VisionLabs

MACHINES CAN SEE

VisionLabs FaceEngine Handbook

VisionLabs B.V. © +3120369 0493

Keizersgracht 311, 1016 EE, Amsterdam, the Netherlands 1 info@visionlabs.ai

www.visionlabs.ai

Contents

Introduction 7
1 Core Concepts 8
11 Commoninterfacesand Types 0 i e e e 8
111 Reference CountedlInterface 8

11.2 Automaticreferencecounting 8

11.3 Serializableobjectinterface 10

114 Auxiliarytypes o e e e e e 10

1.1.4.1 Imagetype 10

1.2 BetaMode. 11

2 FaceEngine Structure Overview 12
3 Core Facility 13
31 Commonlinterfaces. 13
311 FaceEngineObject. e 13

3.1.2 SettingsProvider 13

3.2 Helperinterfaces e e e e 13
3.21 Archivelnterface e 13

3.3 Sensortype e e e e e e e e e e 14
3.4 DataPaths e e e e 14
341 ModelData o e e e e 14

3.4.2 ConfigurationData 14

4 Detection facility 16
401 OVEIVIEW . o o v o e 16
4.2 Detectionstructure e e e e e 16
4.3 FaceDetection e e e e e 16
431 Imagecoordinatesystem 16

4.3.2 Facedetection 17

433 Redetectmethod e 17

4.3.4 Orientation Estimation e 17

4.3.41 OrientationTypeenumeration 18

4.3.5 Detectorvariants L 18

4.3.6 FaceDetVland FaceDetV2 Configuration 18

4.3.7 FaceDetV3 Configurating 19

4.3.8 FaceAlignment. 19

4.3.81 Fivelandmarks 19

4.3.8.2 Sixty-eightlandmarks. L. 20

VisionLabs B.V.

2/107

44 HumanDetection.

441 Imagecoordinatesystem
4,42 Humanbodydetection
443 Constraints Lo L e
4.4.4 Camera positionrequirements
4.45 Humanbodyredetection
446 HumanKeypoints
447 Detection e
4.4.8 Main Results of Each Detection

5 Image Warping

6 Parameter Estimation Facility

6.3.1.1 AGS . . .
6.3.1.2 HeadPose,

6.1 Overview
6.2 Usecases
6.21 ISOestimation
6.3 Bestshotselection functionality
6.3.1 BestShotQuality Estimation
6.3.2 Image quality estimation
6.4 Attributes estimation functionality
6.4.1 FaceAttribute Estimation
6.4.2 ChildEstimation
6.4.3 Credibility Check Estimation
6.5 Facial Hair Estimation
6.5.1 FacialHairenumeration
6.5.2 FacialHairEstimation structure
6.6 Natural Light Estimation
6.6.1 LightStatusenumeration
6.6.2 NaturalLightEstimation structure
6.7 FishEyeEstimation.
6.7.1 FishEyeenumeration
6.7.2 FishEyeEstimationstructure.
6.8 Eyebrowsestimation
6.8.1 EyeBrowStateenumeration
6.9 Portrait Style Estimation,

6.9.1 PortraitStyleStatus enumeration
6.9.2 PortraitStyleEstimation structure

VisionLabs B.V.

3/107

6.10 Headwear Estimation e e e 54

6.10.1 HeadWearState enumeration 54
6.10.2 HeadWearTypeenumeration 55
6.10.3 HeadWearStateEstimationstructure 55
6.10.4 HeadWearTypeEstimationstructure 56
6.10.5 HeadWearEstimationstructure 56

6.11 Background Estimation L 58
6.11.1 BackgroundStatus enumeration Lo 58
6.11.2 BackgroundEstimationstructure e 58

6.12 Grayscale, colororinfrared Estimation, 60
6.12.1 Byfullframe e e 60
6.12.2 Bywarpedframe 60

6.13 Face features extraction functionality 62
6.13.1 EyesEstimation e 62
6.13.2 RedEyesEstimation 63
6.13.2.1 RedEyeEstimationstructure, 63

6.13.3 GazeEstimation e 65
6.13.4 GlassesEstimation 66
6.13.5 Overlap Estimation e 67

6.14 Emotion estimation functionality, 67
6.141 EmotionsEstimation. L o 67

6.15 Mouth Estimation Functionality 68
6.15.1 Mouth Estimation e 68
6.15.1.1 MouthEstimatorthresholds 68

6.15.2 Mouth EstimationExtended oo oo oo 68

6.16 Livenesscheckfunctionality 70
6.16.1 HeadAndShouldersLiveness Estimation 70
6.16.2 LivenessFlyingFacesEstimation, m
6.16.3 LivenessRGBM Estimation L oo 72
6.16.4 Depth LivenessEstimation 73

6.17 LivenessOneShotRGBEstimator i T4
6.17.1 LivenessOneShotRGBEstimator requirements T4
6.17.2 LivenessOneShotRGBEstimationstructure T4
6.17.3 Usageexample e 75

6.18 Personal Protection Equipment Estimation, T7
6.19 Medical Mask Estimation Functionality 78
6.19.1 Medical Mask Estimation 78
6.19.2 Medical Mask Extended Estimation 78
6.19.2.1 MedicalMaskEstimatorthresholds 79

VisionLabs B.V. 4 /107

6.19.2.2 MedicalMask enumeration o e 79

6.19.2.3 MedicalMaskExtended enumeration 79

6.19.2.4 MedicalMaskEstimationstructure, 80

6.19.2.5 MedicalMaskEstimationExtended structure 80

7 Descriptor Processing Facility 82
T1 0 OVEIVIEW . o o vt e 82
710 PersonldentificationTask 82

7.1.2 PersonReidentificationTask 82

T2 Descriptor o e e e e e e e e e e e 84
721 DescriptorVersions e e e e e e e e e e 84

7.2.1.1 Facedescriptor 84

7.21.2 Humandescriptor. e 84

7.3 DescriptorBatch e e e 85
7.4 Descriptor Extraction L. e e e 86
7.5 DescriptorMatching L e e e 86

8 System Requirements 87
8.1 Androidinstallations L 87

9 Hardware requirements 88
9.1 Embeddedinstallations 88
9.1.1 CPUrequirements 88

9.2 Androidforembedded 88
10 Migration guide 89
100 OVEIVIEW . . . ot ot e 89
10.2 v.5.6.0 . . . L e e e e e e e e e e e e e e e e e 89
10.2.1 Vector2 e e e e e e e e e e e e e 89

10.2.2 BlackWhiteEstimator e 89

10.3 V.5.5.0 . . L e e e e e e e e e e e e e e e 90
10.3.0.1 Examplesofcode e 90

10.4 v.5.2.0 . . . L e e e e e e e e e e e 91
10.5 V.50 L L e e e e e e e e e e e e e e 91
10.6 v.5.0.0 . . . L e e e e e e e e e e e e e e e e e 9
10.6.1 Objectscreation e e e 91

10.6.1.1 Examplesofcode 91

10.6.2 Interfaceof ILicense e 92

10.6.2.1 Examplesofcode 92

10.6.3 Interface of HumanLandmark 94

10.6.4 Interface of IDescriptorBatch 94

VisionLabs B.V. 5/107

n

12

13

14

15

VisionLabs B.V.

10.6.5 Interfaceof Detection
10.6.6 Interfaceof IDetector
10.6.7 IFaceDetectionBatch o
10.6.8 Interface of IHumanDetector
10.6.9 IHumanDetectionBatch
10.6.10 Interface of ILivenessFlyingFaces
10.7 V.30 . . e e e e e e e e e e e e e e e e e
10.7.1 Detector FaceDetV3changes
10.7.2 Detector FaceDetV1, FaceDetV2changes

Best practices

111 OVEIVIEW . . . o o e e e e e e e e e e e e e e e e e
1101 Multithread scenario e
1.0.2 Threadpools o e e e e e
11.1.3 Estimators. Creationand Inference
1114 FOrking proCess o v i v i i i e e e e e e e e e e e

Device-specific constraints
121 Imageconstraints. L e e

Appendix A. Specifications
131 Classification performance e
13.2 DescriptorsSize o i e e e e e e e e e e

Appendix B. Glossary

1401 DesCriptor . . . v v o e e e e e e e e e e e e e
14.2 Cooperative Photoshooting and Recognition
14.3 Matching e e e e e

Appendix C. FAQ

101
101
101
101
101
101

103
103

104
104
104

106
106
106
106

107

6/107

Introduction

This short guide describes core concepts of the product, shows main FaceEngine features and suggests
usage scenarios.

This document is not a full-featured API reference manual nor a step by step tutorial. For reference pages,
please see Doxygen APl documentation that is shipped with FaceEngine. For complete examples, please
head to our developer portal.

What this book does, however, is this:

+ It describes ideas behind resource management and gives a clue why one or another decision was
made. With this in mind, you are ready to write efficient code with FaceEngine;

+ It breaks down full face analysis and recognition pipeline in parts and shows how one part affects
allthe others. Thisinformation will help you to adapt FaceEngine to your needs, which is somewhat
more productive than blindly following tutorials;

« It details things that are important and omits things that are obvious, so you get information that
matters most.

This book is split up into several chapters. There are chapters dedicated to each FaceEngine facility; there
are chapters with conceptual overviews; there are chapters with generic information. We tried to write
the book starting from low-level concepts and moving on to face detection, description and recognition
tasks solving one problem at a time. Although sometimes we just had to give references to chapters
ahead, we tried to minimize such jumps.

The opening chapter of this book is called “Core concepts”. It will tell you about memory management
techniques, object creation and destruction strategies that are widely used across the entire FaceEngine.
The following chapters catch up telling how higher level FaceEngine components are created from those
building blocks.

VisionLabs B.V. 7/107

1 Core Concepts

1.1 Common Interfaces and Types
1.1.1 Reference Counted Interface

Everything in FaceEngine object system starts from here. The IRefCounted interface provides methods
for reference counter access, increment, and decrement. All reference counted objects imply a custom
memory management model. This way they support automated destruction when reference count drops
to zero as well as more sophisticated strategies of partial destruction and weak referencing required for
FaceEngine internal needs. The bare minimum of such functions is exposed to a user allowing:

« to notify the object that it is required by a client via retaining a reference to it;
+ to notify the object that it is no longer required by releasing a reference to it;
+ to get actual reference counter value.

Reference counted objects expect some special treatment as well. Be sure never to call delete on
any pointer to object derived from IRefCounted! Doing so leads to heap corruption. Simply
calling release notifies the system when the object should be destroyed and it does this properly for
you.

However, itis not recommended to interact with the reference counting mechanism manually as doing so
may be error-prone. Instead, you are strongly advised to use smart pointers that are specially designed to
handle such objects and provided by FaceEngine. See section “Automatic reference counting” for details.

1.1.2 Automatic reference counting

For your convenience, a special smart pointer class Ref is provided. It is capable of automatic reference
counter incrementing upon its creation and automatic decrementing upon its destruction. It also does
an assertion of the inner raw pointer being non-null, thus preventing errors.

Ref<> always increments a reference counter by 1 during initialization. You may be not expecting
such behavior from it in some first-time initialization scenarios. Consider a simple example:

ISomeObjectx createSomeObject();

{

/* Here createSomeObject returns an object with initial reference count of 1

(otherwise, it would be dead). Then Ref adds another one for itself

making a total reference count of 2!

*/

Ref<ISomeObject> objref = createSomeObject();

/* Here we use the object in any way we want expecting it to be properly
destroyed when control will leave this scope.

VisionLabs B.V. 8/107

*/

+

/* Here we have left the scope and Ref was automatically destroyed like any
other object created on the stack. At the same time, it decreased
reference count of its 1internal object by 1 making it 1 again.

*/

However, the object is not destroyed automatically! For this to happen, it should have precisely 0
references. Moreover, in this example, the raw pointer to the object is lost, so it is impossible to fix it in
any way; thus a memory leak is introduced.

So keeping thatin mind we introduce a concept of ownership acquiring. By acquiringan object, you mean
thatits raw pointeris not going to be used and only a valid Ref to it is required. To acquire ownership, use
a special ::acquire() function. The fixed version of the above example would look like this:

ISomeObjectx createSomeObject();

{

/* Here createSomeObject returns an object with initial reference count of 1

(otherwise, it would be dead). Then we acquire it leaving a total

reference count of 1.

*/

Ref<ISomeObject> objref = acquire(createSomeObject());

/* Here we use the object in any way we want.

*/

+

/* Here we have left the scope and Ref was automatically destroyed like any
other object created on the stack. At the same time, it decreased
reference count of 1its internal object by 1 making it 0. The object ds
destroyed properly by the object system.

*/

Do not store or use raw pointers to the object when using the ::acquire() function, as ownership
acquiring invalidates them.

To simply make a reference to existing raw pointer, you may use the ::make_ref() function pretty much
alike to the ::acquire() function.

You can statically cast object type during acquiring or referencing. To achieve this, use special versions
of the ::make_ref_as() and ::acquire_as() functions. It is your responsibility to ensure that such a cast is
possible.

Please refer to FaceEngine Reference Manual for more details on available convenience methods and
functions.

VisionLabs B.V. 9/107

As a side note, be informed that typedefs for Ref’s to all reference counted types are declared. All of them
match the following naming convention: InterfaceNamePtr. So, for example, Ref</Detector>is equivalent
to IDetectorPtr.

1.1.3 Serializable object interface

This interface represents an object. Object’s contents may be serialized to some data stream and then
read back. Think of this as loading and saving.

To interact with the aforementioned data stream, the serializable object needs a user-provided adapter.
Such adapteris called the archive. See a detailed explanation of itin section “Archive interface” in chapter
“Core facility”.

Serializable interfaces: IDescriptor, IDescriptorBatch.

1.1.4 Auxiliary types

1.1.4.1 Image type

Since FaceEngine is a computer vision library, it is natural for it to implement some image concept.
Therefore, an Image class exists. It is designed as a reference counted container for raw pixel color
data. Reference counting allows a single image to be shared by several objects. However, one should
understand, that each Image object is holding a reference to some data, so if the data is modified in any
way, this affects all other objects holding the same reference. To make a deep copy of an Image, one
should use the clone() method, since assignment operators just make a reference. It is also possible to
clip a part of an image into a new image by means of extract() method.

Pixel data may be characterized by color channel layout, i.e., a number of color channels and their order.
The engine defines a Format structure for that. The Format determines:

« Number of color channels (e.g., RGB or grayscale);
+ Order of color channel (e.g., RGB vs. BGR).

FaceEngine assumes 8 bits (i.e., 1 byte) per color channel and implements 8 BPP grayscale, 24 BPP
RGB/BGR and padded 32 BPP formats. Format conversion functions are also provided for convenience;
see the convert() function family.

The Image class supports data range mapping. It is possible to map a subset of bytes in a rectangular
area for reading or writing. The mapped pixels are represented by the SubiImage structure. In contrast
to Image, Sublmage is just a data view and is not reference counted. You are not supposed to store
Subimages longer that itis necessary to complete data modification. See the documentation of the map()
function family for details.

The supports 10 roitines to read/write OOM, JPEG, PNG and TIFF formats via Freelmage library.

VisionLabs B.V. 10 /107

The absence of image 10 is dictated by the fact that FaceEngine focuses on being lightweight and with
the minimum possible number of external dependencies. Itis not designed solely with image processing
purpose in mind. l.e., one may treat video frames as Images and process them one by one. In this case,
an external (possibly proprietary) video codec is required.

1.2 Beta Mode

Some features in LUNA SDK are available just in Beta mode. This is experimental features which may be
unstable. If you want use them, you have to activate betaMode param in config (faceengine.conf).

VisionLabs B.V. 1/107

2 FaceEngine Structure Overview

FaceEngineis subdivided into several facilities. Each facility is dedicated to a single function. Below there
is a list of all facilities with short descriptions of functionality they provide. Detailed information may be
found in corresponding chapters of this handbook.

FaceEngine facility list:

« Core facility. This facility stores shared low-level FaceEngine types and factories. This facility
is responsible for normal functioning of all other facilities by providing settings accessors and
common interfaces. The core facility also contains the main FaceEngine root object that is used to
create instances of all higher level objects;

» Face detection facility. This facility is dedicated to object detection. It contains various object
detector implementations and factories;

« Parameter estimation facility. This facility is dedicated to various image parameter estimation,
such as blurriness, transformation and so forth. It contains various estimator implementations
and factories;

« Descriptor processing facility. This facility is dedicated to descriptor extraction and matching. The
descriptor is a set of features, describing an object, invariant to object transformation, size or other
parameters. Descriptor matching allows judging with certain probability whether two objects are
the same. This facility contains various descriptor extractors and containers as well as factories,
required to produce them.

So, each facility is a set of classes dedicated to some common for them problem domain. Facilities are
independent of each other, with several exceptions, like that all higher level facilities depend on the core
facility. Interfacility dependencies are thoroughly described in corresponding chapters of this handbook.
The actual set of facilities may vary depending on particular FaceEngine distributions as facilities may be
licensed and shipped separately.

This handbook describes the very complete FaceEngine distribution, assuming all facilities are available.
The facilities are listed in order of increasing complexity. Applying functions from these facilities in this
order allows creating a complete face detection, analysis, recognition and matching pipeline with a
significant degree of flexibility. The following chapters break down such pipeline in details.

VisionLabs B.V. 12 /107

3 Core Facility

3.1 Common Interfaces
3.1.1 Face Engine Object

The Face Engine object is a root object of the entire FaceEngine. Everything begins with it, so it is
essential to create at least one instance of it. Although it is possible to have multiple instances of the
Face Engine, it is impractical to do so (as explained in section “Automatic reference counting” in chapter
“Core concepts”). To create a Face Engine instance call createFaceEngine function. Also, you may specify
default dataPath and configPath in createFaceEngine parameters.

If you plan to use GPU acceleration, you should keep in mind CUDA runtime initialization and
shutdown. Specifically, CUDA creates global runtime object with implicit lifetime; see
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#initialization.

To prevent FaceEngine runtime and lifetime mismatch, it is recommended to avoid creating static global
instances of FaceEngine objects, as their destruction order is undetermined.

3.1.2 Settings Provider

Settings provider is a special entity that loads settings from various locations. Since settings might be
shared among several objects, it is useful to cache them to minimize disk reads and provide a dictionary-
like interface for named value lookup.

This is what the provider does. The provider object stands somewhat aside FaceEngine facility structure
and is created by a separate factory function createSettingsProvider. This function accepts configuration
file path as a parameter (see section “Configuration data” for details). By default, the engine holds a
single provider instance for all facilities. Think of it as a reference counted config file. This provider is
passed by the Face Engine object to each factory it creates. The factory, in turn, can read its configuration
data from the object and pass it further to its child objects. In typical scenarios, you should not bother
with providers as the engine does everything for you. However, when relying on custom factory creation
parameters (see the descriptionin section “Face engine object”), you have to create and supply a provider
wherever it is required manually.

3.2 Helper Interfaces
3.2.1 Archive Interface

Archive interface is used to provide serialization functions with a data source. It contains methods
primarily for data reading and writing. Note, that /Archive is not derived from IRefCounted, thus does not
imply any special memory management strategies.

A few points to keep in mind when implementing your archive:

VisionLabs B.V. 13 /107

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#initialization

« FaceEngine objects that use /Archive for serialization purposes do call only write() (during saving) or
only read() (during loading) but never both during the same process unless otherwise is explicitly
stated;

+ Duringsavingorloading FaceEngine objects are free to write or read their data in chunks; e.g., there
may be several sequential calls to write() in the scope of a single serialization request. The same
is true for read(). Basically, read() and write() should behave pretty much like C fread() and fwrite()
standard library functions.

Any IArchive implementation should be aware of these notes.

Since these interface methods are pretty obvious and mostly self-explanatory, we advise you to check
out FaceEngine Reference Manual for the details.

3.3 Sensor type

SensorType determines which type of camera sensor is used to perform estimation. Currently two types
of SensorType are available: Visible, NIR. The user can indicate the required type of sensor when
creating an object by passing the appropriate parameter.

3.4 Data Paths
3.4.1 Model Data

Various FaceEngine modules may require data files to operate. Thefiles contain various algorithm models
and constants used at runtime. All the files are gathered together into a single data directory. The data
directory location is assumed to reside in:

« Jopt/visionlabs/data on Linux
« ./data on Windows

One may override the data directory location by means of setDataDirectory() method which is available
in IFaceEngine. Current data location may be retrieved via getDataDirectory() method.

3.4.2 Configuration Data

The configurationfileis called faceengine.conf and stored in /data directory by default. ConfigurationGuide.pdf
with parameter description and default values is located at /doc package folder.

At runtime, the configuration file data is managed by a special object that implements ISettingsProvider
interface (seesection “Settings provider”). The providerisinstantiated by means of createSettingsProvider()
function that accepts configuration file location as a parameter or uses aforementioned defaults if not
specified.

VisionLabs B.V. 14 /107

One may supply a different configuration to any factory object by means of setSettingsProvider() method,
which is available in each factory object interface, including IFaceEngine. Currently, bound settings
provider may be retrieved via getSettingsProvider() method.

VisionLabs B.V. 15 /107

4 Detection facility

4,1 Overview

Object detection facility is responsible for quick and coarse detection tasks, like finding a facein animage.

4.2 Detection structure

The detection structure represents an images-space bounding rectangle of the detected object as well as
the detection score.

Detection score is a measure of confidence in the particular object classification result and may be used
to pick the most “confident” face of many.

Detection score is the measure of classification confidence and not the source image quality. While the
score is related to quality (low-quality data generally results in a lower score), it is not a valid metric to
estimate the visual quality of an image.

Special estimators exist to fulfill this task (see section “Image quality estimation” in chapter “Parameter
estimation facility” for details).

4.3 Face Detection

Object detection is performed by the IDetector object. The function of interest is detect(). It requires an
image to detect on and an area of interest (to virtually crop the image and look for faces only in the given
location).

4.3.1 Image coordinate system

The origin of the coordinate system for each processed image is located in the upper left corner.

VisionLabs B.V. 16 /107

(0.0) X

Y (image)

Figure 1: Source image coordinate system

4.3.2 Face detection

When a face is detected, a rectangular area with the face is defined. The area is represented using
coordinates in the image coordinate system.

4.3.3 Redetect method

Face detector implements redetect() method which is intended for face detection optimization on video
frame sequences. Instead of doing full-blown detection on each frame, one may detect() new faces at a
lower frequency (say, each 5th frame) and just confirm them in between with redetect(). This dramatically
improves performance at the cost of detection recall. Note that redetect() updates face landmarks as well.

Detector works faster with larger value of minFaceS+ize.

4.3.4 Orientation Estimation

This estimator aims to detect an orientation of the input image. The next outputs are supported:

« The targetimage is normal oriented ;

+ The target image is turned to the left by 90 deg;

+ The target image is flipped upsidedown;

+ The target image is turned to the right by 90 deg.

The estimator (see |OrientationEstimator in I0rientationEstimator.h):

+ Implements the estimate() function that accepts source image in R8G8B8 format and returns the
estimation result;

VisionLabs B.V. 17 /107

« Implements the estimate() function that accepts fsdk::Span of the source images in R8G8B8 format
and fsdk::Span of the fsdk::OrientationType enums to return results of estimation.

4.3.4.1 OrientationType enumeration
The OrientationType enumeration contains all possible results of the Orientation estimation:

enum OrientationType : uint32_t {

OT_NORMAL = 0, //!'< Normal orientation of image
OT_LEFT = 1, //'< Image is turned left by 90 deg
OT_UPSIDE_DOWN = 2, //!< Image is flipped upsidedown
OT_RIGHT = 3 //'< Image is turned right by 90 deg

+s

4.3.5 Detector variants

Supported detector variants:

» FaceDetV1
« FaceDetV2
o FaceDetV3

There are two basic detector families. The first of them includes two detector variants: FaceDetV1 and
FaceDetV2. The second family currently includes only one detector variant - FaceDetV3. FaceDetV3 is
the latest and most precise detector. For this type of detector can be passed sensor type. In terms of
performance FaceDetV3 is similar to FaceDetV1 detector.

User code may specify necessary detector type while creating IDetector object using parameter.
FaceDetV1and FaceDetV2 performance depends on number of faces onimage and image complexity.

FaceDetV3 performance depends only on the target image resolution.

FaceDetV3 works faster with batched redetect.

4.3.6 FaceDetV1and FaceDetV2 Configuration

FaceDetV1 detector is more precise and FaceDetV2 works two times faster (See appendix A chapter
“Appendix A. Specifications”).

FaceDetV1 and FaceDetV2 detector’s performance depend on number of faces in image. FaceDetV3
doesn’t depend on it, so it may be slower then FaceDetV1 on images with one face and much more faster
on images with many faces.

VisionLabs B.V. 18 /107

4.3.7 FaceDetV3 Configurating

FaceDetV3 detects faces from minFaceSize tominFaceS+ize * 32. You can change the minimum size of
the faces that will be searched in the photo from the faceengine. conf configuration.

For example:

config->setValue("FaceDetV3::Settings", "minFaceSize", 20);
The logic of the detector is very understandable. The smaller the face size we need to find the more time
we need.

We recommend to use such meanings forminFaceSize: 20,40 and 90. The size 90 pix is recommended
for recognition. If you want to find faces with custom size value you will need to point with size with: 95%

*x value. For example we want to find faces with size of 50 pix, it means that in config we should set:
50 * 0.95 ~ 47 pix.

FaceDetV3 may provide accurate 5 landmarks only for faces with size greater then 40x40, for smaller

faces it provides less accurate landmarks.

If you have few faces on target images and target face sizes after resize will less then 40x40, it’s
recommended to require 68 landmarks.

If you have many faces on target image (greater then 7) it will be faster increase minFaceS+ze to have
big enough faces for accurate landmarks estimation.

All last changes in Face Detection logic are described in chapter “Migration guide”.

4.3.8 Face Alignment

4.3.8.1 Five landmarks

Face alignment is the process of special key points (called “landmarks”) detection on a face. FaceEngine
does landmark detection at the same time as the face detection since some of the landmarks are by-
products of that detection.

At the very minimum, just 5 landmarks are required: two for eyes, one for a nose tip and two for mouth
corners. Using these coordinates, one may warp the source photo image (see Chapter “Image warping”)
for use with all other FaceEngine algorithms.

All detector may provide 5 landmarks for each detection without additional computations.
Typical use cases for 5 landmarks:
+ Image warping for use with other algorithms:

- Quality and attribute estimators;
- Descriptor extraction.

VisionLabs B.V. 19 /107

4.3.8.2 Sixty-eight landmarks

More advanced 68-points face alignment is also implemented. Use this when you need precise
information about face and its parts. The detected points look like in the image below.

The 68 landmarks require additional computation time, so don’t use it if you don’t need precise

information about a face. If you use 68 landmarks , 5 landmarks will be reassigned to more precise
subset of 68 landmarks.

*24
%18 *19 %20 *23

%21 %22 *25*26
*17
%37 %38 %27 *43 *x 44
36 41 %4039 *424 47 xa6% 45

%29
%15

%1 %30
#3143043343435 w14

%2

*50 %51 *52

*49 *53
%3 *61 *62 *

63
*48%60 *64% 54

+67 %65
%59 *66

*13

*55

*12
*4 *58 457 * 56

*11
*5
6 wld
*7 g

*8

Figure 2: 68-point face alignment

The typical error for landmark estimation on a warped image (see Chapter “Image warping”) is in the
table below.

VisionLabs B.V. 20 /107

Table 1: “Average point estimation error per landmark”

Error Error Error Error
Point (pixels) Point (pixels) Point (pixels) Point (pixels)
1 +3,88 18 +3,77 35 +1,62 52 +1,65
2 13,53 19 +2,83 36 +1,90 53 12,01
3 +3,88 20 +2,70 37 +1,78 54 +2,00
4 14,30 21 +3,06 38 +1,69 55 +1,93
5 +4,67 22 13,92 39 +1,63 56 2,18
6 +4,87 23 +3,46 40 +1,52 57 +2,17
7 +4.67 24 +2,59 41 +1,54 58 +1,99

14,01 25 12,53 42 1,60 59 12,32
9 3,46 26 +2,95 43 +1,55 60 12,33
10 13,87 27 13,84 44 +1,60 61 12,06
1 +4,56 28 +1,88 45 +1,74 62 +1,97
12 14,94 29 1,75 46 1,72 63 11,56
13 +4,55 30 +1,92 47 +1,68 64 +1,86
14 +4,45 31 +2,20 48 +1,65 65 +1,94
15 +4,13 32 +1,97 49 +1,99 66 +2,00
16 13,68 33 1,70 50 +1,99 67 11,70
17 +4,09 34 +1,73 51 +1,95 68 +2.12

Simple 5-point landmarks roughly correspond to:

Average of positions 37, 40 for a left eye;

Average of positions 43, 46 for a right eye;

Number 31 for a nose tip;
« Numbers 49 and 55 for mouth corners.

The landmarks for both cases are output by the face detector via Landmarks5 and Landmarks68
structures. Note, that performance-wise 5-point alignment result comes free with a face detection,
whereas 68-point result does not. So you should generally request the lowest number of points for your
task.

Typical use cases for 68 landmarks:

VisionLabs B.V. 21 /107

« Segmentation;
» Head pose estimation.

4.4 Human Detection

This functionality enables you to detect human bodies in the image.

Duringthe detection process we receive special points (called “landmarks” or exactly “HumanLandmarksi17”)
for the body parts visible in the image. These landmarks represent the keypoints of a human body (see
the Human keypoints section).

Human body detection is performed by the IHumanDetector object. The function of interest is detect(). It
requires an image to detect on.

4.4.1 Image coordinate system

The origin of the coordinate system for each processed image is located in the upper left corner.

(0,0) X

y (image)
Figure 3: Source image coordinate system

4.4.2 Human body detection

When a human body is detected, a rectangular area with the body is defined. The area is represented
using coordinates in the image coordinate system.

4.4.3 Constraints

Human body detection has the following constraints:

« Human body detector works correctly only with adult humans in an image;

VisionLabs B.V. 22 /107

+ The detector may detect a body of size from 100 px to 640 px (in an image with a long side of 640
px). You may change the input image size in the config (see ./doc/ConfigurationGuide.pdf). The
image will be resized to specified size by the larger side while maintaining the aspect ratio.

4.4.4 Camera position requirements

In general, you should locate the camera for human detection according to the image below.

Y

165 cm

N

N\
N\

100 cm

NN

Figure 4: Camera position for human detection

VisionLabs B.V. 23 /107

Follow these recommendations to correctly detect human body and keypoints:
« A person’s body should face the camera;

+ Keep angle of view as close to horizontal as possible;

There should be about 60% of the person’s body in the frame (upper body);

There must not be any objects that overlap the person’s body in the frame;

+ The camera should be located at about 165 cm from the floor, which corresponds to the average
height of a human.

The examples of wrong camera positions are shown in the image below.

VisionLabs B.V. 24 /107

Figure 5: Wrong camera positions

4.4.5 Human body redetection

Like any other detector in Face Engine SDK, human detector also implements redetection model. The
user can make full detection only in afirst frame and then redetect the same human in the next “n” frames
thereby boosting performance of the whole image processing loop.

User can use redetectOne() method if only a single human detection is required, for more complex use
cases one should use redetect() which can redetect humans from multiple images.

VisionLabs B.V. 25/107

Detector give an opportunity to detect human body keypoints in an image.

VisionLabs B.V. 26 /107

4.4.6 Human Keypoints

The image below shows the keypoints detected for a human body.

Figure 6: 17-points of human body

Point Body Part Point Body Part
0 Nose 9 Left Wrist
1 Left Eye 10 Right Wrist

VisionLabs B.V. 27 /107

Point Body Part Point Body Part

2 Right Eye 1 Left Hip
3 Left Ear 12 Right Hip
4 Right Ear 13 Left Knee

Left Shoulder 14 Right Knee

6 Right Shoulder 15 Left Ankle
7 Left Elbow 16 Right Ankle
8 Right Elbow

Cases that increase the probability of error:

+ Non-standard poses (head below the shoulders, vertical twine, lying head to the camera, etc.);

+ Camera position from above at a large angle;

+ Sometimes estimator predicts invisible points with high score, especially for points of elbows,
wrists, ears.

4.4.7 Detection

To detect Human Keypoints call detect() using fsdk: :HumanDetectionType: :DCT_BOX | fsdk::
HumanDetectionType: :DCT_POINTS argument.

Default is fsdk: :HumanDetectionType: :DCT_BOX.

4.4.8 Main Results of Each Detection

The main result of each detection is an array. Each array element consists of a point (fsdk:: Point2f) and a
score. If the score value is less than the threshold, then the value of “x” and “y” coordinates will be equal
to 0.

see ConfigurationGuide.pdf (“HumanDetector settings” section) for more information about
thresholds and configuration parameters.

VisionLabs B.V. 28 /107

5 Image Warping

Warpingis the process of face image normalization. It requires landmarks and face detection (see chapter
“Detection facility”) to operate. The purpose of the process is to:

« compensate image plane rotation (roll angle);
+ center the image using eye positions;
+ properly crop the image.

This way all warped images look the same and one can tell that, e.g., left eye is always in a box, defined
by the certain coordinates. This way certain transform invariance is achieved for input data so various
algorithms can perform better.

Figure 7: Face warping

Be aware that image warping is not thread-safe, so you have to create a warper object per worker thread.

VisionLabs B.V. 29 /107

6 Parameter Estimation Facility

6.1 Overview

The estimation facility is the only multi-purpose facility in FaceEngine. It is designed as a collection of
tools that help to estimate variousimages or depicted object properties. These properties may be used to
increase the precision of algorithms implemented by other FaceEngine facilities or to accomplish custom
user tasks.

6.2 Use cases
6.2.1 1SO estimation

LUNA SDK provides algorithms forimage check according to the requirements of the ISO/IEC 19794-5:2011
standard and compatible standards.

The requirements can be found on the official website: https://www.iso.org/obp/ui/#iso:std:iso-iec:
19794:-5:en.

The following algorithms are provided:

+ Head rotation angles (pitch, yaw, and roll angles). According to section “7.2.2 Pose” in the standard,
the angles should be +/- 5 degrees from frontal in pitch and yaw, less than +/- 8 degrees from frontal
in roll. See additional information about the algorithm in section “Head Pose”.

« Gaze. See section “7.2.3 Expression” point “e” of the standard. See additional information about
the algorithm in section “Gaze Estimation”.

« Mouth state (opened, closed, occluded) and additional properties for smile (regular smile, smile
with teeths exposed) See section “7.2.3 Expression” points “a”, “b”, and “c” of the standard. See
additional information about the algorithm in section “Mouth Estimation”.

+ Quality of the image:

- Contrast and saturation (insufficient or too large exposure). See sections “7.2.7 Subject and
scene lighting” and “7.3.2 Contrast and saturation” of the standard.

- Blurring. See section “7.3.3 Focus and depth of field” of the standard.

- Specularity. See section “7.2.8 Hot spots and specular reflections” and “7.2.12 Lighting
artefacts” of the standard.

- Uniformity of illumination. See sections “7.2.7 Subject and scene lighting” and “7.2.12 Lighting
artefacts” of the standard.

See additional information about the algorithm in section “Image quality estimation”.

+ Glasses state (no glasses, glasses, sunglasses). See section “7.2.9 Eye glasses” of the standard. See
additional information about the algorithm in section “Glasses Estimation”.

VisionLabs B.V. 30/107

https://www.iso.org/obp/ui/#iso:std:iso-iec:19794:-5:en
https://www.iso.org/obp/ui/#iso:std:iso-iec:19794:-5:en

Eyes state (for each eye: opened, closed, occluded). See sections “7.2.3 Expression” point “a”,
“7.2.11 Visibility of pupils and irises” and “7.2.13 Eye patches” of the standard. See additional
information about the algorithm in section “Eyes Estimation”.

+ Natural light estimation. See section “7.3.4 Unnatural colour” of the standard. See additional
information about the algorithm in section “Natural Light Estimation”.

+ Eybrows state: neutral, raised, squinting, frowning. See section “7.2.3 Expression” points “d”, “f”,

and “g” of the standard. See additional information about the algorithm in section “Eyebrows
estimation”.

« Position of a person’s shoulders in the original image: the shoulders are parallel to the camera or
not. See section “7.2.5 Shoulders” of the standard. See additional information about the algorithm
in section “Portrait Style Estimation”.

Headwear. Checks if there is a headwear on a person or not. Several types of headwear can be
estimated. See section “B.2.7 Head coverings” of the standard. See additional information about
the algorithm in section “Headwear Estimation”.

+ Red eyes estimation. Checks if there is a red eyes effect. See section “7.3.4 Unnatural colour” of
the standard. See additional information about the algorithm in section “Red Eyes Estimation”.

Radial distortion estimation. See section “7.3.6 Radial distortion of the camera lens” of the

standard. See additional information about the algorithm in section “Fish Eye Estimation”.

)

Image type estimation: color, grayscale, infrared. See section “7.4.4 Use of near infra-red cameras’
of the standard. See additional information about the algorithm in section “Grayscale, color or
infrared Estimation”.

Background estimation: background uniformity and if a background is too light or too dark. See
section “B.2.9 Backgrounds” of the standard. See additional information about the algorithm in
section “Background Estimation”.

6.3 Best shot selection functionality
6.3.1 BestShotQuality Estimation

The BestShotQuality estimator was added to evaluate image quality to choose the best image before
descriptor extraction.

The estimator (see IBestShotQualityEstimator in IBestShotQualityEstimator.h): - Implements the
estimate() function that needs fsdk::Image in R8G8B8 format, fsdk::Detection structure
of corresponding source image (see section “Detection structure” in chapter “Face detection
facility”), fsdk::IBestShotQualityEstimator::EstimationRequest structure and fsdk::
IBestShotQualityEstimator::EstimationResult to store estimation result; - Implements the

VisionLabs B.V. 31/107

estimate() function that needs the span of fsdk::Image in R8G8B8 format, the span of fsdk::
Detection structures of corresponding source images (see section “Detection structure” in chapter
“Face detection facility”), fsdk::IBestShotQualityEstimator::EstimationRequest structure
and span of fsdk: : IBestShotQualityEstimator: :EstimationResult to store estimation results.

Before using this estimator, user is free to decide whether to estimate or not some listed attributes. For
this purpose, estimate() method takes one of the estimation requests:

o fsdk::IBestShotQualityEstimator::EstimationRequest::estimateAGS to make only
AGS estimation;

o fsdk::IBestShotQualityEstimator::EstimationRequest::estimateHeadPose to
make only Head Pose estimation;

o fsdk::IBestShotQualityEstimator::EstimationRequest::estimateAll to make both
AGS and Head Pose estimations;

The description of attributes returned by the estimate() method is given below.

6.3.1.1 AGS
AGS (garbage score) aims to determine the source image score for further descriptor extraction and

matching.

Estimation output is a float score which is normalized in range [0..1]. The closer score to 1, the better

matching result is received for the image.
When you have several images of a person, it is better to save the image with the highest AGS score.

Recommended threshold for AGS score is equal to 0.2. But it can be changed depending on the
purpose of use. Consult VisionLabs about the recommended threshold value for this parameter.

6.3.1.2 Head Pose
Head Pose determines person head rotation angles in 3D space, namely pitch, yaw and roll.

VisionLabs B.V. 32 /107

Since 3D head translation is hard to determine

rotation component is estimated.

Head pose estimation characteristics:

+ Units (degrees);
+ Notation (Euler angles);
« Precision (see table below).

pitch

Figure 8: Head pose

reliably without camera-specific calibration, only 3D

Prediction precision decreases as a rotation angle increases. We present typical average errors for

different angle ranges in the table below.

Table 3: “Head pose prediction precision”

Range -45°,..+45° <-45° or > +45°
Average prediction error (per axis) Yaw +2.7° +4.6°
Average prediction error (per axis) Pitch +3.0° +4.8°
Average prediction error (per axis) Roll +3.0° +4.6°

Zero position corresponds to a face placed orthogonally to camera direction, with the axis of symmetry

parallel to the vertical camera axis.

VisionLabs B.V.

33/107

6.3.2 Image quality estimation

The estimator is trained to work with warped images (see Chapter “Image warping” for details).
The general rule of thumb for quality estimation:

1. Detect a face, see if detection confidence is high enough. If not, reject the detection;

2. Produce a warped face image (see chapter “Descriptor processing facility”) using a face detection
and its landmarks;

3. Estimate visual quality using the estimator, finally reject low-quality images.

While the scheme above might seem a bit complicated, it is the most efficient performance-wise, since
possible rejections on each step reduce workload for the next step.

At the moment estimator exposes two interface functions to predict image quality:

« virtual Result estimate(const Image& warp, Quality& quality);
« virtual Result estimate(const Image& warp, SubjectiveQuality& quality);

Each one of this functions use its own CNN internally and return slightly different quality criteria.

The first CNN is trained specifically on pre-warped human face images and will produce lower score
factors if one of the following conditions are satisfied:

+ Image is blurred;

+ Image is under-exposured (i.e., too dark);

+ Image is over-exposured (i.e., too light);

+ Image color variation is low (i.e., image is monochrome or close to monochrome).

Each one of this score factors is defined in [0..1] range, where higher value corresponds to better image
quality and vice versa.

Recommended thresholds for image quality of the first interface function are given below:
“saturationThreshold”: 0.0; “blurThreshold”: 0.93; “lightThreshold”: 0.9; “darkThreshold”: 0.9;
The second interface function output will produce lower factor if:

+ Theimage is blurred;

« The image is underexposed (i.e., too dark);

« The image is overexposed (i.e., too light);

+ The face in the image is illuminated unevenly (there is a great difference between light and dark
regions);

+ Image contains flares on face (too specular).

The estimator determines the quality of the image based on each of the aforementioned parameters. For
each parameter, the estimator function returns two values: the quality factor and the resulting verdict.

As with the first estimator function the second one will also return the quality factors in the range [0..1],
where 0 corresponds to low image quality and 1 to high image quality. E. g., the estimator returns low

VisionLabs B.V. 34 /107

quality factor for the Blur parameter, if the image is too blurry.

The resulting verdict is a quality output based on the estimated parameter. E. g., if the image is too blurry,
the estimator returns “isBlurred = true”.

Thethreshold can be specified for each of the estimated parameters. The resulting verdict and the quality
factor are linked through this threshold. If the received quality factor is lower than the threshold, the
image quality is low and the estimator returns “true”. E. g., if the image blur quality factor is higher than
the threshold, the resulting verdict is “false”.

If the estimated value for any of the parameters is lower than the corresponding threshold, the image is
considered of bad quality. If resulting verdicts for all the parameters are set to “False” the quality of the
image is considered good.

Examples are presented in the images below. Good quality images are shown on the right.

Figure 9: Blurred image (left), not blurred image (right)

VisionLabs B.V. 35/107

Figure 10: Dark image (left), good quality image (right)

- e
ER 4

Figure 11: Light image (left), good quality image (right)

VisionLabs B.V. 36 /107

Figure 12: Image with uneven illumination (left), image with even illumination (right)

Figure 13: Image with specularity - image contains flares on face (left), good quality image (right)

The quality factor is a value in the range [0..1] where 0 corresponds to low quality and 1 to high quality.

Illumination uniformity corresponds to the face illumination in the image. The lower the difference
between light and dark zones of the face, the higher the estimated value. When the illumination is
evenly distributed throughout the face, the value is close to “1”.

VisionLabs B.V. 37/107

Specularity is a face possibility to reflect light. The higher the estimated value, the lower the
specularity and the better the image quality. If the estimated value is low, there are bright glares

on the face.

Table 4: Image quality parameters and their thresholds
Threshold Estimated property Recomended range Default value
blurThreshold Blur [0.57..0.65] 0.61
darknessThreshold Darkness [0.45..0.52] 0.50
lightThreshold Light [0.44..0.61] 0.57
illuminationThreshold Illumination uniformity [0..0.3] 0.1
specularityThreshold Specularity [0..0.3] 0.1

The most important parameters for face recognition are “blurThreshold”, “darknessThreshold” and
“lightThreshold”, so you should select them carefully.

You can select images of better visual quality by setting higher values of the “illuminationThreshold” and
“specularityThreshold”. Face recognition is not greatly affected by uneven illumination or glares.

6.4 Attributes estimation functionality
6.4.1 Face Attribute Estimation

The estimator is trained to work with warped images (see Chapter “Image warping” for details).
The Attribute estimator determines face attributes. Currently, the following attributes are available:

+ Age: determines person’s age;
+ Gender: determines person’s gender;

Before using attribute estimator, user is free to decide whether to estimate or not some specific attributes
listed above through IAttributeEstimator::EstimationRequest structure, which later get passed in main
estimate() method. Estimator overrides IAttributeEstimator::AttributeEstimationResult output structure,
which consists of optional fields describing results of user requested attributes.

« Ageisreported in years:

- For cooperative (see “Appendix B. Glossary”) conditions: average error depends on person
age, see table below for additional details. Estimation precision is 2.3

«+ For gender estimation 1 means male, 0 means female.

VisionLabs B.V. 38 /107

- Estimation precision in cooperative mode is 99.81% with the threshold 0.5;
- Estimation precision in non-cooperative mode is 92.5%.

Table 5: “Average age estimation error per age group for cooperative conditions”

Age (years) Average error (years)

0-3 3.3

4-7 +2.97
8-12 +3.06
13-17 +4.05
17-20 +3.89
20-25 +1.89
25-30 +1.88
30-35 +2.42
35-40 +2.65
40-45 +2.78
45-50 +2.88
50-55 +2.85
55-60 +2.86
60-65 +3.24
65-70 +3.85
70-75 +4.38
75-80 +6.79

Note In earlier releases of Luna SDK Attribute estimator worked poorly in non-cooperative mode (only
56% gender estimation precision), and did not estimate child’s age. Having solved these problems
average estimation error per age group got a bit higher due to extended network functionality.

VisionLabs B.V. 39/107

6.4.2 Child Estimation

This estimator tells whether the person is child or not. Child is a person who younger than 18 years old. It
returns a structure with 2 fields. One is the score in the range from 0.0 (is adult) to 1.0 (maximum, is child),
the second is a boolean answer. Boolean answer depends on the threshold in config (faceengine.conf).
If the value is more than the threshold, the answer is true (person is child), else - false (person is adult).

The estimator (see IChildEstimator in IChildEstimator.h):

+ Implements the estimate() function accepts warped source image (see chapter “Image warping”).
Warped image is received from the warper (see IWarper::warp());

« Estimates whether the person is child or not on input warped image;

« Outputs ChildEstimation structure. Structure consists of score of and boolean answer.

VisionLabs B.V. 40 /107

6.4.3 Credibility Check Estimation

This estimator estimates reliability of a person.

The estimator (see ICredibilityCheckEstimator in ICredibilityCheckEstimator.h):

+ Implements the estimate() function that accepts warped image in R8B8G8 format and fsdk: :

CredibilityCheckEstimation structure.

+ Implements the estimate() function that accepts span of warped images in R8B8G8 format and

span of fsdk: :CredibilityCheckEstimation structures.

Note. The estimator is trained to work with face images that meet the following requirements:

Attribute

pitch
yaw

roll

VisionLabs B.V.

Table 6: “Requirements for fsdk: :HeadPoseEstimation”

Acceptable angle range(degrees)

[-20...20]
[-20...20]
[-20...20]

Table 7: “Requirements for fsdk: : SubjectiveQuality”

Attribute Minimum value

blur 0.61
light 0.57

Table 8: “Requirements for fsdk: :AttributeEstimationResult”

Attribute Minimum value

age 18

41/107

Table 9: “Requirements for fsdk: :OverlapEstimation”

Attribute State

overlapped false

Table 10: “Requirements for fsdk: :Detection”

Attribute Minimum value

detection size 100

Note. Detection size is detection width.

const fsdk::Detection detection = ... // somehow get fsdk::Detection object
const int detectionSize = detection.getRect() .width;

VisionLabs B.V. 42 /107

6.5 Facial Hair Estimation

This estimator aims to detect a facial hair type on the face in the source image. It can return the next
results:

+ There is no hair on the face (see FacialHair::NoHair field in the FacialHair enum);

» There is stubble on the face (see FacialHair::Stubble field in the FacialHair enum);

« There is mustache on the face (see FacialHair::Mustache field in the FacialHair enum);
« Thereis beard on the face (see FacialHair::Beard field in the FacialHair enum);

The estimator (see IFacialHairEstimator in IFacialHairEstimator.h):

« Implements the estimate() function that accepts source warped image in R8G8B8 format and
FacialHairEstimation structure to return results of estimation;

+ Implements the estimate() function that accepts fsdk::Span of the source warped images in R8G8B8
format and fsdk::Span of the FacialHairEstimation structures to return results of estimation.

6.5.1 FacialHair enumeration

The FacialHair enumeration contains all possible results of the FacialHair estimation:

enum class FacialHair {

NoHair = 0, //!'< no hair on the face
Stubble, //!'< stubble on the face
Mustache, //!'< mustache on the face
Beard //!< beard on the face

15

6.5.2 FacialHairEstimation structure

The FacialHairEstimation structure contains results of the estimation:

struct FacialHairEstimation {

FacialHair result; //!< estimation result (@see FacialHair
enum)

// scores

float noHairScore; //'< no hair on the face score

float stubbleScore; //!< stubble on the face score

float mustacheScore; //!< mustache on the face score

float beardScore; //!< beard on the face score

+s

There are two groups of the fields:

VisionLabs B.V. 43 /107

1. The first group contains only the result enum:

FacialHair result; //'< estimation result (@see FacialHair
enum)

Result enum field FacialHairEstimation contain the target results of the estimation.

2. The second group contains scores:

float noHairScore; //'< no hair on the face score
float stubbleScore; // < stubble on the face score
float mustacheScore; //!< mustache on the face score
float beardScore; //!< beard on the face score

The scores group contains the estimation scores for each possible result of the estimation. All scores are
defined in [0,1] range. Sum of scores always equals 1.

Note. The estimator is trained to work with face images that meet the following requirements:

Table 11: “Requirements for fsdk: :HeadPoseEstimation”

Attribute Acceptable angle range(degrees)
pitch [-40...40]
yaw [-40...40]
roll [-40...40]

Table 12: “Requirements for fsdk: :MedicalMaskEstimation”

Attribute State

result fsdk::MedicalMask::NoMask

Table 13: “Requirements for fsdk: :Detection”

Attribute Minimum value

detection size 40

VisionLabs B.V. 44 /107

Note. Detection size is detection width.

const fsdk::Detection detection = ... // somehow get fsdk::Detection object
const int detectionSize = detection.getRect().width;

VisionLabs B.V. 45 /107

6.6 Natural Light Estimation

This estimator aims to detect a natural light on the source face image. It can return the next results:

« Lightis not natural on the face image (see LightStatus::NonNatural field in the LightStatus enum);
« Lightis natural on the face image (see LightStatus::Natural field in the LightStatus enum);

The estimator (see INaturalLightEstimator in INaturalLightEstimator.h):

+ Implements the estimate() function that accepts source warped image in R8G8B8 format and
NaturalLightEstimation structure to return results of estimation;

« Implementsthe estimate() function that accepts fsdk::Span of the source warped images in R8G8B8
format and fsdk::Span of the NaturalLightEstimation structures to return results of estimation.

6.6.1 LightStatus enumeration

The LightStatus enumeration contains all possible results of the NaturalLight estimation:

enum class LightStatus : uint8_t {
NonNatural = 0, //!< light is not natural
Natural = 1 //'< light is natural

+s

6.6.2 NaturalLightEstimation structure

The NaturalLightEstimation structure contains results of the estimation:

struct NaturalLightEstimation {

LightStatus status; //!< estimation result (@see
NaturalLight enum).

float score; //'< Numerical value in range [0,
1].

}s
There are two groups of the fields:

1. The first group contains only the result enum:

LightStatus status; //!< estimation result (@see
LightStatus enum).

Result enum field NaturalLightEstimation contain the target results of the estimation.

2. The second group contains scores:

VisionLabs B.V. 46 /107

float score; //'< Numerical value in range [0,
1].

The scores group contains the estimation scores for each possible result of the estimation. All scores are
defined in [0,1] range. Sum of scores always equals 1.

Note. The estimator is trained to work with face images that meet the following requirements:

Table 14: “Requirements for fsdk: :MedicalMaskEstimation”

Attribute State

result fsdk::MedicalMask::NoMask

Table 15: “Requirements for fsdk: : SubjectiveQuality”

Attribute Minimum value

blur 0.5

Also fsdk: :GlassesEstimation must not be equal to fsdk::GlassesEstimation::SunGlasses

VisionLabs B.V. 47 /107

6.7 Fish Eye Estimation

This estimator aims to detect a fish eye effect on the source face image. It can return the next results:

+ There is no fish eye effect on the face image (see FishEye::NoFishEyeEffect field in the FishEye

enum);
« There is fish eye effect on the face image (see FishEye::FishEyeEffect field in the FishEye enum).

The estimator (see IFishEyeEstimator in IFishEyeEstimator.h):

+ Implements the estimate() function that accepts source image in R8G8B8 format, face detection
and FishEyeEstimation structure to return results of estimation;

« Implements the estimate() function that accepts fsdk::Span of the source images in R8G8B8
format, fsdk::Span of the face detections and fsdk::Span of the FishEyeEstimation structures to

return results of estimation.

6.7.1 FishEye enumeration

The FishEye enumeration contains all possible results of the FishEye estimation:

enum class FishEye {
NoFishEyeEffect = 0, //!< no fish eye effect
FishEyeEffect = 1 //'< with fish eye effect

+s

6.7.2 FishEyeEstimation structure
The FishEyeEstimation structure contains results of the estimation:
struct FishEyeEstimation {

FishEye result; //'< estimation result (@see FishEye enum)
float score; //'< fish eye effect score

}s
There are two groups of the fields:
1. The first group contains only the result enum:
FishEye result; //!'< estimation result (@see FishEye enum)

Result enum field FishEyeEstimation contain the target results of the estimation.

2. The second group contains scores:

VisionLabs B.V. 48 /107

float score;

The scores group contains the estimation score.

Note. The estimator is trained to work with face images that meet the following requirements:

Table 16: “Requirements for fsdk: :HeadPoseEstimation”

Attribute Acceptable angle range(degrees)
pitch [-20...20]

yaw [-25...25]

roll [-10...10]

Table 17: “Requirements for fsdk: :Detection”

Attribute Minimum value

detection size 80

Note. Detection size is detection width.

const fsdk::Detection detection =
const int detectionSize = detection.getRect().width;

Also, the estimator is designed to be used on a face images from a cooperative domain. Which means:

+ High image quality;
+ Frontal face looking directly at the camera.

VisionLabs B.V. 49 /107

6.8 Eyebrows estimation

The EyeBrowEstimator is trained to estiamte eyebrow expressions.

The EyeBrowEstimator

returning four scores for each possible eyebrow expression. Which are - neutral, raised, squinting,

frowning. Possible scores are in the range [0, 1].

If score closer to 1, it means that detected expression onimage is more likely to real expression and closer

to 0 otherwise.

Along with the output score value estimator also returns an enum value (EyeBrowState). The index of the

maximum score determines the EyeBrow state.

+ Implements the estimate() function accepts warped source image (see chapter “Image warping”).

Warped image is received from the warper (see IWarper::warp()); Output estimation is a structure

fsdk::EyeBrowEstimation

« Implements the estimate() function that needs the span of warped source images and span

of structure fsdk::EyeBrowEstimation.

EyeBrowEstimation.

6.8.1 EyeBrowState enumeration

The EyeBrowEstimation structure contains results of the estimation:

struct EyeBrowEstimation {

[**

* @brief EyeBrow estimator output enum.

* This enum contains all possible estimation results.

*% /
enum class EyeBrowState {
Neutral = 0,
Raised,
Squinting,
Frowning

b

float neutralScore;

float raisedScore;

float squintingScore;
float frowningScore;
EyeBrowState eyeBrowState;

+s

VisionLabs B.V.

[/1t<
// 1<
// 1<
/ /1<
//1<

O0(not neutral)..l(neutral).
O(not raised)..1l(raised).

O(not squinting)..1l(squinting).

0(not frowning)..1l(frowning).
EyeBrow state

Output estimation is a span of structure fsdk::

50/107

Table 18: “Requirements for fsdk: : EyeBrowEstimation”

Attribute Acceptable values

headPose.pitch [-20...20]
headPose.yaw [-20...20]
headPose.roll [-20...20]

Table 19: “Requirements for fsdk: : Detection”

Attribute Minimum value

detection size 80

Note. Detection size is detection width.

const fsdk::Detection detection = ... // somehow get fsdk::Detection object
const int detectionSize = detection.getRect().width;

VisionLabs B.V. 51/107

6.9 Portrait Style Estimation

This estimator is designed to estimate the position of a person’s shoulders in the original image. It can
return the following results:

« The shoulders are not parallel to the camera (see the PortraitStyleStatus::NonPortrait field in the
PortraitStyleStatus enum);

« Shouldersare parallel to the camera (see the PortraitStyleStatus::Portrait field in the PortraitStyleStatus
enum);

Estimator (see IPortraitStyleEstimator in IPortraitStyleEstimator.h):

« Implemented estimate() function that accepts R8G8B8 source image, detection and PortraitStyleEstimation
structure to return estimation results;

+ Implements an estimate() function that accepts fsdk::Span of R8G8B8 source images, fsdk::Span
of detections, and fsdk::Span of PortraitStyleEstimation structures to return estimation results.

6.9.1 PortraitStyleStatus enumeration

The PortraitStyleStatus enumeration contains all possible results of the PortraitStyle estimation:

enum class PortraitStyleStatus : uint8_t {
NonPortrait = 0, //!'< NonPortrait
Portrait = 1 //!'< Portrait

+s

6.9.2 PortraitStyleEstimation structure

The PortraitStyleEstimation structure contains results of the estimation:

struct PortraitStyleEstimation {
PortraitStyleStatus status; //!< estimation result (@see
PortraitStyleStatus enum).
float score; //'< numerical value in range [0, 1].

}s
There are two groups of the fields:

1. The first group contains the enum:

PortraitStyleStatus status; //!< estimation result (@Esee
PortraitStyleStatus enum).

VisionLabs B.V. 52 /107

Result enum field PortraitStyleStatus contain the target results of the estimation.

2. The second group contains score:

float score; //'< numerical value in range [0, 1].

The score is defined in [0,1] range.
Note. The estimator is trained to work with face images that meet the following requirements:

Type of preferable detector is FaceDetV3.

Table 20: “Requirements for Detector”

Attribute Min face size

result 40

Table 21: “Requirements for fsdk: :HeadPoseEstimation”

Attribute Maximum value

yaw 20.0
pitch 20.0
rooll 20.0

VisionLabs B.V. 53 /107

6.10

Headwear Estimation

This estimator aims to detect a headwear status and headwear type on the face in the source image.

It can return the next headwear status results:

There is headwear (see HeadWearState::Yes field in the HeadWearState enum);
There is no headwear (see HeadWearState::No field in the HeadWearState enum);

And this headwear type results:

There is no headwear on the head (see HeadWearType::NoHeadWear field in the HeadWearType
enum);

There is baseball cap on the head (see HeadWearType::BaseballCap field in the HeadWearType
enum);

There is beanie on the head (see HeadWearType::Beanie field in the HeadWearType enum);

There is peaked cap on the head (see HeadWearType::PeakedCap field in the HeadWearType
enum);

There is shawl on the head (see HeadWearType::Shawl field in the HeadWearType enum);

There is hat with ear flaps on the head (see HeadWearType::HatWithEarFlaps field in the
HeadWearType enum);

There is helmet on the head (see HeadWearType::Helmet field in the HeadWearType enum);
There is hood on the head (see HeadWearType::Hood field in the HeadWearType enum);

There is hat on the head (see HeadWearType::Hat field in the HeadWearType enum);

Thereis something other on the head (see HeadWearType::Otherfield in the HeadWearType enum);

The estimator (see IHeadWearEstimator in IHeadWearEstimator.h):

Implements the estimate() function that accepts warped image in R8G8B8 format and
HeadWearEstimation structure to return results of estimation;

Implements the estimate() function that accepts fsdk::Span of the source warped images in R8G8B8
format and fsdk::Span of the HeadWearEstimation structures to return results of estimation.

6.10.1 HeadWearState enumeration

The HHeadWearState enumeration contains all possible results of the Headwear state estimation:

enum class HeadWearState {
Yes = 0,
No,
Count

+s

VisionLabs B.V. 54 /107

6.10.2 HeadWearType enumeration

The HeadWearType enumeration contains all possible results of the Headwear type estimation:

enum class HeadWearType : uint8_t {

NoHeadWear = 0, //< there is no headwear on the head
BaseballCap, //< there 1is baseball cap on the head
Beanie, //< there 1is beanie on the head
PeakedCap, //< there is peaked cap on the head
Shawl, //< there is shawl on the head
HatWithEarFlaps, //< there 1dis hat with ear flaps on the head
Helmet, //< there is helmet on the head

Hood, //< there is hood on the head

Hat, //< there is hat on the head

Other, //< something other 1is on the head
Count

s

6.10.3 HeadWearStateEstimation structure

The HeadWearStateEstimation structure contains results of the Headwear state estimation:

struct HeadWearStateEstimation {
HeadWearState result; //!< estimation result (@see HeadWearState
enum)
float scores[static_cast<int>(HeadWearState::Count)]; //!<
estimation scores

[*xx
@brief Returns score of required headwear state.
@param [in] state headwear state.

@see HeadWearState for more info.
*/

inline float getScore(HeadWearState state) const;

* % % %

+s
There are two groups of the fields:

1. The first group contains only the result enum:

HeadWearState result; //!< estimation result (@see HeadWearState
enum)

VisionLabs B.V. 55/107

2. The second group contains scores:

float scores[static_cast<int>(HeadWearState::Count)]; //!<
estimation scores

The scores group contains the estimation scores for each possible result of the estimation. All scores are
defined in [0,1] range. Sum of scores always equals 1.

6.10.4 HeadWearTypeEstimation structure

The HeadWearTypeEstimation structure contains results of the Headwear type estimation:

struct HeadWearTypeEstimation {
HeadWearType result; //!< estimation result (@see HeadWearType enum)
float scores[static_cast<int>(HeadWearType::Count)]; //!< estimation
scores

[*x*
* @brief Returns score of required headwear type.
* @param [in] type headwear type.
* @see HeadWearType for more info.

* %/
inline float getScore(HeadWearType type) const;
}s

There are two groups of the fields:

1. The first group contains only the result enum:

HeadWearType result; //!< estimation result (@see HeadWearType enum)

2. The second group contains scores:

float scores[static_cast<int>(HeadWearType::Count)]; //!< estimation
scores

The scores group contains the estimation scores for each possible result of the estimation. All scores are
defined in [0,1] range. Sum of scores always equals 1.

6.10.5 HeadWearEstimation structure

The HeadWearEstimation structure contains results of both Headwear state and type estimations:

VisionLabs B.V. 56 /107

struct HeadWearEstimation {
HeadWearStateEstimation state; //!< headwear state estimation
//!< (@see HeadWearStateEstimation)
HeadWearTypeEstimation type; //'< headwear type estimation

//'< (@see HeadWearTypeEstimation)
}s

VisionLabs B.V. 57 /107

6.11 Background Estimation

This estimator is designed to estimate the background in the original image. It can return the following
results:

+ The background is non-solid (see the BackgroundStatus::NonSolid field in the BackgroundStatus
enum);
+ The background is solid (see the BackgroundStatus::Solid field in the BackgroundStatus enum);

Estimator (see IBackgroundEstimator in IBackgroundEstimator.h):

« Implemented estimate() function that accepts R8G8B8 sourceimage, detection and BackgroundEstimation
structure to return estimation results;

« Implements an estimate() function that accepts fsdk::Span of R8G8B8 source images, fsdk::Span
of detections, and fsdk::Span of BackgroundEstimation structures to return estimation results.

6.11.1 BackgroundStatus enumeration

The BackgroundStatus enumeration contains all possible results of the Background estimation:

enum class BackgroundStatus : uint8_t {
NonSolid = 0, //!< NonSolid
Solid =1 //!< Solid

};

6.11.2 BackgroundEstimation structure

The BackgroundEstimation structure contains results of the estimation:

struct BackgroundEstimation {

BackgroundStatus status; //!< estimation result (@see
BackgroundStatus enum).
float backgroundScore; //!'< numerical value in range [0, 1],

where 1 - 1is uniform background, © - is non uniform.
float backgroundColorScore; //!< numerical value 1in range [0, 1],
where 1 - is light background, 0 - is too dark.

}s
There are two groups of the fields:

1. The first group contains the enum:

VisionLabs B.V. 58 /107

BackgroundStatus status; //!< estimation result (@see
BackgroundStatus enum).

Result enum field BackgroundStatus contain the target results of the estimation.

2. The second group contains scores:

float backgroundScore; //!'< numerical value in range [0, 1],
where 1 - 1is solid background, @ - is non solid.

float backgroundColorScore; //!< numerical value in range [0, 1],
where 1 - 1is light background, © - is too dark.

The scores are defined in [0,1] range. If two scores are above the threshold, then the background is solid,
otherwise the background is not solid.

Note. The estimator is trained to work with face images that meet the following requirements:

The type of preferable detector is FaceDetV3.

Table 22: “Requirements for Detector”

Attribute Min face size

result 40

Table 23: “Requirements for fsdk: :HeadPoseEstimation”

Attribute Maximum value

yaw 20.0
pitch 20.0
roll 20.0

VisionLabs B.V. 59 /107

6.12 Grayscale, color or infrared Estimation

BlackWhite estimator has two interfaces.

6.12.1 By full frame

This interface detects if an input image is grayscale or color. It is indifferent to image content and

dimensions; you can pass both face crops (including warped images) and full frames.

It implements estimate() function that accepts source image and outputs a boolean, indicating if the

image is grayscale (true) or not (false).

6.12.2 By warped frame

The second interface can be used only with warped images (see Chapter “Image warping” for details).

Checks if an image is color, grayscale or infrared.

« Implements the estimate() function that accepts warped source image (see Chapter “Image

warping” for details).

« Outputs ImageColorEstimation structures.

struct ImageColorEstimation {

}s

float colorScore; //!'< 0(grayscale)..l(color);
float infraredScore; //'< 0(infrared)..1(not infrared);
[x*

* @brief Enumeration of possible image color types.
* %/

enum class ImageColorType : uint8_t {

Color = 0, //!< image 1is color.
Grayscale, //!< Image 1is grayscale.
Infrared, //!< Image 1is infrared.

+s

ImageColorType colorType;

ImageColorEstimation::ImageColorType presentscolorimage type asenum with possible values:

Color, Grayscale, Infrared.

- For color 1image score "colorScore’ will be close to 1.0 and the second one
“infraredScore’ - to 0.0;

VisionLabs B.V.

60 /107

- for +dinfrared +image score “colorScore’ will be close to 0.0 and the second
one “infraredScore’ - to 1.0;
- for grayscale images both of scores will be near 0.0.

Note. Both interfaces use different principles of color type estimation.

Note. BlackWhite estimator is trained to work with real warped photo of faces. We do not guarantee
correctness when the people in the photo are fake (not real, such as the photo in the photo).

VisionLabs B.V. 61/107

6.13 Face features extraction functionality
6.13.1 Eyes Estimation

The estimator is trained to work with warped images (see Chapter “Image warping” for details).
For this type of estimator can be defined sensor type.
This estimator aims to determine:

« Eye state: Open, Closed, Occluded;
« Precise eye iris location as an array of landmarks;
+ Precise eyelid location as an array of landmarks.

You can only pass warped image with detected face to the estimator interface. Betterimage quality leads
to better results.

Eye state classifier supports three categories: “Open”, “Closed”, “Occluded”. Poor quality images or ones
that depict obscured eyes (e.g. eyewear, hair, gestures) fall into the “Occluded” category. It is always a
good idea to check eye state before using the segmentation result.

The precise location allows iris and eyelid segmentation. The estimator is capable of outputting iris and
eyelid shapes as an array of points together forming an ellipsis. You should only use segmentation results
if the state of that eye is “Open”.

The estimator:

+ Implements the estimate() function that accepts warped source image (see Chapter “Image
warping”) and warped landmarks, either of type Landmarks5 or Landmarks68. The warped image
and landmarks are received from the warper (see IWarper::warp());

« Classifies eyes state and detects its iris and eyelid landmarks;

« Outputs EyesEstimation structures.

Orientation terms “left” and “right” refer to the way you see the image as it is shown on the screen.
It means that left eye is not necessarily left from the person’s point of view, but is on the left side
of the screen. Consequently, right eye is the one on the right side of the screen. More formally, the
label “left” refers to subject left eye (and similarly for the right eye), such that xright < xleft.

EyesEstimation::EyeAttributes presents eye state as enum EyeState with possible values: Open, Closed,
Occluded.

Iris landmarks are presented with a template structure Landmarks that is specialized for 32 points.

Eyelid landmarks are presented with a template structure Landmarks that is specialized for 6 points.

VisionLabs B.V. 62 /107

6.13.2 Red Eyes Estimation

The estimator is trained to work with warped images (see Chapter “Image warping” for details) and
warped landmarks.

Red Eye estimator evaluates whether a person’s eyes are red in a photo or not.

You can pass only warped images with detected faces to the estimator interface. Better image quality
leads to better results.

The estimator (see IRedEyeEstimator in IEstimator.h):

« Implements the estimate() function that accepts warped source image (see Chapter “Image
warping”) in R8G8B8 format and warped Landmarks5. The warped image and landmarks are
received from the warper (see IWarper::warp());.

+ Implements the estimate() function that accepts fsdk::Span of the source warped images in REG8B8
format and fsdk::Span of warped Landmarks.

« Outputs RedEyeEstimation structure.

RedEyeEstimation structure consists of attributes for each eye. Eye attributes consists of a score of and
status. Scores is normalized float value in a range of [0..1] where 1is red eye and 0 is not.

6.13.2.1 RedEyeEstimation structure
The RedEyeEstimation structure contains results of the estimation:

struct RedEyeEstimation {
[*x*

* @brief Eyes attribute structure.

* %/
struct RedEyeAttributes {
RedEyeStatus status; //!< Status of an eye.
float score; //!< Score, numerical value in range
[0,1].
b5

RedEyeAttributes leftEye; //!< Left eye attributes
RedEyeAttributes rightEye; //!< Right eye attributes

}s
There are two groups of the fields in RedEyeAttributes:

1. The first field is a status:

RedEyeStatus status; //'< Status of an eye.

VisionLabs B.V. 63 /107

2. The second field is a score, which defined in [0,1] range:

float score; //!< Score, numerical value in range [0, 1].

Enumeration of possible red eye statuses.

enum class RedEyeStatus : uint8_t {
NonRed, //'< Eye is not red.
Red, //'< Eye is red.

};

Note. The estimator is trained to work with face images that meet the following requirements:

Table 24: “Requirements for fsdk: :NaturalLight”

Attribute Minimum value

score 0.5

Table 25: “Requirements for fsdk: : SubjectiveQuality”

Attribute Minimum value
blur 0.61
light 0.57

darkness 0.5
illumination 0.1

specularity 0.1

Also fsdk: :GlassesEstimation must not be equal to fsdk::GlassesEstimation::SunGlasses

VisionLabs B.V. 64 /107

6.13.3 Gaze Estimation

This estimator is designed to determine gaze direction relatively to head pose estimation. Since 3D head
translation is hard to determine reliably without camera-specific calibration, only 3D rotation component
is estimated.

For this type of estimator can be defined sensor type.
Estimation characteristics:

+ Units (degrees);
+ Notation (Euler angles);
« Precision (see table below).

Rollangle is not estimated, prediction precision decreases as a rotation angle increases. We present
typical average errors for different angle ranges in the table below.

Table 26: “Gaze prediction precision”

Range -25°,..+25° -25°...-45°0r25° ... +45°
Average prediction error (per axis) Yaw £2.7° +4.6°
Average prediction error (per axis) Pitch +3.0° +4.8°

Zero position corresponds to a gaze direction orthogonally to face plane, with the axis of symmetry
parallel to the vertical camera axis.

VisionLabs B.V. 65/107

6.13.4 Glasses Estimation

Glasses estimator is designed to determine whether a person is currently wearing any glasses or not.
There are 3 types of states estimator is currently able to estimate:

+ NoGlasses state determines whether a person is wearing any glasses at all;
+ EyeGlasses state determines whether a person is wearing eyeglasses;
+ SunGlasses state determines whether a person is wearing sunglasses.

Note. Source input image must be warped in order for estimator to work properly (see Chapter “Image
warping”). Quality of estimation depends on threshold values located in faceengine configuration file
(faceengine.conf) in GlassesEstimator::Settings section. By default, these threshold values are set to
optimal.

Table below contain true positive rates corresponding to selected false positive rates.

Table 27: “Glasses estimator TPR/FPR rates”

State TPR FPR

NoGlasses 0.997 0.00234
EyeGlasses 0.9768 0.000783
SunGlasses 0.9712 0.000383

VisionLabs B.V. 66 /107

6.13.5 Overlap Estimation

This estimator tells whether the face is overlapped by any object. It returns a structure with 2 fields. One
is the value of overlapping in the range [0..1] where 0 is not overlapped and 1.0 is overlapped, the second
is a Boolean answer. ABoolean answer depends on the threshold listed below. If the value is greater than
the threshold, the answer returns true, else false.

The estimator (see IOverlapEstimator in [OverlapEstimator.h):

+ Implementsthe estimate() function that accepts source image in R8G8B8 format and fsdk::Detection
structure of corresponding source image (see section “Detection structure”);

« Estimates whether the face is overlapped by any object on input image;

+ Outputs structure with value of overlapping and Boolean answer.

6.14 Emotion estimation functionality
6.14.1 Emotions Estimation

The estimator is trained to work with warped images (see Chapter “Image warping” for details).
This estimator aims to determine whether a face depicted on an image expresses the following emotions:

« Anger
 Disgust
 Fear

« Happiness
« Surprise

+ Sadness

Neutrality

You can pass only warped images with detected faces to the estimator interface. Better image quality
leads to better results.

The estimator (see IEmotionsEstimator in IEmotionsEstimator.h):

+ Implements the estimate() function that accepts warped source image (see Chapter “Image
warping”). Warped image is received from the warper (see IWarper:warp());

« Estimates emotions expressed by the person on a given image;

« Outputs EmotionsEstimation structure with aforementioned data.

EmotionsEstimation presents emotions as normalized float values in the range of [0..1] where 0 is lack of
a specific emotion and 1is the maximum intensity of an emotion.

VisionLabs B.V. 67 /107

6.15 Mouth Estimation Functionality
6.15.1 Mouth Estimation

This estimator is designed to predict person’s mouth state. It returns the following bool flags:

bool 1isOpened; //!'< Mouth is opened flag
bool isSmiling; //!< Person 1is smiling flag
bool isOccluded; //!< Mouth 1is occluded flag

Each of these flags indicate specific mouth state that was predicted.

The combined mouth state is assumed if multiple flags are set to true. For example there are many cases
where person is smiling and its mouth is wide open.

Mouth estimator provides score probabilities for mouth states in case user need more detailed

information:
float opened; //'< mouth opened score
float smile; //'< person 1is smiling score

float occluded; //!< mouth is occluded score

6.15.1.1 MouthEstimator thresholds

The estimator returns several scores - one for each possible result. The final result calculated based on
that scores and thresholds. If some score is above the corresponding threshold, that result is estimated
as final. The default values for all thresholds are taken from the configuration file. See “Mouth Estimator
settings” in Configure guide for details.

6.15.2 Mouth Estimation Extended

This estimation is extended version of regular Mouth Estimation. In addition, It returns the following
fields:

SmileTypeScores smileTypeScores; //!< Smile types scores
SmileType smileType; //!< Contains smile type if person "isSmiling"

If flag isSmiling is true, you can get more detailed information of smile using smileType variable.
smileType can hold following states:

enum class SmileType {
None, //!< No smile

VisionLabs B.V. 68 /107

SmilelLips, //!< regular smile, without teeths exposed
SmileOpen //!< smile with teeths exposed

+s

If isSmiling is false, the smileType assigned to None. Otherwise, the field will be assigned with
SmileLips (person is smiling with closed mouth) or SmileOpen (person is smiling with open mouth,
with teeth’s exposed).

Extended mouth estimation provides score probabilities for smile type in case user need more detailed
information:

struct SmileTypeScores {
float smilelLips; //!< person is smiling with lips score
float smileOpen; //!< person is smiling with open mouth score

+s

smileType variable is set based on according scores hold by smileTypeScores variable - set based on
maximum score from smileLips and smileOpen or to None if person not smiling at all.

if (estimation.isSmiling)
estimation.smileType = estimation.smileTypeScores.smilelLips >
estimation.smileTypeScores.smileOpen ?
fsdk::SmileType::SmilelLips : fsdk::SmileType: :SmileOpen;
else
estimation.smileType = fsdk::SmileType::None;

Note. When you use Mouth Estimation Extended, the underlying computations are exactly the same
as if you use regular Mouth Estimation. The regular Mouth Estimation was retained for backward
compatibility.

These estimators are trained to work with warped images (see Chapter “Image warping” for details).

VisionLabs B.V. 69 /107

6.16 Liveness check functionality
6.16.1 HeadAndShouldersLiveness Estimation

This estimator tells whether the person’s face is real or fake (photo, printed image) and confirms presence
of a person’s body in the frame. Face should be in the center of the frame and the distance between the
face and the frame borders should be three times greater than space that face takes up in the frame. Both
person’s face and chest have to be in the frame. Camera should be placed at the waist level and directed
from bottom to top. The estimator check for borders of a mobile device to detect fraud. So there should
not be any rectangular areas within the frame (windows, pictures, etc.).

The estimator (see IHeadAndShouldersLiveness in IHeadAndShouldersLiveness.h):

« Implements the estimateHeadLiveness() function that accepts source image in R8G8B8 format
and fsdk::Detection structure of corresponding source image (see section “Detection structure” in
chapter “Detection facility”).

« Estimates whether it is a real person or not. Outputs float normalized score in range [0..1], 1 - is
real person, 0 - is fake. Implements the estimateShouldersLiveness() function that accepts source
image in R8G8B8 format and fsdk::Detection structure of corresponding source image (see section
“Detection structure” in chapter “Face detection facility”). Estimates whether real person or not.
Outputs float score normalized in range [0..1], 1 - is real person, 0 - is fake.

VisionLabs B.V. 70 /107

6.16.2 LivenessFlyingFaces Estimation

This estimator tells whether the person’s face is real or fake (photo, printed image).
The estimator (see ILivenessFlyingFacesEstimator in ILivenessFlyingFacesEstimator.h):

+ Implements the estimate() function that needs fsdk: : Image with valid image in R8G8B8 format
and fsdk: :Detection of corresponding source image (see section “Detection structure” in
chapter “Face detection facility”).

+ Implements the estimate() function that needs the span of fsdk: : Image with valid source images
in R8G8BS8 formats and span of fsdk: :Detection of corresponding source images (see section
“Detection structure” in chapter “Face detection facility”).

Those methods estimate whether different persons are real or not. Corresponding estimation output
with float scores which are normalized in range [0..1], where 1-is real person, 0 - is fake.

Note. The estimator is trained to work in combination with fsdk: : ILivenessRGBMEstimator.

Note. The estimator is trained to work with face images that meet the following requirements:

Table 28: “Requirements for fsdk: :BestShotQualityEstimator::EstimationResult”

Attribute Acceptable values

headPose.pitch [-30...30]
headPose.yaw [-30...30]
headPose.roll [-40...40]
ags [0.5...1.0]

Table 29: “Requirements for fsdk: :Detection”

Attribute Minimum value

detection size 80

Note. Detection size is detection width.

const fsdk::Detection detection = ... // somehow get fsdk::Detection object
const int detectionSize = detection.getRect().width;

VisionLabs B.V. 71/107

6.16.3 LivenessRGBM Estimation

This estimator tells whether the person’s face is real or fake (photo, printed image).
The estimator (see ILivenessRGBMEstimator in ILivenessRGBMEstimator.h):

+ Implements the estimate() function that needs fsdk: : Face with valid image in R8G8B8 format,
detection structure of corresponding source image (see section “Detection structure” in chapter
“Face detection facility”) and fsdk::Image with accumulated background. This method
estimates whether a real person or not. Output estimation structure contains the float score and
boolean result. The float score normalized in range [0..1], where 1 - is real person, 0 - is fake. The
boolean result has value true for real person and false otherwise.

« Implements the update() function that needs the fsdk::Image with current frame , number

of that image and previously accumulated background. The accumulated background will be
overwritten by this call.

VisionLabs B.V. 72 /107

6.16.4 Depth Liveness Estimation
This estimator tells whether the person’s face is real or fake (photo, printed image).
The estimator (see ILivenessDepthEstimator in ILivenessDepthEstimator.h):

+ Implements the estimate() function that accepts source warped image in R16 format and fsdk: :
DepthEstimation structure. This method estimates whether or not depth map corresponds to

the real person. Corresponding estimation output with float score which is normalized in range
[0..1], where 1 - is real person, O - is fake.

The estimator is trained to work with face images that meet the following requirements:

Table 30: “Requirements for fsdk: :HeadPoseEstimation”

Attribute Acceptable angle range(degrees)
pitch [-15...15]
yaw [-15...15]
roll [-10...10]

Table 31: “Requirements for fsdk: :Quality”

Attribute Minimum value

blur 0.94
light 0.90
dark 0.93

Table 32: “Requirements for fsdk: :EyesEstimation”

Attribute State

leftEye Open
rightEye Open

Also, the minimum distance between the face bounding box and the frame borders should be greater
than 20 pixels.

VisionLabs B.V. 73 /107

6.17 LivenessOneShotRGBEstimator

This estimator shows whether the person’s face is real or fake (photo, printed image).

6.17.1 LivenessOneShotRGBEstimator requirements

The requirements for the processed image and the face in the image are listed above.

This estimator supports images taken on mobile devices or webcams (PC or laptop). Image resolution
minimum requirements:

+ Mobile devices - 720 x 960 px
+ Webcam (PC or laptop) - 1280 x 720 px

There should be only one face in the image. An error occurs when there are two or more faces in the
image.

The minimum face detection size must be 200 pixels.
Yaw, pitch, and roll angles should be no more than 25 degrees in either direction.

The minimum indent between the face and the image borders should be 10 pixels.

6.17.2 LivenessOneShotRGBEstimation structure

The estimator (see ILivenessOneShotRGBEstimator in ILivenessOneShotRGBEstimator.h):

+ Implements the estimate() function that needs fsdk: : Image and fsdk: : Face with valid image
in R8G8B8 format and detection structure of corresponding source image (see section “Detection
structure” in chapter “Face detection facility”). This method estimates whether a real person or
not. Output estimation is a structure fsdk: : LivenessOneShotRGBEstimation.

« Implements the estimate() function that needs the span of fsdk::Image and span of
fsdk: :Face with valid image in R8G8B8 format and detection structure of corresponding
source image (see section “Detection structure” in chapter “Face detection facility”). This
method estimates whether a real person or not. Output estimation is a span of structure
fsdk::LivenessOneShotRGBEstimation. The second output value (structure fsdk::
LivenessOneShotRGBEstimation) is the result of aggregation based on span of estimations
announced above. Pay attention the second output value (aggregation) is optional, i.e. default

argument, which is nullptr.

The LivenessOneShotRGBEstimation structure contains results of the estimation:

struct LivenessOneShotRGBEstimation {
enum class State {
Alive = 0, //!< The person on image 1is real

VisionLabs B.V. 74 /107

Fake, //'< The person on image is fake (photo, printed -image)

Unknown //!'< The Tliveness status of person on image is Unknown
15
float score; //'< Estimation score
State state; //!'< Liveness status

float qualityScore; //!< Liveness quality score
s
Estimation score is normalized in range [0..1], where 1-is real person, O - is fake.
Liveness quality score is an image quality estimation for the liveness recognition.
This parameter is used for filtering if it is possible to make bestshot when checking for liveness.
The reference score is 0,5.

The value of State depends on score and qualityThreshold. The value qualityThreshold
can be given as an argument of method estiamte (see ILivenessOneShotRGBEstimator), and in
configuration file faceengine.conf (see ConfigurationGuide LivenessOneShotRGBEstimator).

6.17.3 Usage example
The face in the image and the image itself should meet the estimator requirements.

You can find additional information in example (examples/example_estimation/main.cpp) orin
the code below.

// Minimum detection size in pixels.
constexpr int minDetSize = 200;

// Step back from the borders.
constexpr int borderDistance = 10;

if (std::min(detectionRect.width, detectionRect.height) < minDetSize) {
std::cerr << "Bounding Box width and/or height is less than "minDetSize’
- " << minDetSize << std::endl;
return false;

}

if ((detectionRect.x + detectionRect.width) > (image.getWidth() -
borderDistance) || detectionRect.x < borderDistance) {
std::cerr << "Bounding Box width is out of border distance - " <<

borderDistance << std::endl;
return false;

VisionLabs B.V. 75/107

if ((detectionRect.y + detectionRect.height) > (image.getHeight() -
borderDistance) || detectionRect.y < borderDistance) {
std::cerr << "Bounding Box height is out of border distance - " <<
borderDistance << std::endl;
return false;

// Yaw, pitch and roll.
constexpr int principalAxes = 25;

if (std::abs(headPose.pitch) > principalAxes ||
std: :abs(headPose.yaw) > principalAxes ||
std::abs(headPose.roll) > principalAxes) {

std::cerr << "Can't estimate LivenessOneShotRGBEstimation. " <<
"Yaw, pith or roll absolute value 1is larger than expected value: "

<< principalAxes << "." <<
"\nPitch angle estimation: " << headPose.pitch <<
"\nYaw angle estimation: " << headPose.yaw <<
"\nRoll angle estimation: " << headPose.roll << std::endl;

return false;

WerecommendusingDetector type 3 (fsdk::0bjectDetectorClassType::FACE_DET_V3
).

VisionLabs B.V. 76 /107

6.18 Personal Protection Equipment Estimation

The Personal Protection Equipment (a.k.a PPE) estimator predicts wether a person is wearing one or
multiple types of protection equipment such as: - Helmet; - Hood; - Vest; - Gloves.

For each one of this attributes estimator returns 3 prediction scores which indicate the possibility of
person wearing that attribute, not wearingitand an “unknown” score which will be the highest of them all
if the estimator wasn’t able to tell wether person on the image wears/doesn’t wear a particular attribute.

Output structure for each attribute looks as foollows:

struct OnePPEEstimation {

float positive = 0.0f;
float negative = 0.0f;
float unknown = 0.0f;

enum class PPEState : uint8_t {
Positive, //!< person is wearing specific personal equipment;
Negative, //!< person isn't wearing specific personal equipment;
Unknown, //!< 1dt's hard to tell wether person wears specific
personal equipment.
Count //!< state count

s

[**
* @brief returns predominant personal equipment state
* %/
inline PPEState getPredominantState();
+s

All three prediction scores sumup to 1.

Estimator takes as input an image and a human bounding box of a person for which attributes shall
be predicted. For more information about human detector see “Human Detection” section.

VisionLabs B.V. 77 /107

6.19

Medical Mask Estimation Functionality

6.19.1 Medical Mask Estimation

This estimator aims to detect a medical face mask on the face in the source image. It can return the next

results:

A medical mask is on the face (see MedicalMask::Mask field in the MedicalMask enum);

There is no medical mask on the face (see MedicalMask::NoMask field in the MedicalMask enum);
The face is occluded with something (see MedicalMask::OccludedFace field in the MedicalMask
enum);

6.19.2 Medical Mask Extended Estimation

This estimator aims to detect a medical face mask on the face in the source image. It can return the next

results:

A medical mask is on the face (see MedicalMaskExtended::Mask field in the MedicalMask enum);
There is no medical mask on the face (see MedicalMaskExtended::NoMask field in the MedicalMask
enum);

A medical mask is not on the right place (see MedicalMaskExtended::MaskNotInPlace field in the
MedicalMask enum);

The face is occluded with something (see MedicalMaskExtended::OccludedFace field in the
MedicalMask enum);

The estimator (see IMedicalMaskEstimator in IMedicalMaskEstimator.h):

Implements the estimate() function that accepts source warped image in R8G8B8 format and
MedicalMaskEstimation structure to return results of estimation;

Implements the estimate() function that accepts source image in R8G8B8 format, face detection to
estimate and MedicalMaskEstimation structure to return results of estimation;

Implements the estimate() function that accepts fsdk::Span of the source warped images in R8G8B8
format and fsdk::Span of the MedicalMaskEstimation structures to return results of estimation;
Implements the estimate() function that accepts fsdk::Span of the source images in R8G8B8 format,
fsdk::Span of face detections and fsdk::Span of the MedicalMaskEstimation structures to return
results of the estimation.

Implements the estimate() function that accepts source warped image in R8G8B8 format and
MedicalMaskEstimationExtended structure to return results of estimation;

Implements the estimate() function that accepts source image in R8G8B8 format, face detection to
estimate and MedicalMaskEstimationExtended structure to return results of estimation;
Implements the estimate() function that accepts fsdk::Span of the source warped images in
R8G8BS8 format and fsdk::Span of the MedicalMaskEstimationExtended structures to return results
of estimation;

VisionLabs B.V. 78 /107

« Implementsthe estimate() function that accepts fsdk::Span of the source images in R8G8B8 format,
fsdk::Span of face detections and fsdk::Span of the MedicalMaskEstimationExtended structures to
return results of the estimation.

The estimator was implemented for two use-cases:

1. When the user already has warped images. For example, when the medical mask estimation is
performed right before (or after) the face recognition;
2. When the user has face detections only.

Calling the estimate() method with warped image and the estimate() method with image and
detection for the same image and the same face could lead to different results.

6.19.2.1 MedicalMaskEstimator thresholds

The estimator returns several scores - one for each possible result. The final result calculated based on
that scores and thresholds. If some score is above the corresponding threshold, that result is estimated
as final. The default values for all thresholds are taken from the configuration file. See Configuration
guide for details.

6.19.2.2 MedicalMask enumeration
The MedicalMask enumeration contains all possible results of the MedicalMask estimation:

enum class MedicalMask {

Mask = 0, //!'< medical mask is on the face
NoMask, //'< no medical mask on the face
OccludedFace //!< face is occluded by something

+s

6.19.2.3 MedicalMaskExtended enumeration
The MedicalMaskExtended enumeration contains all possible results of the MedicalMaskExtended
estimation:

enum class MedicalMaskExtended {

Mask = 0, //!'< medical mask is on the face
NoMask, //'< no medical mask on the face
MaskNotInPlace, //!'< mask is not on the right place
OccludedFace //'< face is occluded by something

+s

VisionLabs B.V. 79 /107

6.19.2.4 MedicalMaskEstimation structure
The MedicalMaskEstimation structure contains results of the estimation:

struct MedicalMaskEstimation {

MedicalMask result; //'< estimation result (@see MedicalMask
enum)

// scores

float maskScore; //'< medical mask is on the face score

float noMaskScore; //'< no medical mask on the face score

float occludedFaceScore; //!< face is occluded by something score

}s
There are two groups of the fields:

1. The first group contains only the result enum:

MedicalMask result;

Result enum field MedicalMaskEstimation contain the target results of the estimation.

2. The second group contains scores:

float maskScore; //'< medical mask is on the face score
float noMaskScore; //'< no medical mask on the face score
float occludedFaceScore; //!< face is occluded by something score

The scores group contains the estimation scores for each possible result of the estimation. All scores
are defined in [0,1] range. They can be useful for users who want to change the default thresholds for this
estimator. If the default thresholds are used, the group with scores could be justignored in the user code.

6.19.2.5 MedicalMaskEstimationExtended structure
The MedicalMaskEstimationExtended structure contains results of the estimation:

struct MedicalMaskEstimationExtended {

MedicalMaskExtended result; //!< estimation result (@see
MedicalMaskExtended enum)

// scores

float maskScore; //'< medical mask is on the face score

float noMaskScore; //'< no medical mask on the face score

float maskNotInPlace; //'< mask is not on the right place

float occludedFaceScore; //!< face 1is occluded by something score

+s

VisionLabs B.V. 80 /107

There are two groups of the fields:

1. The first group contains only the result enum:

MedicalMaskExtended result;

Result enum field MedicalMaskEstimationExtended contain the target results of the estimation.

2. The second group contains scores:

float maskScore; //'< medical mask is on the face score
float noMaskScore; //'< no medical mask on the face score
float maskNotInPlace; //!'< mask is not on the right place

float occludedFaceScore; //!< face 1is occluded by something score

The scores group contains the estimation scores for each possible result of the estimation. All scores
are defined in [0,1] range. They can be useful for users who want to change the default thresholds for this
estimator. If the default thresholds are used, the group with scores could be justignored in the user code.

Note. The estimator is trained to work with face images that meet the following requirements:

Table 33: “Requirements for fsdk: :BestShotQualityEstimator: :EstimationResult”

Attribute Acceptable values

headPose.pitch [-40...40]
headPose.yaw [-40...40]
headPose.roll [-40...40]
ags [0.5...1.0]

VisionLabs B.V. 81/107

7 Descriptor Processing Facility

7.1 Overview

The section describes descriptors and all the processes and objects corresponding to them.

Descriptor itself is a set of object parameters that are specially encoded. Descriptors are typically more
or less invariant to various affine object transformations and slight color variations. This property allows
efficient use of such sets to identify, lookup, and compare real-world objects images.

To receive a descriptor you should perform a special operation called descriptor extraction.

The general case of descriptors usage is when you compare two descriptors and find their similarity score.
Thus you can identify persons by comparing their descriptors with your descriptors database.

All descriptor comparison operations are called matching. The result of the two descriptors matching
is a distance between components of the corresponding sets that are mentioned above. Thus, from a
magnitude of this distance, we can tell if two objects are presumably the same.

There are two different tasks solved using descriptors: person identification and person reidentification.

7.1.1 Person Identification Task

Facial recognition is the task of making an identification of a face in a photo or video image against a pre-
existing database of faces. It begins with detection - distinguishing human faces from other objects in
the image - and then works on the identification of those detected faces. To solve this problem, we use a
face descriptor, which extracted from an image face of a person. A person’s face is invariable throughout
his life.

In a case of the face descriptor, the extraction is performed from object image areas around some
previously discovered facial landmarks, so the quality of the descriptor highly depends on them and the
image it was obtained from.

The process of face recognition consists of 4 main stages:

« face detection in an image;

« warping of face detection - compensation of affine angles and centering of a face;
« descriptor extraction;

« comparing of extracted descriptors (matching).

Additionally you can extract face features (gender, age, emotions, etc) or image attributes (light,
dark, blur, specularity, illumination, etc.).

7.1.2 Person Reidentification Task

Note! This functionality is experimental.

VisionLabs B.V. 82 /107

The person reidentification enables you to detect a person who appears on different cameras. For
example, it is used when you need to track a human, who appears on different supermarket cameras.

Reidentification can be used for:

building of human traffic warm maps;

analysing of visitors movement across cameras network;

tracking of visitors across cameras network;

search for a person across the cameras network in case when face was not captured (e.g. across
CCTV cameras in the city);

etc.

For reidentification purposes, we use so-called human descriptors. The extraction of the human

descriptor is performed using the detected area with a person’s body on an image or video frame. The
descriptor is a unique data set formed based on a person’s appearance. Descriptors extracted for the

same person in different clothes will be significantly different.

The face descriptor and the human descriptor are almost the same from the technical point of view,

but they solve fundamentally different tasks.

The process of reidentifications consists of the following stages:

human detection in an image;

warping of human detection - centering and cropping of the human body;
descriptor extraction;

comparing of extracted descriptors (matching).

The human descriptor does not support the descriptor score at all. The returned value of the

descriptor score is always equal to 1.0.

The human descriptor is based on to the following criteria:

Note.

clothes (type and color);

shoes;

accessories;

hairstyle;

body type;

anthropometric parameters of the body.

The human reidentification algorithm is trained to work with input data that meets the following

requirements:

input images should be in R8G8B8 format (will work worse in night mode);

the smaller side of input crop should be greater than 60 px;

inside of same crop, one person should occupy more than 80% (sometimes several persons fit into
the same frame).

VisionLabs B.V. 83/107

7.2 Descriptor

Descriptor object stores a compact set of packed properties as well as some helper parameters that were
used to extract these properties from the source image. Together these parameters determine descriptor
compatibility. Not all descriptors are compatible with each other. It is impossible to batch and match
incompatible descriptors, so you should pay attention to what settings do you use when extracting them.
Refer to section “Descriptor extraction” for more information on descriptor extraction.

7.2.1 Descriptor Versions

Face descriptor algorithm evolves with time, so newer FaceEngine versions contain improved models of
the algorithm.

Descriptors of different versions are incompatible! This means that you cannot match descriptors
with different versions. This does not apply to base and mobilenet versions of the same model:
they are compatible.

See chapter “Appendix A. Specifications” for details about performance and precision of different
descriptor versions.

Descriptor version 59 is the best one by precision. And it works well Personal protective equipment on
face like medical mask.

Descriptor version may be specified in the configuration file (see section “Configuration data” in chapter
“Core facility”).

7.2.1.1 Face descriptor

Currently next versions are available: 54, 56, 57, 58 and 59. Descriptors have backend and mobilenet
implementations. Versions 57, 58 and 59 supports only backend implementation. Backend versions
more precise, but mobilenet faster and have smaller model files (See Appendix A). Version 59 is the most
precise.

See Appendix A.1 and A.2 for details about performance and precision of different descriptor versions.

7.2.1.2 Human descriptor
Currently, only three versions of human descriptors are available: 102,103, 104

To create a human descriptor, human batch, human descriptor extractor, human descriptor matcher you
must pass the human descriptor version

« DV_MIN_HUMAN_DESCRIPTOR_VERSION =102 or
+ HDV_TRACKER_HUMAN_DESCRIPTOR_VERSION =102, //!<human descriptor for tracking of people
on one camera, light and fast version

VisionLabs B.V. 84 /107

« HDV_PRECISE_HUMAN_DESCRIPTOR_VERSION =103, //!< precise human descriptor, heavy and
slow

+ HDV_REGULAR_HUMAN_DESCRIPTOR_VERSION = 104, //!< regular human descriptor, use it by
default for multi-cameras tracking

7.3 Descriptor Batch

When matching significant amounts of descriptors, it is desired that they reside continuously in memory
for performance reasons (think cache-friendly data locality and coherence). This is where descriptor
batches come into play. While descriptors are optimized for faster creation and destruction, batches are
optimized for long life and better descriptor data representation for the hardware.

A batch is created by the factory like any other object. Aside from type, a size of the batch should be
specified. Size is a memory reservation this batch makes for its data. It is impossible to add more data
than specified by this reservation.

Next, the batch must be populated with data. You have the following options:

+ add an existing descriptor to the batch;
+ load batch contents from an archive.

The following notes should be kept in mind:

+ When adding an existing descriptor, its data is copied into the batch. This means that the descriptor
object may be safely released.

« When adding the first descriptor to an empty batch, initial memory allocation occurs. Before that
moment the batch does not allocate. At the same moment, internal descriptor helper parameters
are copied into the batch (if there are any). This effectively determines compatibility possibilities
of the batch. When the batch is initialized, it does not accept incompatible descriptors.

After initialization, a batch may be matched pretty much the same way as a simple descriptor.

Like any other data storage object, a descriptor batch implements the ::clear() method. An effect of this
method is the batch translation to a non-initialized state except memory deallocation. In other words,
batch capacity stays the same, and no memory is reallocated. However, an actual number of descriptors
in the batch and their parameters are reset. This allows re-populating the batch.

Memory deallocation takes place when a batch is released.

Care should be taken when serializing and deserializing batches. When a batch is created, it is assigned
with a fixed-size memory buffer. The size of the bufferis embedded into the batch BLOB when it is saved.
So, when allocating a batch object for reading the BLOB into, make sure its size is at least the same as
it was for the batch saved to the BLOB (even if it was not full at the moment). Otherwise, loading fails.
Naturally, it is okay to deserialize a smaller batch into a larger another batch this way.

VisionLabs B.V. 85/107

7.4 Descriptor Extraction

Descriptor extractor is the entity responsible for descriptor extraction. Like any other object, it is created
by the factory. To extract a descriptor, aside from the source image, you need:

+ aface detection area inside the image (see chapter “Detection facility”)
« apre-allocated descriptor (see section “Descriptor”)
«+ apre-computed landmarks (see chapter “Image warping”)

A descriptor extractor object is responsible for this activity. It is represented by the straightforward
IDescriptorExtractor interface with only one method extract(). Note, that the descriptor object must be
created prior to calling extract() by calling an appropriate factory method.

Landmarks are used as a set of coordinates of object points of interest, that in turn determine source
image areas, the descriptor is extracted from. This allows extracting only data that matters most for
a particular type of object. For example, for a human face we would want to know at least definitive
properties of eyes, nose, and mouth to be able to compare it to another face. Thus, we should firstinvoke
a feature extractor to locate where eyes, nose, and mouth are and put these coordinates into landmarks.
Then the descriptor extractor takes those coordinates and builds a descriptor around them.

Descriptor extraction is one of the most computation-heavy operations. For this reason, threading might
be considered. Be aware that descriptor extraction is not thread-safe, so you have to create an extractor
object per a worker thread.

It should be noted, that the face detection area and the landmarks are required only for image warping,
the preparation stage for descriptor extraction (see section “Image warping”). If the source image
is already warped, it is possible to skip these parameters. For that purpose, the IDescriptorExtractor
interface provides a special extractFromWarpedimage() method.

Descriptor extraction implementation supports execution on GPUs.

The IDescriptorExtractor interface provides extractFromWarpedimageBatch() method which allows
you to extract batch of descriptors from the image array in one call. This method achieve higher
utilization of GPU and better performance (see the “GPU mode performance” table in appendix A
chapter “Specifications”).

Also IDescriptorExtractor returns descriptor score for each extracted descriptor. Descriptor score is
normalized value in range [0,1], where 1 - face in the warp, 0 - no face in the warp. This value allows you
filter descriptors extracted from false positive detections.

7.5 Descriptor Matching

It is possible to match a pair (or more) previously extracted descriptors to find out their similarity. With
this information, it is possible to implement face search and other analysis applications.

VisionLabs B.V. 86 /107

99.47%

6.77%

Figure 14: Matching

By means of match function defined by the IDescriptorMatcher interface it is possible to match a pair of
descriptors with each other or a single descriptor with a descriptor batch (see section “Descriptor batch”
for details on batches).

A simple rule to help you decide which storage to opt for:

+ when searching among less than a hundred descriptors use separate IDescriptor objects;
« when searching among bigger number of descriptors use a batch.

When working with big data, a common practice is to organize descriptors in several batches keeping a
batch per worker thread for processing.

Be aware that descriptor matching is not thread-safe, so you have to create a matcher object per a worker
thread.

8 System Requirements

8.1 Android installations

FaceEngine requires:

VisionLabs B.V. 87 /107

« Android version 4.4.4 or newer.
For development:

« Android SDK 21;
« Android NDK 21 {Pkg.Revision = 21.0.6113669}.

Android development dependencies listed above can be downloaded directly from SDK manager
in Android Studio IDE or via SDK manager command line tool. For more information, please visit
https://developer.android.com/studio/command-line/sdkmanager.

9 Hardware requirements

9.1 Embedded installations
9.1.1 CPU requirements

Supported CPU architectures:

« ARMVT-A;
+ ARMvS8-A (ARM64).

9.2 Android for embedded

One more step to online activation process, in addition to information about LUNA SDK licensing,
described in VisionLabs LUNA SDK Licensing, paragraph License activation.

Besides the common steps for online-activation, described in document VisionLabs LUNA SDK
Licensing, for Android for embedded systems, execute a native licensed binary for Android for
embedded with root permissions at least once.

VisionLabs B.V. 88 /107

https://developer.android.com/studio/command-line/sdkmanager

10 Migration guide

10.1 Overview

Here you can find information about important changes in the next releases of LUNA SDK.

10.2 v.5.6.0
10.2.1 Vector2

Since v.5.6.0, the member array in fsdk: :Vector2 has been removed. You should use the x andy
members instead of the removed array one.

Example of code (before version 5.6.0):

fsdk: :Vector2<int> vector2;
vector2.x = 10;
vector2.y = 20;
/] or

vector2.array[0]
vector2.array[1]

10,
20;

Example of code (from version 5.6.0):

fsdk::Vector2<int> vector2;
vector2.x = 10;
vector2.y = 20;

10.2.2 BlackWhiteEstimator

Since v.5.6.0 method estimate of IBlackWhiteEstimator by full image has been deprecated (See
IBlackWhiteEstimator.h). Use estimate by warped image instead.

Example of code (before version 5.6.0):

bool isGray = false;
Result<FSDKError> res = BlackWhiteEstimator->estimate(fullImage, isGray)

)

Example of code (from version 5.6.0):

VisionLabs B.V. 89 /107

fsdk::ImageColorEstimation estimation;
Result<FSDKError> res = BlackWhiteEstimator->estimate(warp, estimation);

10.3 v.5.5.0

From v.5.5.0 the default value of numThreads (runtime.conf) was replaced by -1. Which means that
will be taken the maximum number of available threads. This number of threads is equal to according
number of available processor cores.

Example of setting (before version 5.5.0):

<param name="numThreads" type="Value::Intl" x="4" />

Example of setting (from version 5.5.0):

<param name="numThreads" type="Value::Intl" x="-1" />

From v.5.5.0 the method loadFromFile(const charx path) (See ILicense.h)is deprecated. The
use is allowed, but can be useless. Please use the method loadFromFile(const charx* path,
const fsdk::ISettingsProviderx settings) instead.

10.3.0.1 Examples of code
Example of code (before version 5.5.0):

const bool dislLicenseFilelLoadedSuccessfully = license->loadFromFile(path)
.is0k());

Example of code (from version 5.5.0):

auto resSettings = fsdk::createSettingsProvider ("License Config Path");
if (!resSettings.isOk()) {
return -1;

fsdk::ISettingsProviderPtr settings = resSettings.getValue();
// Create new license from file

const bool -islLicenseFilelLoadedSuccessfully = license->loadFromFile(path,
settings).is0k());

VisionLabs B.V. 90 /107

10.4 v.5.2.0

From v.5.2.0 the 101 version of human descriptor is not supported, it was changed by 104. Currently,
three versions are available: 102 (tracker), 103 (precise), 104 (regular). It means that all instances (such
as IDescriptorExtractor, IDescriptorMatcher and etc.) cannot be created with the version 101.

10.5 v.5.1.0

From version v.5.1.0 IHeadPoseEstimatorPtr and IAGSEstimatorPtr are deprecated. Use
IBestShotQualityEstimatorPtr instead.

Note. AGS score thresholds are different for IAGSEstimatorPtrand IBestShotQualityEstimatorPtr
. Read more on the BestShotQuality estimation page.

10.6 v.5.0.0
10.6.1 Objects creation

The fsdk::acquire(...) method for the pointer acquiring for IFaceEngine objects is not allowed
for usage starting from version 5.0.0. In addition, the types of values returned from the create methods
of IFaceEngine were changed.

Most of the create methods now return the following structure - fsdk::ResultValue<fsdk::
FSDKError, ObjectClassPtr> Thus it is easy to check the correctness of the result (using one of
the following methods result.isOk() or result.isError()) and get an error (using the result
.getError () method). The result.what() method can be used to get the text description of the
error.

10.6.1.1 Examples of code
Example of code (before version 5.0.0):

fsdk: :IAttributeEstimatorPtr estimator = fsdk::acquire(faceEngine->
createAttributeEstimator());
if (estimator.disNull()) {
std::cout << "Object pointer is nullptr" << std::endl;
// process error

Example of code (from version 5.0.0):

fsdk: :ResultValue<fsdk: :FSDKError, fsdk::IAttributeEstimatorPtr>
resEstimator = faceEngine->createAttributeEstimator();

VisionLabs B.V. 91/107

if (resEstimator.isError()) {
std::cout << "Error: " << resEstimator.what() << std::endl;
// process error

fsdk::IAttributeEstimatorPtr estimator = resEstimator.getValue();

10.6.2 Interface of ILicense

From version v.5.0.0 we changed the interface of ILicense. Now all methods of this class return
fsdk::Result<fsdk::FSDKError>, fsdk: :ResultValue<fsdk: :FSDKError, bool> or fsdk::
ResultValue<fsdk: :FSDKError, uint32_t> instead of bool.

10.6.2.1 Examples of code
Example of code (before version 5.0.0):

const bool res = license->isActivated();
if (lres) {
/* error case code x/

Example of code (from version 5.0.0):

const fsdk::ResultValue<fsdk::FSDKError, bool> result = license->
isActivated();

if (result.isError()) {
/* error case code x/

const bool value = result.getValue();
if (!value) {
/* false case code x/

Fromversionv.5.0.0 we changed the arguments of methods getExpirationDateand checkFeatureId

in class ILicense. Now the input arguments of getExpirationDate and checkFeatureld is
fsdk::LicenseFeature instead of uint32_t. And the second argument of getExpirationDate
was removed. The return value of getExpirationDate is fsdk: :ResultValue<fsdk: :FSDKError
, uint32_t>.

Example of code (before version 5.0.0):

VisionLabs B.V. 92 /107

long long expDate
const bool result

CH

license->getExpirationDate(static_cast<uint32_t>(fsdk::
LicenseFeature: :Detection), expDate);

if (result == false) {

Example of code (from version 5.0.0):

const fsdk::ResultValue<fsdk::FSDKError, uint32_t> result =
license->getExpirationDate(fsdk::LicenseFeature: :Detection);

if (result.isError()) {

const uint32_t expDate = result.getValue();

Example of code (before version 5.0.0):

const bool res = license->checkFeatureId(static_cast<uint32_t>(fsdk::
LicenseFeature: :Detection));
if (lres) {

Example of code (from version 5.0.0):

const fsdk::ResultValue<fsdk::FSDKError, bool> result = license->
checkFeaturelId(fsdk::LicenseFeature: :Detection);
if (result.isError()) {

const bool value = result.getValue();
if (!value) {

VisionLabs B.V. 93/107

10.6.3 Interface of HumanLandmark

From version v.5.0.0 we changed the interface of HumanLandmark. Now member point doesn’t store
zero coordinates in the case when it is not visible. For this purposes we added member visible which
stores true if pointis visible.

Example of code (before version 5.0.0):

if (humanLandmark.point.x == 0 && humanLandmark.point.y == 0) {
// point is not visible case code

}
else {

// point 1is visible case code
}

Example of code (from version 5.0.0):

if (humanLandmark.visible == false) {
// point is not visible case code
b
else {
// point 1is visible case code
+

10.6.4 Interface of IDescriptorBatch

From version v.5.0.0 we renamed method IDescriptorBatch::getDescriptorSize() to
IDescriptorBatch: :getDescriptorLength().

Example of code (before version 5.0.0):

uint32_t descriptorLength = descriptorBatch->getDescriptorSize();

Example of code (from version 5.0.0):

uint32_t descriptorLength = descriptorBatch->getDescriptorLength();

10.6.5 Interface of Detection

From version v.5.0.0 we changed the interface of the Detection structure. Now all members of this
structure are private and could be available through the public methods.

VisionLabs B.V. 94 /107

Example of code (before version 5.0.0):

fsdk: :Detection detection = ...; // Somehow initialized detection object

fsdk::Rect rect = detection.rect; // Get the detection rect
float score = detection.score; // Get the detection score

Example of code (from version 5.0.0):
fsdk: :Detection detection =

fsdk::Rect rect =
float score =

.3 // Somehow 1initialized detection object
detection.getRect(); // Get the detection rect
detection.getScore(); // Get the detection score

10.6.6 Interface of IDetector

From version v.5.0.0 we changed the interface of IDetector structure. Now method detect returns

ResultValue<FSDKError, Ref<IFaceDetectionBatch>> instead of ResultValue<FSDKError,
Ref<IResultBatch<Face>>>.

Example of code (before version 5.0.0):

fsdk::ResultValue<fsdk: :FSDKError, fsdk::Ref<fsdk::IResultBatch<fsdk::Face
>>> detectorResult = faceDetector->detect(
fsdk::Span<const fsdk::Image>(&image, 1),
fsdk: :Span<const fsdk::Rect>(&imageRect, 1),
detectionsCount,

fsdk::DT_ALL);

Example of code (from version 5.0.0):

fsdk: :ResultValue<fsdk: :FSDKError, fsdk::Ref<fsdk::IFaceDetectionBatch>>
detectorResult = faceDetector->detect(
fsdk::Span<const fsdk::Image>(&image, 1),
fsdk: :Span<const fsdk::Rect>(&imageRect, 1),
detectionsCount,
fsdk::DT_ALL);

Also we changed input and output parameters of the method redetectOne. Now it takes Image and

Detectioninstead of Face. And returns ResultValue<FSDKError, Face> instead of ResultValue
<FSDKError, bool>.

Example of code (before version 5.0.0):

VisionLabs B.V. 95/107

fsdk::ResultValue<fsdk: :FSDKError, bool> redetectResult = faceDetector->
redetectOne(face);

Example of code (from version 5.0.0):

fsdk::ResultValue<fsdk: :FSDKError, fsdk::Face> redetectResult = faceDetector
->redetectOne(image, detection);

10.6.7 IFaceDetectionBatch
We added IFaceDetectionBatch structure to replace IResultBatch<Face>.

Example of code (before version 5.0.0):

fsdk: :Ref<IResultBatch<Face>> resultBatch = ...;

for (std::size_t i = 0; i < resultBatch->getSize(); ++i) {
fsdk: :Span<fsdk::Face> faces = resultBatch->getResults(i);
for (auto& face : faces) {
const fsdk::Rect& rect = face.detection.rect;
const float score = face.detection.score;
const fsdk::Landmarks5& 1lm5 = face.landmarks5.value();
const fsdk::Landmarks68& 1m68 = face.landmarks68.value();

Example of code (from version 5.0.0):

fsdk::Ref<fsdk::IFaceDetectionBatch> faceDetectionBatch = ...;

for (std::size_t i = 0; i < faceDetectionBatch->getSize(); ++i) {

fsdk: :Span<const fsdk::Detection> detections = faceDetectionBatch->
getDetections(i);

fsdk: :Span<const fsdk::Landmarks5> landmarks5 = faceDetectionBatch->
getLandmarks5(i);

fsdk: :Span<const fsdk::Landmarks68> landmarks68 = faceDetectionBatch->
getLandmarks68(i);

for (std::size_t j = 0; j < detections.size(); ++j) {
const fsdk::Rect& rect = detections[j].getRect();
const float score = detections[j].getScore();
const fsdk::Landmarks5& lm5 = landmarks5[j];

VisionLabs B.V. 96 /107

const fsdk::Landmarks68& 1m68 = landmarks68[j];

10.6.8 Interface of IHumanDetector

From version v.5.0.0 we changed the interface of THumanDetector structure. Now method detect

returns ResultValue<FSDKError, Ref<IHumanDetectionBatch>> instead of ResultVvalue<
FSDKError, Ref<IResultBatch<Human>>>.

Example of code (before version 5.0.0):

fsdk::ResultValue<fsdk: :FSDKError, fsdk::Ref<fsdk::IResultBatch<fsdk::Human
>>> detectResult = humanDetector->detect(
fsdk: :Span<const fsdk::Image>(&image, 1),
fsdk::Span<const fsdk::Rect>(&imageRect, 1),
detectionsCount,
fsdk: :DCT_ALL);

Example of code (from version 5.0.0):

fsdk::ResultValue<fsdk: :FSDKError, fsdk::Ref<fsdk::IHumanDetectionBatch>>
detectResult = humanDetector->detect(
fsdk::Span<const fsdk::Image>(&image, 1),
fsdk: :Span<const fsdk::Rect>(&imageRect, 1),
detectionsCount,
fsdk: :HDT_ALL);

Also we changed input and output parameters of the method redetectOne. Now it takes Image

and Detection instead of Human. And returns ResultValue<FSDKError, Human> instead of
ResultValue<FSDKError, bool>.

Example of code (before version 5.0.0):

fsdk::ResultValue<fsdk: :FSDKError, bool> redetectResult = humanDetector->
redetectOne (human) ;

Example of code (from version 5.0.0):

fsdk::ResultValue<fsdk: :FSDKError, fsdk::Human> redetectResult =
humanDetector->redetectOne(image, detection);

VisionLabs B.V. 97 /107

10.6.9 IHumanDetectionBatch
We added IHumanDetectionBatch structure to replace IResultBatch<Human>.

Example of code (before version 5.0.0):

fsdk: :Ref<IResultBatch<Human>> resultBatch = ...; // Somehow get the

IResultBatch<Human>
for (std::size_t i = 0; i < resultBatch->getSize(); ++i) {
fsdk: :Span<fsdk: :Human> humans = resultBatch->getResults(i);
for (auto& human : humans) {
const fsdk::Rect& rect = human.detection.rect;
const float score = human.detection.score;
const fsdk::Landmarksl17& 1ml7 = face.landmarks5.value();
// Some code which uses received objects

Example of code (from version 5.0.0):

const fsdk::Ref<fsdk::IHumanDetectionBatch> humanDetectionBatch = ...; //

Somehow get the IHumanDetectionBatch
for (std::size_t i = 0; i < humanDetectionBatch->getSize(); ++i) {
fsdk::Span<const fsdk::Detection> detections = humanDetectionBatch->

getDetections(i);
fsdk: :Span<const fsdk::HumanLandmarksl17> landmarks = humanDetectionBatch

->getlLandmarks17(i);

for (std::size_t j = 0; j < detections.size(); ++j) {
const fsdk::Rect rect = detections[j].getRect();
const float score = detections[j].getScore();
const fsdk::HumanLandmarksl7 1ml7 = landmarks[j];
// Some code which uses received objects

10.6.10 Interface of ILivenessFlyingFaces

From version v.5.0.0 we changed the interface of ILivenessFlyingFaces structure. Now both

methods estimate take Image and Detection instead of Face

Example of code (before version 5.0.0):

fsdk::LivenessFlyingFacesEstimation flyingFacesEstimation;

VisionLabs B.V. 98 /107

Result<fsdk: :FSDKError> flyingFacesResult = livenessFlyingFacesEstimator->
estimate(face, flyingFacesEstimation);

Example of code (from version 5.0.0):

fsdk::LivenessFlyingFacesEstimation flyingFacesEstimation;
Result<fsdk::FSDKError> flyingFacesResult = livenessFlyingFacesEstimator->
estimate(
image,
detection,
flyingFacesEstimation);

Example of code (before version 5.0.0):

Result<fsdk::FSDKError> flyingFacesResult = livenessFlyingFacesEstimator->
estimate(
fsdk: :Span<const fsdk::Face>(&face, 1),
fsdk: :Span<fsdk::LivenessFlyingFacesEstimation>(&estimation, 1));

Example of code (from version 5.0.0):

fsdk::LivenessFlyingFacesEstimation flyingFacesEstimation;
Result<fsdk::FSDKError> flyingFacesResult = livenessFlyingFacesEstimator->
estimate(
fsdk: :Span<const fsdk::Image>(&image, 1),
fsdk: :Span<const fsdk::Detection>(&detection, 1),
fsdk::Span<fsdk::LivenessFlyingFacesEstimation> (&
flyingFacesEstimation, 1));

10.7 v.3.10.1
10.7.1 Detector FaceDetV3 changes

From version 3.10.1 we changed the logic for image resizing in FaceDetV3 detector. Now you can
change the minimum and maximum sizes of the faces that will be searched in the photo from the
faceengine.conf configuration. To get new parameter which will be identical to old setting you need

tosetminFaceSize:

The old recommended imageSize=640 will be identical to new meaning of setting minFaceSize=20

config->setValue("FaceDetV3::Settings", "minFaceSize", 20);

VisionLabs B.V. 99 /107

and imageS+ize=320 will be identical to new meaning of setting minFaceS+ize=40

config->setValue("FaceDetV3::Settings", "minFaceSize", 40);

10.7.2 Detector FaceDetV1, FaceDetV2 changes

From version 3.10.1 we changed the name of parameterminSizetominFaceSizein faceengine.conf
for FaceDetV1, FaceDetV2 detector types. The logic and default value for image resizing left unchanged.

VisionLabs B.V. 100 /107

11 Best practices

11.1 Overview

The following chapter provides a set of recommendations that user should follow in order to get optimal
performance when running Luna SDK algorithms on their target device. Over time this list will be
populated with more recommendations and performance tips.

11.1.1 Multithread scenario

Creation and destroying Luna SDK algorithms from the different threads is prohibited due to internal
implementation restrictions. All objects of the FaceEngine class and all objects of algorithms (for
example, detectors, estimators, extractors and others) must be created and destroied by the same
thread. A typical scenario is as follows: Thread 1 (may be a main thread) creates the FaceEngine object
and all needed algorithms (for example, IDetector). Threads 2..N (maybe several) uses that objects for
any purpose. Thread 1 destroys the FaceEngine object and all algorithms after all work is complete.

11.1.2 Thread pools

When running Luna SDK algorithms in a multithreaded environment it is highly recommended to use
thread pools for user-created threads. For each thread Luna SDK caches some amount of thread local
objects under the hood in order to make its algorithms run faster next time the same thread is used at
the cost of higher memory footprint. For this reason, it is recommended to reuse threads from a pool
in order to avoid caching new internal objects and to reduce penalty of creating/destroying new user
threads.

11.1.3 Estimators. Creation and Inference

Create face engine objects once and reuse them when you need to make a new estimate to reduce
RAM usage and increase performance. The reason is that recreating of estimators leads to reopen the
corresponding plan file every time. These plan files are cached separately for every load and will be
removed only when they are flushed from the cache or after calling the destructor of FaceEngine root
object.

11.1.4 Forking process

UNIX-like operating systems implement a mechanism to duplicate a process. It creates a new child
process and copies its parents’ memory space into the child’s. This is typically done programmatically
by calling the fork() system function in the parent process. Care should be taken when forking a process
running the SDK. Always fork before the first instance of IFaceEngine is created! This is because the
SDK internally maintains a pool of worker threads, which is created lazily at the time the very first

VisionLabs B.V. 101/107

IFaceEngine object is born and destroyed right after the last IFaceEngine object is released. When using
GPU or NPU devices, their runtime is initialized and shut down in the same manner. The hazard comes
from the fact that while fork() copies process memory, it only creates just one thread - the main thread
(refer to man pages for details: https://man7.org/linux/man-pages/man2/fork.2.html). As a result, if
at least one IFaceEngine object is alive at the time the process is being forked, the child processes will
inherit the knowledge of the object, and therefore, the implicit thread pool (and device runtime, when
appropriate). But there will be no worker threads actually running (in both, the inherited pool and the
runtime, when appropriate) and attempting to call certain SDK functions will cause a deadlock.

VisionLabs B.V. 102 /107

12 Device-specific constraints

12.1 Image constraints

When memory is allocated for Image pixel data storage, the following constraints are enforced depending
on the requested memory residence:

+ Image::MemoryResidence::CPU: base address alignment is 32 bytes;

+ Image::MemoryResidence::GPU: base address alignment is 128 bytes;

+ Image::MemoryResidence::NPU: base address alignment is 128 bytes;

+ Image::MemoryResidence::NPU_DPP: base address alignment is 128 bytes.

Also, in case of Image::MemoryResidence::NPU_DPP image width must be multiple of 16 and image
height must be multiple of 2.

When Image is initialized as a wrapper for a user-provided memory block, whose residence is said to
be Image::MemoryResidence::NPU or Image::MemoryResidence::NPU_DPP, the above requirements are
checked upon the initialization.

Image class implements limited functionality for device-side data. Only the following operations are
supported:

« construction (both with Image-owned memory and as a wrapper for a user-defined memory) and
assignment (including deep copy);

« destruction;
« set() family of functions (functionally the same as construction/assignment);

« convert() function, but only in transfer mode; This means that both source and destination formats
must match, only memory residency may differ. This function supports only synchronous memory
transfers in the following directions:

host <-> GPU
GPU <->GPU
host <-> NPU
- NPU<->NPU.

Full range of functionality (including format conversions) is currently only available for Images with host
memory data residence.

The following operations are NOT supported:

« compressed format encoding/decoding;

format/color space conversion;
+ subimage views (i.e. map() function);

padding and cropping (i.e. extract() function);

manipulation (e.g. getPixel(), setPixel(), etc.).

VisionLabs B.V. 103 /107

13 Appendix A. Specifications

13.1 Classification performance

Classification performance was measured on a two datasets:

« Cooperative dataset (containing 20K images from various sources obtained at several banks);
+ Non cooperative dataset (containing 20K).

The two tables below contain true positive rates corresponding to select false positive rates.

Table 34: “Classification performance @ low FPR on cooperative dataset”

TPR TPR TPR TPR TPR TPRCNN TPRCNN TPRCNN
FPR CNN54 CNN 56 CNN 57 CNN58 CNNS59 54m 56m 59m

107 0.9765 0.9907 0.9906 0.9910 0.9911 0.9699 0.9652 0.9876
0% 0.9849 0.9914 0.9915 0.9916 0.9915 0.9829 0.9814 0.9904
10° 0.9892 0.9916 0.9917 0.9918 0.9919 0.9887 0.9886 0.9915
104 0.9909 0.9917 0.9918 0.9919 0.9921 0.9910 0.9910 0.9919

Table 35: “Classification performance @ low FPR on non cooperative dataset”

TPR TPR TPR TPR TPR TPRCNN TPRCNN TPRCNN
FPR CNN54 CNN 56 CNN 57 CNN 58 CNN 59 54m 56m 59m

107 0.9638 0.9698 0.9723 0.9767 0.9832 0.8813 0.8844 0.9377
10¢ 0.9773 0.9809 0.9817 0.9839 0.9880 0.9233 0.9229 0.9629
10° 0.9852 0.9871 0.9873 0.9880 0.9908 0.9538 0.9561 0.9794
10% 0.9896 0.9902 0.9905 0.9909 0.9924 0.9752 0.9757 0.9880

13.2 Descriptor size

The table below shows size of serialized descriptors to estimate memory requirements.

VisionLabs B.V. 104 /107

Table 36: “Descriptor size”

Descriptor version Data size (bytes) Metadata size (bytes) Total size

CNN 54 512 8 520

Metadata includes signature and version information that may be omitted during serialization if the
NoSignature flag is specified.

When estimating individual descriptor size in memory or serialization storage requirements with default
options, consider using values from the “Total size” column.

When estimating memory requirements for descriptor batches, use values from the “Data size” column
instead, since a descriptor batch does not duplicate metadata per descriptor and thus is more memory-
efficient.

These numbers are for approximate computation only, since they do not include overhead like
memory alignment for accelerated SIMD processing and the like.

VisionLabs B.V. 105 /107

14 Appendix B. Glossary

Table 37: Glossary

Term Description

Host memory Computer system RAM
Device memory On-board RAM of GPU or NPU card

Memory transfer Operation that copies memory from host to device or vice-versa

14.1 Descriptor

A set of features meant to describe a real-world object (e.g., a person’s face). Computed by means of
computer vision algorithms, such features are typically matched to each other to determine the similarity
of represented objects.

14.2 Cooperative Photoshooting and Recognition

A procedure of taking person face photograph characterized by person awareness of the matter and
his/her will to assist.

Typical highlights:

« Close to frontal head pose;

Neutral facial expression;

No occlusions (i.e., hair, hats, non-transparent eyewear, hands, other objects obscuring the face);

No extreme lighting conditions (i.e., reasonable illuminance, no direct sunlight);

Steady and well-tuned optics (i.e., no motion blur, depth of field, digital post-processing except
noise cancellation).

Cooperative photoshooting is opposite to the so-called “in the wild” photoshooting, which is also called
non-cooperative shooting (or recognition).

14.3 Matching

The process of descriptors comparison. Matching is usually implemented as a distance function applied
to the feature sets and distances comparison later on. The smaller the distance, the closer are descriptors,
hence, the more similar are the objects.

For convenience, helper functions exist to convert distance to a normalized similarity score, where 100%
means completely identical, and 0% means completely different.

VisionLabs B.V. 106 /107

15 Appendix C. FAQ

Q: This document contains high-level descriptions and no code examples nor reference. Where can
one find them?

A: The complete type and function reference are provided as an interactive web-based documentation;
see the doc/fsdk/index.html inside the LUNA SDK package. The examples are located in the /examples
folder and “ExamplesGuide.pdf” is located in /doc folder of LUNA SDK package.

Q: Does FaceEngine support multicore / multiprocessor systems?

A: Yes, all internal algorithm implementations are multithreaded by design and take advantage of multi-
core systems. The number of threads may be controlled via the configuration file; see configuration
manual “ConfigurationGuide.pdf” or comments in the configuration file for details.

Q: What is the state of GPU support?

A: As of version 2.7 the GPU support is implemented for face detection and descriptor extraction
algorithms. Starting from version 2.9 GPU implementations are considered stable.

Q: What speedup may be expected from GPUs?

A: Typically GPUs allow accelerating algorithms by the factor of 2-4 times depending on microprocessor
architecture and input data.

Q: Are there any official bindings/wrappers for other languages (C#, Java)?

A: No, such bindings are not provided. FaceEngine officially implements C++ API only, bindings to other
languages should be created by users themselves. There are tools to automate this process, like, e.g.,
SWIG.

Q: Does FaceEngine support DBMS systems?

A: No, FaceEngine implements just computer vision algorithms. Users should implement DBMS
communication themselves using serialization methods described in section “Serializable object
interface” of chapter “Core concepts” and section “Archive interface” of chapter “Core facility”.

Q: What image formats does FaceEngine support?

A: FaceEngine does not implement image format encoding functions. If such functions are required, one
should use a third-party library, e.g., Freelmage.

FaceEngine functions typically expect image data in the form of uncompressed unencoded pixel data
(RGB color 24 bits per pixel or grayscale 8 bits per pixel).

FaceEngine implements convenience functions like RGB -> grayscale and RGB<-> BGR color conversions.
The rationale of this design is explained in section “Image type” of chapter “Core concepts”.

VisionLabs B.V. 107 /107

	Introduction
	Core Concepts
	Common Interfaces and Types
	Reference Counted Interface
	Automatic reference counting
	Serializable object interface
	Auxiliary types
	Image type

	Beta Mode

	FaceEngine Structure Overview
	Core Facility
	Common Interfaces
	Face Engine Object
	Settings Provider

	Helper Interfaces
	Archive Interface

	Sensor type
	Data Paths
	Model Data
	Configuration Data

	Detection facility
	Overview
	Detection structure
	Face Detection
	Image coordinate system
	Face detection
	Redetect method
	Orientation Estimation
	OrientationType enumeration

	Detector variants
	FaceDetV1 and FaceDetV2 Configuration
	FaceDetV3 Configurating
	Face Alignment
	Five landmarks
	Sixty-eight landmarks

	Human Detection
	Image coordinate system
	Human body detection
	Constraints
	Camera position requirements
	Human body redetection
	Human Keypoints
	Detection
	Main Results of Each Detection

	Image Warping
	Parameter Estimation Facility
	Overview
	Use cases
	ISO estimation

	Best shot selection functionality
	BestShotQuality Estimation
	AGS
	Head Pose

	Image quality estimation

	Attributes estimation functionality
	Face Attribute Estimation
	Child Estimation
	Credibility Check Estimation

	Facial Hair Estimation
	FacialHair enumeration
	FacialHairEstimation structure

	Natural Light Estimation
	LightStatus enumeration
	NaturalLightEstimation structure

	Fish Eye Estimation
	FishEye enumeration
	FishEyeEstimation structure

	Eyebrows estimation
	EyeBrowState enumeration

	Portrait Style Estimation
	PortraitStyleStatus enumeration
	PortraitStyleEstimation structure

	Headwear Estimation
	HeadWearState enumeration
	HeadWearType enumeration
	HeadWearStateEstimation structure
	HeadWearTypeEstimation structure
	HeadWearEstimation structure

	Background Estimation
	BackgroundStatus enumeration
	BackgroundEstimation structure

	Grayscale, color or infrared Estimation
	By full frame
	By warped frame

	Face features extraction functionality
	Eyes Estimation
	Red Eyes Estimation
	RedEyeEstimation structure

	Gaze Estimation
	Glasses Estimation
	Overlap Estimation

	Emotion estimation functionality
	Emotions Estimation

	Mouth Estimation Functionality
	Mouth Estimation
	MouthEstimator thresholds

	Mouth Estimation Extended

	Liveness check functionality
	HeadAndShouldersLiveness Estimation
	LivenessFlyingFaces Estimation
	LivenessRGBM Estimation
	Depth Liveness Estimation

	LivenessOneShotRGBEstimator
	LivenessOneShotRGBEstimator requirements
	LivenessOneShotRGBEstimation structure
	Usage example

	Personal Protection Equipment Estimation
	Medical Mask Estimation Functionality
	Medical Mask Estimation
	Medical Mask Extended Estimation
	MedicalMaskEstimator thresholds
	MedicalMask enumeration
	MedicalMaskExtended enumeration
	MedicalMaskEstimation structure
	MedicalMaskEstimationExtended structure

	Descriptor Processing Facility
	Overview
	Person Identification Task
	Person Reidentification Task

	Descriptor
	Descriptor Versions
	Face descriptor
	Human descriptor

	Descriptor Batch
	Descriptor Extraction
	Descriptor Matching

	System Requirements
	Android installations

	Hardware requirements
	Embedded installations
	CPU requirements

	Android for embedded

	Migration guide
	Overview
	v.5.6.0
	Vector2
	BlackWhiteEstimator

	v.5.5.0
	Examples of code

	v.5.2.0
	v.5.1.0
	v.5.0.0
	Objects creation
	Examples of code

	Interface of ILicense
	Examples of code

	Interface of HumanLandmark
	Interface of IDescriptorBatch
	Interface of Detection
	Interface of IDetector
	IFaceDetectionBatch
	Interface of IHumanDetector
	IHumanDetectionBatch
	Interface of ILivenessFlyingFaces

	v.3.10.1
	Detector FaceDetV3 changes
	Detector FaceDetV1, FaceDetV2 changes

	Best practices
	Overview
	Multithread scenario
	Thread pools
	Estimators. Creation and Inference
	Forking process

	Device-specific constraints
	Image constraints

	Appendix A. Specifications
	Classification performance
	Descriptor size

	Appendix B. Glossary
	Descriptor
	Cooperative Photoshooting and Recognition
	Matching

	Appendix C. FAQ

