBEstimator requirements 53
6.8.1.2 LivenessOneShotRGBEstimation structure 53

6.8.2 Usage example . 54
6.8.3 Personal Protection Equipment Estimation . 56
6.8.4 Medical Mask Estimation . 57
6.8.5 Medical Mask Extended Estimation . 57

6.8.5.1 MedicalMaskEstimator thresholds . 58
6.8.5.2 MedicalMask enumeration . 58
6.8.5.3 MedicalMaskExtended enumeration . 58
6.8.5.4 MedicalMaskEstimation structure . 58
6.8.5.5 MedicalMaskEstimationExtended structure 59

7 Descriptor Processing Facility 61
7.1 Overview . 61

7.1.1 Person Identification Task . 61
7.1.2 Person Reidentification Task . 61

7.2 Descriptor . 63
7.2.1 Descriptor Versions . 63

7.2.1.1 Face descriptor . 63
7.2.1.2 Human descriptor . 63

7.3 Descriptor Batch . 64
7.4 Descriptor Extraction . 65
7.5 Descriptor Matching . 65
7.6 Descriptor Indexing . 66

7.6.1 Using HNSW . 66

8 System Requirements 68
8.1 Android installations . 68

9 Hardware requirements 68
9.1 Embedded installations . 68

9.1.1 CPU requirements . 68
9.2 Android for embedded . 68

10 Migration guide 69
10.1 Overview . 69

VisionLabs B.V. 4 / 83

10.2 v.5.2.0 . 69
10.3 v.5.1.0 . 69
10.4 v.5.0.0 . 69

10.4.1 Objects creation . 69
10.4.1.1 Examples of code . 69

10.4.2 Interface of ILicense . 70
10.4.2.1 Examples of code . 70

10.4.3 Interface of HumanLandmark . 72
10.4.4 Interface of IDescriptorBatch . 72
10.4.5 Interface of Detection . 73
10.4.6 Interface of IDetector . 73
10.4.7 IFaceDetectionBatch . 74
10.4.8 Interface of IHumanDetector . 75
10.4.9 IHumanDetectionBatch . 76
10.4.10 Interface of ILivenessFlyingFaces . 77

10.5 v.3.10.1 . 77
10.5.1 Detector FaceDetV3 changes . 77
10.5.2 Detector FaceDetV1, FaceDetV2 changes . 78

11 Best practices 79
11.1 Overview . 79

11.1.1 Thread pools . 79
11.1.2 Estimators. Creation and Inference . 79
11.1.3 Forking process . 79

12 Appendix A. Specifications 80
12.1 Classification performance . 80
12.2 Descriptor size . 80

13 Appendix B. Glossary 82
13.1 Descriptor . 82
13.2 Cooperative Photoshooting and Recognition . 82
13.3 Matching . 82

14 Appendix C. FAQ 83

VisionLabs B.V. 5 / 83

Introduction

This short guide describes core concepts of the product, shows main FaceEngine features and suggests
usage scenarios.

This document is not a full-featured API referencemanual nor a step by step tutorial. For reference pages,
please see Doxygen API documentation that is shipped with FaceEngine. For complete examples, please
head to our developer portal.

What this book does, however, is this:

• It describes ideas behind resourcemanagement and gives a clue why one or another decision was
made. With this in mind, you are ready to write efficient code with FaceEngine;

• It breaks down full face analysis and recognition pipeline in parts and shows how one part affects
all theothers. This informationwill help you toadaptFaceEngine toyourneeds,which is somewhat
more productive than blindly following tutorials;

• It details things that are important and omits things that are obvious, so you get information that
matters most.

This book is split up into several chapters. There are chapters dedicated to each FaceEngine facility; there
are chapters with conceptual overviews; there are chapters with generic information. We tried to write
the book starting from low-level concepts and moving on to face detection, description and recognition
tasks solving one problem at a time. Although sometimes we just had to give references to chapters
ahead, we tried to minimize such jumps.

The opening chapter of this book is called “Core concepts”. It will tell you about memory management
techniques, object creation and destruction strategies that are widely used across the entire FaceEngine.
The following chapters catch up telling how higher level FaceEngine components are created from those
building blocks.

VisionLabs B.V. 6 / 83

Editions and Platforms

FaceEngine supports multiple platforms. Supported software and hardware platforms differ depending
on editions.

This section includes information about features available for different platforms.

MacOS differences

There are two MacOS distributions available depending on the utilized device:

• x86-64 CPU
• ARM

MacOS distributions have the following differences from the server distribution:

• Python bindings are not supported.

• GPU computing is not supported. All the information about GPU utilization given in this handbook
should be skipped.

• Person reidentification is supported only on x86-64 systems. All the sections about human
descriptor extraction and utilization should be skipped when distribution for ARM is used.

Some known problems with code signing are described in “Appendix D. Known issues” in the “MacOS
known issues” section.

0.1 Indexing

Descriptor indexing is supported only for server platforms: Ubuntu, CentOS and Windows.

VisionLabs B.V. 7 / 83

1 Core Concepts

1.1 Common Interfaces and Types

1.1.1 Reference Counted Interface

Everything in FaceEngine object system starts from here. The IRefCounted interface provides methods
for reference counter access, increment, and decrement. All reference counted objects imply a custom
memorymanagementmodel. Thisway they support automateddestructionwhen referencecountdrops
to zero as well as more sophisticated strategies of partial destruction and weak referencing required for
FaceEngine internal needs. The bare minimum of such functions is exposed to a user allowing:

• to notify the object that it is required by a client via retaining a reference to it;

• to notify the object that it is no longer required by releasing a reference to it;

• to get actual reference counter value.

Reference counted objects expect some special treatment as well. Be sure never to call delete on
any pointer to object derived from IRefCounted! Doing so leads to heap corruption. Simply
calling release notifies the systemwhen the object should be destroyed and it does this properly for
you.

However, it is not recommended to interactwith the reference countingmechanismmanually asdoing so
maybeerror-prone. Instead, youare strongly advised touse smart pointers that are specially designed to
handle such objects and provided by FaceEngine. See section “Automatic reference counting” for details.

1.1.2 Automatic reference counting

For your convenience, a special smart pointer class Ref is provided. It is capable of automatic reference
counter incrementing upon its creation and automatic decrementing upon its destruction. It also does
an assertion of the inner raw pointer being non-null, thus preventing errors.

Ref<> always increments a reference counter by 1 during initialization. You may be not expecting
such behavior from it in some first-time initialization scenarios. Consider a simple example:

ISomeObject* createSomeObject();
{
/* Here createSomeObject returns an object with initial reference count of 1

(otherwise, it would be dead). Then Ref adds another one for itself
making a total reference count of 2!

*/
Ref<ISomeObject> objref = createSomeObject();
/* Here we use the object in any way we want expecting it to be properly

destroyed when control will leave this scope.

VisionLabs B.V. 8 / 83

*/

}
/* Here we have left the scope and Ref was automatically destroyed like any

other object created on the stack. At the same time, it decreased
reference count of its internal object by 1 making it 1 again.

*/

However, the object is not destroyed automatically! For this to happen, it should have precisely 0
references. Moreover, in this example, the raw pointer to the object is lost, so it is impossible to fix it in
any way; thus a memory leak is introduced.

Sokeeping that inmindwe introduceaconceptof ownershipacquiring. Byacquiringanobject, youmean
that its rawpointer is not going to be used and only a valid Ref to it is required. To acquire ownership, use
a special ::acquire() function. The fixed version of the above example would look like this:

ISomeObject* createSomeObject();
{
/* Here createSomeObject returns an object with initial reference count of 1

(otherwise, it would be dead). Then we acquire it leaving a total
reference count of 1.

*/
Ref<ISomeObject> objref = acquire(createSomeObject());
/* Here we use the object in any way we want.
*/
}

/* Here we have left the scope and Ref was automatically destroyed like any
other object created on the stack. At the same time, it decreased
reference count of its internal object by 1 making it 0. The object is
destroyed properly by the object system.

*/

Do not store or use raw pointers to the object when using the ::acquire() function, as ownership
acquiring invalidates them.

To simply make a reference to existing raw pointer, you may use the ::make_ref() function pretty much
alike to the ::acquire() function.

You can statically cast object type during acquiring or referencing. To achieve this, use special versions
of the ::make_ref_as() and ::acquire_as() functions. It is your responsibility to ensure that such a cast is
possible.

Please refer to FaceEngine Reference Manual for more details on available convenience methods and
functions.

VisionLabs B.V. 9 / 83

As a side note, be informed that typedefs for Ref’s to all reference counted types are declared. All of them
match the followingnaming convention: InterfaceNamePtr. So, for example, Ref<IDetector> is equivalent
to IDetectorPtr.

1.1.3 Serializable object interface

This interface represents an object. Object’s contents may be serialized to some data stream and then
read back. Think of this as loading and saving.

To interact with the aforementioned data stream, the serializable object needs a user-provided adapter.
Suchadapter is called thearchive. Seeadetailedexplanationof it in section “Archive interface” in chapter
“Core facility”.

Serializable interfaces: IDescriptor, IDescriptorBatch.

1.1.4 Auxiliary types

1.1.4.1 Image type
Since FaceEngine is a computer vision library, it is natural for it to implement some image concept.
Therefore, an Image class exists. It is designed as a reference counted container for raw pixel color
data. Reference counting allows a single image to be shared by several objects. However, one should
understand, that each Image object is holding a reference to some data, so if the data is modified in any
way, this affects all other objects holding the same reference. To make a deep copy of an Image, one
should use the clone()method, since assignment operators just make a reference. It is also possible to
clip a part of an image into a new image bymeans of extract()method.

Pixel datamay be characterized by color channel layout, i.e., a number of color channels and their order.
The engine defines a Format structure for that. The Format determines:

• Number of color channels (e.g., RGB or grayscale);

• Order of color channel (e.g., RGB vs. BGR).

FaceEngine assumes 8 bits (i.e., 1 byte) per color channel and implements 8 BPP grayscale, 24 BPP
RGB/BGR and padded 32 BPP formats. Format conversion functions are also provided for convenience;
see the convert() function family.

The Image class supports data range mapping. It is possible to map a subset of bytes in a rectangular
area for reading or writing. The mapped pixels are represented by the SubImage structure. In contrast
to Image, SubImage is just a data view and is not reference counted. You are not supposed to store
SubImages longer that it is necessary to completedatamodification. See thedocumentationof themap()
function family for details.

The supports IO roitines to read/write OOM, JPEG, PNG and TIFF formats via FreeImage library.

VisionLabs B.V. 10 / 83

The absence of image IO is dictated by the fact that FaceEngine focuses on being lightweight and with
theminimumpossible number of external dependencies. It is not designed solely with image processing
purpose in mind. I.e., one may treat video frames as Images and process them one by one. In this case,
an external (possibly proprietary) video codec is required.

1.2 Beta Mode

Some features in LUNA SDK are available just in Beta mode. This is experimental features which may be
unstable. If you want use them, you have to activate betaMode param in config (faceengine.conf).

VisionLabs B.V. 11 / 83

2 FaceEngine Structure Overview

FaceEngine is subdivided into several facilities. Each facility is dedicated toa single function. Below there
is a list of all facilities with short descriptions of functionality they provide. Detailed informationmay be
found in corresponding chapters of this handbook.

FaceEngine facility list:

• Core facility. This facility stores shared low-level FaceEngine types and factories. This facility
is responsible for normal functioning of all other facilities by providing settings accessors and
common interfaces. The core facility also contains themain FaceEngine root object that is used to
create instances of all higher level objects;

• Face detection facility. This facility is dedicated to object detection. It contains various object
detector implementations and factories;

• Parameter estimation facility. This facility is dedicated to various image parameter estimation,
such as blurriness, transformation and so forth. It contains various estimator implementations
and factories;

• Descriptor processing facility. This facility is dedicated to descriptor extraction andmatching. The
descriptor is a set of features, describing an object, invariant to object transformation, size or other
parameters. Descriptor matching allows judging with certain probability whether two objects are
the same. This facility contains various descriptor extractors and containers as well as factories,
required to produce them.

So, each facility is a set of classes dedicated to some common for them problem domain. Facilities are
independent of each other, with several exceptions, like that all higher level facilities depend on the core
facility. Interfacility dependencies are thoroughly described in corresponding chapters of this handbook.
The actual set of facilitiesmay vary depending on particular FaceEngine distributions as facilitiesmay be
licensed and shipped separately.

This handbook describes the very complete FaceEngine distribution, assuming all facilities are available.
The facilities are listed in order of increasing complexity. Applying functions from these facilities in this
order allows creating a complete face detection, analysis, recognition and matching pipeline with a
significant degree of flexibility. The following chapters break down such pipeline in details.

VisionLabs B.V. 12 / 83

3 Core Facility

3.1 Common Interfaces

3.1.1 Face Engine Object

The Face Engine object is a root object of the entire FaceEngine. Everything begins with it, so it is
essential to create at least one instance of it. Although it is possible to have multiple instances of the
Face Engine, it is impractical to do so (as explained in section “Automatic reference counting” in chapter
“Core concepts”). To create a Face Engine instance call createFaceEngine function. Also, youmay specify
default dataPath and configPath in createFaceEngine parameters.

If you plan to use GPU acceleration, you should keep in mind CUDA runtime initialization and
shutdown. Specifically, CUDA creates global runtime object with implicit lifetime; see
[http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#initialization].

To prevent FaceEngine runtime and lifetimemismatch, it is recommended to avoid creating static global
instances of FaceEngine objects, as their destruction order is undetermined.

3.1.2 Settings Provider

Settings provider is a special entity that loads settings from various locations. Since settings might be
shared among several objects, it is useful to cache them tominimize disk reads and provide a dictionary-
like interface for named value lookup.

This is what the provider does. The provider object stands somewhat aside FaceEngine facility structure
and is created by a separate factory function createSettingsProvider. This function accepts configuration
file path as a parameter (see section “Configuration data” for details). By default, the engine holds a
single provider instance for all facilities. Think of it as a reference counted config file. This provider is
passed by the Face Engine object to each factory it creates. The factory, in turn, can read its configuration
data from the object and pass it further to its child objects. In typical scenarios, you should not bother
with providers as the engine does everything for you. However, when relying on custom factory creation
parameters (see thedescription in section “Faceengineobject”), youhave tocreateandsupplyaprovider
wherever it is required manually.

3.2 Helper Interfaces

3.2.1 Archive Interface

Archive interface is used to provide serialization functions with a data source. It contains methods
primarily for data reading and writing. Note, that IArchive is not derived from IRefCounted, thus does not
imply any special memory management strategies.

A few points to keep in mind when implementing your archive:

VisionLabs B.V. 13 / 83

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#initialization

• FaceEngineobjects that use IArchive for serializationpurposes do call onlywrite() (during saving) or
only read() (during loading) but never both during the same process unless otherwise is explicitly
stated;

• During savingor loadingFaceEngineobjects are free towriteor read their data in chunks; e.g., there
may be several sequential calls to write() in the scope of a single serialization request. The same
is true for read(). Basically, read() andwrite() should behave pretty much like C fread() and fwrite()
standard library functions.

Any IArchive implementation should be aware of these notes.

Since these interface methods are pretty obvious and mostly self-explanatory, we advise you to check
out FaceEngine Reference Manual for the details.

3.3 Sensor type

SensorType determines which type of camera sensor is used to perform estimation. Currently two types
of SensorType are available: Visible, NIR. The user can indicate the required type of sensor when
creating an object by passing the appropriate parameter.

3.4 Data Paths

3.4.1 Model Data

VariousFaceEnginemodulesmay requiredata files tooperate. The files containvariousalgorithmmodels
and constants used at runtime. All the files are gathered together into a single data directory. The data
directory location is assumed to reside in:

• /opt/visionlabs/data on Linux
• ./data on Windows

One may override the data directory location by means of setDataDirectory()method which is available
in IFaceEngine. Current data location may be retrieved via getDataDirectory()method.

3.4.2 Configuration Data

Theconfiguration file is called faceengine.conf andstored in /datadirectorybydefault. ConfigurationGuide.pdf
with parameter description and default values is located at /doc package folder.

At runtime, the configuration file data is managed by a special object that implements ISettingsProvider
interface (seesection“Settingsprovider”). Theprovider is instantiatedbymeansof createSettingsProvider()
function that accepts configuration file location as a parameter or uses aforementioned defaults if not
specified.

VisionLabs B.V. 14 / 83

Onemay supply a different configuration to any factory object bymeans of setSettingsProvider()method,
which is available in each factory object interface, including IFaceEngine. Currently, bound settings
provider may be retrieved via getSettingsProvider()method.

VisionLabs B.V. 15 / 83

4 Detection facility

4.1 Overview

Object detection facility is responsible for quick and coarsedetection tasks, like finding a face in an image.

4.2 Detection structure

The detection structure represents an images-space bounding rectangle of the detected object aswell as
the detection score.

Detection score is a measure of confidence in the particular object classification result andmay be used
to pick the most “confident” face of many.

Detection score is the measure of classification confidence and not the source image quality. While the
score is related to quality (low-quality data generally results in a lower score), it is not a valid metric to
estimate the visual quality of an image.

4.3 Face Detection

Object detection is performed by the IDetector object. The function of interest is detect(). It requires an
image to detect on and an area of interest (to virtually crop the image and look for faces only in the given
location).

4.3.1 Image coordinate system

The origin of the coordinate system for each processed image is located in the upper left corner.

Figure 1: Source image coordinate system

VisionLabs B.V. 16 / 83

4.3.2 Face detection

When a face is detected, a rectangular area with the face is defined. The area is represented using
coordinates in the image coordinate system.

4.3.3 Redetect method

Face detector implements redetect()method which is intended for face detection optimization on video
frame sequences. Instead of doing full-blown detection on each frame, one may detect() new faces at a
lower frequency (say, each5th frame) and just confirm them inbetweenwith redetect(). This dramatically
improves performance at the cost of detection recall. Note that redetect()updates face landmarks aswell.

Detector works faster with larger value of minFaceSize.

4.3.4 Detector variants

Supported detector variants:

• FaceDetV1
• FaceDetV2
• FaceDetV3

There are two basic detector families. The first of them includes two detector variants: FaceDetV1 and
FaceDetV2. The second family currently includes only one detector variant - FaceDetV3. FaceDetV3 is
the latest and most precise detector. For this type of detector can be passed sensor type. In terms of
performance FaceDetV3 is similar to FaceDetV1 detector.

User codemay specify necessary detector type while creating IDetector object using parameter.

FaceDetV1andFaceDetV2performancedependsonnumberof faceson imageand imagecomplexity.
FaceDetV3 performance depends only on the target image resolution.

FaceDetV3 works faster with batched redetect.

4.3.5 FaceDetV1 and FaceDetV2 Configuration

FaceDetV1 detector is more precise and FaceDetV2 works two times faster (See appendix A chapter
“Appendix A. Specifications”).

FaceDetV1 and FaceDetV2 detector’s performance depend on number of faces in image. FaceDetV3
doesn’t depend on it, so it may be slower then FaceDetV1 on images with one face andmuchmore faster
on images with many faces.

VisionLabs B.V. 17 / 83

4.3.6 FaceDetV3 Configurating

FaceDetV3 detects faces from minFaceSize tomaxFaceSize (Note: maxFaceSize <=minFaceSize *
32). You can change the minimum and maximum sizes of the faces that will be searched in the photo
from the faceengine.conf configuration.

For example:

config->setValue("FaceDetV3::Settings", "minFaceSize", 20);

The logic of the detector is very understandable. The smaller the face size we need to find themore time
we need.

We recommend to use suchmeanings for minFaceSize: 20, 40 and 90. The size 90 pix is recommended
for recognition. If youwant to find faces with custom size value youwill need to point with size with: 95%
* value. For example we want to find faces with size of 50 pix, it means that in config we should set:

50 * 0.95 ~ 47 pix.

FaceDetV3may provide accurate 5 landmarks only for faceswith size greater then 40x40, for smaller
faces it provides less accurate landmarks.

If you have few faces on target images and target face sizes after resize will less then 40x40, it’s
recommended to require 68 landmarks.

If you have many faces on target image (greater then 7) it will be faster increase minFaceSize to have
big enough faces for accurate landmarks estimation.

All last changes in Face Detection logic are described in chapter “Migration guide”.

4.3.7 Face Alignment

4.3.7.1 Five landmarks
Face alignment is the process of special key points (called “landmarks”) detection on a face. FaceEngine
does landmark detection at the same time as the face detection since some of the landmarks are by-
products of that detection.

At the very minimum, just 5 landmarks are required: two for eyes, one for a nose tip and two for mouth
corners. Using these coordinates, onemay warp the source photo image (see Chapter “Image warping”)
for use with all other FaceEngine algorithms.

All detector may provide 5 landmarks for each detection without additional computations.

Typical use cases for 5 landmarks:

• Image warping for use with other algorithms:

– Quality and attribute estimators;
– Descriptor extraction.

VisionLabs B.V. 18 / 83

4.3.7.2 Sixty-eight landmarks
More advanced 68-points face alignment is also implemented. Use this when you need precise
information about face and its parts. The detected points look like in the image below.

The 68 landmarks require additional computation time, so don’t use it if you don’t need precise
information about a face. If you use 68 landmarks , 5 landmarks will be reassigned to more precise
subset of 68 landmarks.

Figure 2: 68-point face alignment

The typical error for landmark estimation on a warped image (see Chapter “Image warping”) is in the
table below.

VisionLabs B.V. 19 / 83

Table 1: “Average point estimation error per landmark”

Point
Error
(pixels) Point

Error
(pixels) Point

Error
(pixels) Point

Error
(pixels)

1 ±3,88 18 ±3,77 35 ±1,62 52 ±1,65

2 ±3,53 19 ±2,83 36 ±1,90 53 ±2,01

3 ±3,88 20 ±2,70 37 ±1,78 54 ±2,00

4 ±4,30 21 ±3,06 38 ±1,69 55 ±1,93

5 ±4,67 22 ±3,92 39 ±1,63 56 ±2,18

6 ±4,87 23 ±3,46 40 ±1,52 57 ±2,17

7 ±4,67 24 ±2,59 41 ±1,54 58 ±1,99

8 ±4,01 25 ±2,53 42 ±1,60 59 ±2,32

9 ±3,46 26 ±2,95 43 ±1,55 60 ±2,33

10 ±3,87 27 ±3,84 44 ±1,60 61 ±2,06

11 ±4,56 28 ±1,88 45 ±1,74 62 ±1,97

12 ±4,94 29 ±1,75 46 ±1,72 63 ±1,56

13 ±4,55 30 ±1,92 47 ±1,68 64 ±1,86

14 ±4,45 31 ±2,20 48 ±1,65 65 ±1,94

15 ±4,13 32 ±1,97 49 ±1,99 66 ±2,00

16 ±3,68 33 ±1,70 50 ±1,99 67 ±1,70

17 ±4,09 34 ±1,73 51 ±1,95 68 ±2,12

Simple 5-point landmarks roughly correspond to:

• Average of positions 37, 40 for a left eye;
• Average of positions 43, 46 for a right eye;
• Number 31 for a nose tip;
• Numbers 49 and 55 for mouth corners.

The landmarks for both cases are output by the face detector via Landmarks5 and Landmarks68
structures. Note, that performance-wise 5-point alignment result comes free with a face detection,
whereas 68-point result does not. So you should generally request the lowest number of points for your
task.

Typical use cases for 68 landmarks:

VisionLabs B.V. 20 / 83

• Segmentation;
• Head pose estimation.

4.4 Human Detection

This functionality enables you to detect human bodies in the image.

During thedetectionprocesswereceive specialpoints (called“landmarks”orexactly “HumanLandmarks17”)
for the body parts visible in the image. These landmarks represent the keypoints of a human body (see
the Human keypoints section).

Human body detection is performed by the IHumanDetector object. The function of interest is detect(). It
requires an image to detect on.

4.4.1 Image coordinate system

The origin of the coordinate system for each processed image is located in the upper left corner.

Figure 3: Source image coordinate system

4.4.2 Human body detection

When a human body is detected, a rectangular area with the body is defined. The area is represented
using coordinates in the image coordinate system.

4.4.3 Constraints

Human body detection has the following constraints:

• Human body detector works correctly only with adult humans in an image;

VisionLabs B.V. 21 / 83

• The detector may detect a body of size from 100 px to 640 px (in an image with a long side of 640
px). You may change the input image size in the config (see ./doc/ConfigurationGuide.pdf). The
image will be resized to specified size by the larger side while maintaining the aspect ratio.

4.4.4 Camera position requirements

In general, you should locate the camera for human detection according to the image below.

Figure 4: Camera position for human detection

VisionLabs B.V. 22 / 83

Follow these recommendations to correctly detect human body and keypoints:

• A person’s body should face the camera;

• Keep angle of view as close to horizontal as possible;

• There should be about 60% of the person’s body in the frame (upper body);

• There must not be any objects that overlap the person’s body in the frame;

• The camera should be located at about 165 cm from the floor, which corresponds to the average
height of a human.

The examples of wrong camera positions are shown in the image below.

VisionLabs B.V. 23 / 83

Figure 5:Wrong camera positions

4.4.5 Human body redetection

Like any other detector in Face Engine SDK, human detector also implements redetection model. The
user canmake full detectiononly in a first frameand then redetect the samehuman in thenext “n” frames
thereby boosting performance of the whole image processing loop.

User can use redetectOne() method if only a single human detection is required, for more complex use
cases one should use redetect()which can redetect humans frommultiple images.

VisionLabs B.V. 24 / 83

Detector give an opportunity to detect human body keypoints in an image.

VisionLabs B.V. 25 / 83

4.4.6 Human Keypoints

The image below shows the keypoints detected for a human body.

Figure 6: 17-points of human body

Point Body Part Point Body Part

0 Nose 9 LeftWrist

1 Left Eye 10 Right Wrist

VisionLabs B.V. 26 / 83

Point Body Part Point Body Part

2 Right Eye 11 Left Hip

3 Left Ear 12 Right Hip

4 Right Ear 13 Left Knee

5 Left Shoulder 14 Right Knee

6 Right Shoulder 15 Left Ankle

7 Left Elbow 16 Right Ankle

8 Right Elbow

Cases that increase the probability of error:

• Non-standard poses (head below the shoulders, vertical twine, lying head to the camera, etc.);
• Camera position from above at a large angle;
• Sometimes estimator predicts invisible points with high score, especially for points of elbows,
wrists, ears.

4.4.7 Detection

To detect Human Keypoints call detect() using fsdk::HumanDetectionType::DCT_BOX | fsdk::
HumanDetectionType::DCT_POINTS argument.

Default is fsdk::HumanDetectionType::DCT_BOX.

4.4.8 Main Results of Each Detection

Themain result of each detection is an array. Each array element consists of a point (fsdk:: Point2f) and a
score. If the score value is less than the threshold, then the value of “x” and “y” coordinates will be equal
to 0.

see ConfigurationGuide.pdf (“HumanDetector settings” section) for more information about
thresholds and configuration parameters.

VisionLabs B.V. 27 / 83

5 ImageWarping

Warping is theprocess of face imagenormalization. It requires landmarks and facedetection (see chapter
“Detection facility”) to operate. The purpose of the process is to:

• compensate image plane rotation (roll angle);
• center the image using eye positions;
• properly crop the image.

This way all warped images look the same and one can tell that, e.g., left eye is always in a box, defined
by the certain coordinates. This way certain transform invariance is achieved for input data so various
algorithms can perform better.

Figure 7: Face warping

Be aware that imagewarping is not thread-safe, so you have to create awarper object per worker thread.

VisionLabs B.V. 28 / 83

6 Parameter Estimation Facility

6.1 Overview

The estimation facility is the only multi-purpose facility in FaceEngine. It is designed as a collection of
tools thathelp toestimate various imagesordepictedobjectproperties. Thesepropertiesmaybeused to
increase the precision of algorithms implementedby other FaceEngine facilities or to accomplish custom
user tasks.

6.2 Best shot selection functionality

6.2.1 BestShotQuality Estimation

The BestShotQuality estimator was added to evaluate image quality to choose the best image before
descriptor extraction.

The estimator (see IBestShotQualityEstimator in IEstimator.h): - Implements the estimate() function
that needs fsdk::Image in R8G8B8 format, fsdk::Detection structure of corresponding
source image (see section “Detection structure” in chapter “Face detection facility”), fsdk::
IBestShotQualityEstimator::EstimationRequest structureandfsdk::IBestShotQualityEstimator
::EstimationResult to store estimation result; - Implements the estimate() function that
needs the span of fsdk::Image in R8G8B8 format, the span of fsdk::Detection structures of
corresponding source images (see section “Detection structure” in chapter “Face detection facility”),
fsdk::IBestShotQualityEstimator::EstimationRequest structure and span of fsdk::
IBestShotQualityEstimator::EstimationResult to store estimation results.

Before using this estimator, user is free to decide whether to estimate or not some listed attributes. For
this purpose, estimate()method takes one of the estimation requests:

• fsdk::IBestShotQualityEstimator::EstimationRequest::estimateAGS to make only
AGS estimation;

• fsdk::IBestShotQualityEstimator::EstimationRequest::estimateHeadPose to
make only Head Pose estimation;

• fsdk::IBestShotQualityEstimator::EstimationRequest::estimateAll to make both
AGS and Head Pose estimations;

The description of attributes returned by the estimate()method is given below.

6.2.1.1 AGS
AGS (garbage score) aims to determine the source image score for further descriptor extraction and
matching.

Estimation output is a float score which is normalized in range [0..1]. The closer score to 1, the better
matching result is received for the image.

VisionLabs B.V. 29 / 83

When you have several images of a person, it is better to save the image with the highest AGS score.

Recommended threshold for AGS score is equal to 0.2. But it can be changed depending on the
purpose of use. Consult VisionLabs about the recommended threshold value for this parameter.

6.2.1.2 Head Pose
Head Pose determines person head rotation angles in 3D space, namely pitch, yaw and roll.

Figure 8: Head pose

Since 3D head translation is hard to determine reliably without camera-specific calibration, only 3D
rotation component is estimated.

Head pose estimation characteristics:

• Units (degrees);
• Notation (Euler angles);
• Precision (see table below).

Prediction precision decreases as a rotation angle increases. We present typical average errors for
different angle ranges in the table below.

Table 3: “Head pose prediction precision”

Range -45°…+45° < -45° or > +45°

Average prediction error (per axis) Yaw ±2.7° ±4.6°

Average prediction error (per axis) Pitch ±3.0° ±4.8°

Average prediction error (per axis) Roll ±3.0° ±4.6°

VisionLabs B.V. 30 / 83

Zero position corresponds to a face placed orthogonally to camera direction, with the axis of symmetry
parallel to the vertical camera axis.

VisionLabs B.V. 31 / 83

6.2.2 Image quality estimation

The estimator is trained to work with warped images (see Chapter “Image warping”) for details).

The general rule of thumb for quality estimation:

1. Detect a face, see if detection confidence is high enough. If not, reject the detection;
2. Produce a warped face image (see chapter “Descriptor processing facility”) using a face detection

and its landmarks;
3. Estimate visual quality using the estimator, finally reject low-quality images.

While the scheme above might seem a bit complicated, it is the most efficient performance-wise, since
possible rejections on each step reduce workload for the next step.

At the moment estimator exposes two interface functions to predict image quality:

• virtual Result estimate(const Image&warp, Quality& quality);
• virtual Result estimate(const Image&warp, SubjectiveQuality& quality);

Each one of this functions use its own CNN internally and return slightly different quality criteria.

The first CNN is trained specifically on pre-warped human face images and will produce lower score
factors if one of the following conditions are satisfied:

• Image is blurred;
• Image is under-exposured (i.e., too dark);
• Image is over-exposured (i.e., too light);
• Image color variation is low (i.e., image is monochrome or close to monochrome).

Each one of this score factors is defined in [0..1] range, where higher value corresponds to better image
quality and vice versa.

Recommended thresholds for image quality of the first interface function are given below:

“saturationThreshold”: 0.0; “blurThreshold”: 0.93; “lightThreshold”: 0.9; “darkThreshold”: 0.9;

The second interface function output will produce lower factor if:

• The image is blurred;
• The image is underexposed (i.e., too dark);
• The image is overexposed (i.e., too light);
• The face in the image is illuminated unevenly (there is a great difference between light and dark
regions);

• Image contains flares on face (too specular).

The estimator determines the quality of the image based on each of the aforementioned parameters. For
each parameter, the estimator function returns two values: the quality factor and the resulting verdict.

As with the first estimator function the second one will also return the quality factors in the range [0..1],
where 0 corresponds to low image quality and 1 to high image quality. E. g., the estimator returns low

VisionLabs B.V. 32 / 83

quality factor for the Blur parameter, if the image is too blurry.

The resulting verdict is a quality output based on the estimated parameter. E. g., if the image is too blurry,
the estimator returns “isBlurred = true”.

The threshold canbe specified for eachof theestimatedparameters. The resulting verdict and thequality
factor are linked through this threshold. If the received quality factor is lower than the threshold, the
image quality is low and the estimator returns “true”. E. g., if the image blur quality factor is higher than
the threshold, the resulting verdict is “false”.

If the estimated value for any of the parameters is lower than the corresponding threshold, the image is
considered of bad quality. If resulting verdicts for all the parameters are set to “False” the quality of the
image is considered good.

Examples are presented in the images below. Good quality images are shown on the right.

Figure 9: Blurred image (left), not blurred image (right)

VisionLabs B.V. 33 / 83

Figure 10: Dark image (left), good quality image (right)

Figure 11: Light image (left), good quality image (right)

VisionLabs B.V. 34 / 83

Figure 12: Image with uneven illumination (left), image with even illumination (right)

Figure 13: Image with specularity - image contains flares on face (left), good quality image (right)

The quality factor is a value in the range [0..1] where 0 corresponds to low quality and 1 to high quality.

Illumination uniformity corresponds to the face illumination in the image. The lower the difference
between light and dark zones of the face, the higher the estimated value. When the illumination is
evenly distributed throughout the face, the value is close to “1”.

VisionLabs B.V. 35 / 83

Specularity is a face possibility to reflect light. The higher the estimated value, the lower the
specularity and the better the image quality. If the estimated value is low, there are bright glares
on the face.

Table 4: Image quality parameters and their thresholds

Threshold Estimated property Recomended range Default value

blurThreshold Blur [0.57..0.65] 0.61

darknessThreshold Darkness [0.45..0.52] 0.50

lightThreshold Light [0.44..0.61] 0.57

illuminationThreshold Illumination uniformity [0..0.3] 0.1

specularityThreshold Specularity [0..0.3] 0.1

The most important parameters for face recognition are “blurThreshold”, “darknessThreshold” and
“lightThreshold”, so you should select them carefully.

You can select images of better visual quality by setting higher values of the “illuminationThreshold” and
“specularityThreshold”. Face recognition is not greatly affected by uneven illumination or glares.

6.3 Attributes estimation functionality

6.3.1 Face Attribute Estimation

The estimator is trained to work with warped images (see Chapter “Image warping”) for details).

The Attribute estimator determines face attributes. Currently, the following attributes are available:

• Age: determines person’s age;
• Gender: determinse person’s gender;
• Ethnicity: determines ethnicity of a person.

Before using attribute estimator, user is free todecidewhether to estimate or not some specific attributes
listed above through IAttributeEstimator::EstimationRequests structure, which later get passed in main
estimate() method. Estimator overrides AttributeEstimationResults output structure, which consists of
optional fields describing results of user requested attributes.

• Age is reported in years:

– For cooperative (see “Appendix B. Glossary”) conditions: average error depends on person
age, see table below for additional details. Estimation precision is 2.3

• For gender estimation 1 means male, 0 means female.

VisionLabs B.V. 36 / 83

– Estimation precision in cooperative mode is 99.81%with the threshold 0.5;
– Estimation precision in non-cooperative mode is 92.5%.

• Ethnicity estimation returns 4 float normalized values, each value describes probability of person’s
ethnicity.

– Ethnicity Estimation precision in non-cooperative mode is 90.7%.
– There are 4 types of races the estimator is currently able to distinguish: African American
Indian, Asian, Caucasian.

– Estimates person’s race depending on his/her appearance on a given image;
– Outputs EthnicityEstimation structure with aforementioned data.

EthnicityEstimation displays races in scores that are presented as normalized float values in the range of
[0..1]. The sum of scores always equals to 1. Each score stands for the probability of corresponding race.

Table 5: “Average age estimation error per age group for cooperative conditions”

Age (years) Average error (years)

0-3 ±3.3

4-7 ±2.97

8-12 ±3.06

13-17 ±4.05

17-20 ±3.89

20-25 ±1.89

25-30 ±1.88

30-35 ±2.42

35-40 ±2.65

40-45 ±2.78

45-50 ±2.88

50-55 ±2.85

55-60 ±2.86

60-65 ±3.24

65-70 ±3.85

70-75 ±4.38

75-80 ±6.79

VisionLabs B.V. 37 / 83

Note In earlier releases of Luna SDK Attribute estimator worked poorly in non-cooperative mode (only
56% gender estimation precision), and did not estimate child’s age. Having solved these problems
average estimation error per age group got a bit higher due to extended network functionality.

VisionLabs B.V. 38 / 83

6.3.2 Child Estimation

This estimator tells whether the person is child or not. Child is a personwho younger than 18 years old. It
returns a structurewith 2 fields. One is the score in the range from0.0 (is adult) to 1.0 (maximum, is child),
the second is a boolean answer. Boolean answer depends on the threshold in config (faceengine.conf).
If the value is more than the threshold, the answer is true (person is child), else - false (person is adult).

The estimator (see IChildEstimator in IEstimator.h):

• Implements the estimate() function accepts warped source image (see chapter “Image warping”).
Warped image is received from the warper (see IWarper::warp());

• Estimates whether the person is child or not on input warped image;
• Outputs ChildEstimation structure. Structure consists of score of and boolean answer.

VisionLabs B.V. 39 / 83

6.3.3 Credibility Check Estimation

This estimator estimates reliability of a person.

The estimator (see ICredibilityCheckEstimator in IEstimator.h):

• Implements the estimate() function that accepts warped image in R8B8G8 format and fsdk::
CredibilityCheckEstimation structure.

• Implements the estimate() function that accepts span of warped images in R8B8G8 format and
span of fsdk::CredibilityCheckEstimation structures.

Note. The estimator is trained to work with face images that meet the following requirements:

Table 6: “Requirements for fsdk::HeadPoseEstimation”

Attribute Acceptable angle range(degrees)

pitch [-20…20]

yaw [-20…20]

roll [-20…20]

Table 7: “Requirements for fsdk::SubjectiveQuality”

Attribute Minimum value

blur 0.61

light 0.57

Table 8: “Requirements for fsdk::AttributeEstimationResult”

Attribute Minimum value

age 18

VisionLabs B.V. 40 / 83

Table 9: “Requirements for fsdk::OverlapEstimation”

Attribute State

overlapped false

Table 10: “Requirements for fsdk::Detection”

Attribute Minimum value

detection size 100

Note. Detection size is detection width.

const fsdk::Detection detection = ... // somehow get fsdk::Detection object
const int detectionSize = detection.getRect().width;

VisionLabs B.V. 41 / 83

6.4 Facial Hair Estimation

This estimator aims to detect a facial hair type on the face in the source image. It can return the next
results:

• There is no hair on the face (see FacialHair::NoHair field in the FacialHair enum);
• There is stubble on the face (see FacialHair::Stubble field in the FacialHair enum);
• There is mustache on the face (see FacialHair::Mustache field in the FacialHair enum);
• There is beard on the face (see FacialHair::Beard field in the FacialHair enum);

The estimator (see IFacialHairEstimator in IFacialHairEstimator.h):

• Implements the estimate() function that accepts source warped image in R8G8B8 format and
FacialHairEstimation structure to return results of estimation;

• Implements theestimate() function thataccepts fsdk::Spanof the sourcewarped images inR8G8B8
format and fsdk::Span of the FacialHairEstimation structures to return results of estimation.

6.4.1 FacialHair enumeration

The FacialHair enumeration contains all possible results of the FacialHair estimation:

enum class FacialHair {
NoHair = 0, //!< no hair on the face
Stubble, //!< stubble on the face
Mustache, //!< mustache on the face
Beard //!< beard on the face

};

6.4.2 FacialHairEstimation structure

The FacialHairEstimation structure contains results of the estimation:

struct FacialHairEstimation {
FacialHair result; //!< estimation result (@see FacialHair

enum)
// scores
float noHairScore; //!< no hair on the face score
float stubbleScore; //!< stubble on the face score
float mustacheScore; //!< mustache on the face score
float beardScore; //!< beard on the face score

};

There are two groups of the fields:

VisionLabs B.V. 42 / 83

1. The first group contains only the result enum:

FacialHair result; //!< estimation result (@see FacialHair
enum)

Result enum field FacialHairEstimation contain the target results of the estimation.

2. The second group contains scores:

float noHairScore; //!< no hair on the face score
float stubbleScore; //!< stubble on the face score
float mustacheScore; //!< mustache on the face score
float beardScore; //!< beard on the face score

The scores group contains the estimation scores for each possible result of the estimation. All scores are
defined in [0,1] range. Sum of scores always equals 1.

Note. The estimator is trained to work with face images that meet the following requirements:

Table 11: “Requirements for fsdk::HeadPoseEstimation”

Attribute Acceptable angle range(degrees)

pitch [-40…40]

yaw [-40…40]

roll [-40…40]

Table 12: “Requirements for fsdk::MedicalMaskEstimation”

Attribute State

result fsdk::MedicalMask::NoMask

Table 13: “Requirements for fsdk::Detection”

Attribute Minimum value

detection size 40

VisionLabs B.V. 43 / 83

Note. Detection size is detection width.

const fsdk::Detection detection = ... // somehow get fsdk::Detection object
const int detectionSize = detection.getRect().width;

VisionLabs B.V. 44 / 83

6.4.3 Color/Monochrome Estimation

This estimator detects if an input image is grayscale or color. It implements estimate() function that
accepts source image and outputs a Boolean, indicating if the image is grayscale (true) or not (false).

6.5 Face features extraction functionality

6.5.1 Eyes Estimation

The estimator is trained to work with warped images (see Chapter “Image warping” for details).

For this type of estimator can be defined sensor type.

This estimator aims to determine:

• Eye state: Open, Closed, Occluded;
• Precise eye iris location as an array of landmarks;
• Precise eyelid location as an array of landmarks.

You can only passwarped imagewith detected face to the estimator interface. Better image quality leads
to better results.

Eye state classifier supports three categories: “Open”, “Closed”, “Occluded”. Poor quality images or ones
that depict obscured eyes (think eyewear, hair, gestures) fall into the “Occluded” category. It is always a
good idea to check eye state before using the segmentation result.

The precise location allows iris and eyelid segmentation. The estimator is capable of outputting iris and
eyelid shapes as an array of points together forming an ellipsis. You should only use segmentation results
if the state of that eye is “Open”.

The estimator:

• Implements the estimate() function that accepts warped source image (see Chapter “Image
warping”) andwarped landmarks, either of type Landmarks5 or Landmarks68. The warped image
and landmarks are received from the warper (see IWarper::warp());

• Classifies eyes state and detects its iris and eyelid landmarks;
• Outputs EyesEstimation structures.

Orientation terms “left” and “right” refer to the way you see the image as it is shown on the screen.
It means that left eye is not necessarily left from the person’s point of view, but is on the left side
of the screen. Consequently, right eye is the one on the right side of the screen. More formally, the
label “left” refers to subject’s left eye (and similarly for the right eye), such that xright < xleft.

EyesEstimation::EyeAttributes presents eye state as enum EyeState with possible values: Open, Closed,
Occluded.

Iris landmarks are presented with a template structure Landmarks that is specialized for 32 points.

Eyelid landmarks are presented with a template structure Landmarks that is specialized for 6 points.

VisionLabs B.V. 45 / 83

6.5.2 Gaze Estimation

This estimator is designed to determine gaze direction relatively to head pose estimation. Since 3D head
translation is hard todetermine reliablywithout camera-specific calibration, only 3D rotation component
is estimated.

For this type of estimator can be defined sensor type.

Estimation characteristics:

• Units (degrees);
• Notation (Euler angles);
• Precision (see table below).

Roll angle is not estimated, prediction precision decreases as a rotation angle increases. Wepresent
typical average errors for different angle ranges in the table below.

Table 14: “Gaze prediction precision”

Range -25°…+25° -25°… -45 ° or 25 °… +45°

Average prediction error (per axis) Yaw ±2.7° ±4.6°

Average prediction error (per axis) Pitch ±3.0° ±4.8°

Zero position corresponds to a gaze direction orthogonally to face plane, with the axis of symmetry
parallel to the vertical camera axis.

VisionLabs B.V. 46 / 83

6.5.3 Glasses Estimation

Glasses estimator is designed to determine whether a person is currently wearing any glasses or not.
There are 3 types of states estimator is currently able to estimate:

• NoGlasses state determines whether a person is wearing any glasses at all;
• EyeGlasses state determines whether a person is wearing eyeglasses;
• SunGlasses state determines whether a person is wearing sunglasses.

Note. Source input image must be warped in order for estimator to work properly (see Chapter “Image
warping”). Quality of estimation depends on threshold values located in faceengine configuration file
(faceengine.conf) in GlassesEstimator::Settings section. By default, these threshold values are set to
optimal.

Table below contain true positive rates corresponding to selected false positive rates.

Table 15: “Glasses estimator TPR/FPR rates”

State TPR FPR

NoGlasses 0.997 0.00234

EyeGlasses 0.9768 0.000783

SunGlasses 0.9712 0.000383

VisionLabs B.V. 47 / 83

6.5.4 Overlap Estimation

This estimator tells whether the face is overlapped by any object. It returns a structure with 2 fields. One
is the value of overlapping in the range [0..1] where 0 is not overlapped and 1.0 is overlapped, the second
is a Boolean answer. A Boolean answer depends on the threshold listed below. If the value is greater than
the threshold, the answer returns true, else false.

The estimator (see IOverlapEstimator in IEstimator.h):

• Implements theestimate() function thataccepts source image inR8G8B8 formatand fsdk::Detection
structure of corresponding source image (see section “Detection structure”);

• Estimates whether the face is overlapped by any object on input image;
• Outputs structure with value of overlapping and Boolean answer.

6.6 Emotion estimation functionality

6.6.1 Emotions Estimation

The estimator is trained to work with warped images (see Chapter “Image warping” for details).

This estimator aims to determinewhether a face depicted on an image expresses the following emotions:

• Anger
• Disgust
• Fear
• Happiness
• Surprise
• Sadness
• Neutrality

You can pass only warped images with detected faces to the estimator interface. Better image quality
leads to better results.

The estimator (see IEmotionsEstimator in IEstimator.h):

• Implements the estimate() function that accepts warped source image (see Chapter “Image
warping”). Warped image is received from the warper (see IWarper::warp());

• Estimates emotions expressed by the person on a given image;
• Outputs EmotionsEstimation structure with aforementioned data.

EmotionsEstimation presents emotions as normalized float values in the range of [0..1] where 0 is lack of
a specific emotion and 1 is the maximum intensity of an emotion.

VisionLabs B.V. 48 / 83

6.6.2 Mouth Estimation

This estimator is designed to predict person’s mouth state. It returns the following bool flags:

• isOpened;
• isOccluded;
• isSmiling.

Each of this flags indicate specific mouth state that was predicted.

The combinedmouth state is assumed if multiple flags are set to true. For example there aremany cases
where person is smiling and its mouth is wide open.

Mouth estimator provides score probabilities for mouth states in case user need more detailed
information:

• Mouth opened score;
• Smile score;
• Occlusion score.

This estimator is trained to work with warped images (see Chapter “Image warping” for details).

6.7 Liveness check functionality

6.7.1 HeadAndShouldersLiveness Estimation

This estimator tellswhether theperson’s face is real or fake (photo, printed image) and confirmspresence
of a person’s body in the frame. Face should be in the center of the frame and the distance between the
face and the frameborders should be three times greater than space that face takes up in the frame. Both
person’s face and chest have to be in the frame. Camera should be placed at the waist level and directed
from bottom to top. The estimator check for borders of a mobile device to detect fraud. So there should
not be any rectangular areas within the frame (windows, pictures, etc.).

The estimator (see IHeadAndShouldersLiveness in IEstimator.h):

• Implements the estimateHeadLiveness() function that accepts source image in R8G8B8 format
and fsdk::Detection structure of corresponding source image (see section “Detection structure” in
chapter “Detection facility”).

• Estimates whether it is a real person or not. Outputs float normalized score in range [0..1], 1 - is
real person, 0 - is fake. Implements the estimateShouldersLiveness() function that accepts source
image in R8G8B8 format and fsdk::Detection structure of corresponding source image (see section
“Detection structure” in chapter “Face detection facility”). Estimates whether real person or not.
Outputs float score normalized in range [0..1], 1 - is real person, 0 - is fake.

VisionLabs B.V. 49 / 83

6.7.2 LivenessFlyingFaces Estimation

This estimator tells whether the person’s face is real or fake (photo, printed image).

The estimator (see ILivenessFlyingFacesEstimator in IEstimator.h):

• Implements the estimate() function that needs fsdk::Image with valid image in R8G8B8 format
and fsdk::Detection of corresponding source image (see section “Detection structure” in
chapter “Face detection facility”).

• Implements the estimate() function that needs the span of fsdk::Imagewith valid source images
in R8G8B8 formats and span of fsdk::Detection of corresponding source images (see section
“Detection structure” in chapter “Face detection facility”).

Those methods estimate whether different persons are real or not. Corresponding estimation output
with float scores which are normalized in range [0..1], where 1 - is real person, 0 - is fake.

Note. The estimator is trained to work in combination with fsdk::ILivenessRGBMEstimator.

Note. The estimator is trained to work with face images that meet the following requirements:

Table 16: “Requirements for fsdk::BestShotQualityEstimator::EstimationResult”

Attribute Acceptable values

headPose.pitch [-30…30]

headPose.yaw [-30…30]

headPose.roll [-40…40]

ags [0.5…1.0]

Table 17: “Requirements for fsdk::Detection”

Attribute Minimum value

detection size 80

Note. Detection size is detection width.

const fsdk::Detection detection = ... // somehow get fsdk::Detection object
const int detectionSize = detection.getRect().width;

VisionLabs B.V. 50 / 83

6.7.3 LivenessRGBM Estimation

This estimator tells whether the person’s face is real or fake (photo, printed image).

The estimator (see ILivenessRGBMEstimator in IEstimator.h):

• Implements the estimate() function that needs fsdk::Face with valid image in R8G8B8 format,
detection structure of corresponding source image (see section “Detection structure” in chapter
“Face detection facility”) and fsdk::Image with accumulated background. This method
estimates whether a real person or not. Output estimation structure contains the float score and
boolean result. The float score normalized in range [0..1], where 1 - is real person, 0 - is fake. The
boolean result has value true for real person and false otherwise.

• Implements the update() function that needs the fsdk::Image with current frame , number
of that image and previously accumulated background. The accumulated background will be
overwritten by this call.

VisionLabs B.V. 51 / 83

6.7.4 Depth Liveness Estimation

This estimator tells whether the person’s face is real or fake (photo, printed image).

The estimator (see ILivenessDepthEstimator in IEstimator.h):

• Implements the estimate() function that accepts source warped image in R16 format and fsdk::
DepthEstimation structure. This method estimates whether or not depth map corresponds to
the real person. Corresponding estimation output with float score which is normalized in range
[0..1], where 1 - is real person, 0 - is fake.

The estimator is trained to work with face images that meet the following requirements:

Table 18: “Requirements for fsdk::HeadPoseEstimation”

Attribute Acceptable angle range(degrees)

pitch [-15…15]

yaw [-15…15]

roll [-10…10]

Table 19: “Requirements for fsdk::Quality”

Attribute Minimum value

blur 0.94

light 0.90

dark 0.93

Table 20: “Requirements for fsdk::EyesEstimation”

Attribute State

leftEye Open

rightEye Open

Also, the minimum distance between the face bounding box and the frame borders should be greater
than 20 pixels.

VisionLabs B.V. 52 / 83

6.8 Separately licensed features

6.8.1 LivenessOneShotRGBEstimator

This estimator shows whether the person’s face is real or fake (photo, printed image).

6.8.1.1 LivenessOneShotRGBEstimator requirements
The requirements for the processed image and the face in the image are listed above.

This estimator supports images taken on mobile devices or webcams (PC or laptop). Image resolution
minimum requirements:

• Mobile devices - 720 × 960 px
• Webcam (PC or laptop) - 1280 x 720 px

There should be only one face in the image. An error occurs when there are two or more faces in the
image.

Theminimum face detection size must be 200 pixels.

Yaw, pitch, and roll angles should be nomore than 25 degrees in either direction.

The minimum indent between the face and the image borders should be 10 pixels.

6.8.1.2 LivenessOneShotRGBEstimation structure
The estimator (see ILivenessOneShotRGBEstimator in IEstimator.h):

• Implements the estimate() function that needs fsdk::Image and fsdk::Face with valid image
in R8G8B8 format and detection structure of corresponding source image (see section “Detection
structure” in chapter “Face detection facility”). This method estimates whether a real person or
not. Output estimation is a structure fsdk::LivenessOneShotRGBEstimation.

• Implements the estimate() function that needs the span of fsdk::Image and span of
fsdk::Face with valid image in R8G8B8 format and detection structure of corresponding
source image (see section “Detection structure” in chapter “Face detection facility”). This
method estimates whether a real person or not. Output estimation is a span of structure
fsdk::LivenessOneShotRGBEstimation. The second output value (structure fsdk::
LivenessOneShotRGBEstimation) is the result of aggregation based on span of estimations
announced above. Pay attention the second output value (aggregation) is optional, i.e. default
argument, which is nullptr.

The LivenessOneShotRGBEstimation structure contains results of the estimation:

struct LivenessOneShotRGBEstimation {
enum class State {

VisionLabs B.V. 53 / 83

Alive = 0, //!< The person on image is real
Fake, //!< The person on image is fake (photo, printed image)
Unknown //!< The liveness status of person on image is Unknown

};

float score; //!< Estimation score
State state; //!< Liveness status
float qualityScore; //!< Liveness quality score

};

Estimation score is normalized in range [0..1], where 1 - is real person, 0 - is fake.

Liveness quality score is an image quality estimation for the liveness recognition.

This parameter is used for filtering if it is possible to make bestshot when checking for liveness.

The reference score is 0,5.

The value of State depends on score and qualityThreshold. The value qualityThreshold
can be given as an argument of method estiamte (see ILivenessOneShotRGBEstimator), and in
configuration file faceengine.conf (see ConfigurationGuide LivenessOneShotRGBEstimator).

6.8.2 Usage example

The face in the image and the image itself should meet the estimator requirements.

You can find additional information in example (examples/example_estimation/main.cpp) or in
the code below.

// Minimum detection size in pixels.
constexpr int minDetSize = 200;

// Step back from the borders.
constexpr int borderDistance = 10;

if (std::min(detectionRect.width, detectionRect.height) < minDetSize) {
std::cerr << "Bounding Box width and/or height is less than `minDetSize`

- " << minDetSize << std::endl;
return false;

}

if ((detectionRect.x + detectionRect.width) > (image.getWidth() -
borderDistance) || detectionRect.x < borderDistance) {
std::cerr << "Bounding Box width is out of border distance - " <<

borderDistance << std::endl;
return false;

VisionLabs B.V. 54 / 83

}

if ((detectionRect.y + detectionRect.height) > (image.getHeight() -
borderDistance) || detectionRect.y < borderDistance) {
std::cerr << "Bounding Box height is out of border distance - " <<

borderDistance << std::endl;
return false;

}

// Yaw, pitch and roll.
constexpr int principalAxes = 25;

if (std::abs(headPose.pitch) > principalAxes ||
std::abs(headPose.yaw) > principalAxes ||
std::abs(headPose.roll) > principalAxes) {

std::cerr << "Can't estimate LivenessOneShotRGBEstimation. " <<
"Yaw, pith or roll absolute value is larger than expected value: "

<< principalAxes << "." <<
"\nPitch angle estimation: " << headPose.pitch <<
"\nYaw angle estimation: " << headPose.yaw <<
"\nRoll angle estimation: " << headPose.roll << std::endl;

return false;
}

WerecommendusingDetector type 3 (fsdk::ObjectDetectorClassType::FACE_DET_V3
).

VisionLabs B.V. 55 / 83

6.8.3 Personal Protection Equipment Estimation

The Personal Protection Equipment (a.k.a PPE) estimator predicts wether a person is wearing one or
multiple types of protection equipment such as: - Helmet; - Hood; - Vest; - Gloves.

For each one of this attributes estimator returns 3 prediction scores which indicate the possibility of
personwearing thatattribute, notwearing it andan“unknown”scorewhichwill be thehighestof themall
if the estimator wasn’t able to tell wether person on the image wears/doesn’t wear a particular attribute.

Output structure for each attribute looks as foollows:

struct OnePPEEstimation {
float positive = 0.0f;
float negative = 0.0f;
float unknown = 0.0f;

enum class PPEState : uint8_t {
Positive, //!< person is wearing specific personal equipment;
Negative, //!< person isn't wearing specific personal equipment;
Unknown, //!< it's hard to tell wether person wears specific

personal equipment.
Count //!< state count

};

/**
* @brief returns predominant personal equipment state
* */

inline PPEState getPredominantState();
};

All three prediction scores sum up to 1.

Estimator takes as input an image and a human bounding box of a person for which attributes shall
be predicted. For more information about human detector see “Human Detection” section.

VisionLabs B.V. 56 / 83

6.8.4 Medical Mask Estimation

This estimator aims to detect a medical face mask on the face in the source image. It can return the next
results:

• A medical mask is on the face (see MedicalMask::Mask field in the MedicalMask enum);
• There is no medical mask on the face (see MedicalMask::NoMask field in the MedicalMask enum);
• The face is occluded with something (see MedicalMask::OccludedFace field in the MedicalMask
enum);

6.8.5 Medical Mask Extended Estimation

This estimator aims to detect a medical face mask on the face in the source image. It can return the next
results:

• A medical mask is on the face (see MedicalMaskExtended::Mask field in the MedicalMask enum);
• There is nomedicalmask on the face (seeMedicalMaskExtended::NoMask field in theMedicalMask
enum);

• A medical mask is not on the right place (see MedicalMaskExtended::MaskNotInPlace field in the
MedicalMask enum);

• The face is occluded with something (see MedicalMaskExtended::OccludedFace field in the
MedicalMask enum);

The estimator (see IMedicalMaskEstimator in IEstimator.h):

• Implements the estimate() function that accepts source warped image in R8G8B8 format and
MedicalMaskEstimation structure to return results of estimation;

• Implements the estimate() function that accepts source image in R8G8B8 format, face detection to
estimate and MedicalMaskEstimation structure to return results of estimation;

• Implements theestimate() function thataccepts fsdk::Spanof the sourcewarped images inR8G8B8
format and fsdk::Span of the MedicalMaskEstimation structures to return results of estimation;

• Implements the estimate() function that accepts fsdk::Spanof the source images inR8G8B8 format,
fsdk::Span of face detections and fsdk::Span of the MedicalMaskEstimation structures to return
results of the estimation.

• Implements the estimate() function that accepts source warped image in R8G8B8 format and
MedicalMaskEstimationExtended structure to return results of estimation;

• Implements the estimate() function that accepts source image in R8G8B8 format, face detection to
estimate and MedicalMaskEstimationExtended structure to return results of estimation;

• Implements the estimate() function that accepts fsdk::Span of the source warped images in
R8G8B8 format and fsdk::Span of theMedicalMaskEstimationExtended structures to return results
of estimation;

• Implements the estimate() function that accepts fsdk::Spanof the source images inR8G8B8 format,
fsdk::Span of face detections and fsdk::Span of the MedicalMaskEstimationExtended structures to

VisionLabs B.V. 57 / 83

return results of the estimation.

The estimator was implemented for two use-cases:

1. When the user already has warped images. For example, when the medical mask estimation is
performed right before (or after) the face recognition;

2. When the user has face detections only.

Calling the estimate() method with warped image and the estimate() method with image and
detection for the same image and the same face could lead to different results.

6.8.5.1 MedicalMaskEstimator thresholds
The estimator returns several scores - one for each possible result. The final result calculated based on
that scores and thresholds. If some score is above the corresponding threshold, that result is estimated
as final. The default values for all thresholds are taken from the configuration file. See Configuration
guide for details.

6.8.5.2 MedicalMask enumeration
The MedicalMask enumeration contains all possible results of the MedicalMask estimation:

enum class MedicalMask {
Mask = 0, //!< medical mask is on the face
NoMask, //!< no medical mask on the face
OccludedFace //!< face is occluded by something

};

6.8.5.3 MedicalMaskExtended enumeration
The MedicalMaskExtended enumeration contains all possible results of the MedicalMaskExtended
estimation:

enum class MedicalMaskExtended {
Mask = 0, //!< medical mask is on the face
NoMask, //!< no medical mask on the face
MaskNotInPlace, //!< mask is not on the right place
OccludedFace //!< face is occluded by something

};

6.8.5.4 MedicalMaskEstimation structure
The MedicalMaskEstimation structure contains results of the estimation:

VisionLabs B.V. 58 / 83

struct MedicalMaskEstimation {
MedicalMask result; //!< estimation result (@see MedicalMask

enum)
// scores
float maskScore; //!< medical mask is on the face score
float noMaskScore; //!< no medical mask on the face score
float occludedFaceScore; //!< face is occluded by something score

};

There are two groups of the fields:

1. The first group contains only the result enum:

MedicalMask result;

Result enum field MedicalMaskEstimation contain the target results of the estimation.

2. The second group contains scores:

float maskScore; //!< medical mask is on the face score
float noMaskScore; //!< no medical mask on the face score
float occludedFaceScore; //!< face is occluded by something score

The scores group contains the estimation scores for each possible result of the estimation. All scores
are defined in [0,1] range. They can be useful for users whowant to change the default thresholds for this
estimator. If the default thresholds are used, the groupwith scores could be just ignored in the user code.

6.8.5.5 MedicalMaskEstimationExtended structure
The MedicalMaskEstimationExtended structure contains results of the estimation:

struct MedicalMaskEstimationExtended {
MedicalMaskExtended result; //!< estimation result (@see

MedicalMaskExtended enum)
// scores
float maskScore; //!< medical mask is on the face score
float noMaskScore; //!< no medical mask on the face score
float maskNotInPlace; //!< mask is not on the right place
float occludedFaceScore; //!< face is occluded by something score

};

There are two groups of the fields:

VisionLabs B.V. 59 / 83

1. The first group contains only the result enum:

MedicalMaskExtended result;

Result enum field MedicalMaskEstimationExtended contain the target results of the estimation.

2. The second group contains scores:

float maskScore; //!< medical mask is on the face score
float noMaskScore; //!< no medical mask on the face score
float maskNotInPlace; //!< mask is not on the right place
float occludedFaceScore; //!< face is occluded by something score

The scores group contains the estimation scores for each possible result of the estimation. All scores
are defined in [0,1] range. They can be useful for users whowant to change the default thresholds for this
estimator. If the default thresholds are used, the groupwith scores could be just ignored in the user code.

Note. The estimator is trained to work with face images that meet the following requirements:

Table 21: “Requirements for fsdk::BestShotQualityEstimator::EstimationResult”

Attribute Acceptable values

headPose.pitch [-40…40]

headPose.yaw [-40…40]

headPose.roll [-40…40]

ags [0.5…1.0]

VisionLabs B.V. 60 / 83

7 Descriptor Processing Facility

7.1 Overview

The section describes descriptors and all the processes and objects corresponding to them.

Descriptor itself is a set of object parameters that are specially encoded. Descriptors are typically more
or less invariant to various affine object transformations and slight color variations. This property allows
efficient use of such sets to identify, lookup, and compare real-world objects images.

To receive a descriptor you should perform a special operation called descriptor extraction.

The general case of descriptors usage iswhen you compare twodescriptors and find their similarity score.
Thus you can identify persons by comparing their descriptors with your descriptors database.

All descriptor comparison operations are called matching. The result of the two descriptors matching
is a distance between components of the corresponding sets that are mentioned above. Thus, from a
magnitude of this distance, we can tell if two objects are presumably the same.

There are two different tasks solved using descriptors: person identification and person reidentification.

7.1.1 Person Identification Task

Facial recognition is the task ofmaking an identification of a face in a photo or video image against a pre-
existing database of faces. It begins with detection - distinguishing human faces from other objects in
the image - and thenworks on the identification of those detected faces. To solve this problem, we use a
face descriptor, which extracted from an image face of a person. A person’s face is invariable throughout
his life.

In a case of the face descriptor, the extraction is performed from object image areas around some
previously discovered facial landmarks, so the quality of the descriptor highly depends on them and the
image it was obtained from.

The process of face recognition consists of 4 main stages:

• face detection in an image;
• warping of face detection – compensation of affine angles and centering of a face;
• descriptor extraction;
• comparing of extracted descriptors (matching).

Additionally you can extract face features (gender, age, emotions, etc) or image attributes (light,
dark, blur, specularity, illumination, etc.).

7.1.2 Person Reidentification Task

Note! This functionality is experimental.

VisionLabs B.V. 61 / 83

The person reidentification enables you to detect a person who appears on different cameras. For
example, it is used when you need to track a human, who appears on different supermarket cameras.
Reidentification can be used for:

• building of human traffic warmmaps;
• analysing of visitors movement across cameras network;
• tracking of visitors across cameras network;
• search for a person across the cameras network in case when face was not captured (e.g. across
CCTV cameras in the city);

• etc.

For reidentification purposes, we use so-called human descriptors. The extraction of the human
descriptor is performed using the detected area with a person’s body on an image or video frame. The
descriptor is a unique data set formed based on a person’s appearance. Descriptors extracted for the
same person in different clothes will be significantly different.

The face descriptor and the human descriptor are almost the same from the technical point of view,
but they solve fundamentally different tasks.

The process of reidentifications consists of the following stages:

• human detection in an image;
• warping of human detection – centering and cropping of the human body;
• descriptor extraction;
• comparing of extracted descriptors (matching).

The human descriptor does not support the descriptor score at all. The returned value of the
descriptor score is always equal to 1.0.

The human descriptor is based on to the following criteria:

• clothes (type and color);
• shoes;
• accessories;
• hairstyle;
• body type;
• anthropometric parameters of the body.

Note. The human reidentification algorithm is trained to work with input data that meets the following
requirements:

• input images should be in R8G8B8 format (will work worse in night mode);
• the smaller side of input crop should be greater than 60 px;
• inside of same crop, one person should occupymore than 80% (sometimes several persons fit into
the same frame).

VisionLabs B.V. 62 / 83

7.2 Descriptor

Descriptor object stores a compact set of packed properties aswell as some helper parameters that were
used to extract these properties from the source image. Together these parameters determine descriptor
compatibility. Not all descriptors are compatible with each other. It is impossible to batch and match
incompatible descriptors, so you should pay attention towhat settings do you usewhen extracting them.
Refer to section “Descriptor extraction” for more information on descriptor extraction.

7.2.1 Descriptor Versions

Face descriptor algorithm evolves with time, so newer FaceEngine versions contain improvedmodels of
the algorithm.

Descriptors of different versions are incompatible! Thismeans that you cannotmatch descriptors
with different versions. This does not apply to base and mobilenet versions of the same model:
they are compatible.

See chapter “Appendix A. Specifications” for details about performance and precision of different
descriptor versions.

Descriptor version 59 is the best one by precision. And it works well Personal protective equipment on
face like medical mask.

Descriptor versionmay be specified in the configuration file (see section “Configuration data” in chapter
“Core facility”).

7.2.1.1 Face descriptor
Currently next versions are available: 54, 56, 57, 58 and 59. Descriptors have backend and mobilenet
implementations. Versions 57, 58 and 59 supports only backend implementation. Backend versions
more precise, butmobilenet faster and have smaller model files (See Appendix A). Version 59 is themost
precise.
See Appendix A.1 and A.2 for details about performance and precision of different descriptor versions.

7.2.1.2 Human descriptor
Currently, only three versions of human descriptors are available: 102, 103, 104

To create a human descriptor, human batch, human descriptor extractor, human descriptormatcher you
must pass the human descriptor version

• DV_MIN_HUMAN_DESCRIPTOR_VERSION = 102 or
• HDV_TRACKER_HUMAN_DESCRIPTOR_VERSION= 102, //!<humandescriptor for trackingofpeople
on one camera, light and fast version

VisionLabs B.V. 63 / 83

• HDV_PRECISE_HUMAN_DESCRIPTOR_VERSION = 103, //!< precise human descriptor, heavy and
slow

• HDV_REGULAR_HUMAN_DESCRIPTOR_VERSION = 104, //!< regular human descriptor, use it by
default for multi-cameras tracking

7.3 Descriptor Batch

Whenmatching significant amounts of descriptors, it is desired that they reside continuously inmemory
for performance reasons (think cache-friendly data locality and coherence). This is where descriptor
batches come into play. While descriptors are optimized for faster creation and destruction, batches are
optimized for long life and better descriptor data representation for the hardware.

A batch is created by the factory like any other object. Aside from type, a size of the batch should be
specified. Size is a memory reservation this batch makes for its data. It is impossible to add more data
than specified by this reservation.

Next, the batch must be populated with data. You have the following options:

• add an existing descriptor to the batch;
• load batch contents from an archive.

The following notes should be kept in mind:

• Whenadding anexistingdescriptor, its data is copied into thebatch. Thismeans that thedescriptor
object may be safely released.

• When adding the first descriptor to an empty batch, initial memory allocation occurs. Before that
moment the batch does not allocate. At the samemoment, internal descriptor helper parameters
are copied into the batch (if there are any). This effectively determines compatibility possibilities
of the batch. When the batch is initialized, it does not accept incompatible descriptors.

After initialization, a batch may bematched pretty much the same way as a simple descriptor.

Like any other data storage object, a descriptor batch implements the ::clear()method. An effect of this
method is the batch translation to a non-initialized state except memory deallocation. In other words,
batch capacity stays the same, and nomemory is reallocated. However, an actual number of descriptors
in the batch and their parameters are reset. This allows re-populating the batch.

Memory deallocation takes place when a batch is released.

Care should be taken when serializing and deserializing batches. When a batch is created, it is assigned
with a fixed-sizememory buffer. The size of the buffer is embedded into the batch BLOBwhen it is saved.
So, when allocating a batch object for reading the BLOB into, make sure its size is at least the same as
it was for the batch saved to the BLOB (even if it was not full at the moment). Otherwise, loading fails.
Naturally, it is okay to deserialize a smaller batch into a larger another batch this way.

VisionLabs B.V. 64 / 83

7.4 Descriptor Extraction

Descriptor extractor is the entity responsible for descriptor extraction. Like any other object, it is created
by the factory. To extract a descriptor, aside from the source image, you need:

• a face detection area inside the image (see chapter “Detection facility”)
• a pre-allocated descriptor (see section “Descriptor”)
• a pre-computed landmarks (see chapter “Image warping”)

A descriptor extractor object is responsible for this activity. It is represented by the straightforward
IDescriptorExtractor interface with only one method extract(). Note, that the descriptor object must be
created prior to calling extract() by calling an appropriate factory method.

Landmarks are used as a set of coordinates of object points of interest, that in turn determine source
image areas, the descriptor is extracted from. This allows extracting only data that matters most for
a particular type of object. For example, for a human face we would want to know at least definitive
properties of eyes, nose, andmouth to be able to compare it to another face. Thus, we should first invoke
a feature extractor to locate where eyes, nose, andmouth are and put these coordinates into landmarks.
Then the descriptor extractor takes those coordinates and builds a descriptor around them.

Descriptor extraction is one of themost computation-heavy operations. For this reason, threadingmight
be considered. Be aware that descriptor extraction is not thread-safe, so you have to create an extractor
object per a worker thread.

It should be noted, that the face detection area and the landmarks are required only for image warping,
the preparation stage for descriptor extraction (see section “Image warping”). If the source image
is already warped, it is possible to skip these parameters. For that purpose, the IDescriptorExtractor
interface provides a special extractFromWarpedImage()method.

Descriptor extraction implementation supports execution on GPUs.

The IDescriptorExtractor interface provides extractFromWarpedImageBatch() method which allows
you to extract batch of descriptors from the image array in one call. This method achieve higher
utilization of GPU and better performance (see the “GPU mode performance” table in appendix A
chapter “Specifications”).

Also IDescriptorExtractor returns descriptor score for each extracted descriptor. Descriptor score is
normalized value in range [0,1], where 1 - face in the warp, 0 - no face in the warp. This value allows you
filter descriptors extracted from false positive detections.

7.5 Descriptor Matching

It is possible to match a pair (or more) previously extracted descriptors to find out their similarity. With
this information, it is possible to implement face search and other analysis applications.

VisionLabs B.V. 65 / 83

Figure 14:Matching

By means ofmatch function defined by the IDescriptorMatcher interface it is possible to match a pair of
descriptors with each other or a single descriptor with a descriptor batch (see section “Descriptor batch”
for details on batches).

A simple rule to help you decide which storage to opt for:

• when searching among less than a hundred descriptors use separate IDescriptor objects;
• when searching among bigger number of descriptors use a batch.

When working with big data, a common practice is to organize descriptors in several batches keeping a
batch per worker thread for processing.

Be aware that descriptormatching is not thread-safe, so youhave to create amatcher object per aworker
thread.

7.6 Descriptor Indexing

7.6.1 Using HNSW

In order to accelerate the descriptor matching process, a special indexmay be created for a descriptor
batch. With the index, matching becomes a two-stage process:

VisionLabs B.V. 66 / 83

• First, you need to build indexed data structure - index - using IIndexBuilder. This is quite slow
process so it is not supposed to be done frequently. You build it by appending IDescriptor objects
or IDescriptorBatch objects and finally using build method - IIndexBuilder::buildIndex;

• Once you have index, you can use it to search nearest neighbors for passed descriptor very fast.

There are two types of indexes: IDenseIndex and IDynamicIndex. The interface difference is very simple:
dense index is read only and dynamic index is editable: you can append or remove descriptors.

You can only build a dynamic index. So how can you get a dense index? The answer is through
deserialization. Imagine you have several processes that might need to search in index. One option is
for every one of them to build index separately, but as mentioned before building of index is very slow
and you probably don’t want to do it more than needed. So the second option is to build it once and
serialize it to file. This is where the dense and dynamic difference arises: formats used to store these two
types of index are different. From the user’s point of view, the difference is that dense index loads faster,
but it is read only. Once loaded, there are no performance difference in terms of searching on these two
types of indexes.

To serialize index use IDynamicIndex::saveToDenseIndex or IDynamicIndex::saveToDynamicIndex
methods. To deserialized use IFaceEngine::loadDenseIndex or IFaceEngine::loadDynamicIndex.

Index files are not cross-platform. If you serialize index on some platform, it’s only usable on that
exact platform. Not only the operating system breaks compatibility, but also different architecture
of CPUmight break it.

HNSW index isn’t supported on embedded and 32-bit desktop platforms.

VisionLabs B.V. 67 / 83

8 System Requirements

8.1 Android installations

FaceEngine requires:

• Android version 4.4.4 or newer.

For development:

• Android SDK 21;
• Android NDK 21 {Pkg.Revision = 21.0.6113669}.

Android development dependencies listed above can be downloaded directly from SDK manager
in Android Studio IDE or via SDK manager command line tool. For more information, please visit
https://developer.android.com/studio/command-line/sdkmanager.

9 Hardware requirements

9.1 Embedded installations

9.1.1 CPU requirements

Supported CPU architectures:

• ARMv7-A;
• ARMv8-A (ARM64).

9.2 Android for embedded

One more step to online activation process, in addition to information about LUNA SDK licensing,
described in VisionLabs LUNA SDK Licensing, paragraph License activation.

Besides the common steps for online-activation, described in document VisionLabs LUNA SDK
Licensing, for Android for embedded systems, execute a native licensed binary for Android for
embeddedwith root permissions at least once.

VisionLabs B.V. 68 / 83

https://developer.android.com/studio/command-line/sdkmanager

10 Migration guide

10.1 Overview

Here you can find information about important changes in the next releases of LUNA SDK.

10.2 v.5.2.0

From v.5.2.0 the 101 version of human descriptor is not supported, it was changed by 104. Currently,
three versions are available: 102 (tracker), 103 (precise), 104 (regular). It means that all instances (such
as IDescriptorExtractor, IDescriptorMatcher and etc.) cannot be created with the version 101.

10.3 v.5.1.0

From version v.5.1.0 IHeadPoseEstimatorPtr and IAGSEstimatorPtr are deprecated. Use
IBestShotQualityEstimatorPtr instead.

Note. AGSscore thresholdsaredifferent forIAGSEstimatorPtrandIBestShotQualityEstimatorPtr
. Readmore on the BestShotQuality estimation page.

10.4 v.5.0.0

10.4.1 Objects creation

The fsdk::acquire(...) method for the pointer acquiring for IFaceEngine objects is not allowed
for usage starting from version 5.0.0. In addition, the types of values returned from the createmethods
of IFaceEnginewere changed.

Most of the create methods now return the following structure - fsdk::ResultValue<fsdk::
FSDKError, ObjectClassPtr> Thus it is easy to check the correctness of the result (using one of
the following methods result.isOk() or result.isError()) and get an error (using the result
.getError() method). The result.what() method can be used to get the text description of the
error.

10.4.1.1 Examples of code
Example of code (before version 5.0.0):

fsdk::IAttributeEstimatorPtr estimator = fsdk::acquire(faceEngine->
createAttributeEstimator());

if (estimator.isNull()) {
std::cout << "Object pointer is nullptr" << std::endl;
... // process error

VisionLabs B.V. 69 / 83

}

Example of code (from version 5.0.0):

fsdk::ResultValue<fsdk::FSDKError, fsdk::IAttributeEstimatorPtr>
resEstimator = faceEngine->createAttributeEstimator();

if (resEstimator.isError()) {
std::cout << "Error: " << resEstimator.what() << std::endl;
... // process error

}

fsdk::IAttributeEstimatorPtr estimator = resEstimator.getValue();

10.4.2 Interface of ILicense

From version v.5.0.0 we changed the interface of ILicense. Now all methods of this class return
fsdk::Result<fsdk::FSDKError>, fsdk::ResultValue<fsdk::FSDKError, bool> or fsdk::
ResultValue<fsdk::FSDKError, uint32_t> instead of bool.

10.4.2.1 Examples of code
Example of code (before version 5.0.0):

const bool res = license->isActivated();
if (!res) {

/* error case code */
}

Example of code (from version 5.0.0):

const fsdk::ResultValue<fsdk::FSDKError, bool> result = license->
isActivated();

if (result.isError()) {
/* error case code */

}

const bool value = result.getValue();
if (!value) {

/* false case code */
}

VisionLabs B.V. 70 / 83

Fromversionv.5.0.0wechanged theargumentsofmethodsgetExpirationDateandcheckFeatureId
in class ILicense. Now the input arguments of getExpirationDate and checkFeatureId is
fsdk::LicenseFeature instead of uint32_t. And the second argument of getExpirationDate
was removed. The return value of getExpirationDate is fsdk::ResultValue<fsdk::FSDKError
, uint32_t>.

Example of code (before version 5.0.0):

long long expDate = 0;
const bool result =

license->getExpirationDate(static_cast<uint32_t>(fsdk::
LicenseFeature::Detection), expDate);

if (result == false) {
/* error case code */

}

Example of code (from version 5.0.0):

const fsdk::ResultValue<fsdk::FSDKError, uint32_t> result =
license->getExpirationDate(fsdk::LicenseFeature::Detection);

if (result.isError()) {
/* error case code */

}

const uint32_t expDate = result.getValue();

Example of code (before version 5.0.0):

const bool res = license->checkFeatureId(static_cast<uint32_t>(fsdk::
LicenseFeature::Detection));

if (!res) {
/* error case code */

}

Example of code (from version 5.0.0):

const fsdk::ResultValue<fsdk::FSDKError, bool> result = license->
checkFeatureId(fsdk::LicenseFeature::Detection);

if (result.isError()) {
/* error case code */

VisionLabs B.V. 71 / 83

}

const bool value = result.getValue();
if (!value) {

/* false case code */
}

10.4.3 Interface of HumanLandmark

From version v.5.0.0 we changed the interface of HumanLandmark. Now member point doesn’t store
zero coordinates in the case when it is not visible. For this purposes we added member visiblewhich
stores true if point is visible.

Example of code (before version 5.0.0):

if (humanLandmark.point.x == 0 && humanLandmark.point.y == 0) {
// point is not visible case code

}
else {

// point is visible case code
}

Example of code (from version 5.0.0):

if (humanLandmark.visible == false) {
// point is not visible case code

}
else {

// point is visible case code
}

10.4.4 Interface of IDescriptorBatch

From version v.5.0.0 we renamed method IDescriptorBatch::getDescriptorSize() to
IDescriptorBatch::getDescriptorLength().

Example of code (before version 5.0.0):

uint32_t descriptorLength = descriptorBatch->getDescriptorSize();

Example of code (from version 5.0.0):

VisionLabs B.V. 72 / 83

uint32_t descriptorLength = descriptorBatch->getDescriptorLength();

10.4.5 Interface of Detection

From version v.5.0.0 we changed the interface of the Detection structure. Now all members of this
structure are private and could be available through the public methods.

Example of code (before version 5.0.0):

fsdk::Detection detection = ...; // Somehow initialized detection object
fsdk::Rect rect = detection.rect; // Get the detection rect
float score = detection.score; // Get the detection score

Example of code (from version 5.0.0):

fsdk::Detection detection = ...; // Somehow initialized detection object
fsdk::Rect rect = detection.getRect(); // Get the detection rect
float score = detection.getScore(); // Get the detection score

10.4.6 Interface of IDetector

From version v.5.0.0 we changed the interface of IDetector structure. Now method detect returns
ResultValue<FSDKError, Ref<IFaceDetectionBatch>> instead of ResultValue<FSDKError,
Ref<IResultBatch<Face>>>.

Example of code (before version 5.0.0):

fsdk::ResultValue<fsdk::FSDKError, fsdk::Ref<fsdk::IResultBatch<fsdk::Face
>>> detectorResult = faceDetector->detect(

fsdk::Span<const fsdk::Image>(&image, 1),
fsdk::Span<const fsdk::Rect>(&imageRect, 1),
detectionsCount,
fsdk::DT_ALL);

Example of code (from version 5.0.0):

fsdk::ResultValue<fsdk::FSDKError, fsdk::Ref<fsdk::IFaceDetectionBatch>>
detectorResult = faceDetector->detect(

fsdk::Span<const fsdk::Image>(&image, 1),
fsdk::Span<const fsdk::Rect>(&imageRect, 1),
detectionsCount,

VisionLabs B.V. 73 / 83

fsdk::DT_ALL);

Also we changed input and output parameters of the method redetectOne. Now it takes Image and
Detection instead of Face. And returns ResultValue<FSDKError, Face> instead of ResultValue
<FSDKError, bool>.

Example of code (before version 5.0.0):

fsdk::ResultValue<fsdk::FSDKError, bool> redetectResult = faceDetector->
redetectOne(face);

Example of code (from version 5.0.0):

fsdk::ResultValue<fsdk::FSDKError, fsdk::Face> redetectResult = faceDetector
->redetectOne(image, detection);

10.4.7 IFaceDetectionBatch

We added IFaceDetectionBatch structure to replace IResultBatch<Face>.

Example of code (before version 5.0.0):

fsdk::Ref<IResultBatch<Face>> resultBatch = ...; // Somehow get the
IResultBatch<Face>

for (std::size_t i = 0; i < resultBatch->getSize(); ++i) {
fsdk::Span<fsdk::Face> faces = resultBatch->getResults(i);
for (auto& face : faces) {

const fsdk::Rect& rect = face.detection.rect;
const float score = face.detection.score;
const fsdk::Landmarks5& lm5 = face.landmarks5.value();
const fsdk::Landmarks68& lm68 = face.landmarks68.value();
// Some code which uses received objects

}
}

Example of code (from version 5.0.0):

fsdk::Ref<fsdk::IFaceDetectionBatch> faceDetectionBatch = ...; // Somehow
get the IFaceDetectionBatch

for (std::size_t i = 0; i < faceDetectionBatch->getSize(); ++i) {
fsdk::Span<const fsdk::Detection> detections = faceDetectionBatch->

getDetections(i);

VisionLabs B.V. 74 / 83

fsdk::Span<const fsdk::Landmarks5> landmarks5 = faceDetectionBatch->
getLandmarks5(i);

fsdk::Span<const fsdk::Landmarks68> landmarks68 = faceDetectionBatch->
getLandmarks68(i);

for (std::size_t j = 0; j < detections.size(); ++j) {
const fsdk::Rect& rect = detections[j].getRect();
const float score = detections[j].getScore();
const fsdk::Landmarks5& lm5 = landmarks5[j];
const fsdk::Landmarks68& lm68 = landmarks68[j];
// Some code which uses received objects

}
}

10.4.8 Interface of IHumanDetector

From version v.5.0.0 we changed the interface of IHumanDetector structure. Now method detect
returns ResultValue<FSDKError, Ref<IHumanDetectionBatch>> instead of ResultValue<
FSDKError, Ref<IResultBatch<Human>>>.

Example of code (before version 5.0.0):

fsdk::ResultValue<fsdk::FSDKError, fsdk::Ref<fsdk::IResultBatch<fsdk::Human
>>> detectResult = humanDetector->detect(

fsdk::Span<const fsdk::Image>(&image, 1),
fsdk::Span<const fsdk::Rect>(&imageRect, 1),
detectionsCount,
fsdk::DCT_ALL);

Example of code (from version 5.0.0):

fsdk::ResultValue<fsdk::FSDKError, fsdk::Ref<fsdk::IHumanDetectionBatch>>
detectResult = humanDetector->detect(

fsdk::Span<const fsdk::Image>(&image, 1),
fsdk::Span<const fsdk::Rect>(&imageRect, 1),
detectionsCount,
fsdk::HDT_ALL);

Also we changed input and output parameters of the method redetectOne. Now it takes Image
and Detection instead of Human. And returns ResultValue<FSDKError, Human> instead of
ResultValue<FSDKError, bool>.

Example of code (before version 5.0.0):

VisionLabs B.V. 75 / 83

fsdk::ResultValue<fsdk::FSDKError, bool> redetectResult = humanDetector->
redetectOne(human);

Example of code (from version 5.0.0):

fsdk::ResultValue<fsdk::FSDKError, fsdk::Human> redetectResult =
humanDetector->redetectOne(image, detection);

10.4.9 IHumanDetectionBatch

We added IHumanDetectionBatch structure to replace IResultBatch<Human>.

Example of code (before version 5.0.0):

fsdk::Ref<IResultBatch<Human>> resultBatch = ...; // Somehow get the
IResultBatch<Human>

for (std::size_t i = 0; i < resultBatch->getSize(); ++i) {
fsdk::Span<fsdk::Human> humans = resultBatch->getResults(i);
for (auto& human : humans) {

const fsdk::Rect& rect = human.detection.rect;
const float score = human.detection.score;
const fsdk::Landmarks17& lm17 = face.landmarks5.value();
// Some code which uses received objects

}
}

Example of code (from version 5.0.0):

const fsdk::Ref<fsdk::IHumanDetectionBatch> humanDetectionBatch = ...; //
Somehow get the IHumanDetectionBatch

for (std::size_t i = 0; i < humanDetectionBatch->getSize(); ++i) {
fsdk::Span<const fsdk::Detection> detections = humanDetectionBatch->

getDetections(i);
fsdk::Span<const fsdk::HumanLandmarks17> landmarks = humanDetectionBatch

->getLandmarks17(i);
for (std::size_t j = 0; j < detections.size(); ++j) {

const fsdk::Rect rect = detections[j].getRect();
const float score = detections[j].getScore();
const fsdk::HumanLandmarks17 lm17 = landmarks[j];
// Some code which uses received objects

}
}

VisionLabs B.V. 76 / 83

10.4.10 Interface of ILivenessFlyingFaces

From version v.5.0.0 we changed the interface of ILivenessFlyingFaces structure. Now both
methods estimate take Image and Detection instead of Face.

Example of code (before version 5.0.0):

fsdk::LivenessFlyingFacesEstimation flyingFacesEstimation;
Result<fsdk::FSDKError> flyingFacesResult = livenessFlyingFacesEstimator->

estimate(face, flyingFacesEstimation);

Example of code (from version 5.0.0):

fsdk::LivenessFlyingFacesEstimation flyingFacesEstimation;
Result<fsdk::FSDKError> flyingFacesResult = livenessFlyingFacesEstimator->

estimate(
image,
detection,
flyingFacesEstimation);

Example of code (before version 5.0.0):

Result<fsdk::FSDKError> flyingFacesResult = livenessFlyingFacesEstimator->
estimate(

fsdk::Span<const fsdk::Face>(&face, 1),
fsdk::Span<fsdk::LivenessFlyingFacesEstimation>(&estimation, 1));

Example of code (from version 5.0.0):

fsdk::LivenessFlyingFacesEstimation flyingFacesEstimation;
Result<fsdk::FSDKError> flyingFacesResult = livenessFlyingFacesEstimator->

estimate(
fsdk::Span<const fsdk::Image>(&image, 1),
fsdk::Span<const fsdk::Detection>(&detection, 1),
fsdk::Span<fsdk::LivenessFlyingFacesEstimation>(&

flyingFacesEstimation, 1));

10.5 v.3.10.1

10.5.1 Detector FaceDetV3 changes

From version 3.10.1 we changed the logic for image resizing in FaceDetV3 detector. Now you can
change the minimum and maximum sizes of the faces that will be searched in the photo from the

VisionLabs B.V. 77 / 83

faceengine.conf configuration. To get new parameter which will be identical to old setting you need
to set minFaceSize:

The old recommended imageSize=640 will be identical to newmeaning of setting minFaceSize=20

config->setValue("FaceDetV3::Settings", "minFaceSize", 20);

and imageSize=320 will be identical to newmeaning of setting minFaceSize=40

config->setValue("FaceDetV3::Settings", "minFaceSize", 40);

10.5.2 Detector FaceDetV1, FaceDetV2 changes

Fromversion3.10.1we changed thenameof parameterminSize tominFaceSize infaceengine.conf
for FaceDetV1, FaceDetV2 detector types. The logic and default value for image resizing left unchanged.

VisionLabs B.V. 78 / 83

11 Best practices

11.1 Overview

The following chapter provides a set of recommendations that user should follow in order to get optimal
performance when running Luna SDK algorithms on their target device. Over time this list will be
populated with more recommendations and performance tips.

11.1.1 Thread pools

When running Luna SDK algorithms in a multithreaded environment it is highly recommended to use
thread pools for user-created threads. For each thread Luna SDK caches some amount of thread local
objects under the hood in order to make its algorithms run faster next time the same thread is used at
the cost of higher memory footprint. For this reason, it is recommended to reuse threads from a pool
in order to avoid caching new internal objects and to reduce penalty of creating/destroying new user
threads.

11.1.2 Estimators. Creation and Inference

Create face engine objects once and reuse them when you need to make a new estimate to reduce
RAM usage and increase performance. The reason is that recreating of estimators leads to reopen the
corresponding plan file every time. These plan files are cached separately for every load and will be
removed only when they are flushed from the cache or after calling the destructor of FaceEngine root
object.

11.1.3 Forking process

UNIX-like operating systems implement a mechanism to duplicate a process. It creates a new child
process and copies its parents’ memory space into the child’s. This is typically done programmatically
by calling the fork() system function in the parent process. Care should be taken when forking a process
running the SDK. Always fork before the first instance of IFaceEngine is created! This is because the
SDK internally maintains a pool of worker threads, which is created lazily at the time the very first
IFaceEngine object is born and destroyed right after the last IFaceEngine object is released. When using
GPU or NPU devices, their runtime is initialized and shut down in the same manner. The hazard comes
from the fact that while fork() copies process memory, it only creates just one thread - the main thread
(refer to man pages for details: https://man7.org/linux/man-pages/man2/fork.2.html). As a result, if
at least one IFaceEngine object is alive at the time the process is being forked, the child processes will
inherit the knowledge of the object, and therefore, the implicit thread pool (and device runtime, when
appropriate). But there will be no worker threads actually running (in both, the inherited pool and the
runtime, when appropriate) and attempting to call certain SDK functions will cause a deadlock.

VisionLabs B.V. 79 / 83

12 Appendix A. Specifications

12.1 Classification performance

Classification performance was measured on a two datasets:

• Cooperative dataset (containing 20K images from various sources obtained at several banks);
• Non cooperative dataset (containing 20K).

The two tables below contain true positive rates corresponding to select false positive rates.

Table 22: “Classification performance@ low FPR on cooperative dataset”

FPR
TPR
CNN 54

TPR
CNN 56

TPR
CNN 57

TPR
CNN 58

TPR
CNN 59

TPR CNN
54m

TPR CNN
56m

TPR CNN
59m

10-7 0.9765 0.9907 0.9906 0.9910 0.9911 0.9699 0.9652 0.9876

10-6 0.9849 0.9914 0.9915 0.9916 0.9915 0.9829 0.9814 0.9904

10-5 0.9892 0.9916 0.9917 0.9918 0.9919 0.9887 0.9886 0.9915

10-4 0.9909 0.9917 0.9918 0.9919 0.9921 0.9910 0.9910 0.9919

Table 23: “Classification performance@ low FPR on non cooperative dataset”

FPR
TPR
CNN 54

TPR
CNN 56

TPR
CNN 57

TPR
CNN 58

TPR
CNN 59

TPR CNN
54m

TPR CNN
56m

TPR CNN
59m

10-7 0.9638 0.9698 0.9723 0.9767 0.9832 0.8813 0.8844 0.9377

10-6 0.9773 0.9809 0.9817 0.9839 0.9880 0.9233 0.9229 0.9629

10-5 0.9852 0.9871 0.9873 0.9880 0.9908 0.9538 0.9561 0.9794

10-4 0.9896 0.9902 0.9905 0.9909 0.9924 0.9752 0.9757 0.9880

12.2 Descriptor size

The table below shows size of serialized descriptors to estimate memory requirements.

VisionLabs B.V. 80 / 83

Table 24: “Descriptor size”

Descriptor version Data size (bytes) Metadata size (bytes) Total size

CNN 54 512 8 520

Metadata includes signature and version information that may be omitted during serialization if the
NoSignature flag is specified.

When estimating individual descriptor size inmemory or serialization storage requirements with default
options, consider using values from the “Total size” column.

When estimating memory requirements for descriptor batches, use values from the “Data size” column
instead, since a descriptor batch does not duplicate metadata per descriptor and thus is more memory-
efficient.

These numbers are for approximate computation only, since they do not include overhead like
memory alignment for accelerated SIMD processing and the like.

VisionLabs B.V. 81 / 83

13 Appendix B. Glossary

Table 25: Glossary

Term Description

Host memory Computer system RAM

Device memory On-board RAM of GPU or NPU card

Memory transfer Operation that copies memory from host to device or vice-versa

13.1 Descriptor

A set of features meant to describe a real-world object (e.g., a person’s face). Computed by means of
computer vision algorithms, such features are typicallymatched to eachother todetermine the similarity
of represented objects.

13.2 Cooperative Photoshooting and Recognition

A procedure of taking person face photograph characterized by person awareness of the matter and
his/her will to assist.

Typical highlights:

• Close to frontal head pose;
• Neutral facial expression;
• No occlusions (i.e., hair, hats, non-transparent eyewear, hands, other objects obscuring the face);
• No extreme lighting conditions (i.e., reasonable illuminance, no direct sunlight);
• Steady and well-tuned optics (i.e., no motion blur, depth of field, digital post-processing except
noise cancellation).

Cooperative photoshooting is opposite to the so-called “in the wild” photoshooting, which is also called
non-cooperative shooting (or recognition).

13.3 Matching

The process of descriptors comparison. Matching is usually implemented as a distance function applied
to the feature sets anddistances comparison later on. The smaller thedistance, the closer aredescriptors,
hence, the more similar are the objects.

For convenience, helper functions exist to convert distance to a normalized similarity score, where 100%
means completely identical, and 0%means completely different.

VisionLabs B.V. 82 / 83

14 Appendix C. FAQ

Q: This document contains high-level descriptions and no code examples nor reference. Where can
one find them?

A: The complete type and function reference are provided as an interactive web-based documentation;
see the doc/fsdk/index.html inside the LUNA SDK package. The examples are located in the /examples
folder and “ExamplesGuide.pdf” is located in /doc folder of LUNA SDK package.

Q: Does FaceEngine support multicore / multiprocessor systems?

A: Yes, all internal algorithm implementations are multithreaded by design and take advantage of multi-
core systems. The number of threads may be controlled via the configuration file; see configuration
manual “ConfigurationGuide.pdf” or comments in the configuration file for details.

Q: What is the state of GPU support?

A: As of version 2.7 the GPU support is implemented for face detection and descriptor extraction
algorithms. Starting from version 2.9 GPU implementations are considered stable.

Q: What speedupmay be expected from GPUs?

A: Typically GPUs allow accelerating algorithms by the factor of 2-4 times depending onmicroprocessor
architecture and input data.

Q: Are there any official bindings/wrappers for other languages (C#, Java)?

A: No, such bindings are not provided. FaceEngine officially implements C++ API only, bindings to other
languages should be created by users themselves. There are tools to automate this process, like, e.g.,
SWIG.

Q: Does FaceEngine support DBMS systems?

A: No, FaceEngine implements just computer vision algorithms. Users should implement DBMS
communication themselves using serialization methods described in section “Serializable object
interface” of chapter “Core concepts” and section “Archive interface” of chapter “Core facility”.

Q: What image formats does FaceEngine support?

A: FaceEngine does not implement image format encoding functions. If such functions are required, one
should use a third-party library, e.g., FreeImage.

FaceEngine functions typically expect image data in the form of uncompressed unencoded pixel data
(RGB color 24 bits per pixel or grayscale 8 bits per pixel).

FaceEngine implements convenience functions like RGB -> grayscale and RGB<-> BGR color conversions.
The rationale of this design is explained in section “Image type” of chapter “Core concepts”.

VisionLabs B.V. 83 / 83

	Introduction
	Editions and Platforms
	MacOS differences
	Indexing

	Core Concepts
	Common Interfaces and Types
	Reference Counted Interface
	Automatic reference counting
	Serializable object interface
	Auxiliary types
	Image type

	Beta Mode

	FaceEngine Structure Overview
	Core Facility
	Common Interfaces
	Face Engine Object
	Settings Provider

	Helper Interfaces
	Archive Interface

	Sensor type
	Data Paths
	Model Data
	Configuration Data

	Detection facility
	Overview
	Detection structure
	Face Detection
	Image coordinate system
	Face detection
	Redetect method
	Detector variants
	FaceDetV1 and FaceDetV2 Configuration
	FaceDetV3 Configurating
	Face Alignment
	Five landmarks
	Sixty-eight landmarks

	Human Detection
	Image coordinate system
	Human body detection
	Constraints
	Camera position requirements
	Human body redetection
	Human Keypoints
	Detection
	Main Results of Each Detection

	Image Warping
	Parameter Estimation Facility
	Overview
	Best shot selection functionality
	BestShotQuality Estimation
	AGS
	Head Pose

	Image quality estimation

	Attributes estimation functionality
	Face Attribute Estimation
	Child Estimation
	Credibility Check Estimation

	Facial Hair Estimation
	FacialHair enumeration
	FacialHairEstimation structure
	Color/Monochrome Estimation

	Face features extraction functionality
	Eyes Estimation
	Gaze Estimation
	Glasses Estimation
	Overlap Estimation

	Emotion estimation functionality
	Emotions Estimation
	Mouth Estimation

	Liveness check functionality
	HeadAndShouldersLiveness Estimation
	LivenessFlyingFaces Estimation
	LivenessRGBM Estimation
	Depth Liveness Estimation

	Separately licensed features
	LivenessOneShotRGBEstimator
	LivenessOneShotRGBEstimator requirements
	LivenessOneShotRGBEstimation structure

	Usage example
	Personal Protection Equipment Estimation
	Medical Mask Estimation
	Medical Mask Extended Estimation
	MedicalMaskEstimator thresholds
	MedicalMask enumeration
	MedicalMaskExtended enumeration
	MedicalMaskEstimation structure
	MedicalMaskEstimationExtended structure

	Descriptor Processing Facility
	Overview
	Person Identification Task
	Person Reidentification Task

	Descriptor
	Descriptor Versions
	Face descriptor
	Human descriptor

	Descriptor Batch
	Descriptor Extraction
	Descriptor Matching
	Descriptor Indexing
	Using HNSW

	System Requirements
	Android installations

	Hardware requirements
	Embedded installations
	CPU requirements

	Android for embedded

	Migration guide
	Overview
	v.5.2.0
	v.5.1.0
	v.5.0.0
	Objects creation
	Examples of code

	Interface of ILicense
	Examples of code

	Interface of HumanLandmark
	Interface of IDescriptorBatch
	Interface of Detection
	Interface of IDetector
	IFaceDetectionBatch
	Interface of IHumanDetector
	IHumanDetectionBatch
	Interface of ILivenessFlyingFaces

	v.3.10.1
	Detector FaceDetV3 changes
	Detector FaceDetV1, FaceDetV2 changes

	Best practices
	Overview
	Thread pools
	Estimators. Creation and Inference
	Forking process

	Appendix A. Specifications
	Classification performance
	Descriptor size

	Appendix B. Glossary
	Descriptor
	Cooperative Photoshooting and Recognition
	Matching

	Appendix C. FAQ

